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ABSTRACT Data networks and computing devices have experienced exponential growth. Within a short
span of time, they have opened new digital frontiers while also bringing forth new threats. These threats
have the potential to increase costs and disrupt regular operations. Choosing a cybersecurity plan to
address these threats requires balancing direct and indirect costs against the benefits of implementation and
subsequent operation. In this study, we propose an efficient strategy for designing networking topologies by
incorporating a Security Information and EventManagement System. This system consists of a central server
and Network Intrusion Detection Sensors, which gather data and promptly transmit information regarding
suspicious activities to the server. The server then takes immediate action in case of incidents. To determine
the optimal number and placement of sensors, a many-objective optimization approach is employed. The
problem is mathematically modeled using linear programming. To solve the optimization problem, swarm
intelligence techniques such as the particle swarm optimizer, the bat algorithm, and the black hole method
are utilized. Various test scenarios were created by presenting low, medium, and complex instances of
conventional networks. The results obtained using the black hole bio-inspired algorithm were particularly
satisfying, surpassing the performance and resolution of the other methods.

INDEX TERMS Security information and event management, network intrusion detection system, cyberse-
curity, many-objective optimization strategy, metaheuristics.

I. INTRODUCTION
Since the advent of personal computing and the subsequent
emergence of data networks, the landscape of information
technologies has undergone a profound transformation, fun-
damentally altering our ways of interaction [1]. Today, the
irruption of the internet has become an essential part of
human life [2]. We now rely on the internet for various
purposes, accessing it from our homes, offices, and portable
devices, regardless of our location. Within organizations and
companies, information systems facilitate the exchange of
data, supporting critical business operations and contribut-
ing to the overall mission of each entity [3]. Consequently,
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the reliance on information technologies has grown substan-
tially, necessitating the implementation of robust security
risk management measures to safeguard sensitive data and
information. Failure to address these measures may lead to
unintended consequences. Moreover, organizations and com-
panies are increasingly cognizant of the potential impacts that
a security breach in their computing infrastructure could have
on their business continuity and overall reputation [4].

An organization’s effective cyber risk management
involves the identification of critical assets that are essential
for operational and productive continuity, as well as the
evaluation of measures to protect them against potential
threats [5]. Risk, in this context, refers to the possibility of
experiencing damage or loss. Threats, on the other hand, are
components of risk and encompass threat agents, whether
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human or non-human, capable of triggering actions such
as identifying and exploiting vulnerabilities, resulting in
unexpected and unwanted outcomes [6]. However, the current
state of cyber risk management falls short of delivering the
desired results and requires improvement. This issue stems
from various factors, including the ever-changing landscape
of new attacks, which go undetected by existing security tech-
nology systems due to novel patterns of incidence. It is worth
noting that organizations worldwide are making unprece-
dented investments in cybersecurity, yet they still struggle to
achieve their desired outcomes due to a misaligned focus on
priorities [7]. Reports indicate a steady increase in success-
ful malware attacks over the past decade, causing damages
exceeding 7.5 billion. In 2017, a survey estimated that a
typical financial institution faced an average of 85 percent
of cyberattacks annually, with one-third of them resulting
in successful breaches [8], [9]. In summary, organizations
face continuous cyber-attacks, necessitating more effective
mitigation actions for defense [10].
Cyber risk management endeavors to safeguard informa-

tion assets through the utilization of cutting-edge techniques,
disciplines, policies, firewalls, and established intrusion
detection and prevention systems. However, selecting an
appropriate cybersecurity plan from the available options
can be a daunting undertaking. Numerous security controls
are at our disposal, and strategically placing them within
the network can offer some defense against the exploitation
of vulnerabilities. Nonetheless, these approaches often find
themselves in a state of constant conflict, where implement-
ing one plan invariably diminishes the viability of alternative
strategies.

Operating systems, software, and applications often have
known vulnerabilities that cybercriminals can exploit, includ-
ing firewalls, antivirus software, and other security mech-
anisms. Therefore, it is crucial to regularly apply security
updates provided by vendors. Additionally, implementing a
vulnerability management program is essential as it helps
detect and resolve issues before cybercriminals can take
advantage of them. Make sure that technologies such as
firewalls and intrusion detection systems (IDS) are properly
configured and regularly updated to protect against emerging
threats. Consider leveraging cloud-based security solutions
that offer ongoing, up-to-date protection against both known
and emerging threats. These solutions often provide advanced
detection and response capabilities, along with automatic
security updates. However, it is important to remember that
cybersecurity is an ongoing effort that requires constant
updates and improvements to stay ahead of new and emerging
threats and vulnerabilities.

In light of the aforementioned arguments, it becomes
imperative to undertake research that employs a strategy to
address cyber risk management as a many-objective opti-
mization problem, aiming to discover effective and efficient
solutions. The multicriteria approach has previously been
studied to support cybersecurity issues, with many of them

being framed as modeling problems in binary domains [11].
For example, in [12], three control methods are proposed
for addressing anti-phishing measures, vulnerabilities, and
attack paths. It is important to note that attack modeling
techniques play a vital role in understanding, exploring, and
validating security threats in the cyber world, as highlighted
in the bibliographic review [13]. In [14], a suitable trade-
off between cyber risk and investment is proposed using the
mixed-integer paradigm. Recently, [15] published another
work that employs a bi-objective formulation, where the
primary optimization components considered are the service
cost and multi-cloud risk. The reported works generally focus
on direct costs, risks, vulnerabilities, and similar issues. In our
proposal, we also consider indirect costs associated with
networking performance and the benefits derived from its
installation and subsequent operation.

Our research proposes the development of a cyber risk
management strategy, which entails the implementation of a
security control known as a security information and event
management system. This system consists of a server and
sensors distributed throughout the network. To achieve this,
we mathematically model the network’s requirements based
on various functional factors. These two aspects of develop-
ment converge to accomplish a shared objective: establishing
a protected network with strategically positioned and techno-
logically advanced resources.

SIEM solutions have evolved into comprehensive systems
that offer extensive visibility, enabling the identification of
high-risk areas and proactive mitigation strategies to mini-
mize costs and incident response time [16]. Furthermore,
in [17], the authors assert that SIEM enables the storage and
monitoring of unwanted events and unauthorized access to
computer system records, which can lead to various security
threats, including information leakage and breaches of pri-
vacy and confidentiality.

As mentioned earlier, the SIEM system will consist of a
central server and sensors responsible for collecting log infor-
mation from multiple sources. These sensors will correlate
events to identify malicious activities or cyber-attacks. Deter-
mining the optimal number of sensors and their installation
locations will be approached as a multi-objective problem,
mathematically modeled using linear programming based on
the technical and functional aspects of the network. The solu-
tion will be obtained through the utilization of metaheuristic
techniques and bio-inspired algorithms. The main contribu-
tions are related to: (a) increasing the coverage of the NIDS
across the network with the minimal number of sensors, (b)
maximizing the performance of the network, and (c)minimiz-
ing the deployment cost of the NIDS, particularly the number
of required sensors. Efficient solutions will be weighted and
scaled using the traditional linearization method.

This research article is structured as follows: Section II
discusses the bibliographic search conducted to identify rel-
evant works in the field of study, along with fundamental
concepts pertaining to multi-objective and many-objective
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optimization problems in cybersecurity, cyber risk man-
agement, and the implementation of security controls. In
Section III, the formal statement of the problem to be
addressed is presented. Section IV provides detailed insights
into the developed solution, highlighting key aspects of
modeling and problem-solving. Section V elaborates on the
experimental setup employed for evaluation purposes. Mov-
ing forward to VI we delve into a comprehensive discussion
of the main results obtained. Finally, Section VII presents the
conclusions drawn from the study, along with avenues for
future research.

II. RELATED WORK
The document [12] represents the closest work to the ongo-
ing research, as it puts forth a strategy aimed at effectively
addressing many-objective optimization problems within
the realm of cybersecurity defense. Specifically, this work
focuses on formulating the defense problem by identifying
and selecting security controls that simultaneously minimize
security risk as well as direct and indirect costs. The approach
adopted in this article involves modeling the problem as
a min-max many-objective optimization, employing tech-
niques such as binary linear programming.

In [18], a previous mention was made of optimizing the
security of dynamic networks through the utilization of prob-
abilistic graphs and linear programming. This method offers
an approximate solution to the internal optimization problem,
employing Taylor expansion and sequential linear program-
ming. The primary focus of this work is to address the
challenge of rigorously evaluating a range of network security
defense strategies with the aim of reducing the probability of
successful large-scale attacks on complex and dynamically
evolving network architectures. To analyze the security of
intricate networks and diminish the likelihood of successful
attacks, the study introduces a probabilistic graph model and
corresponding algorithms. Sequential linear programming,
a scalable optimization technique, is employed, while a prob-
abilistic model is utilized to account for uncertainties in
network configurations. In [19], multiple objective functions
encompassing security risk, direct costs, and indirect costs are
proposed. However, these models primarily consider single-
stage attacks rather than sequences of steps. Conversely, [20]
introduces an approach that employs mixed-integer linear
programming for optimal defense, which is further extended
in [21] to include robustness and sensitivity analyses.

In the article [22], an alternative proposal is presented,
utilizing three widely recognized metaheuristics to showcase
the effectiveness of the technique in resolving optimization
problems related to cybersecurity prevention in the Internet
of Things. Furthermore, in the context of information secu-
rity systems, [23] puts forth multi-criteria cost optimization
method, employing the vector-evaluated genetic algorithm.
Researchers in [24], driven by the escalating interaction in
cyberspace, have devised optimization techniques for both
attack and defense. These optimization approaches leverage

artificial intelligence techniques powered by metaheuristics
to identify and detect threats and attacks. Another study [25]
proposes the utilization of particle swarm optimization as a
technique to determine the optimal number of ad hoc mobiles
within a network. These mobiles are grouped as sensors,
functioning as intrusion detectors.

In [26], the authors also adopt the structure of the attack
graph and put forth novel coverage models aimed at selecting
an optimal portfolio of security controls to mitigate threat
vulnerability. They propose a polynomial-time heuristic and a
Bender’s branch-and-cut algorithm, which efficiently provide
near-optimal and exact solutions for large-scale scenarios.
The study incorporates three robustness models that account
for modeling uncertainty, assuming that the attack paths are
enumerated and provided in a complete list. In contrast, our
approach relaxes this assumption by allowing the attacker
to exploit the most advantageous attack path among numer-
ous alternatives. Similar, in [27], researchers propose a new
framework for cybersecurity planning. The objective of the
defense strategy is to prolong the time it takes for attacks to
succeed, while the attacker aims for the shortest completion
time. In our approach, we assume that the attacker selects the
attack path with the highest probability of success.

In the realm of implementing a SIEM, the following
research [28] emerges as a notable source, showcasing a
practical illustration of monitoring security events within an
organization’s network. It is worth mentioning that secu-
rity information and event management systems have gained
widespread adoption as a robust tool for preventing, detect-
ing, and responding to cyber-attacks, as reaffirmed by [29].
Over time, SIEM solutions have evolved into comprehensive,
end-to-end systems that offer extensive visibility, enabling
the identification of high-risk areas and proactive mitigation
strategies to reduce costs and incident response time. The
study also highlights that various companies have devel-
oped SIEM software products to detect network attacks and
anomalies in IT system infrastructures. Noteworthy entities in
this domain include esteemed IT companies such as HP, IBM,
Intel, McAfee, as well as visionary options like AT&TCyber-
security/AlienVault’s SIEMs, and promising tools worth con-
sidering within the SIEM context, such as Splunk.

Another article highlights the challenges posed by the
uncertainty, complexity, and diversity of data traffic in net-
work intrusion behaviors. To tackle this issue, the article [30]
employs a network-based intrusion detection algorithm and
the particle optimizer algorithm as a detection method.
In addressing the problem of ensuring information security
in wireless sensor networks, the document [31] introduces a
security information and event management methodology in
conjunction with a multi-sensor or agent approach. The pro-
posed approach seamlessly integrates the SIEMmethodology
with a multi-agent architecture comprising data collection
agents, coordinator agents, and local intrusion detection sys-
tems. A server undertakes correlation analysis, identifies the
most significant incidents, and assists in prioritizing incident
response.
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Numerous studies have explored the utilization of sensor
networks for diverse purposes. In relation to this, the article
[32] highlights the significance of the concept of Smart Cities
and the monitoring of environmental parameters, which has
garnered considerable scientific interest over the past decade.
The study further emphasizes that the emergence of recent
computing technologies, coupled with low-cost and low-
power devices, has expanded the scope of research, enabling
the development of monitoring devices and the implemen-
tation of Sensor Networks using Raspberry PI in a more
accessible and expansive manner.

Regarding cybersecurity and sensor technology, the
study [33], focuses on the development of a lightweight
Intrusion Detection System (IDS) based onmachine learning.
This IDS incorporates a novel feature selection algorithm and
is specifically designed and implemented on the Raspberry
Pi platform. The performance of the system is assessed using
a dataset obtained from an IoT environment, demonstrating
that the detection system is lightweight enough to operate
effectively within the Raspberry Pi environment, without
compromising its detection performance.

Finally, works that include artificial intelligence algo-
rithms, principally machine and deep learning mechanisms,
can be seen in [34], [35], and [36]. Here, temporal networks
-designed as a classical networking topology, are studied
using well-known learning-based methods. Feature selection
is used as an optimization problem to reduce the time of the
training phase and keep the algorithm’s performance. Last,
interesting works were published in [37] and [38]. Here,
again the optimization paradigm and the machine learning
techniques cross their paths to model real-world applications.

III. PRELIMINARIES
In the current community, cybersecurity can benefit from
applying optimizationmethods to address various challenges.
The most common issue is intrusion detection and preven-
tion, where optimization methods can be used to enhance
intrusion detection and prevention systems [39]. Network
traffic analysis and anomaly detection are other cases where
optimization methods can attend to cybersecurity topics by
analyzing network flow analysis, traffic pattern recogni-
tion, or anomaly detection algorithms. Thus, cybersecurity
professionals can identify potential security breaches, unau-
thorized access attempts, or abnormal behaviors within the
network [40]. Another open challenge is malware detection
and classification. Here, optimization techniques can support
the feature selection strategy, model parameters, ensemble
methods, and machine learning algorithms for improving the
effectiveness of cybersecurity defenses [41]. Finally, we con-
sider vulnerability assessment and patch management as hot
topics. Again, optimization mechanisms can be utilized to
prioritize vulnerability assessments and patch management
efforts. By considering factors like risk severity, system
criticality, and available resources, optimization algorithms
can help organizations allocate limited resources efficiently,

ensuring that the most critical vulnerabilities are addressed
promptly [42].

A. TECHNICAL CHARACTERISTICS OF A SIEM
Today, all computer systems face the constant threat of cyber-
attacks, necessitating ongoing security measures to mitigate
potential risks [43]. As a result, technological infrastructures
are fortified with various security components, including fire-
walls, intrusion detection systems, intrusion prevention sys-
tems, and security software installed on terminal devices [44].
However, these security controls operate independently, and
comprehensive attack recognition requires the combination
and correlation of logs and events from different security
components [45]. This is precisely where a security informa-
tion and event management (SIEM) system prove valuable.
A SIEM system serves as the central platform within a secu-
rity operation center, gathering events from multiple sensors
such as intrusion detection systems, antivirus software, and
firewalls. By correlating these events, it provides a unified
view of alerts for managing threats and generating security
reports. In line with this, the present research proposes the
implementation of a SIEM as a centralized system, utilizing
a server and distributed sensors, including intrusion detec-
tion systems, capable of collecting and identifying malicious
activities and anomalous traffic.

In the cited study [28], a basic SIEM architecture consists
of distinct blocks, namely source devices, log collection,
parsing normalization, rules engine, log storage, and event
monitoring. Each component operates independently, ensur-
ing their individual functionality. Figure 1 visually depicts the
fundamental constituents of a SIEM solution.

As stated in [46], the pivotal component of the SIEM
system is the central engine responsible for tasks such as
log filtering, analysis, monitoring, policy application, and
alert generation. Additionally, it facilitates the transmission
of logs to storage and forwards the generated information to
the presentation layer. This enables security officers to view
real-time network activities. Figure 2 illustrates the physical
architecture of the SIEM, providing a visual representation of
its structure.

B. TECHNICAL CHARACTERISTICS OF THE SENSOR
MODULE
The sensor module utilizes a Raspberry Pi as its primary com-
ponent. To achieve the desired outcomes, the sensor control
core necessitates two Ethernet network ports—one connected
to the internal subnet and the other linked to the central server
housing the SIEM application. Operating in monitor mode,
it can detect all incoming and outgoing data flow within the
subnet. The details provided in the referenced article suggest
that Raspberry Pi serves as a fully functional single-board
computer, integrated onto a circuit board system. It operates
on a Linux operating system and can be easily modified
by replacing the board’s memory. Like a computer, it can
handle multiple tasks concurrently, including networks, data
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FIGURE 1. SIEM provides real-time monitoring, analysis of events, tracking, and logging security data for compliance or auditing purposes.

FIGURE 2. Physical architecture of the SIEM.

transmission, databases, and web servers, making it suitable
for Raspberry Pi-based applications (see Figure 3). Further-
more, remote access is possible through Secure Shell. Given
its affordability, small-scale and micro-scale entrepreneurs
can leverage Raspberry Pi’s integrated control kernel for real-
world applications.

C. DESCRIPTION OF A ORGANIZATION’S TRADITIONAL
NETWORK TOPOLOGY
In line with contemporary design principles, a modern tradi-
tional network topology is structured to address the demands

of uptime and scalability. It adheres to a hierarchical model,
encompassing intermediate devices like routers, switches,
edge firewalls, and end devices such as computers and
servers. Additionally, it incorporates redundant connectivity
to the Internet through two Internet Service Providers (ISPs)
for enhanced reliability [47]. Figure 4 shows a typical tradi-
tional network.

This proposal encompasses multiple network topologies,
referred to as instances, beginning with the zero-network
instance. The zero instance consists of five distinct subnets,
each serving specific production areas with their respective
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FIGURE 3. Ports, connectors, and chips of the Raspberry Pi 4 board.

FIGURE 4. Traditional network topology.

technical and operational prerequisites. The first four subnets
are dedicated to accommodating various production areas,
while the fifth subnet is designated as the server farm, housing
the organization’s data center.

D. CYBER RISK MANAGEMENT PROBLEM
As computer networks continue to expand and become more
intricate, the task of monitoring and safeguarding them
becomes increasingly challenging [48]. Cyber risk manage-
ment aims to protect valuable information assets through
the application of effective techniques, disciplines, poli-
cies, and existing infrastructure. Selecting an appropriate
cybersecurity plan can be a complex endeavor, given the
multitude of security controls available, each capable of
providing defense against potentially overlapping vulnerabil-
ities. Examples of such security controls include inventory
management of authorized and unauthorized devices and
software, identity management and access control, adherence
to password policies, patch management, configuration of
network and/or application firewalls, deployment of anti-
malware and antiphishing software, staff training to counter
social engineering attacks, data backup practices, resource
redundancies, and physical security measures [49].

However, the management of cyber risks described above
is deficient and fails to deliver the expected results. This
inadequacy can be attributed to several factors, including
the constant evolution and variation of new attacks that go
undetected by conventional technological security systems
due to their novel patterns of incidence. Moreover, existing

regulations and established best practices often prove inef-
fective in mitigating security breaches.

It is important to recognize that cyber risk management
is a process aimed at achieving an optimal balance between
leveraging opportunities and minimizing vulnerability losses.
This is typically accomplished by ensuring that the impact
of threats exploiting vulnerabilities remains within accept-
able limits and at a reasonable cost [50]. In the current
cybersecurity landscape, organizations have been compelled
to incorporate a set of robust security practices into their
informationmanagement systems. These protectivemeasures
have become widely adopted, prompting various organiza-
tions to establish and implement information security stan-
dards. Traditional cyber riskmanagement relies on qualitative
instruments and expert judgments to address risk mitigation
and resource optimization. However, some authors argue that
such approaches [14] are subjective and incomplete, and
therefore, should be complemented by a quantitative and
objective approach.

This research proposes an approach to cyber risk manage-
ment using a many-optimization strategy. The objective is to
determine the optimal or near-optimal placement of network
components to design an efficient network topology. The net-
work topology instance depicted in 4 presents a solution for
placing devices while ensuring specific constraints, such as
availability, are met. This strategy is scalable and applicable
to various network instances.

By employing linear programmingmodeling and optimiza-
tion algorithms, this project aims to investigate whether the
utilization of these techniques is suitable for enhancing the
effectiveness of cyber risk management through the design of
an efficient network topology. Additionally, it seeks to deter-
mine if the proposed many-objective optimization approach
can effectively mitigate cyber risks within organizations.

Linear programming is a mathematical modeling tech-
nique that aims to accurately represent reality to understand
its behavior and obtain solutions for specific actions. It has
been successfully applied in various studies to address sim-
ilar issues, demonstrating its effectiveness [51], [52], [53],
[54]. Therefore, we believe that leveraging linear program-
ming as a modeling process to optimize multiple informa-
tion security variables can enhance cyber risk management.
By maximizing benefits or minimizing costs, it enables bet-
ter decision-making regarding threat mitigation, vulnerability
remediation, and investment in monitoring technologies and
security controls. Additionally, we recognize the value of uti-
lizing bio-inspired algorithms to achieve near-optimal results,
which can provide advanced planning for the placement of
network intrusion detection systems (NIDS) within the orga-
nization’s network.

Finally, we adopt the linear programming paradigm to
model the multiple variables of cybersecurity, aiming to
find solutions that maximize the benefits and minimize the
costs associated with cyber risk management. By formu-
lating the problem in this way, we can effectively opti-
mize various aspects of cybersecurity and make informed
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decisions to enhance the overall management of cyber
risks.

IV. DEVELOPED SOLUTION
Cybersecurity threats are ever evolving, with new strategies
and techniques emerging constantly. Models and optimiza-
tion techniques may prove less effective in defending against
fresh and unforeseen threats and attacks due to their reliance
on historical knowledge and data. As a result, it is crucial
to frequently update and modify these models and optimiza-
tion techniques to address emerging threats. However, some
exact optimization techniques may demand extensive compu-
tational power and processing time to yield accurate results.
This can pose challenges when rapid responses to secu-
rity incidents are necessary or when operating in resource-
constrained environments. Overcoming this limitation can
involve leveraging simplified methods or more efficient opti-
mization techniques capable of producing immediate results.
By combining models, regularly validating with real-world
data, and collaborating with cybersecurity experts, these con-
straints can be overcome, leading to improved cybersecurity
outcomes.

Organizations across various sectors are increasingly
encountering advanced threats, which drive up their opera-
tional costs. In response, IT security teams are implementing
appropriate systems capable of promptly responding to these
new threats. In this regard, it is imperative to establish a Secu-
rity Information and Event Management (SIEM) system for
managing and monitoring security events and incidents [55].
SIEM, when deployed on a server and complemented by dis-
tributed NIDS (Network Intrusion Detection System) sensors
throughout the network, has evolved into a mature, reliable,
and easy-to-use technology. Numerous solution providers
offer scalable SIEM and NIDS solutions that can be tailored
to different needs and budgets. The proposed solution can
scale and adapt to networks of varying sizes and complex-
ities, capable of adjusting to dynamic environments with
multiple devices, users, and network segments. Furthermore,
it can seamlessly integrate with other network infrastructure
components such as firewalls, antivirus systems, and logging
services, ensuring comprehensive visibility and threat detec-
tion capabilities.

A. PROBLEM MODELING
In this section, we detail how the modeling of the problem
regarding the management of cyber risks is carried out, and
we describe the characteristics of bio-inspired methods to
solve this problem and find near-optimal solutions.

The proposed solution aims to optimize the management
of cybernetic risk by modeling various instances of cyber-
security that encompass it. This modeling process allows us
to derive objective functions that maximize the benefits of
deploying sensors in specific locations within the organiza-
tion’s network while simultaneously minimizing the mone-
tary costs associated with each sensor and the indirect costs
incurred by not installing them. Additionally, the solution

determines the corresponding decision variables that describe
these objective functions and the constraints that define the
feasible solution space. The optimization results obtained
will provide valuable insights for decision-making, informing
choices regarding the number of NIDS to utilize and their
optimal placement within the network.

To effectively model the cyber risk management problem,
the initial step involves assessing the organization’s vital
assets, ensuring the continuity of productive operations. This
assessment adheres to the guidelines outlined in the ISO
27005 standard [56]. The primary objective is to identify
and effectively manage the cyber risks that these informa-
tion assets face, thereby safeguarding their confidentiality,
integrity, and availability. An asset, in this context, refers
to any element within the organization that possesses value
and requires protection, as it contributes to the achievement
of the organization’s objectives [57]. Once the assets have
been identified, each one will be assigned a value based
on its significance in relation to business productivity. The
availability of these assets assumes particular importance,
as any disruption or unavailability could result in signifi-
cant repercussions on the organization’s overall productive
capacity.

An optimization problem generally includes an objective
function to be minimized, maximized, or both, subject to
different constraints. In this research, we explore minimizing
the monetary costs of the number of sensors used. Likewise,
we also seek to maximize the benefits given that the sensor is
installed in a particular place. Finally, we study to minimize
the indirect effects of the sensor not being installed in a spe-
cific place. In short, we have a many-objective optimization,
whose mathematical formulation we will describe below.

First, Equation (1), described as a vector, represents the
modeling of the many-objective problem:

F(x⃗) = ⟨f1(x⃗), f2(x⃗), f3(x⃗)⟩ (1)

where x⃗ = ⟨xi1, xi2, . . . , xin⟩T defines a binary vector of
n dimensions and represents the set of decision variables,
therefore, xij ∈ {0, 1}. There can be several types of sensors,
so we will use subindex i to denote it. Thus, F(x⃗) represents
the set of mono-objective functions to be optimized.

f1(x⃗) : min
xij∈X

s∑
i=1

n∑
j=1

xijcij (2)

f2(x⃗) : max
xij∈X

n∑
j=1

xijdij, ∀i (3)

f3(x⃗) : min
xij∈X

n∑
j=1

(1− xij)iij, ∀i (4)

Equation (2) defines the minimization of the cost of the
sensors or acquisition price, represented by the variable cij.
This research considers two types of NIDS (s = 2), whose
value depends on their performance, technical characteristics,
and manufacturer.
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Equation (3) models the maximization of the direct bene-
fits of a sensor by being located in a certain place. Variable
dij takes values from a qualitative range of four-point scale.
The variable dij will receive a very high rating when the
operational importance of a subnet is very significant and
represents high availability, whose assigned value for this
condition is twenty. Similarly, dij will take a high value when
the importance of a subnet is significant, receiving the value
of fifteen. For a dij with medium importance, the variable will
obtain the value of ten, a dij with low importance will receive
the value of five, and a dij with very low importance it will
get the value one. The values of parameters are assigned by
using ISO 27005 as a reference.

Equation (4) expresses the objective function that models
the minimization of indirect costs, given that the sensor is
not located in a certain place. From a qualitative scale, the
assigned values determine the impact of not having a sensor
on a specific subnet.

The variable iij establishes the value of the indirect cost,
assigning it a value of seven when it is a catastrophic impact
that is not installed, a value of five for a severe impact, a value
of three when the impact is medium, and a value of one when
the impact is minimal. Finally, Equations (5) and (6) describe
the set of constraints of the problem.

n∑
j=1

xij ≥ 1, ∀i (5)

n∑
j=1

pj(1− xij)

n∑
j=1

pj

≤ (1− u), ∀i (6)

Regarding the mathematical modeling constraints,
Equation (5) tells us that the network must have at least
one NIDS. The importance of having more than one NIDS
distributed in the network is that it allows us to correlate
events from different devices in the network, detecting threats
and validating the SIEM implementation as a security control.

Concerning Equation (6), pj represents the probability of
non-operation for a given subnet. Therefore, these restriction
forces have a NIDS in the subnets with the highest probability
of failure, according to a general probability of network
uptime represented by u.
In addition to edge firewalls and all the network design

features described above, this research proposes implement-
ing a security information and event management system,
known by its acronym SIEM, for centralizing the storage
and interpretation of security data. Security to control the
management of cyber risks. This system comprises a central
server where the SIEM solution and sensors called NIDS are
installed, which are placed at specific points in the network.
This research aims to optimize resources, such as the number
of NIDS to use. This strategy will be detailed later.

Given the zero instance described above, a survey of the
functional and operational characteristics of each subnet is

carried out to determine if it is necessary to place a NIDS. The
management of the assets of this zero instance is carried out to
protect the operational continuity that guarantees availability
in their respective subnets.

Given the qualitative scale described above to categorize
by values the direct benefits given that the sensor is installed
and the indirect costs given that the sensor is not installed,
instance zero is described with their respective values by
subnet. In addition, it is based on the premise that each
subnet has a sensor corresponding to one of the two types.
Once the optimization strategy has been carried out, leave the
corresponding ones. Therefore, for each subnet, the following
values are defined:

• Subnet Floor 1: The direct benefit dij is assigned the
value 15, representing a high benefit if the sensor is
placed in this subnet. The parameter i takes the value 3,
corresponding to a half indirect cost if the sensor is
not placed. This subnet has a drop probability of 0.65.
A type 1 sensor is placed if required.

• Subnet Floor 2: The direct benefit dij is assigned the
value 1, representing a very low benefit if the sensor is
placed in this subnet. The parameter i takes the value 1,
corresponding to a minimum indirect cost if the sensor
is not placed. This subnet has a drop probability of 0.50.
A type 1 sensor is placed if required.

• Subnet Floor 3: The direct benefit dij is assigned the
value 10, representing a half benefit if the sensor is
placed in this subnet. The parameter i takes the value 3,
corresponding to a half indirect cost if the sensor is
not placed. This subnet has a drop probability of 0.10.
A type 2 sensor is placed if required.

• Subnet Floor 4: The direct benefit dij is assigned the
value 5, representing a low benefit if the sensor is placed
in this subnet. The parameter i takes the value 1, corre-
sponding to a half indirect cost if the sensor is not placed.
This subnet has a drop probability of 0.50. A type 1
sensor is placed if required.

• Subnet 5 Server Farm: The direct benefit dij is assigned
the value 20, representing a very high benefit if the
sensor is placed in this subnet. The parameter i takes
the value 7, corresponding to a catastrophic indirect
cost if the sensor is not placed. This subnet has a drop
probability of 0.7. A type 2 sensor is placed if required.

Figure 5 shows instance zero of network topology.

B. BIO-INSPIRED METHODS
Bio-inspired optimization methods are optimization tech-
niques that draw inspiration from nature and the behaviors
of living beings to solve complex problems [58], [59]. These
methods simulate biological processes and strategies devel-
oped in nature for adaptation and survival [60].

In this research, we utilize three population-based meta-
heuristic algorithms: particle swarm optimization, black
hole algorithm, and bat optimization. These metaheuristic
techniques are selected due to their popularity in swarm
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FIGURE 5. Zero instance of network topology.

intelligence methods and their similar working principles.
Initially, the algorithms generate a random initial population,
which is then improved by modifying the velocities of the
swarm.

Solving multi-objective optimization problems related to
locating security devices in networks for cybersecurity issues
can present challenges in terms of computational complex-
ity due to the combinatorial nature and multiple objectives
involved. However, by carefully designing efficient strate-
gies, it is possible to address this complexity and find quality
solutions in a reasonable amount of time. In our case, com-
putational complexity is kept in O(kn) because we consider
n as the number of subnetworks, and metaheuristics operate
k-times in this dimension iteratively.

1) PARTICLE SWARM OPTIMIZATION
Particle swarm optimizer (PSO) is a population-based opti-
mization technique inspired by the social behavior of birds
flocking or fish schooling. It was introduced in 1995 by
Kennedy and Eberhart as a simple yet powerful algorithm
for solving optimization problems [61]. Themain idea behind
PSO is to simulate the social behavior of a group of individ-
uals (particles) that move and search for the optimal solution
in a search space.

PSO algorithm starts by randomly initializing a population
of particles in the search space. Each particle represents a
candidate solution to the optimization problem. The particles
have a position and a velocity vector, updated at each iteration
of the algorithm based on the best position found by each
particle and the best position found by the entire swarm.

The update rule for the velocity of a particle i is given by:

vi(t + 1)=wvi(t)+ c1r1(pbesti − xi(t))+ c2r2(gbest − xi(t))
(7)

where vi(t) is the velocity vector of particle i at time t , xi(t)
is the position vector of particle i at time t , pbesti is the best
position found by particle i so far, gbest is the best position
found by the entire swarm so far, w is the inertia weight, c1
and c2 are the cognitive and social parameters that control the

influence of personal and global bests, and r1 and r2 are two
random numbers in [0, 1].
The update rule for the position of a particle i is given by:

xi(t + 1) = xi(t)+ vi(t + 1) (8)

where xi(t) is the current position of particle i at time t .
The inertia weight w controls the trade-off between the

exploration and exploitation of the search space. A high
value of w promotes exploration, whereas a low value of w
promotes exploitation. The cognitive and social parameters
influence personal and global bests, respectively. A high
value of c1 promotes exploitation, whereas a high value of
c2 promotes exploration.

PSO algorithm iteratively updates the position and velocity
vectors of the particles until a stopping criterion is met. The
stopping criterion can be a maximum number of iterations,
a maximum computational time, or a target fitness value.

2) BLACK HOLE ALGORITHM
The Black Hole Optimizer (BHO) is a metaheuristic opti-
mization algorithm inspired by the behavior of black holes
in space. Hatamlou first proposed the algorithm in 2013 [62].
In the BHO algorithm, solutions to an optimization prob-

lem are represented as stars that are attracted toward a black
hole, which represents the best solution found so far. Each
particle has a position in the search space, and a velocity
determines its movement (see Equation (9)) that is updated
based on its current position and the positions of the other
stars (see Equation (10)).

vji(t + 1) = r(bhj − x ji (t)) (9)

x ji (t + 1) = x ji (t)+ v
j
i(t + 1) (10)

The attraction towards the black hole is determined by the
mass of each star, which is calculated based on its fitness
value. The more fit a star is, the greater its mass and the
stronger its attraction towards the black hole. As stars move
toward the black hole, they can exchange information with
each other and explore different regions of the search space.

Using a random component that reacts when a probabil-
ity of involvement is attained, this method aims to break
the deadlock. This mechanism, known as the event horizon,
is crucial for regulating global and local searches. If any star
crosses the black hole’s event horizon will be absorbed by it.
The radius of the event horizon is computed by Equation (11):

E =
f (bh)
s∑
i=1

f (xi)

(11)

where s represents the number of stars, f (bh) is the fitness
value of the black hole, and f (xi) is the fitness value of the
ith star. When the distance between a ith star and the black
hole (diffi) is less than the event horizon at an instant t , the
star collapses into the black hole. The separation between a
star and a black hole is the Euclidean distance calculated by
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Equation (12) as follows:

diffi(t) =
√
[bh1 − x1i (t)]

2
+ · · · + [bhn − xni (t)]

2 (12)

This approach operates according to the eventual guide-
lines mentioned above. For example, if an actual random
number between 0 and 1 is more significant than an input
parameter, the event horizon provides variety among the solu-
tions. Otherwise, the solutions will continue to intensify the
current search area.

3) BAT OPTIMIZATION ALGORITHM
Bat optimization algorithm (BAT) is a metaheuristic opti-
mization algorithm inspired by the echolocation behavior of
micro-bats. The algorithm was proposed by Xin-She Yang in
2010 [63].

In the bat algorithm, solutions to an optimization problem
are represented as virtual bats that fly through the search
space. Each bat has a position and a velocity and emits
ultrasonic pulses to search for food (i.e., optimal solutions).
The loudness of the pulses represents the energy level of the
bat, while the frequency represents the pulse rate.

The algorithm starts with a population of bats randomly
distributed in the search space. Each bat then flies towards a
random position in the search space, with its velocity (see
Equations (13) and (14)) and direction determined by its
current position (see Equation (15)), the position of the best
bat found so far, and a random noise term. If a bat finds a new
solution that is better than the current best solution, it updates
its position and energy level and adjusts its pulse rate and
loudness.

fi = fmin + (fmax − fmin)β (13)

vji(t + 1) = (x jbest − x
j
i (t))fi (14)

x ji (t + 1) = x ji (t)+ v
j
i(t + 1) (15)

where β is a uniformly distributed random value in the range
[0, 1], fmin is set to have a small value, and fmax varies accord-
ing to the max variance allowed in each time step. Next, xbest
describes the global best solution all bats generate during the
search process.

The pulse rate and loudness of each bat are updated dynam-
ically during the search process based on the quality of
the solutions found so far. The algorithm also includes a
mechanism for controlling the exploration-exploitation trade-
off, which balances the search for new solutions with the
exploitation of the best solutions found so far.

In this optimizer, the random walk mechanism leads the
branching phase to alter a solution. The solution is generated
by the current volume of the bat Ai and the maximum varia-
tion allowed max(var) during a time step. This procedure is
calculated by Equation (16).

x jnew = x jold + ϵAimax(var) (16)

where ϵ is a random value in [−1, 1].

Finally, the variation between loudness and pulse emis-
sion drives the intensification phase. This initiation occurs
from the hunter’s behavior when the bats recognize their
prey. When it happens, it attenuates the volume and inten-
sifies the pulse emission rate. This approach is calculated by
Equation (17).

Ai = αAi, ri = r time=0i (1− e−γ (time=t)) (17)

where α and γ are ad-hoc constants to control the intensifi-
cation phase. For 0 < α < 1 and γ > 0, we get Ai → 0,
ri→ r (time=0)i , t → 0.

4) COMMON BEHAVIOR
Population-based metaheuristics show a common behavior.
For that, Algorithm 1 details how bio-inspired solvers execute
their search procedures. Now, to implement these algorithms,
we adjust the particularities of each of them.

Algorithm 1 Common Work Scheme Used to Imple-
ment the Population-Based Algorithms

1 Input: popSize: the population size; T : the maximum
time; Lb: Lower bound; Ub: Upper bound; particular
parameters; n: dimensionality.

2 (fk , n)← loadProblemData()
3 objective functions fk (x⃗), x = ⟨x1, . . . , xn⟩

(∀ k = {1, . . . ,K })
4 // produce the first generation of popSize agents

(particles, stars or bats), randomly.
5 foreach agent a, (∀ a = {1, . . . , popSize}) do
6 foreach variable j, (∀ j = {1, . . . , n}) do
7 position x ji (0)← Random[Lb,Ub];
8 velocity vji(0)← 0;
9 end
10 compute f (xi(0));
11 end
12 // produce T -generations of popSize agents.
13 t ← 1;
14 while t < T do
15 foreach agents a, (∀ i = {1, . . . , popSize}) do
16 if f (xi(t)) is better than f (xg) then
17 xg← xi(t);
18 end
19 end
20 foreach variable j, (∀ j = {1, . . . , n}) do
21 update vji(t + 1);
22 update x ji ;
23 end
24 compute f (xi(t));
25 t ← t + 1;
26 end
27 return post-process results and visualization;
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FIGURE 6. Schema of the experimental phase applied to this work.

V. EXPERIMENTAL SETUP
As part of this experimental stage, sixty instances have been
created. These instances have random operational parame-
ters, including the number of subnets, direct benefits, sensor
costs, and indirect costs associated with the placement or
absence of a sensor. The purpose is to cover a wide range
of scenarios, ensuring the inclusion of various possibilities.
(see Table 1).

After the solution vector changes, a binarization step is
necessary to apply continuous metaheuristics in a binary
domain [64]. Sigmoid function is contrasted against a uni-
form random value δ between 0 and 1. Next, a transformation
function, i.e., [1/(1 + e−x

j
i )] > δ, is used as a discretization

method, in this case, if the sentence is true, then x ji ← 1.
Otherwise, x ji ← 0.
To properly assess the performance of swarm intelligence

methods, robust performance analysis is required. For that,
we compare the best solutions achieved by the metaheuristics
with the result of the sixty instances. Figure 6 describes the
procedures involved in the experiments.

We design goals and suggestions for the experimental
phase to show that the proposed approach is a viable alter-
native for solving the location of NIDS. Solving time is
computed to determine how long metaheuristics take to reach
the best solutions. We employ the best value as a vital indica-
tor for assessing future results, computed by Equation (18).∑

(p,q)p̸=q ∈ K

fp(x⃗)
ep(x⃗best )

ωp︸ ︷︷ ︸
max

+
ĉ− fq(x⃗)

ĉ− eq(x⃗best )
ωq︸ ︷︷ ︸

min

, ω(p,q) ⩾ 0

(18)

where ω(p,q) represents weight of objective functions and∑
ω(p,q) = 1 must be satisfied. Values of ω(p,q) is defined

by analogous estimating. f(p,q)(x⃗) is the single-objective func-
tion and e(p,q)(x⃗best ) stores the best value met independently.
Finally, ĉ is an upper bound of minimization single-objective
functions.

Next, we apply ordinal analysis to evaluate whether the
strategy is proper. Finally, we detail the hardware and soft-
ware used to replicate computational experiments. Results
will visualize in tables and graphics.

We highlight that test scenarios are created from conven-
tional simulated networks that are prototyped to emulate the
behavior and characteristics of real-world networks, which
reflect the execution characteristics of any network of a given
organization, including small, medium, and large networks.
Depending on its scope and size, determined by the number

of subnets, every network comprises devices such as comput-
ers, routers, switches, server farms, and their corresponding
interconnections. This research considers test networks rang-
ing from small networks of five subnets, through medium
networks of fifteen subnets, to large networks of up to thirty-
nine subnets. The emulation of the test networks, given
their operational and functional characteristics, considers the
limitations of bandwidth, latency, packet loss, and network
congestion, which among other factors, determine the uptime
of each subnet. Since the uptime of a network refers to
the duration or percentage of time that the network remains
operational and accessible without experiencing significant
downtime, for this investigation, the networks must have a
minimum uptime of 90% since interruptions and downtime
may occur—downtime caused by equipment failures, net-
work congestion, connectivity failures. Given the proactive
monitoring of the SIEM implementation, it will ensure high
uptime on the network.

All algorithms were finally coded in the Java 1.8 program-
ming language. The infrastructure was a workstation running
Windows 11 Pro operating system with seven processors i7
8700, and 16 GB of RAM. Parallel implementation was not
required.

VI. DISCUSSION
The main results are illustrated in Tables 2-4 which corre-
spond to the executions of the PSO, BAT, and BH algorithms,
respectively. These tables provide an overview of the sta-
tistical variables that reflect the performance of the sixty
instances used in the experiments. For each instance, the
tables display the number of subnets, the best solution, the
worst solution, the average, the median, the standard devia-
tion, the interquartile range, the best time, and the average
time of the set of solutions obtained. Furthermore, the tables
indicate the optimal number of sensors to be placed in each
instance, allowing for a comprehensive assessment of the
algorithms’ performance in achieving the desired objectives.
The statistical information presented in these tables facilitates
a thorough evaluation and comparison of the algorithms’
effectiveness in solving the problem.

According to the analysis of Tables 2-4, it is evident that the
three algorithms (PSO, BAT, and BH) produce comparable
results for the initial instances. The solutions obtained by
these algorithms are identical, indicating their effectiveness
in finding the best solution. Additionally, when considering
the convergence times of the algorithms, it is observed that
from the first to the nineteenth instance, all three algorithms
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TABLE 1. Description of the instances.
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TABLE 2. PSO results table for sixty instances.
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TABLE 3. BAT results table for sixty instances.
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TABLE 4. BH results table for sixty instances.
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FIGURE 7. Distributions of best solutions (1/3).
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FIGURE 8. Distributions of best solutions (2/3).
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FIGURE 9. Distributions of best solutions (3/3).
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FIGURE 10. Convergence of diff amount the population solutions (1/3).
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FIGURE 11. Convergence of diff amount the population solutions (2/3).
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FIGURE 12. Convergence of diff amount the population solutions (3/3).

exhibit similar behavior, consistently achieving the same
results within a comparable timeframe. Unlike the rest of the

instances, the results are usually different but within the same
range.
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A notable finding of the experimental phase is the robust-
ness demonstrated by the consistent solutions obtained across
multiple executions of each instance. This is evident from
the results depicted in Figures 7, 8, and 9, which show-
case the solution quality achieved by each algorithm. It is
observed that the BH algorithm outperforms both PSO and
BAT in terms of solution quality, as it consistently attains
the minimum value, representing the best optimal solution.
Furthermore, the standard deviations associated with BH are
generally lower compared to the other algorithms. This find-
ing indicates that BH produces more homogeneous solutions,
as supported by the interquartile range and the observation
of the box plots. 10, 11, and 12 illustrate the convergence
behavior of the PSO, BAT, and BH algorithms. It is observed
that these algorithms exhibit similar convergence patterns
for instances one to nineteen, with rapid convergence. How-
ever, for instances twenty to sixty, the convergence becomes
slower. This can be attributed to the increased complex-
ity of these instances, characterized by a higher number of
subnets. Consequently, the algorithms require more time to
find efficient solutions. Overall, these findings highlight the
effectiveness of the BH algorithm in terms of solution quality
and homogeneity, particularly in more challenging instances.
Additionally, they emphasize the impact of instance complex-
ity on convergence speed.

Finally, We also tested new metaheuristics recently
reported but we did not get the expected results. All imple-
mentations can be downloaded from [65].

VII. CONCLUSION
This research presents a cyber risk management approach
that incorporates the optimal distribution of NIDS (Network
Intrusion Detection System) intrusion detection sensors, sub-
ordinated to a security information and event management
(SIEM) tool, which allows continuous monitoring. of events
associated with cyber risks. Furthermore, the approach
emphasizes the importance of a containment strategy to miti-
gate cyber risk attacks, ensuring that organizations can sustain
their operations and maintain service availability.

Also, development of a strategy for the management of
cyber risks, which mathematically model with linear pro-
gramming the requirements of said implementation accord-
ing to the functional characteristics of the network. Our
proposal covers some of the most relevant topics to consider
when locating security sensors, such as costs and uptime.
Here, we must prioritize and not include, for example, the
number of end-points for subnetworks, wireless networking,
virtual networking, and among others. These topics can be
included in future works. For experiments, sixty network
instances were created, ranging in complexity from networks
of five subnets to thirty-nine subnets. It was possible to deter-
mine the efficient number of sensors that allows maximizing
the benefits of its function, minimizing the indirect costs of
not having it, and minimizing the costs of the number of
NIDS.

Many works deal with multicriteria optimization from cost
and investment perspectives. Our proposal covers not only
direct costs, but also indirect costs related to network per-
formance and the benefits of identifying the best location
to increase sensor performance. In this context, the efficient
quantity and where to place the NIDS for the centralized
SIEM tool was approached as a multi-objective problem
mathematically modeling through linear programming the
technical and functional characteristics of the network and
solved with bio-inspired algorithms such as PSO, BAT, and
Black Hole. Subsequently, once the results were obtained
by applying the three bio-inspired algorithms, it can be
confirmed that the Black Hole algorithm achieved the best
efficient solutions. The above given that PSO is deterministic
since the solution it generates is not better than the previous
one, so it does not change it. For its part, BAT is semi-
deterministic since it changes a solution but with a certain
probability. If that probability is not exceeded, it does not
change. Therefore, it is not deterministic in the face of a better
chance. Black Hole is non-deterministic. If it finds a better
solution, it changes it immediately. It should be noted that
Black Hole will not always provide better solutions. It will
depend on the problem.

The scalability of the research proposal is addressed in
the experimentation phase, working with sixty test instances
ranging from small networks of five to fifteen subnets,
through medium networks of fifteen to twenty-five sub-
nets, up to large networks of twenty-five to thirty-nine.
subnets. Therefore, the methodology can efficiently scale as
network size, complexity, and requirements evolve. In addi-
tion to different network sizes, different scenarios include
factors such as latency, throughput, and response times, all
of which influence the probability of a network outage.

It should be also noted that the limitations of the proposed
method aremanifested from instance fifty-onewhen the num-
ber of subnets begins to grow. Thus, after thirty-one subnets,
the corresponding bio-inspired algorithms take a long time
to deliver their respective results, and only up to sixty with
thirty-nine subnets is it possible to obtain the expected results.
To solve these problem limitations, it is proposed to increase
the computing capacity by processing hard instances with
cloud computing.

For future work, we propose to develop a methodology that
allows solving more complex instances, that is, more than
thirty-nine subnets. Furthermore, we plan to use knowledge
extraction intelligence mechanisms for boosting the search
procedures of bio-inspired algorithms in order to they can find
efficient solutions in a large-scale instances of this problem.
Finally, we also try to solve this problem using machine
learning techniques on generated data by bio-solvers. Here,
we employ data from smaller instances to treat the hardest.

ABBREVIATIONS
NIDS: Network Intrusion Detection Sensors; SIEM: Security
Information and Event Management System; PSO: Particle
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swarm optimization; BHO: Black Hole Optimizer; BAT: Bat
Optimization Algorithm;
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