
Received 19 July 2023, accepted 13 August 2023, date of publication 22 August 2023, date of current version 30 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3307467

On the (in)Security of the Control Plane
of SDN Architecture: A Survey
ZAHEED AHMED BHUIYAN , SALEKUL ISLAM , (Senior Member, IEEE),
MD. MOTAHARUL ISLAM , (Member, IEEE), A. B. M. AHASAN ULLAH ,
FARHA NAZ, AND MOHAMMAD SHAHRIAR RAHMAN , (Member, IEEE)
Department of Computer Science and Engineering, United International University, Badda, Dhaka 1212, Bangladesh

Corresponding author: Mohammad Shahriar Rahman (mshahriar@cse.uiu.ac.bd)

This work was supported by the United International University (UIU) Institute of Advanced Research (IAR) Research Grant Scheme
under Grant IAR-2023-Pub-028.

ABSTRACT Software-Defined Networking (SDN) has revolutionized the networking landscape by offer-
ing programmable control and optimization of network resources. However, SDN architecture’s inherent
flexibility and centralized control expose it to new security risks. In this paper, we have presented a
comprehensive study focused on the security implications associated with the control plane of SDN, which
serves as a critical layer responsible for its network orchestration. We have addressed some pressing security
concerns in SDN deployments by examining control plane vulnerabilities and explicit attacks. Through
extensive analysis, we have investigated various control plane attacks. Bymeticulously exploring each attack
vector, we have shed light on its mechanisms, potential impact and countermeasures. Furthermore, we have
emphasized the interdependencies between the control plane, application plane, and data plane, highlighting
how compromises in the control plane can propagate and impact the entire network infrastructure. Our
research contributes to a deeper understanding of the specific vulnerabilities within SDN, focusing on the
control plane as the primary target. By providing insights into the security landscape of SDN, network
administrators, researchers, and security practitioners can develop proactive defense strategies and fortify the
security posture of SDN deployments. We have underscored the importance of integrating robust security
mechanisms to safeguard the control plane and maintain the overall security of SDN architectures. Our
comprehensive analysis of control plane attacks in SDN elucidates the evolving security challenges posed
by the programmability and centralization of network control. By addressing these vulnerabilities, we have
tried to pave the way for future researchers to develop effective security solutions and ensure SDN networks’
resilience and integrity.

INDEX TERMS Software-defined networking (SDN), control plane, data plane, application plane, SDN
controller, OpenFlow, SDN attacks, DoS/DDoS attacks, attack countermeasures.

I. INTRODUCTION
Long before this design started to be utilized in data net-
works, the separation of the control and data plane was
originally employed in the public switched telephone network
to streamline the installation and management process.

In a proposed interface standard titled ‘‘Forwarding and
Control Element Separation,’’ released in 2004, the Internet

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessio Giorgetti .

Engineering Task Force (IETF) began exploring several
options for separating the control and forwarding operations,
which in short is known as ForCES [1]. The ForCESWorking
Group also suggested a related SoftRouter Architecture [2].
The LinuxNetlink IP Services Protocol [3] and a path compu-
tation element (PCE)-based architecture are two other early
standards from the IETF that sought to separate control from
data.

The first instance of separating control and data plane
designs using open-source software was the Ethane [4]

91550
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0008-6937-0559
https://orcid.org/0000-0002-7262-0060
https://orcid.org/0000-0002-8030-3225
https://orcid.org/0009-0000-1393-429X
https://orcid.org/0000-0001-9385-4053
https://orcid.org/0000-0001-5017-1500


Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

project at Stanford University’s computer sciences division.
The simple switch architecture of Ethane led to the creation
of OpenFlow. The initial OpenFlow API was developed in
2008 [5]. NOX, an OS for networks, was developed that same
year [6].

In SDN frameworks, network control and forwarding tasks
are separated, allowing network control to be directly pro-
grammable and the supporting infrastructure insulated from
the networking services and applications [7]. Some historical
advancements in programmable networking and early SDN
use cases are illustrated in Figure 1.

SDN architecture is intended to be directly programmable,
flexible, centrally controllable, programmatically adjustable,
open standards-based, and vendor-neutral. Traditional
approaches we usually follow to design and maintain net-
works change because of Software Defined Networking
(SDN). Two factors distinguish SDN from traditional net-
working frameworks. An SDN splits the control plane from
the data plane in the first place, with the control plane
making decisions about how to manage traffic and the
data plane forwarding that traffic in accordance with those
decisions. An SDN also unifies the control plane, allow-
ing a single software control program to manage numerous
data-plane components. Through a well-defined Application
Programming Interface (API), the SDN control plane directly
manipulates the state of the network’s data-plane compo-
nents (such as routers, switches, and other middleboxes) [8].
Figure 2 illustrates how data would traditionally go via a
networking infrastructure before the development of SDN,
and Figure 3 illustrates how things have altered as a result of
the development of SDN.

The control layer of SDN and its component SDN con-
troller are the most crucial elements of the SDN architecture,
as is evident from the explanation above. As a result, even if
it offers certain noteworthy benefits, it is also vulnerable to
several threats. The SDN controller, the connection between
two SDN controllers (in the case of multiple controllers in
the control layer), the northbound APIs at the northbound
interface, which ensures communication with the controller,
and the southbound APIs at the southbound interface, which
ensures the communication with the controller can be con-
sidered the four main components of the attack surface [8].
Figure 5, Figure 6, and Figure 9 can help understand the idea.

This paper had made several contributions to the field of
SDN security. The following bullet points outline the key
contributions:

1) Attack classification and taxonomy: Our research clas-
sifies attacks against SDN control planes and organizes
them based on different attack surfaces, including the
Northbound Interface (NBI), the Southbound Interface
(SBI), the SDN Controller, and the link between two
SDN controllers (in the multi-controller environment).
This classification provides a structured understanding
of the various attack vectors in SDN environments.

2) Taxonomical representation of findings: Our paper
presents a taxonomical representation of the identified

FIGURE 1. Chronology of major events during the evolution of SDN as
well as programmable networking technologies [8].

attacks, offering a systematic framework for analyz-
ing and comprehending their characteristics. This tax-
onomical approach facilitates a clear and organized
view of the attacks, aiding researchers and practitioners
in understanding the relationships between different
attack types.

3) Countermeasure taxonomies: In addition to attack clas-
sification, our research provides detailed countermea-
sure taxonomies aligned with the attack taxonomy.

VOLUME 11, 2023 91551



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 2. Data travelling scenario before SDN.

FIGURE 3. Data travelling scenario after SDN.

Our paper shows the corresponding countermeasures
for each attack category to mitigate or prevent such
attacks. These countermeasure taxonomies serve as
practical guidance for implementing effective security
measures in SDN environments.

4) Research gap analysis: The paper conducts a compre-
hensive research gap analysis, identifying limitations
and research needs in SDN security. By highlighting
these gaps, our research offers valuable insights for
future researchers, enabling them to identify potential
research directions and address the current shortcom-
ings in the field.

These contributions enhance the understanding of attacks
against SDN control planes by providing a structured clas-
sification, offering taxonomical representations, proposing
countermeasure taxonomies, and identifying research gaps.
The findings of this research paper contribute to the body
of knowledge on SDN security and provide a foundation for
future research and development in the field.

We have organized the paper in the following frameworks
(Figure 4); after the abstract, Section I, Introduction, contains
the historical evolution of SDN, motivation & contributions
of the work, and general discussion. Section II describes
the background of SDN and SDN working architecture.
Section III describes the comparative study of the papers
we have reviewed and a comparison table. Section IV
describes the attack taxonomy where different attacks tar-
geting different entry points SDN architecture are discussed.
Section V describes the countermeasures for the attacks

FIGURE 4. Organization of the paper.

targeting different entry points SDN architecture.
In Section VI, Distributed Denial of Service Attacks in the
SDN environment has been discussed. Section VII describes
some research gaps; Section VIII describes the future work
parts. Sections IX describes the conclusion and is followed
by references in Section X.

II. BACKGROUND
A. SDN ARCHITECTURE
Some key features of SDN include the capability of con-
figuring virtual networks, dynamic policy enforcement for
networks, and a wider control for managing networks through
a well-laid-out centralized console. The overall operational
cost is also significantly lower than in conventional ways.
It isolates the control logic from the network devices
(switches and routers), aiming at substituting the conven-
tional networks. The centralized control plane puts an extra
burden on administrators to ensure overall network security
and usual functionality. Compromised network objects can be
a source to repossess delicate information regarding network
structure and users. That information can later be used for
unauthorized activities, such as bringing the network down.

The architecture of SDN is a layered approach, as shown
in Figure 5. A detailed diagram is also displayed in Figure 6.
SDN has three layers - i) (Network) Application layer,
ii) Control layer, and iii) Infrastructure or data forwarding
layer [9]. The application and control layers communicate
between them using the Northbound API. The control layer
and the data forwarding layer communicate using the South-
bound API. OpenFlow protocol is the most common form of
Southbound API in use. Different layers of SDN, along with
their various components and functions, are briefly stated
below.

1) APPLICATION PLANE
In SDN (Software-Defined Networking) architecture, the
Application Plane refers to the top layer of the SDN stack.
It is responsible for hosting and executing network appli-
cations, management systems, and control applications that
define network policies and behaviour. TheApplication Plane
interacts with the Control Plane and the Infrastructure Plane
to configure, monitor, and control the network.

The Application Plane is where network administrators
and developers deploy and manage applications that utilize
the programmability and flexibility of the SDN infrastruc-
ture. It allows for developing innovative network services

91552 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 5. SDN architecture (generic).

FIGURE 6. SDN architecture (comprehensive).

and applications that dynamically control network behaviour
based on specific requirements.

Key characteristics and functionalities of the Application
Plane in SDN architecture include:

a) Application Development: The Application Plane pro-
vides a platform for developing and deploying network
applications. It offers APIs (Application Programming
Interfaces) [10] and software development kits (SDKs)
that enable developers to create applications that con-
trol and manage the network.

b) Network Policy and Control: Applications in the
Application Plane define network policies and rules
for traffic forwarding, security, Quality of Service
(QoS), and other network functions. These policies are

implemented by communicatingwith the Control Plane
to configure network devices accordingly.

c) Network Monitoring and Analytics: The Application
Plane collects network data, monitors network perfor-
mance, and performs analytics to gain insights into
network behaviour and make informed decisions for
network optimization and troubleshooting.

d) Service Orchestration: Applications in the Application
Plane can orchestrate network services and resources to
meet specific application requirements. This includes
dynamic provisioning, scaling, and coordination of net-
work functions and services.

e) Integration with Management Systems: The Applica-
tion Plane interfaces with management systems, such
as network management systems (NMS) or orchestra-
tion platforms, to provide a unified management and
control framework for the network.

The Application Plane in SDN architecture plays a cru-
cial role in enabling the deployment, management, and
control of network applications and services. It provides
a programmable interface for developers and administra-
tors to define network behaviour, implement network poli-
cies, and leverage the flexibility of the underlying SDN
infrastructure [9].

2) CONTROL PLANE
In SDN architecture, the control plane refers to the compo-
nent responsible for managing and controlling the network.
It is one of the three main components of SDN, alongside the
data plane and the application plane.

The control plane is responsible for making decisions and
implementing network policies that govern how data packets
are forwarded within the network. It centralizes network
intelligence and allows for programmability and flexibility
in managing network operations. The control plane abstracts
the network hardware and provides a logical network view,
enabling network administrators to define and enforce net-
work policies through software-based controllers.

The control plane in SDN architecture typically consists
of one or more controllers. These controllers act as the brains
of the network, overseeing the network operations and man-
aging network devices such as switches and routers. They
communicate with the data plane, which consists of network
devices, through standardized protocols like OpenFlow [5],
[7], Netconf [11].

The control plane performs several essential functions [12],
including:

a) Network topology discovery: The control plane dis-
covers the network topology by collecting information
about connected network devices and their intercon-
nections. It maintains a network topology view, allow-
ing for efficient routing and forwarding decisions.

b) Flow control and forwarding: The control plane defines
and manages flow rules that dictate how data pack-
ets are forwarded within the network. It determines
the optimal paths for packet routing and controls

VOLUME 11, 2023 91553



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

traffic flows based on defined policies and network
conditions.

c) Network policy enforcement: The control plane
enforces network policies by configuring and manag-
ing the behaviour of network devices. It ensures that
traffic is classified, prioritized, and treated according
to specified policies, such as Quality of Service (QoS)
requirements or security measures.

d) Network orchestration and management: The control
plane provides a centralized management interface for
configuring andmonitoring the network. It enables net-
work administrators to provision network resources, set
up virtual networks, andmonitor network performance.

By separating the control plane from the data plane,
SDN architecture offers advantages such as centralized man-
agement, programmability, and agility. It enables network
administrators to dynamically adapt the network behaviour,
automate network operations, and efficiently respond to
changing requirements.

The control plane in SDN architecture plays a critical role
in managing and controlling network operations, facilitating
the software-defined nature of the network, and enabling
efficient network management and automation [6], [13], [14].

3) INFRASTRUCTURE OR DATA FORWARDING PLANE
In SDN architecture, the infrastructure or data forwarding
plane is one of the three key components, along with the con-
trol and application planes. The data forwarding plane, also
known as the data plane or forwarding plane, is responsible
for the actual forwarding and processing of network traffic
within an SDN network. In this layer, there is a coexistence
of both virtual switches like Open vSwitch [15], Indigo [16],
Pica8 [17], Nettle [18], Pantou [19], XorPlus [20] and physi-
cal switches [21], [22], [23].

The infrastructure or data forwarding plane consists of
network devices such as switches, routers, and access points
responsible for receiving, processing, and forwarding data
packets based on the instructions from the SDN controller.
These devices form the physical or virtual network infrastruc-
ture over which data flows.

In traditional networking architectures, the control and data
planes are tightly coupled within each network device. How-
ever, in SDN, the data forwarding plane is decoupled from
the control plane, allowing for centralized control and pro-
grammability of network behaviour. This separation enables
dynamic network management and flexible traffic handling
in SDN networks.

In an SDN architecture, the controller communicates with
the infrastructure or data forwarding plane through the south-
bound interface (SBI). The controller instructs the network
devices to handle and forward traffic by installing flow rules
or policies in their forwarding tables. These flow rules define
the desired behaviour for specific packets or flows, such as
routing, traffic prioritization, and security policies.

The infrastructure or data forwarding plane plays a critical
role in SDN as it is responsible for executing the forwarding

decisions made by the SDN controller. It processes incom-
ing packets, matches them against the installed flow rules,
and determines the appropriate action, such as forwarding
the packets to the intended destination or applying specific
treatments or modifications to the packets.

SDN architecture provides flexibility, programmability,
and centralized control over the network by separating the
control plane from the data forwarding plane. This enables
network administrators to efficiently manage and control
network behaviour, optimize traffic flow, and implement
advanced network services and policies.

Overall, the infrastructure or data forwarding plane in SDN
architecture encompasses the network devices responsible
for forwarding and processing network traffic based on the
instructions received from the centralized SDN controller [9].

B. WORKING STAGES OF SDN
Theworking stages of SDN are represented in Figure 7. These
below-mentioned 10 stages are required to complete a single
packet transfer from host A to host D. However when the
controller has the flow rules installed, a packet will follow
only stage 1, 4, 7 and 10 to travel from host A to host D.When
a first packet travels from host D to host A it will follow the
stages in reverse order.

C. OpenFlow
OpenFlow is a protocol that facilitates the implementation of
Software-Defined Networking (SDN) architecture by defin-
ing the communication between the control plane and the
data forwarding plane. It provides a standardized interface
for controlling network devices in an SDN network, such as
switches, routers, and access points [5], [7].

Here are some key aspects of OpenFlow:
1) OpenFlow Protocol: OpenFlow uses a well-defined

and standardized protocol for communication between
the SDN controller and the network devices. The
protocol specifies message formats, message types,
and procedures for exchanging information and
instructions.

2) Centralized Control: In an SDN architecture utilizing
OpenFlow, the control plane is centralized in the SDN
controller. The controller acts as the brain of the net-
work, making intelligent decisions about how network
traffic should be handled based on the network’s overall
state and policies.

3) Flow Tables and Flow Entries: OpenFlow switches
maintain flow tables, which are data structures that
store flow entries. A flow entry consists of a set of
match fields and corresponding actions. The match
fields define the packet header attributes that the switch
uses to match incoming packets, while the actions
determine how the switch should process or forward
the matched packets.

4) Match Fields: OpenFlow supports a range of match
fields, including source and destination IP addresses,
transport protocol (e.g., TCP, UDP), source and

91554 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 7. Working stages of SDN.

destination ports, VLAN tags, MPLS labels, and
various other packet header fields. These match
fields allow for fine-grained packet matching and
control.

5) Actions: Each flow entry in the flow table has asso-
ciated actions that specify how the switch should
handle packets that match the entry. Actions can
include forwarding packets to a specific port, modi-
fying packet headers (e.g., rewriting MAC addresses,
changing VLAN tags), applying QoS policies (e.g., set-
ting packet priorities or bandwidth limitations), drop-
ping packets, redirecting packets to the controller for
further processing, or even invoking custom actions
defined by network administrators.

6) Flow Entry Installation andModification: The SDN
controller uses the OpenFlow protocol to interact with
OpenFlow switches through the southbound interface
(SBI). It instructs switches to dynamically install, mod-
ify, or delete flow entries in their flow tables. This
allows the controller to adapt network behaviour based
on changing network conditions, policies, or security
requirements.

7) Flow-Based Forwarding: Once flow entries are
installed in the switches’ flow tables, the switches use
hardware-based or software-based matching mecha-
nisms to process incoming packets efficiently. They
compare packet headers against the flow entries in
their flow tables and execute the corresponding actions
defined in the flow entries based on the match results.

8) Programmability and Innovation: OpenFlow’s pro-
grammable nature enable network administrators,
researchers, and developers to create custom network
control applications, often referred to as network appli-
cations or network control programs. These applica-
tions interact with the SDN controller using the Open-
Flow protocol, allowing for flexible and dynamic con-
trol over network behaviour. This programmability fos-
ters innovation, enabling the deployment of advanced
network services, traffic engineering techniques, net-
work slicing, network function virtualization (NFV),
and other emerging networking paradigms.

9) Standardization and Ecosystem: OpenFlow has
gained significant industry-wide adoption, becoming a
widely accepted standard for SDN. A broad range of

VOLUME 11, 2023 91555



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

network equipment vendors and open-source software
platforms supports it. The standardization of OpenFlow
encourages interoperability, promotes the development
of a diverse ecosystem, and fosters collaborative efforts
in SDN research and deployment.

Overall, OpenFlow provides a standardized and extensi-
ble protocol for implementing SDN architecture. It enables
centralized control, flow-based forwarding, dynamic net-
work management, and programmability. It empowers net-
work administrators and researchers to design, customize,
and optimize network behaviour based on evolving require-
ments and emerging technologies. In Figure 8, it displays a
simplified version of the logical structure of an OpenFlow
switch [24], [25].

FIGURE 8. Simple architecture of OpenFlow switch.

III. LITERATURE REVIEWS
In order to support our research framework, we reviewed
related research papers in a particular way. The evolution
of SDN and other programmable networks has first been
researched from a historical perspective. Then, we have nar-
rowed the scope of our research to include OpenFlow and
SDN architecture. Finally, we have narrowed the scope of
our research to the attacks that frequently target particular
SDN architecture planes. Thanks to our review’s final step,
we have categorized the attacks related to the SDN control
plane and illustrated our findings in the attack taxonomy
and countermeasure sections by using the diagrams we have
shown.

The conceptual history of programmable networks,
encompassing active networks, early attempts to divide the
control and data plane, and more recent work on Open-
Flow and network operating systems, was documented and
traced by Feamster et al. [8]. They emphasized fundamental
ideas and the technological and practical pulls and pushed
behind each breakthrough. They also discussed network

virtualization, typical myths and misconceptions, and other
technologies linked to SDN.

In their research, Thirupathi et al. [32] provided an
overview of the advantages of employing SDN technology
and the straightforward development of SDN and OpenFlow.
Additionally, they summarized the need for OpenFlow in
SDN design. To lessen traffic overhead to the controller for
enabling NFV, Lin et al. [33] developed an enhanced SDN
architecture. They discovered that extending the OpenFlow
specification to allow NFV modules in SDN is doable using
their enhanced architecture. In their research, Janz et al. [34]
looked at a few used scenarios for transport SDN (T-SDN),
such as service bandwidth on demand, virtual transport net-
work services, multi-layer control convergence, and resource
optimization. Their analysis demonstrated that T-SDN might
play a significant role in the utility framework’s adop-
tion of upcoming SDN technology. They also examined
the multi-vendor T-SDN proof of concept. In their article,
Raghunath et al. [35] evaluated existing defense strategies for
SDN-enabled networks and tested those strategies on their
own attack testbed. Additionally, they suggested possibly
incorporating a defensive layer into the future SDN architec-
ture’s data plane. In their article, Cabaj et al. [36] examined
the security implications of the SDN architectural compo-
nents. To enhance its security capabilities, they suggested
several improvements to SDN. They suggested a Distributed
Frequent Sets Analyzer (DFSA) system, which employs SDN
network properties, can be employed for effective and reliable
detection of various network attacks.

Dong et al. [26] described a number of DDoS attacks
against the SDN and cloud environments. They presented
some unresolved issues with identifying and mitigating
DDoS attacks, with a particular focus on SDN and cloud
computing architecture. In their research, around 70 well-
known DDoS detection and mitigation strategies in SDN net-
works were comprehensively reviewed by Singh et al. [27].
They divided these processes into four groups: informa-
tion theory-based methods, machine learning-based methods,
artificial neural network (ANN)-based methods, and other
ad hoc methods. They also explained SDN’s layered archi-
tecture thoroughly, outlining its advantages in preventing
DDoS attacks and its weaknesses, allowing for developing
new DDoS attacks instead of more traditional ones. In their
article, Arif et al. [28] analyzed security threats that future
SDN-basedVANETswill have to deal with and looked at how
SDNs could be helpful in developing new defenses against
those threats. In their research, Chica et al. [29] described
some security risks SDN faces and a list of attacks that prey on
weaknesses, particularly incorrect configurations of SDN’s
fundamental elements. They also talked about the duality of
SDN, which means that sometimes it is used specifically for
security concerns, and other times there are concerns about
security in the SDN architecture itself. They carried out a
comprehensive survey to cover these issues. The Internet
of Things (IoT) is becoming an emerging technology. Still,
because of its size, it is challenging to implement security

91556 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

TABLE 1. Comparison Table for related works.

measures to protect against various attacks, particularly
DDoS attacks. There have been past studies about using SDN
to reduce DDoS assaults in IoT scenarios. Silva et al. [30]
attempted to map out the existing solutions and their limi-
tations and categorize them through a taxonomical represen-
tation in the hope that their survey may aid future researchers.
Designing new solutions to mitigate these DDoS attacks
is difficult as IoT technologies evolve quickly and become
more complex. The research presented byMousavi et al. [37]
demonstrates how DDoS attacks particularly impact and
deplete SDN controller resources in the control plane of
SDN architecture. They also offered a method to identify
such attacks based on the entropy fluctuation of the target IP
address. Within the first 500 packets of the attack traffic, they
could identify a DDoS attack.

In Table 1, we have shown some comparisons with related
works.

IV. ATTACK TAXONOMY
In Figure 9, we designed an attack taxonomy showing differ-
ent types of attacks that affect SDN control planes. We have
grouped these attacks according to four attack entry points
at the SDN control plane (North Bound Interface, Controller,
South Bound Interface, and Link between two controllers).
We have also designed other partial taxonomies showing
respective countermeasures for the attacks in Figure 12,
Figure 14, Figure 15, and Figure 16.

A. CONTROLLER BASED ATTACKS
Controller Based Attacks are described below:

1) PACKET IN FLOODING (DoS/DDoS)
Due to the fact that these attacks are created by tak-
ing advantage of compromised controllers, corrupted

switches, etc., they specifically target the southbound inter-
face and the controller itself.

A new point of failure is added to the network due to
centralizing the control plane. Using several controllers can
minimize this, but controllers may still be vulnerable to
denial-of-service (DoS) attacks without careful rule imple-
mentation. The control plane must handle some edge-case
packets in present network devices. On the other hand,
in OpenFlow, bad rule design might result in saturation levels
of controller inquiries, which will impact all switches that
depend on that controller.

Most of these DoS threats affect networks that employ
reactive policies. As soon as no traffic can produce random
Packet-In events, networks focused on proactive rule place-
ment do not have the same risk. These switches are still
susceptible to a DoS brought on by a controller that makes
too many flow adjustments. Developers of applications must
take extra care to avoid situations that result in an abundance
of Flow-Mod notifications. The OpenFlow 1.3 design recom-
mends monitoring packets with a controller destination, but it
also clarifies that this is not covered by definition. It does not
guide rate-limiting signals to the controller and rule entries to
the switches [38], [39].

2) SATURATION OF CONTROLLER (DoS/DDoS)
The Saturation of Controller attack is a Denial-of-Service
(DoS) attack targeting the SDN controller in an SDN archi-
tecture. This attack aims to overwhelm the SDN controller’s
resources, causing it to become unresponsive and preventing
it from managing network traffic effectively [40].

The SDN controller manages and orchestrates network
traffic flows in an SDN architecture. The Saturation of Con-
troller attack involves an attacker sending large traffic to the

VOLUME 11, 2023 91557



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 9. Attack taxonomy.

controller, typically via the Northbound API. This results in
a high processing load on the controller, which can cause the
resources of the controller to become overwhelmed, leading
to a slowdown or even a complete shutdown of the controller.

This type of attack can be executed using various methods,
such as network flooding or SYNflooding, where the attacker
sends high traffic to the controller or exploits vulnerabilities
in the controller software or firmware. The goal is to create
congestion that ultimately affects the ability of the controller
tomanage network traffic, which can result in serious security
concerns and compromise the integrity of the network [41].
To mitigate the Saturation of Controller attacks, network

administrators can employ measures such as implementing
rate-limiting mechanisms to restrict the number of requests
per second, monitoring network traffic patterns to detect
anomalies, and deploying load-balancing techniques to dis-
tribute traffic across multiple controllers. Additionally, it is
crucial to ensure that the controller software and firmware
are up-to-date and apply access control policies to limit the
number of users that can access the Northbound API [42].

Finally, it is important to have a response plan in place
in the event of a Saturation of Controller attack, which
includes procedures for isolating the affected controller and
redirecting traffic to backup controllers or other compo-
nents in the network. This can help minimize the attack’s
impact and ensure that the network remains available and
responsive.

3) FLOW TABLE FLOODING/OVERFLOW (DoS/DDoS)
These attacks target the southbound interface and the con-
troller itself because they use faulty controllers, manipulated
switches, etc. A scenario is shown in Figure 10
In software-defined networking (SDN), flow tables that

route and analyze packets of flows are consumed by flow
table overflow attacks, leaving no room for additional flows
to implement flow rules and resulting in network denial of
service (DoS). Such attacks pose severe security risks to
SDN because they can be quickly launched by an enemy
with hosts in the target network or have compromised those
hosts [43], [44].

91558 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 10. Flow table overflow attack scenario.

4) ABUSE OF PRIVILAGES & AUTHORITY
These particular attacks, brought about by malicious SDN
applications, impact the northbound interface (NBI) and the
SDN controller itself. Researchers have illustrated the kind of
attacks that rogue SDN applications can carry out.

To harm a NOS, malicious SDN applications (Sh14 [45],
RH15a [46], RH [47]) take advantage of crucial system
operations. Malicious SDN applications, for instance, can
quickly crash SDN controllers, alter internal data structures,
or create remote channels to access a C & C server and get
shell commands, which are then performed on behalf of the
NOS. Another case involves a rogue SDN application that
downloads and runs any file with root access [48].

5) SERVICE DISRUPTION
These particular attacks, which have an impact on the SDN
controller directly, come from a variety of domains.

By either faking northbound API communications or
southbound communications to the network elements, the
attacker would like to spawn new flows. If an attacker can
effectively spoof flows from the authorized controller, they
will have the power to alter how traffic moves through the
SDN and may even be able to get around security-related
regulations.

A DoS attack against the controller or some other tech-
nique to bring about the controller’s inevitable failure might
be attempted by an attacker. The attacker may utilize a
resource-consumption attack to slow down the controller,
making it react to Packet-In events very slowly and deliver
Packet-Out messages gradually.

SDN controllers frequently use Linux-based operating sys-
tems. If the SDN controller uses a general operating system,
the controller will also be vulnerable to such flaws. The
default passwords and no security settings are frequently
used when deploying controllers into production. The SDN
engineers managed to ‘‘just barely’’ get it to function but
were afraid of ruining it, so they didn’t want to touch it. As a
result, the system was left in production with a vulnerable
configuration.

It would be problematic if an attacker could build their own
controller and convince network components that data was
coming from the ‘‘saboteur’’ controller. The attacker could
then add items to the network devices’ flow tables, preventing
the SDN experts from seeing those flows from the standpoint
of the commercial controller. In this scenario, the attacker
would be in total control of the network [49], [50].

6) APPLICATION SHUTDOWN
The northbound interface (NBI) is specifically targeted by
these attacks caused by the compromised northbound proto-
col. Through NBI, the SDN controller also gets affected.

The SDN controllers employ a large number of northbound
APIs. In addition to alternatives, northbound APIs could use
Python, Java, C, REST, XML, and JSON. The controller
would provide the attacker access over the SDN network
if they could take advantage of the weak northbound API.
A hacker might be able to develop their own SDN policies
and take over the SDN ecosystem if the controller for the
northbound API lacks any kind of protection.

A REST API [51] frequently has a predefined password
that can be easily found. If an SDN implementation didn’t
alter this predefined password and a hacker could send pack-
ets to the controller’s admin console, they might query the
SDN ecosystem’s configuration and alter it to suit their
needs [49], [52].

7) DYNAMIC FLOW RULE TUNNELING
These particular attacks, which are brought about by mali-
cious SDN applications, impact the SDN controller itself.
Researchers have illustrated the kind of attacks that rogue
SDN applications are capable of carrying out.

A novel method is given in (Po12 [13], Po15 [53]) that
enables attackers to go around flow controls that are present
in an OpenFlow switch. The researchers showed that even
when a current drop rule expressly forbids such a connection,
an attacker can access a network host by introducing spe-
cially constructed malicious flow rules. Dynamic flow rule
tunnelling is a method that uses the set and goto commands
that are common in OpenFlow [48], [54].

8) POISONED NETWORK VIEW
These particular attacks target the controller, the northbound,
and the southbound interface because they use the link dis-
covery service at the SDN control plane.

The control plane’s provision of the link discovery service
is essential to the efficient operation of network apps and ser-
vices. The SDN controller’s topology view can be tainted by
an adversary by generating links across one or more infected
devices.

Every Link Layer Discovery Protocol (LLDP) [55] packet
that the controller receives is accepted, and its link data
is used to update the controller’s link information. This
presents a security issue for the Link Discovery Service
(LDS) [56]. More significantly, researchers discovered that

VOLUME 11, 2023 91559



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

the SDN controller’s built-in approach does not safeguard the
integrity or source of LLDP packets. Consequently, a hacker
can simply alter the link data of the controller by injecting
fake LLDP packets into the network or replaying real LLDP
packets from one target switch to another [57], [58].

9) NOS MISUSE
These particular attacks, which are brought about by mali-
cious SDN applications, impact the southbound interface
(SBI), the northbound interface (NBI), and the SDN con-
troller itself. Researchers have illustrated the kind of attacks
that rogue SDN applications are capable of carrying out.

For OpenDaylight [59], an SDN rootkit has been released
(RH15b [60]) that provides the foundation for numerous
enterprise solutions (SDC [61]). This SDN rootkit substan-
tially modifies internal data structures to take over the com-
ponents in charge of both programming the network and
analyzing its state. Researchers have therefore shown that an
attacker is capable of adding and hiding hostile flow rules,
as well as removing valid flow rules, all without alerting
the administrator. Additionally, a technique built on Open-
Flow is given that permits remote communication between
an attacker and the rootkit [62] component running inside the
NOS. This is intriguing because the SDN design does not
provide host communication between hosts running on the
data plane and the control plane [48].

10) EAVESDROPPING
Due to the unencrypted control channel, these unique attacks
target the southbound interface and the controller itself.

In SDN, eavesdropping assaults can occur within the data
plane or through the communication lines connecting the
controllers in the control plane and the forwarding devices in
the data plane. Switches (also known as forwarding devices)
and forwarding links are two places in the data plane where
eavesdropping attacks occur. The malevolent eavesdroppers
might monitor the data used for further attacks once they
have corrupted and captured them. TCP networks frequently
experience eavesdropping attacks [63].

11) MAN IN THE MIDDLE
These particular attacks target the southbound interface, the
controller, and the connection between two controllers since
they arise from unencrypted control channels, compromised
SBI, and insecure data links.

Figure 11 depicts a MITM attack model wherein the ongo-
ing OpenFlow messages on the control channel are actively
manipulated by aggressively interfering with the interaction
between the control plane and the data plane. When a flow
rule tells the switch to convey a group of flows from host A to
host C, (1) the controller delivers the rule, and (2) the attacker
actively changes the action variable of the rule to ‘‘drop,’’
In the end, the flow from host A to host C is dropped at the
switch as a result of (3) the altered flow rule being installed
on the switch [63], [64].

FIGURE 11. MITM attack scenario.

B. NORTH BOUND INTERFACE BASED ATTACKS
North Bound Interface Based Attacks are described below:

1) ABUSE OF PRIVILEGES & AUTHORITY
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.4 Section IV].

2) APPLICATION SHUTDOWN
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.6 Section IV].

3) POISONED NETWORK VIEW
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.8 Section IV].

4) NOS MISUSE
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.9 Section IV].

C. SOUTH BOUND INTERFACE BASED ATTACKS
South Bound Interface Based Attacks are described below:

1) PACKET IN FLOODING
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.1 Section IV].

2) CONGESTION OF SOUTHBOUND API
The Congestion of a Southbound API attack is a denial-of-
service (DoS) attack [65] targeting the southbound interface
of an SDN architecture. The attack’s goal is to overwhelm the
southbound API with a large volume of traffic, causing net-
work traffic to become congested and preventing legitimate
traffic from being processed.

91560 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

TABLE 2. Comparison table for attacks.

The Southbound API communicates with the physical
network switches and controls their behaviour. The Con-
gestion of a Southbound API attack involves an attacker
flooding the Southbound API with a large number of
requests, which the controller cannot handle, causing the
Southbound API to become congested. This results in
delays and an inability to process legitimate traffic, lead-
ing to degraded network performance or even network
failure.

This type of attack can be executed using various methods,
such as network flooding or SYN flooding [66], where the
attacker sends a high volume of traffic to the Southbound API
or utilizesmany fake requests to overwhelm the interface. The
goal is to create congestion that ultimately affects the ability
of the controller to manage network traffic, which can result
in serious security concerns and compromise the integrity of
the network.

To mitigate the Congestion of the Southbound API attacks,
network administrators can employ measures such as lim-
iting the number of requests per second to the Southbound
API, monitoring network traffic patterns, and implementing

rate-limiting mechanisms that can help identify and prevent
the attack. Additionally, the use of firewalls, intrusion detec-
tion and prevention systems, and other security technologies
can help protect the SDN infrastructure against this type of
attack [67], [68], [69].

3) FLOW TABLE FLOODING/OVERFLOW
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.3 Section IV].

4) POISONED NETWORK VIEW
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.8 Section IV].

5) NOS MISUSE
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.9 Section IV].

VOLUME 11, 2023 91561



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

6) EAVESDROPPING
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.10 Section IV].

7) MAN IN THE MIDDLE
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.11 Section IV].

D. ATTACKS ON THE LINK BETWEEN TWO CONTROLLERS
Attacks on the link between two controllers are described
below:

1) AUTHENTICATION, AUTHORIZATION, PRIVACY
The control plane is specifically impacted by these assaults,
particularly the connections between controllers in a multi-
controller system. The absence of authorization, improper
authentication, and unencrypted communication channels
contribute to such attacks.

SDNwas first developed as a single controller architecture,
which lacks scalability and dependability, to reduce the possi-
bility of a single source of failure in the controller. As a result,
the distributed control (controller clusters [70]) approach has
been suggested, in which each controller instance serves as
the master of a few switches, and various controllers can
interact with one another to govern the entire network cooper-
atively. To the data forwarding layer, meanwhile, the presence
of many hardware controllers operating the network rather
than a single one should be invisible, which calls for the
controllers to be seen as a unified controller for the overall
network.

In this case, a networking application that covers numer-
ous control areas will have to contend with several security
issues, including those relating to network information trans-
fer privacy, authentication, and authorization. The continuous
switchover of the master controller and the coexistence of
numerous controllers in a single network domain can also
result in setting conflicts when several controllers work
together in a dispersed manner. Inside the multi-controller
architecture, an incorrect configuration is consequently also
a covert security risk [71], [72], [73].

2) MISCONFIGURATION
These attacks specifically impact the control plane, particu-
larly the connections between controllers in amulti-controller
system. These attacks are brought on by a system’s improper
design.

When a design setting or misconfiguration leaves an appli-
cation module open to attack, this is known as a security
misconfiguration vulnerability. Application subsystems or
component misconfiguration exploits are configuration flaws
that could exist. For example, the various attack vectors could
make use of misconfiguration flaws:

a) Buffer Overflow: In an SDN environment, a buffer
overflow attack due to misconfiguration can occur
when the controller or network device is misconfigured
to allow an attacker to send a large amount of data
to a buffer that is not large enough to handle it. This
can cause the buffer to overflow, leading to system
instability or even crashes. Attackers can exploit this
vulnerability by sending malicious packets with spe-
cially crafted payloads designed to trigger the buffer
overflow. A buffer overflow attack can be hazardous,
enabling an attacker to execute arbitrary code on the
system, potentially taking control of the network or
stealing sensitive data. This attack can be difficult to
detect, especially if the attacker avoids triggering sys-
tem crashes.
To mitigate this attack, SDN administrators should
ensure that all network devices and controllers are
properly configured with sufficient buffer sizes. It is
also essential to keep all software up-to-date with
the latest security patches and to use intrusion detec-
tion and prevention systems to detect and prevent
malicious traffic. Regular security audits and vulner-
ability assessments can also help identify and miti-
gate buffer overflow vulnerabilities before they can be
exploited [74], [75].

b) Code Injection: Code injection attacks due to mis-
configurations can occur when the controller software
is not configured securely, which allows attackers to
insert malicious code into the SDN controller. This can
occur due to weak passwords, unsecured interfaces,
or unpatched software. Once the attacker has injected
malicious code, they can potentially take control of the
controller and launch other attacks, such as Denial of
Service or stealing sensitive data. The attacker could
also modify the controller’s programming to disrupt
network traffic, leak confidential data, or cause perma-
nent damage to the network. For instance, the attacker
could inject a code that bypasses access control to
allow unauthenticated users access to sensitive network
resources or modify the controller’s decision-making
process, which can lead to the network’s failure or
unauthorized access to the system. To perform the code
injection attack, the attacker may take advantage of
software vulnerabilities, including SQL injection [76]
or Cross-Site Scripting (XSS) [77], to inject malicious
code into the controller’s software.
To mitigate this type of attack, the controller software
and all its dependencies must be updated with the latest
patches and updates to prevent vulnerabilities. The con-
troller should be configured to prevent unauthorized
access and use strong authentication mechanisms to
reduce the risk of weak passwords. Additionally, the
controller should be isolated from the rest of the net-
work using access control lists or firewalls to prevent
unauthorized access to the controller interfaces. The
controller should also have a secure boot process and

91562 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

be validated before deployment to ensure no malicious
code has been injected. Lastly, the controller’s software
should be reviewed periodically to detect vulnerabili-
ties or security weaknesses [78], [79], [80].

c) Credential stuffing/Brute Force: A credential stuff-
ing/brute force attack is an attack in which an attacker
attempts to gain unauthorized access to a network
by repeatedly trying different username and password
combinations until they find the correct one. This attack
can be performed due to misconfiguration of the SDN
network, such as weak or default passwords on network
devices or software components used in the SDN envi-
ronment. The attacker can use automated tools to test
large lists of possible username and password combina-
tions in a short period of time. If successful, the attacker
can access the SDN network, allowing them to control
the network and launch further attacks. This can lead
to network downtime, data breaches, and other security
risks.
To mitigate this attack, SDN networks should use
strong, complex passwords for all network devices
and software components. Multi-factor authentication
should also be used wherever possible to increase the
security of the SDN network. Additionally, systems
should be monitored for unusual login attempts, and
login attempts should be rate-limited to prevent brute-
force attacks [81], [82], [83].

d) Command Injection: In an SDN environment, a com-
mand injection attack due to misconfiguration can
occur when an attacker injects malicious commands
into the network device. This attack takes advantage
of vulnerabilities in the input validation process and
allows attackers to execute unauthorized commands on
the device. To launch this attack, the attacker typically
exploits the network device’s web interface, which
may have weak authentication mechanisms, default
passwords, or other misconfigurations that make it
vulnerable. The attacker can use these weaknesses to
bypass authentication or use brute force to guess the
login credentials. Once authenticated, the attacker can
enter malicious commands that the device will execute,
giving the attacker complete control over the network.
This attack can have severe consequences, such as the
ability to take down the entire network or compromise
sensitive information. To prevent command injection
attacks, following security best practices such as using
strong passwords, disabling unnecessary services, and
keeping the network device firmware up to date is
crucial. Additionally, input validation should be imple-
mented to ensure all user input is properly sanitized
to prevent malicious commands from being executed.
Network devices should also be monitored for any sus-
picious activity, and traffic analysis tools can be used
to detect and block any unauthorized traffic [84], [85],
[86], [87].

e) Cross-site Scripting (XSS): Cross-site scripting
(XSS) is an attack where an attacker injects malicious
code into a vulnerable web application executed by
the victim’s browser. This can occur in web-based
interfaces, such as the controller GUI, used to manage
the SDN network in an SDN environment. In this
attack, the attacker injects JavaScript code into a web
page or form field, which then executes in the context
of the victim’s browser when the page is loaded, or the
form is submitted. The injected code can steal cookies
or session tokens, redirect the victim to a malicious
site, or modify the page’s content. This attack can occur
due to misconfiguration of the web server, application
server, or SDN controller software. An attacker can
upload and execute malicious code if the web server
or application server is misconfigured. An attacker can
inject code into the web-based management interface if
the SDN controller software is not adequately secured.
Mitigation techniques for this attack include input val-
idation and output encoding, which can prevent mali-
cious code injection. Using secure coding practices and
frameworks can also help prevent XSS attacks. Addi-
tionally, enforcing proper access control policies and
limiting the use of privileged accounts can reduce the
impact of an XSS attack. Regular security audits and
penetration testing can also help identify and remediate
vulnerabilities [77], [88], [89].

f) Forceful Browsing: Forceful browsing, also known as
a directory traversal or path traversal, is an attack in
which an attacker tries to access files and directories
outside the intended directory or file system. Miscon-
figurations can cause this attack in the SDN application
or web server, which allows the attacker to manipu-
late the URL to access restricted files and directories.
In SDN, forceful browsing attacks can compromise
the network’s security by allowing attackers to access
sensitive information or configurations stored in the
network devices. An attacker can use this information
to gain unauthorized access to the network, modify
network configurations, or cause a denial of service.
To prevent forceful browsing attacks in SDN, several
countermeasures can be taken. One of the most critical
countermeasures is to sanitize and validate all user
input to prevent the manipulation of URLs. The SDN
application or web server should check for invalid
characters, including ‘‘../’’ or ‘‘%2e%2e%2f’’, which
can be used to escape from the intended directory.
Another countermeasure is configuring access controls
and permissions on the directories and files to pre-
vent unauthorized access. The SDN application should
enforce strict access controls on sensitive directories
and files, allowing only authorized users to access
them. Access controls should be reviewed periodi-
cally to ensure they are still effective. Additionally,
web application firewalls can prevent forceful brows-

VOLUME 11, 2023 91563



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

ing attacks by filtering out malicious traffic before
it reaches the SDN application or web server. These
firewalls can detect and block attempts to escape from
the intended directory or manipulate the URL. Regular
security audits and penetration testing can also help to
identify vulnerabilities that forceful browsing attacks
could exploit. These tests can identify misconfigura-
tions in the SDN application or web server and provide
guidance on improving security and preventing future
attacks [90], [91].

3) MAN IN THE MIDDLE
This attack has been discussed above in the subsection
‘Controller Based Attacks’ under the ‘Attack Taxonomy’
section [A.11 Section IV].

V. COUNTERMEASURES
A. FOR CONTROLLER-BASED ATTACKS
A taxonomy is shown in Figure 12, where the countermea-
sures are mentioned according to the SDN controller-based
attacks.

1) COUNTERMEASURE FOR PACKET IN FLOODING
Modern network devices feature specialized programming
to address the recognized weaknesses of the protocols they
support. For instance, the majority of modern enterprise
Ethernet switches contain code that prevents DHCP snoop-
ing, broadcast/multicast rate limiting, and port-level MAC
address restrictions. The controller in OpenFlow networks
must offer all of these fundamental safeguards. Consequently,
the developers of theOpenFlow apps, whomight not be aware
of the existence of these assaults, are left with the responsibil-
ity of putting in place complicated security safeguards [38].

2) COUNTERMEASURE FOR SATURATION OF CONTROLLER
Network administrators can employ various techniques to
mitigate the Saturation of Controller attacks to ensure that the
SDN controller can handle large traffic volumes and prevent
an attacker from overwhelming the controller’s resources.
Some of the mitigation techniques include:

a) Rate Limiting: Implementing rate limiting mecha-
nisms to restrict the number of requests per second
sent to the SDN controller can help control the traf-
fic flow and reduce the controller’s load. By limit-
ing the rate of incoming traffic, the controller can
process incoming requests more efficiently and pre-
vent a single traffic source from overwhelming the
controller [92], [93], [94].

b) Load Balancing: Load balancing can help to distribute
traffic across multiple controllers and prevent a single
controller from becoming overwhelmed. This can help
ensure the network remains available and responsive,
even under heavy traffic conditions [95].

c) Access Control: Network administrators can ensure
that only authorized users and devices can access
the SDN controller by implementing access control

policies. This can help to prevent attackers from send-
ing traffic to the controller, which could cause conges-
tion and disrupt network traffic [96], [97].

d) Firmware and Software Updates: Regularly updat-
ing the firmware and software used in the SDN infras-
tructure can help to ensure that known vulnerabilities
and exploits are addressed. This can help to prevent
attackers from exploiting weaknesses in the infrastruc-
ture to launch the Saturation of Controller attack [98].

e) Network Monitoring: Implementing network moni-
toring tools that provide visibility into network traffic
patterns and detect anomalies that may indicate an
attack is in progress. This can include real-time traffic
analysis, alerting, and reporting tools [99].

f) Network Segmentation: Segmenting the network into
smaller subnetworks can help to reduce the impact
of the Saturation of Controller attack. This can be
achieved by deploying firewalls or other security tech-
nologies that monitor network traffic and detect and
block malicious traffic that attempts to overload the
SDN controller [100], [101].

g) Redundancy andFailover: Implementing redundancy
and failover mechanisms can help ensure the network
remains available and responsive, even if one or more
network components fail. This can involve deploy-
ing multiple controllers, backup systems, or other
components to provide redundancy and failover
capabilities [100], [102].

By implementing these best practices, network adminis-
trators can help to mitigate the risk of the Saturation of
Controller attacks and ensure that the SDN infrastructure
remains secure and available.

3) COUNTERMEASURE FOR FLOW TABLE OVERFLOW
Network administrators can distinguish between distinct net-
work packets using FlowVisor by looking at the header
sections of the packets. Between switches and controllers,
FlowVisor serves as an intermediary. It receives rules from
controllers and revises them such that the resultant rules only
apply to the areas of the network that a particular controller
is permitted to operate. For instance, a controller might be
given access to the network segment that carries all traffic
to and from a company’s web servers. In response to a DoS
assault, this controller might establish a rule to stop all UDP
communication. All UDP traffic to and from the web servers
will be dropped when FlowVisor gets this rule, leaving the
rest of the network untouched [71].

4) COUNTERMEASURE FOR ABUSE OF PRIVILEGES AND
AUTHORITY (SANDBOXING)
There are now two suitable sandbox systems for SDN con-
trollers. The first manages access to system calls while
running SDN applications in different processes [Sh14]. The
other system [RH15a, RH, SDa] uses Java security capa-
bilities to lock SDN applications inside Java sandboxes.

91564 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 12. A taxonomy for the countermeasures related to the controller-based attacks.

FIGURE 13. Sandboxing.

Figure 13 depicts the fundamental protection mechanism,
which is the same for both approaches.

The access to essential operations (such as system calls
or delicate Java operations) is managed by a NOS, and each
SDN application operates in its own isolated sandbox. The
sandbox architecture, or which SDN application is permit-
ted to carry out which crucial tasks, must be supplied by a
network administrator. If he or she gives access to a vital
operation, the associated SDN application can carry it out or
refuse access [48].

This approach can also help mitigate the following attacks:

• Dynamic Flow Rule Tunneling (See A.7 Section IV)
• NOS Misuse (See A.9 Section IV)

5) COUNTERMEASURE FOR SERVICE DISRUPTION
Since the controller is a prime attack target, it must be
strengthened. The host OS needs to be hardened to improve
the defense capabilities of the controller and the networking

devices. The same best practices apply to hardening Linux
systems with a public-facing are applicable here. However,
businesses should keep a tight eye on their controls for any
unusual behaviour.

The SDN control system should not be open to unwanted
access, according to organizations. SDN solutions ought to
provide setting up secure, verified admin privileges to the
controller. Controller admins might need to use Role-Based
Access Control (RBAC) [103] regulations. Checking for ille-
gal changes made by admins or attackers alike may be made
possible through logging and audit trails.

A High-Availability (HA) controller structure is advanta-
geous in the event of a DoS assault on the controller. SDNs
that employ redundant controllers may lose one controller
while still operating. The difficulty level for an attacker
attempting to DoS every controller in the system would rise.
Furthering the attacker’s desire to avoid detection, that attack
would also not be especially discreet [49].

6) COUNTERMEASURES FOR APPLICATION SHUTDOWN
Another defense mechanism is utilizing an Out-of-Band
(OOB) system [104] to regulate traffic. An OOB network
can be built more easily and affordably in a data center than
across a corporateWAN. AnOOB system for northbound and
southbound communications might be safer while managing
controllers.

It would be recommended as the best approach to encrypt-
ing controller operations and northbound connections using
TLS [105], SSH [106], or another technique. Authentica-
tion and encryption techniques should be used to protect

VOLUME 11, 2023 91565



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

communications from software programs and services that
ask the controller for data or services.

All northbound applications that ask for SDN resources
should follow secure coding standards. Secure programming
techniques are helpful for the security of Internet web apps
that are accessible to the public and apply to northbound SDN
interfaces.

A few SDN systems can compare flows in network device
tables to controller rules. This form of testing (similar to
FlowChecker) of the network devices’ flows versus the policy
inside the policy could aid in locating differences that are the
consequence of an attack [49].

7) COUNTERMEASURES FOR DYNAMIC FLOW RULE
TUNNELING
Please see ‘Sandboxing’ under the subsection ‘For
Controller-based Attacks’ [See A.4 Section V].

8) COUNTERMEASURES FOR POISONED NETWORK VIEW
The authenticity of an LLDP packet can be breached dur-
ing the link discovery process in OpenFlow networks,
and infected hosts can get involved in the LLDP propa-
gation path, according to a summary of the root causes
of the Link Fabrication exploits. Researchers provided
two methods to protect the Link Discovery process with-
out needing manual labour to address those security
lapses.

a) LLDP packet authentication: An attacker’s initial
security flaw is that the OpenFlow controller doesn’t
check the validity of LLDP packets. As long as the
attacker can obtain LLDP packets from the linked
switch, he or she can also undermine the authenti-
cation of the origin in contemporary OpenFlow con-
trollers. Increasing the number of identifier TLVs
(Type-Length-Values) in the LLDP packet is one way
to address this issue. In particular, while receiving
LLDP packets, we can concatenate a controller-signed
TLV and verify the identity. The contents of the LLDP
packet—specifically, the DPID (Datapath ID) and Port
number—are used to calculate the signature TLV. The
attacker has less ability to alter the LLDP packets in
this situation. The drawback of this strategy is that it
cannot counter an LLDP relay/tunnelling attack called
Link Fabrication [58].

b) Switch port property validation: The fact that no
hosts can take part in the LLDP propagation is another
security fundamental of the OpenFlow link discovery
process. Checking whether any hosts are present within
the LLDP propagation is one method to reduce the
relay-based Link Fabrication. For example, we might
add some additional logic to track the traffic from
each switch port to determine which device has been
connected to the port. When host-generated traffic (like
DNS) is detected by OpenFlow controllers coming
from a particular switch port, we set that port’s Device
Type to HOST. If not, when LLDP packets are obtained

from such switch ports, we designate those switch ports
as SWITCH [58].

c) LLDP can only broadcast on switch internal link
ports and ports attached to the OpenFlow controller.
Hence those two groups are essentially exclusive in
OpenFlow networks. This approach makes the premise
that the compromised computer is not a switch and
will therefore continue to produce host-generated traf-
fic (e.g., ARP, DNS). This presumption is sensible,
and it holds in the majority of situations in real-
ity. While a strong attack could theoretically stop all
host-generated traffic in infected devices or virtual
machines, it could also render the machine partially
inoperable, at least for some standard networking tasks,
and such a non-functional irregularity could be imme-
diately noticeable by the regular machine user, thereby
exposing the attacker’s presence [58].

9) COUNTERMEASURES FOR NOS MISUSE
Please see ‘Sandboxing’ under the subsection ‘For
Controller-based Attacks’ [See A.4 Section V].

10) COUNTERMEASURES FOR EAVESDROPPING
Although eavesdropping attempts can be prevented by
encryption, eavesdropping detection techniques are not yet
widely available. Anti-eavesdropping measures in SDN
cover the same fundamental steps as in traditional net-
works, from prevention to detection and to lessen the
severity. The phases include a multipath method, flow
table integrity verification, and forwarding device-level
encryption [71].

11) COUNTERMEASURES FOR MAN IN THE MIDDLE
Due to OpenFlow’s lack of implementation of the con-
trol message integrity verification technique, active flow
manipulation throughout the man-in-the-middle attack was
permitted. If SSL/TLS security is enabled, this approach
is not required. However, the SSL/TLS technology that
is now available is insufficient to secure big SDN
networks [63].

B. FOR NBI-BASED ATTACKS
A taxonomy is shown in Figure 14, where the counter-
measures are mentioned according to the SDN Northbound
Interface (NBI) based attacks.

1) COUNTERMEASURE FOR ABUSE OF PRIVILAGES &
AUTHORITY
Please see ‘Sandboxing’ under the subsection ‘For
Controller-based Attacks’ [A.4 Section V].

2) COUNTERMEASURE FOR APPLICATION SHUTDOWN
Please see ‘Countermeasures for Application Shutdown’
under the subsection ‘For Controller-based Attacks’
[A.6 Section V].

91566 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 14. A taxonomy for the countermeasures related to the NBI-based attacks.

3) COUNTERMEASURE FOR POISONED NETWORK VIEW
Please see ‘Countermeasures for Poisoned Network View’
under the subsection ‘For Controller-based Attacks’
[A.8 Section V].

4) COUNTERMEASURES FOR NOS MISUSE
Please see ‘Sandboxing’ under the subsection ‘For
Controller-based Attacks’ [A.4 Section V].

C. FOR SBI-BASED ATTACKS
A taxonomy is shown in Figure 15, where the counter-
measures are mentioned according to the SDN Southbound
Interface (SBI) based attacks.

1) COUNTERMEASURE FOR PACKET IN FLOODING
Please see ‘Countermeasures for Packet In Flooding’
under the subsection ‘For Controller-based Attacks’
[A.1 Section V].

2) COUNTERMEASURE FOR CONGESTION OF
SOUTHBOUND API
The Congestion of a Southbound API attack is a denial-of-
service (DoS) attack targeting the Southbound API of an
SDN architecture. To mitigate this type of attack, network
administrators can implement various techniques and best
practices, including:

a) Rate Limiting: To limit the amount of traffic allowed
to the Southbound API, network administrators can
deploy rate-limiting mechanisms that restrict the num-
ber of requests per second. This can help identify and
prevent the Congestion of the Southbound API attack
by controlling the traffic flow and reducing the overall
load on the controller [60], [61], [92].

b) Access Control: Network administrators can ensure
that only authorized users and devices can access the
Southbound API by implementing access control poli-
cies. This helps to prevent attackers from flooding the
interface with requests that could cause congestion and
disrupt network traffic [96], [97].

c) Segmentation: Segmenting the network into smaller
subnetworks can help to reduce the impact of the
Congestion of Southbound API attacks. This can be
achieved by deploying firewalls or other security tech-
nologies that monitor network traffic and detect and
block malicious traffic that attempts to overload the
Southbound API [100], [101].

d) Network Monitoring: To detect and respond to
the Congestion of Southbound API attacks, network
administrators can implement network monitoring
tools that provide visibility into network traffic patterns
and detect anomalies that may indicate an attack is in
progress. This can include real-time traffic analysis,
alerting, and reporting tools [99].

e) Load Balancing: Load balancing can be used to dis-
tribute traffic across multiple controllers to prevent any
one controller from becoming overloaded. This can
help ensure the network remains available and respon-
sive, even under heavy traffic conditions. This measure
also helps during controller saturation attacks.

f) Firmware and Software Updates: Regularly updat-
ing the firmware and software used in the SDN infras-
tructure can help to ensure that known vulnerabilities
and exploits are addressed. This can help to prevent
attackers from exploiting weaknesses in the infras-
tructure to launch the Congestion of Southbound API
attacks [98]. This measure also helps during controller
saturation attacks.

VOLUME 11, 2023 91567



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 15. A taxonomy for the countermeasures related to the SBI-based attacks.

By implementing these best practices, network adminis-
trators can help to mitigate the risk of the Congestion of
Southbound API attacks and ensure that the SDN infrastruc-
ture remains secure and available.

3) COUNTERMEASURES FOR FLOW TABLE
FLOODING/OVERFLOW
Please see ‘Countermeasures for Flow Table Over-
flow’ under the subsection ‘For Controller-based Attacks’
[A.3 Section V].

4) COUNTERMEASURE FOR POISONED NETWORK VIEW
Please see ‘Countermeasures for Poisoned Network View’
under the subsection ‘For Controller-based Attacks’
[A.8 Section V].

5) COUNTERMEASURES FOR NOS MISUSE
Please see ‘Sandboxing’ under the subsection ‘For
Controller-based Attacks’ [A.4 Section V].

6) COUNTERMEASURE FOR EAVESDROPPING
Please see ‘Countermeasures for Eavesdropping’ under the
subsection ‘For Controller-based Attacks’ [A.10 Section V].

7) COUNTERMEASURES FOR MAN IN THE MIDDLE
Please see ‘Countermeasures for Man in the Mid-
dle’ under the subsection ‘For Controller-based Attacks’
[A.11 Section V].

D. FOR ATTACKS BETWEEN TWO CONTROLLERS
A taxonomy is shown in Figure 16, where the countermea-
sures are mentioned according to the SDN attacks that happen
between two controllers.

1) COUNTERMEASURES FOR AUTHENTICATION,
AUTHORIZATION, PRIVACY ATTACKS
A specific protocol known as the AdvancedMessaging Queu-
ing Protocol [107] is used in DISCO’s [108] implementation,
which is built on Floodlight [109] and delivers control plane
services for dispersed heterogeneous networks. An intra-
domain control module and an inter-domain control module
make up DISCO. The inter-domain control module keeps
track of and controls the importance of data transferred across
the domains so that flow pathways with various priorities
can be determined and transmitted. The inter-domain con-
trol module can dynamically reroute or block traffic flow
to combat attacks. The intra-domain control module, which

91568 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 16. A taxonomy for the countermeasures related to the attacks between two controllers.

consists of a message transceiver and several agents, is in
charge of controlling communication between controllers.
The message transceiver aims to detect nearby controllers
and offer a control channel that limits controller interaction.
The message transceiver module’s communication channel
allows agents to interchange data for the network. As we can
see, the DICSO can adequately address the security risks that
distributed controllers confront [71].

Other countermeasures (Controller/Controller Platform/
Method) besides the one mentioned above are Load Balanc-
ing Technologies [110], HyperFlow [111], McNettle [112],
and others.

2) COUNTERMEASURES FOR MISCONFIGURATION
Several steps can be taken to prevent misconfiguration [113]:

a) Training as well as educating the workforce on current
security developments, is one of the best ways to pre-
vent security misconfiguration.

b) The data exfiltration files’ security may be aided by
using data-at-rest encryption techniques. For folders
and files, we can also implement the proper access
controls. These safeguards mitigate the susceptibility
of the files and folders.

c) Systems can identify vulnerabilities automatically by
running security scans. After making architectural
improvements, conducting such scans regularly is an
important step in reducing the net vulnerability.

d) Make sure admins have separate accounts for when
they use their admin privileges compared to when they
use the system normally.

e) To lessen the attack vectors, a regular patching schedule
must be established, and updated software must be
maintained.

f) Creating a checklist that includes the various security
precautions you wish to take to be sure we’ve covered
all the bases.

3) COUNTERMEASURES FOR MAN IN THE MIDDLE
Please see ‘Countermeasures for Man in the Mid-
dle’ under the subsection ‘For Controller-based Attacks’
[A.11 Section V].

VI. DISTRIBUTED DENIAL OF SERVICE ATTACKS IN SDN
ENVIRONMENT
We have introduced this separate part to talk about the attack
scenario as well as some typical DoS/DDoS attacks on SDN
in general because DoS/DDoS attacks are the biggest concern
for SDN [27].

One of the most common malicious strategies is DDoS,
which involves sending a lot of traffic in their direction to
impair computer networks or resources. The primary con-
cept behind a DoS attack is the employment of zombies
dispersed over several networks or places and directed at a
victim. A DoS attack’s main objective is to use bandwidth
and overload resources. An attack could also be carried
out for other motives, such as political or financial gain or
simply to disrupt services [27]. SDN offers certain unique
capabilities to recognize and stop DoS threats. These include
separating the control and data planes, centralizing con-
trol, programmable networking, traffic analysis capabilities,
etc. Machine learning algorithms, entropy-based detection

VOLUME 11, 2023 91569



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 17. SDN aimed DoS attacks in OpenFlow networks.

methods, and correction rate-based methods are a few avail-
able detection methods [82].

1) Based on Entropy: It evaluates the unpredictability
of a particular attribute across a given time frame.
Higher values of entropy indicate a better probability
of spreading. Concentration in the distribution is repre-
sented by entropy with lower values.

2) Based on Correction Rate: The number of connec-
tions made and connection success rates are divided
into two categories.

3) Based on Machine Learning Algorithm: This is
widely utilized in traditional IDSs. It has been uti-
lized for DoS detection in SDN with notable success
and has been deemed successful in wired and wireless
networks.

Adversary Model: An adversary model could leverage
the reactive flow installation methodology of OpenFlow net-
works. The attacker randomly falsifies some of all sections of
every packet, making it difficult to match with any prevailing
flow rules in a switch. After it, SDN–aimed DDoS attack sent
by the attacker with massive table-miss traffic mixed with
regular traffic to its OpenFlow Switch. To process the request
of the table-miss packet, the victimized switch must buffer
it, and the packet will be sent with a message header, which
is depicted in Figure 17. Another worst-case scenario is the
OpenFlow Specifications v1.4. When the switch’s memory is
full, the packet in the message must contain the full packet.
It could be vulnerable and exploited when attacked by flood-
ing the network with fewer network resources.

Some commonDDoSflooding attacks have been discussed
below:

A. HTTP FLOOD ATTACK
The HTTP flood attack is a type of Denial-of-Service (DoS)
attack that exploits the HTTP protocol to send a large number
of HTTP GET requests to a server. This can result in the

server becoming overwhelmed with traffic and unable to
respond to legitimate requests [114].

1) ATTACK IN SDN SCENARIO
In the context of an SDN architecture, an attacker can exe-
cute the HTTP flood attack by sending a high volume of
HTTP GET requests to a specific network device, such as
an SDN controller or a switch. This can cause the device
to become overloaded with traffic and unable to process
incoming requests, leading to a slowdown or even a complete
shutdown of the device [115].

FIGURE 18. HTTP flood attack (by exploiting HTTP GET Request).

As shown in Figure 18, the HTTP flood attack works by
sending a large number of HTTP GET requests to the target
network device. These requests are typically generated using
automated tools or scripts, which can quickly generate a
massive volume of traffic. The attack’s goal is to consume
the resources of the target device, such as CPU, memory,
or network bandwidth, to cause it to become unresponsive.

2) POSSIBLE MITIGATION STRATEGIES
To mitigate the HTTP flood attack in an SDN architecture,
network administrators can employ various techniques to
control the traffic flow and prevent the attacker from over-
whelming the resources of the target device. Some of the
mitigation techniques include:

• Rate Limiting: Implementing rate limiting mechanisms
can help restrict the number of HTTP GET requests per
second sent to the target device. By limiting the rate of
incoming traffic, the target device can process incoming
requests more efficiently and prevent a single traffic
source from overwhelming the device.

• Access Control: Network administrators can ensure that
only authorized users and devices can access the target
device by implementing access control policies. This
can help to prevent attackers from sending traffic to the
device that could cause congestion and disrupt network
traffic.

• Firewalling: Deploying firewalls or other security tech-
nologies that can monitor network traffic and detect and

91570 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

block malicious traffic that attempts to exploit the HTTP
protocol.

• Intrusion Detection and Prevention: Deploying intrusion
detection and prevention systems (IDS/IPS) that can
detect and prevent attacks targeting the HTTP protocol
can help to identify and block HTTP flood attacks in real
time.

• Load Balancing: Load balancing can help to distribute
traffic across multiple devices and prevent a single
device from becoming overwhelmed. This can help
ensure the network remains available and responsive,
even under heavy traffic conditions.

• Firmware and Software Updates: Regularly updating
the firmware and software used in the SDN infrastruc-
ture can help to ensure that known vulnerabilities and
exploits are addressed. This can help to prevent attack-
ers from exploiting weaknesses in the infrastructure to
launch the HTTP flood attack.

By implementing these best practices, network admin-
istrators can help mitigate the HTTP flood attack risk
and ensure that the SDN infrastructure remains secure and
available.

B. ICMP FLOOD ATTACK
An ICMP flood attack is a Denial-of-Service (DoS) attack
that targets the Internet Control Message Protocol (ICMP),
used for diagnostic and error reporting purposes in IP net-
works. In an ICMP flood attack, the attacker sends a large
volume of ICMP echo request packets to a target network
device, overwhelming the device with traffic and causing it
to become unresponsive [116].

1) ATTACK IN SDN SCENARIO
In an SDN architecture, an attacker could launch an ICMP
flood attack against an SDN switch or an SDN controller. The
attacker could use a tool to generate a high volume of ICMP
echo request packets and send them to the target device,
causing it to become overwhelmed with traffic and unable to
process incoming requests [117].

FIGURE 19. ICMP flood attack.

As shown in Figure 19, the ICMP flood attack works by
sending a large volume of ICMP echo request packets to
the target device. These packets are sent to a specific IP
address or a range of IP addresses, and they may use spoofed
or legitimate source IP addresses to make it harder for net-
work administrators to identify the source of the attack. The
attack’s goal is to consume the resources of the target device,
such as CPU, memory, or network bandwidth, to cause it to
become unresponsive.

2) POSSIBLE MITIGATION STRATEGIES
To mitigate the ICMP flood attack in an SDN architecture,
network administrators can use several techniques to control
the traffic flow and prevent the attacker from overwhelming
the resources of the target device. Some of the mitigation
techniques include:

• Rate Limiting: Implementing rate limiting mechanisms
can help restrict the number of ICMP echo request pack-
ets per second sent to the target device. By limiting the
rate of incoming traffic, the target device can process
incoming requests more efficiently and prevent a single
traffic source from overwhelming the device.

• Access Control: Network administrators can ensure that
only authorized users and devices can access the target
device by implementing access control policies. This
can help to prevent attackers from sending traffic to the
device that could cause congestion and disrupt network
traffic.

• Firewalling: Deploying firewalls or other security tech-
nologies that can monitor network traffic and detect and
block malicious traffic that attempts to exploit the ICMP
protocol.

• Intrusion Detection and Prevention: Deploying intrusion
detection and prevention systems (IDS/IPS) that can
detect and prevent attacks targeting the ICMP protocol
can help to identify and block ICMP flood attacks in real
time.

• Load Balancing: Load balancing can help to distribute
traffic across multiple devices and prevent a single
device from becoming overwhelmed. This can help
ensure the network remains available and responsive,
even under heavy traffic conditions.

• Firmware and Software Updates: Regularly updating
the firmware and software used in the SDN infrastruc-
ture can help to ensure that known vulnerabilities and
exploits are addressed. This can help to prevent attack-
ers from exploiting weaknesses in the infrastructure to
launch the ICMP flood attack.

By implementing these best practices, network administra-
tors can help to mitigate the risk of the ICMP flood attack
and ensure that the SDN infrastructure remains secure and
available.

C. TCP SYN FLOOD ATTACK
ATCP SYNflood attack is a type of Denial-of-Service (DoS)
attack that targets the TCP protocol, which is used for estab-
lishing and terminating network connections. In a TCP SYN
flood attack, the attacker sends a large volume of TCP SYN
requests to a target network device, overwhelming the device
with traffic and causing it to become unresponsive [66].

1) ATTACK IN SDN SCENARIO
In an SDN architecture, an attacker could launch a TCP SYN
flood attack against an SDN switch or an SDN controller. The
attacker could use a tool to generate a high volume of TCP

VOLUME 11, 2023 91571



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

FIGURE 20. TCP SYN flood attack.

SYN requests and send them to the target device, causing it
to become overwhelmed with traffic and unable to process
incoming requests [75].

As shown in Figure 20, the TCP SYN flood attack works
by sending a large volume of TCP SYN requests to the target
device. These requests are sent to a specific port on the
target device, and they may use spoofed or legitimate source
IP addresses to make it harder for network administrators
to identify the source of the attack. The attack’s goal is to
consume the resources of the target device, such as CPU,
memory, or network bandwidth, to cause it to become unre-
sponsive.

2) POSSIBLE MITIGATION STRATEGIES
To mitigate the TCP SYN flood attack in an SDN architec-
ture, network administrators can use several techniques to
control the traffic flow and prevent the attacker from over-
whelming the resources of the target device. Some of the
mitigation techniques include:

• Rate Limiting: Implementing rate limiting mechanisms
can help restrict the number of TCP SYN requests per
second sent to the target device. By limiting the rate of
incoming traffic, the target device can process incoming
requests more efficiently and prevent a single traffic
source from overwhelming the device.

• Access Control: Network administrators can ensure that
only authorized users and devices can access the target
device by implementing access control policies. This
can help to prevent attackers from sending traffic to the
device that could cause congestion and disrupt network
traffic.

• Firewalling: Deploying firewalls or other security tech-
nologies that can monitor network traffic and detect and
block malicious traffic that attempts to exploit the TCP
protocol.

• Intrusion Detection and Prevention: Deploying intrusion
detection and prevention systems (IDS/IPS) that can
detect and prevent attacks targeting the TCP protocol can
help to identify and block TCP SYN flood attacks in real
time.

• Load Balancing: Load balancing can help to distribute
traffic across multiple devices and prevent a single
device from becoming overwhelmed. This can help
ensure the network remains available and responsive,
even under heavy traffic conditions.

• TCP SYN Cookies: TCP SYN cookies can help to pre-
vent TCP SYN flood attacks by using a cryptographic
algorithm to generate a unique sequence number for
each TCP SYN request. This can help to ensure that
only legitimate connection requests are accepted and
prevent attackers from flooding the target device with
bogus connection requests [118].

By implementing these best practices, network administra-
tors can help to mitigate the risk of the TCP SYN flood attack
and ensure that the SDN infrastructure remains secure and
available.

D. UDP FLOOD ATTACK
A UDP flood attack is a type of Denial-of-Service (DoS)
attack that targets the User Datagram Protocol (UDP), used
for communication between applications on the Internet.
In a UDP flood attack, the attacker sends a large vol-
ume of UDP packets to a target network device, over-
whelming the device with traffic and causing it to become
unresponsive [119].

1) ATTACK IN SDN SCENARIO
In an SDN architecture, an attacker could launch a UDP
flood attack against an SDN switch or an SDN controller.
The attacker could use a tool to generate a high volume of
UDP packets and send them to the target device, causing it
to become overwhelmed with traffic and unable to process
incoming requests [120], [121].

FIGURE 21. UDP flood attack.

As shown in Figure 21, the UDP flood attack works
by sending a large volume of UDP packets to the target
device. These packets may use spoofed or legitimate source
IP addresses to make it harder for network administrators
to identify the source of the attack. The attack’s goal is
to consume the resources of the target device, such as
CPU, memory, or network bandwidth, to cause it to become
unresponsive.

91572 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

2) POSSIBLE MITIGATION STRATEGIES
To mitigate the UDP flood attack in an SDN architecture,
network administrators can use several techniques to control
the traffic flow and prevent the attacker from overwhelming
the resources of the target device. Some of the mitigation
techniques include:

• Rate Limiting: Implementing rate limiting mechanisms
can help to restrict the number of UDP packets per
second that are sent to the target device. By limiting the
rate of incoming traffic, the target device can process
incoming requests more efficiently and prevent a single
traffic source from overwhelming the device.

• Access Control: Network administrators can ensure that
only authorized users and devices can access the target
device by implementing access control policies. This
can help to prevent attackers from sending traffic to the
device that could cause congestion and disrupt network
traffic.

• Firewalling: Deploying firewalls or other security tech-
nologies that can monitor network traffic and detect and
block malicious traffic that attempts to exploit the UDP
protocol.

• Intrusion Detection and Prevention: Deploying intrusion
detection and prevention systems (IDS/IPS) that can
detect and prevent attacks targeting the UDP protocol
can help to identify and block UDP flood attacks in real
time.

• Load Balancing: Load balancing can help to distribute
traffic across multiple devices and prevent a single
device from becoming overwhelmed. This can help
ensure the network remains available and responsive,
even under heavy traffic conditions.

• Packet Filtering: Packet filtering can filter out specific
types of traffic associated with UDP flood attacks, such
as packets with specific source IP addresses or destina-
tion ports.

By implementing these best practices, network adminis-
trators can help to mitigate the risk of the UDP flood attack
and ensure that the SDN infrastructure remains secure and
available.

E. VOIP FLOOD ATTACK
A VoIP (Voice over Internet Protocol) flood attack is a
type of Denial-of-Service (DoS) attack that targets the VoIP
network infrastructure. In a VoIP flood attack, the attacker
sends a high volume of VoIP traffic to the target network
device, overwhelming it with traffic and causing it to become
unresponsive [122].

1) ATTACK IN SDN SCENARIO
In an SDN architecture, an attacker could launch a VoIP flood
attack against an SDN switch or an SDN controller. The
attacker could use a tool to generate a large volume of VoIP
traffic and send it to the target device, causing it to become
overwhelmed and unable to process incoming requests [26].

FIGURE 22. VOIP flood attack.

As shown in Figure 22, a VoIP flood attack works by gen-
erating a high volume of VoIP packets and sending them to
the target device. The attacker can use different types of VoIP
protocols, such as Session Initiation Protocol (SIP) [123],
Real-time Transport Protocol (RTP) [124], and Real-time
Control Protocol (RTCP) [125] to flood the network. The
attack’s goal is to consume the resources of the target device,
such as CPU, memory, or network bandwidth, to cause it to
become unresponsive.

2) POSSIBLE MITIGATION STRATEGIES
To mitigate the VoIP flood attack in an SDN architecture,
network administrators can use several techniques to control
the flow of traffic and prevent the attacker from overwhelm-
ing the resources of the target device. Some of the mitigation
techniques include:

• Rate Limiting: Implementing rate limiting mechanisms
can help to restrict the number of VoIP packets per
second that are sent to the target device. By limiting the
rate of incoming traffic, the target device can process
incoming requests more efficiently and prevent a single
traffic source from overwhelming the device.

• Access Control: Network administrators can ensure that
only authorized users and devices can access the target
device by implementing access control policies. This
can help to prevent attackers from sending traffic to the
device that could cause congestion and disrupt network
traffic.

• Firewalling: Deploying firewalls or other security tech-
nologies that can monitor network traffic and detect and
block malicious traffic that attempts to exploit the VoIP
protocol.

• Intrusion Detection and Prevention: Deploying intrusion
detection and prevention systems (IDS/IPS) that can
detect and prevent attacks targeting the VoIP protocol
can help to identify and block VoIP flood attacks in real
time.

• Quality of Service (QoS): ImplementingQoS can help to
prioritize VoIP traffic over other types of network traffic.
This can help to ensure that VoIP traffic receives the
necessary network resources to operate efficiently.

By implementing these best practices, network adminis-
trators can help to mitigate the risk of the VoIP flood attack

VOLUME 11, 2023 91573



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

and ensure that the SDN infrastructure remains secure and
available.

The effects of a DoS attack on modified SDN layers or
mechanisms are briefly described below -

1) Application Layer: Installing a new application in
an SDN system is fairly simple due to the funda-
mentals of centralized design. It is more vulnerable
to security concerns because of its centralized form,
including access control, policy violations, a conflict
with flow rules, etc. The application may transgress
security-related rules while retrieving network and
packet-related information from the controller. A mali-
cious application might install Unauthorized flow rules
to interfere with normal operation.

2) Data forwarding / Infrastructure Layer: The Open-
Flow switch is the first component a DoS/DDoS attack
affects. The header of an arriving packet is compared
to the flow rules kept in flow tables. The switch will
respond by the matched rule if a match is discovered.
The switch will then pass the packet to the controller
(as per the established policy) through the control chan-
nel by the OpenFlow agent installed in the switch if
there is no match with the flow tables. The remaining
data portion of the packet stays kept in the OpenFlow
switch’s packet buffer region if the switch just forwards
the packet header. The OpenFlow switch has a finite
amount of processor and memory resources. If a host
connected to the switch repeatedly sends packets with
different source and destination addresses, the switch
will look up each packet it gets in the associated flow
table and, if it finds it there, forward it to the controller.
In this scenario, the controller will add a flow rule for
each packet to the flow table of the relevant switch,
which may result in flow table overflow. In addition,
resource limitations may cause the OpenFlow agent
to become overwhelmed. If the packet buffer fills up,
the entire packet will be forwarded to the controller;
however, if the OpenFlow agent is overloaded, it won’t
be able to send additional packets, and hence the packet
will be lost.

3) Flow Table: Any rule change from the controller is
dropped if the flow table to the switch is full since
there is no room for it. The switch won’t forward any
additional packets until free space in the flow table
becomes available. Any host connected to the impacted
switch cannot deliver the necessary level of service.
Theremay be packet loss from sources, and latencywill
be considerable.

4) Control Layer (Controller): It includes the controller,
a crucial part of the SDN system. The controller is in
charge of giving the OpenFlow switches the relevant
data when they ask for it. The controller might be a
potential target for an attacker because it is the center
point of failure. One crucial feature offered by the
SDN controller is the installation of switches’ flow
rules. Sendingmany packet-inmessages and requesting

a lot of flow rules can make a controller’s resources
dysfunctional. As a result, responding to inquiries takes
longer. A switch attack will only have a local impact,
whereas a successful DoS assault on the controller will
impact the entire infrastructure.

5) Control Channel: The control channel is the com-
munication channel between the controller and the
OpenFlow switch. There are two ways to do it: out-of-
band, where the link is made using a special physical
link with the controller, and in-band, where the link
is created utilizing the current data plane connections.
Due to a DoS attack, these links’ limited capacity could
be negatively impacted. Links in the in-band category
will be more impacted because the physical link is used
by regular traffic.

VII. RESEARCH GAPS
While finding the countermeasures for the attacks against the
control plane, we also got some of the following research gaps
or future research prospects.

A. ENTROPY METHOD
While entropy-based methods have shown promise in detect-
ing and defending against multiple attacks in SDN, several
research gaps and limitations must be addressed to enhance
their effectiveness. These gaps hinder the accuracy, scalabil-
ity, and reliability of current approaches. The following issues
have been identified:

1) False-positive rate increase: Existing entropy-based
methods experience an increase in the false-positive
rate when different attack traffic rates are consid-
ered [126]. This indicates a pressing need to improve
the precision of detection mechanisms to avoid unnec-
essary alarms and enable efficient threat identification.

2) Low attack detection rate for low-rate attacks:
Despite their effectiveness in detecting high-rate
attacks, entropy-based methods often exhibit a low
detection rate for low-rate attack traffic targeting mul-
tiple victims [126]. This limitation compromises the
network’s ability to identify and mitigate subtle and
sophisticated attacks, posing a significant security risk.

3) Delay in packet processing: The processing delay
in entropy-based methods can be detrimental to
timely attack detection and mitigation [126]. The time
required to analyze and respond to incoming packets
introduces a vulnerability window duringwhich attacks
can potentially cause damage.

4) Fixed threshold reliance: Many entropy-based
approaches rely on fixed thresholds to detect different
DDoS attack traffic rates targeting single or multi-
ple hosts [127]. This rigid threshold reliance makes
it challenging to effectively identify low-rate DDoS
attacks with a high detection rate and low false-positive
rate, demanding more flexible and adaptive detection
mechanisms.

91574 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

5) Single point of controller failure: The centralized
controller in SDN architectures presents a single fail-
ure point, impacting entropy-based methods’ resilience
and reliability [128]. A successful attack on the con-
troller can paralyze the entire network, emphasizing
the importance of distributed and fault-tolerant archi-
tectures.

6) High controller performance overhead: Deploying
entropy-based methods can impose a substantial per-
formance overhead on the SDN controller [128]. This
overhead may hinder the controller’s ability to handle
network traffic, compromising its responsiveness and
scalability efficiently.

7) Threshold selection impact: Selecting an appro-
priate threshold is critical for the effectiveness of
entropy-based methods [128]. An incorrect threshold
choice can lead to compromised detection accuracy,
either missing attacks or generating a high number of
false positives.

Limitations in adaptive timeout mechanisms for entropy-
based methods:

1) Impact of probing accuracy: The accuracy of prob-
ing, involving Round-Trip Time (RTT) measurement
for testing packets, directly influences the effectiveness
of attack detection [129], [130]. Inaccurate probing can
hinder precisely identifying and responding to attacks,
necessitating improved probing techniques.

2) Consideration of general timeout assignments:
Existing adaptive timeout mechanisms for flow rule
state transitions primarily rely on general timeout
assignments [129], [130]. This assumption overlooks
the influence of packet inter-arrival times, a crucial
feature that impacts the accuracy and efficiency of
adaptive timeout mechanisms.

These identified research gaps and limitations highlight
the necessity for further investigation and advancements in
entropy-based methods in SDN. Addressing these challenges
makes enhancing attack detection mechanisms’ accuracy,
reliability, and efficiency possible, thereby fortifying SDN
networks against various threats.

B. STATISTICAL ANALYSIS-BASED ANOMALY DETECTION
METHOD
While the statistical analysis-based anomaly detection
method has gained popularity for detecting DDoS attacks in
SDN, several research gaps and limitations must be addressed
to enhance its effectiveness in real-world scenarios. The fol-
lowing issues have been identified:

1) Limited by a fixed threshold: The statistical analysis
method relies on a single fixed threshold for distin-
guishing regular and attack traffic [131]. However, this
fixed threshold approach can result in misjudgments
and false positives, as it may not account for variations
in attack patterns and network conditions.

2) Difficulty in threshold adjustment: Setting an opti-
mal threshold value for statistical analysis detection

methods poses challenges, as the appropriate threshold
may vary across different network environments [131].
This adjustment process requires specialized knowl-
edge and expertise, limiting its applicability to practi-
tioners without extensive experience.

3) Lack of reliability in real-world networks: Relying
solely on statistical analysis for identifying abnormal
traffic may not provide reliable results in realistic net-
work environments [131]. The method’s reliance on
statistical patterns and fixed thresholds can lead to false
detection, particularly when faced with evolving attack
techniques and dynamic network conditions.

4) Need for robust and adaptable detection mech-
anisms: Addressing the limitations of fixed thresh-
olds requires the development of more robust and
adaptable detection mechanisms within the statisti-
cal analysis-based approach [131]. These mechanisms
should dynamically adjust thresholds based on the spe-
cific network environment, evolving attack techniques,
and patterns of abnormal traffic.

5) Consideration of multiple statistical properties:
While statistical analysis methods commonly focus on
a single or a few statistical properties, exploring the
effectiveness of considering multiple statistical proper-
ties simultaneously is crucial [131]. Such an approach
could capture a broader range of deviations from nor-
mal traffic behaviour, enhancing the accuracy and reli-
ability of anomaly detection.

These identified research gaps highlight the necessity
for further investigation and advancements in statistical
analysis-based anomaly detection methods for DDoS attacks
in SDN. Addressing these challenges makes enhancing
the reliability, adaptability, and accuracy of attack detec-
tion mechanisms possible, thereby fortifying SDN networks
against various threats.

C. RELAY LINK FORGED ATTACK
Relay link forged attacks pose challenges in real-world data
collection and model training environments. Simulated envi-
ronments also have limitations, such as overfitting risks and
the inability to capture real-world complexity and diver-
sity [132]. To address these gaps, the following strategies and
research areas should be explored:

1) Real-world data collection challenges: Incompletely
controlled real environments introduce the risk of
malicious samples in the collected data, which can
impact the effectiveness of attack detection model
training [132]. Research is needed to develop robust
techniques to mitigate the presence of malicious sam-
ples and ensure the reliability of training datasets.

2) Overfitting risks in simulated environments: Simu-
lated environments used for dataset collection may not
fully generalize results in real-world scenarios, leading
to overfitting risks [132]. There is a need to explore
techniques to minimize overfitting, such as employing

VOLUME 11, 2023 91575



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

diverse datasets from various simulated environments
and cross-validating the results.

3) Performance degradation in real-world deploy-
ments: Simulated datasets may not accurately capture
the complexity and diversity of real-world situations,
potentially resulting in performance degradation when
deploying detection models in practical SDN envi-
ronments [132]. Further research is needed to bridge
the gap between simulated and real-world datasets,
ensuring the models perform effectively and reliably in
real-world scenarios.

4) Generalizability of detection models: To enhance
the generalizability of attack detection models, using
multiple datasets collected from various simulation
environments is recommended [132]. This approach
enables cross-validation and improves themodel’s abil-
ity to detect relay link forged attacks across different
scenarios and settings.

5) Validation in actual SDN engineering environ-
ments: While experiments are conducted in simulated
environments, there is a need to verify and deploy
the developed approaches in real SDN engineering
environments [132]. This step is crucial to assess the
model’s performance, reliability, and suitability for
practical deployment against relay link forged attacks.

These research gaps highlight the importance of effec-
tively addressing challenges in data collection, model train-
ing, overfitting, performance degradation, generalizability,
and real-world deployment to detect and mitigate relay link
forged attacks in SDN.

D. TOPOLOGY FORGERY ATTACKS IN SDN
Topology forgery attacks in SDN encompass protocol-based
attacks that exploit vulnerabilities without direct access to
the control plane or knowledge of controller weaknesses.
These attacks pose security threats through link forgery
attacks (LFA) and host location hijacking attacks (HLHA).
The specific RLFA (Relay Link Forgery Attack) studied by
Alhaj et al. [31] falls under LFA.

1) Ineffectiveness of existing defense mechanisms:
Existing defense mechanisms, such as Topo Guard
proposed in the article, aim to protect against LFA
by implementing port label policies [31]. However,
a research gap exists in these mechanisms’ effective-
ness, as adversaries can disrupt host labels and imper-
sonate switches using relay LLDP packets, rendering
the defense mechanisms inadequate to defend against
RLFA [31].

2) Mitigation of RLFA attacks: Research is needed to
develop effectivemitigation techniques specifically tar-
geting RLFA attacks within the LFA category [31].
The goal is to enhance the ability to detect and prevent
the introduction of false links between switches in the
controller’s topology view, ensuring the integrity and
accuracy of the network’s perceived structure.

3) Detection and prevention of HLHA: HLHA, which
involves manipulating the position of hosts to mislead
network traffic, poses significant security risks. Further
research is required to develop robust detection and pre-
vention mechanisms to accurately identify andmitigate
HLHA attacks within SDN environments.

4) Improving security in the control plane: Since topol-
ogy forgery attacks exploit vulnerabilities without
accessing the control plane, it is necessary to enhance
its security. Research should focus on identifying and
addressing vulnerabilities in the control plane to pre-
vent unauthorized manipulation of the network’s topol-
ogy and protect against topology forgery attacks.

These research gaps highlight the need for further inves-
tigation and advancements in detecting, preventing, and mit-
igating topology forgery attacks, with a particular focus on
RLFA and HLHA. Addressing these gaps will contribute to
developing more secure and resilient SDN architectures.

E. SDN CONTROLLER PLACEMENT
SDN controller placement plays a crucial role in optimiz-
ing network performance and minimizing latency. However,
several research gaps and limitations can be identified in the
existing literature, as outlined below:

1) Lack of consideration for DDoS attacks: Previous
studies, such as Haque et al. [133], have focused on
optimizing controller placement based on latency and
response time but have not specifically addressed the
placement strategy under DDoS attacks. This research
gap highlights the need for investigations into the
impact of DDoS attacks on controller placement and
the development of robust placement strategies that
account for attack scenarios.

2) Limited exploration of DDoS attack defense mech-
anisms: While Haque et al. [133] proposed a DDoS
blocking system using the OpenFlow interface,
a research gap exists in exploring comprehensive
defense mechanisms against DDoS attacks in SDN.
Future research should aim to develop more sophis-
ticated and adaptive defense techniques that con-
sider factors such as attack detection, mitigation, and
response to ensure the resilience of SDN networks
against DDoS attacks.

3) Evaluation of reliability and scalability: Haque et al.
[133] emphasized the need to enhance the reliability of
SDN controllers using heuristic algorithms. However,
there is a research gap in evaluating the scalability and
effectiveness of these algorithms in large-scale SDN
deployments. Further research is required to assess
the performance and efficiency of controller placement
strategies under various network sizes and traffic loads.

4) Bridging the gap between theory and practice:
Although Haque et al. [133] proposed an enhanced
model for SDN controller placement, validating
and deploying these approaches in real-world SDN
environments is necessary. Practical deployment

91576 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

considerations, such as compatibility with existing net-
work infrastructures and integration challenges, must
be addressed to bridge the gap between theoretical
advancements and their implementation in production
networks.

5) Comprehensive understanding of DDoS attack
characteristics: While Haque et al. [133] discussed
DDoS attack trends and characteristics in cloud com-
puting environments, there is a research gap in under-
standing evolving DDoS attack techniques and their
implications for SDN. Future research should focus
on identifying emerging attack vectors, their impact
on SDN networks, and developing countermeasures to
mitigate their effects.

These research gaps highlight the necessity for further
investigation and advancements in SDN controller place-
ment, specifically addressing the challenges posed by DDoS
attacks, evaluating reliability and scalability, bridging the
theory-practice gap, and gaining a comprehensive under-
standing of DDoS attack characteristics.

F. OPTIMAL SDN DEPLOYMENT
Optimal SDN deployment involves selecting suitable con-
troller platforms and assessing the performance of SDN
OpenFlow controllers. However, several research gaps and
limitations can be identified in the existing literature, as out-
lined below:

1) Lack of comprehensive assessment criteria: Existing
research, including thework byBadotra et al. [134], has
surveyed and examined performance assessment crite-
ria for OpenFlow controllers in SDNs. However, there
is a research gap in developing comprehensive and
standardized assessment criteria that consider diverse
network conditions, parameters, metrics, and scaling of
network load resources. Future research should focus
on defining a comprehensive set of criteria to evaluate
SDN controllers’ performance effectively.

2) Limited analysis of multiple controller scenarios:
While Badotra et al. [134] explored performance anal-
ysis of OpenFlow-based SDN controllers conducted by
different scholars and in groups of two or more con-
trollers, there is a research gap in analyzing larger-scale
scenarios with multiple controllers. Further research
is needed to assess the performance and scalability
of SDN deployments that involve multiple controllers
under various network conditions and load scenarios.

3) Understanding the impact of network topology
design: The varying network topology design is an
essential aspect of SDN deployment. However, there
is a research gap in understanding the influence of
different network topologies on the performance of
SDN controllers. Future research should investigate
the relationship between network topology design and
controller performance to optimize SDN deployments
for various network configurations.

4) Standardization of performance evaluation: SDN
controllers need standardization in performance eval-
uation methodologies to enable meaningful compar-
isons across different studies. Currently, there is a
lack of consensus on evaluation techniques, metrics,
and experimental setups. Addressing this research gap
would facilitate more reliable and consistent perfor-
mance evaluations of SDN controllers.

These research gaps highlight the need for further inves-
tigation and advancements in optimal SDN deployment,
including developing comprehensive assessment criteria,
analyzing multiple controller scenarios, understanding the
impact of network topology design, and standardization of
performance evaluation methodologies.

G. SDN-ESRC
Software-DefinedNetworking Endogenously Secure Resilient
Control (SDN-ESRC) is proposed by Ren et al. [135] as a
resilient and endogenously secure control plane for SDN.
While the concept shows promise, there are research gaps
and limitations in its implementation, as outlined below:

1) Handling multiple heterogeneous controllers: SDN-
ESRC utilizes a variety of heterogeneous controllers,
such as RYU, Open Daylight, and ONOS, to build
the control plane. However, a research gap exists in
effectively managing and coordinating the interactions
between these controllers. Further research is needed
to explore efficient strategies for handling multiple
controllers and ensuring seamless communication and
cooperation among them.

2) Impact on network update time:Using multiple con-
trollers in SDN-ESRC may increase the time required
to bring the network up to date. This can potentially
impact network responsiveness and agility, particularly
in dynamic environments where rapid network updates
are necessary. Future research should focus on mini-
mizing the update time and optimizing the synchroniza-
tion process when employing multiple controllers.

3) Achieving a high degree of controlled security:
SDN-ESRC aims to provide endogenous security for
the SDN control plane. However, a research gap exists
in guaranteeing a very high level of controlled security
when employing a range of heterogeneous controllers.
Further research is needed to develop comprehensive
security mechanisms and coordination strategies to
ensure robust security across all controller instances.

4) Coordination challenges and complexity:Managing
multiple heterogeneous controllers introduces coordi-
nation challenges and complexity in the control plane.
Research is required to explore efficient mechanisms
for dynamically and adaptively selecting controller
instances, identifying and repairing control message
errors, and maintaining overall control plane integrity.
Addressing these challengeswill enhance the reliability
and effectiveness of SDN-ESRC.

VOLUME 11, 2023 91577



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

These research gaps highlight the need for further inves-
tigation and advancements in implementing SDN-ESRC,
particularly in managing multiple heterogeneous controllers,
minimizing network update time, achieving a high level of
controlled security, and addressing coordination challenges
and complexity.

H. FLOW-TABLE FLOODING
Flow-table flooding attacks pose significant challenges to
SDN networks [31]. Understanding and mitigating these
attacks require further research, as outlined below:

1) Impact on controller performance: Flow-table flood-
ing attacks overwhelm the flow table with a large
volume of packets, which can significantly impact the
performance of the SDN controller. Research is needed
to understand the specific performance bottlenecks
caused by flow-table flooding and develop efficient
mitigation techniques to alleviate the strain on the con-
troller’s processing capabilities.

2) Flow table management and scalability: Flow tables
in SDN networks have limited capacity, making them
susceptible to overflow during flow-table flooding
attacks. Addressing this research gap involves explor-
ing approaches to improve flow table management and
scalability, allowing the network to handle a larger
volume of flows while maintaining efficient packet
processing.

3) Detection and mitigation strategies: Detecting
flow-table flooding attacks in real-time is crucial for
timely mitigation. Research is needed to develop effec-
tive detection algorithms that can identify flow-table
flooding attacks accurately and promptly. Additionally,
mitigation strategies should be explored to dynamically
adapt the flow table and prioritize critical flows during
an attack, ensuring the controller’s performance is not
severely impacted.

4) Optimal flow table size determination: Determining
the optimal size of the flow table is essential to bal-
ance the network’s performance and security. Research
should focus on identifying the factors that influence
the appropriate size of the flow table, such as network
size, traffic patterns, and application requirements. This
will help design SDN architectures with appropriately
sized flow tables that can withstand flow-table flooding
attacks without compromising performance.

These research gaps highlight the need for further investi-
gation and advancements in understanding flow-table flood-
ing attacks, improving flow-table management and scalabil-
ity, developing efficient detection and mitigation strategies,
and determining optimal flow-table sizes to enhance the
resilience and performance of SDN networks.

VIII. FUTURE WORK
In order to address the evolving landscape of SDN security,
our research aims to continually advance the field by identi-
fying emerging threats and proposing effective countermea-

sures. The following outlines our planned future work, which
focuses on enhancing threat detection, developing dynamic
defense strategies, and leveraging advanced techniques to
strengthen SDN security.

Some points describing the key areas of focus have been
described below:

1) Comprehensive threat identification: We will
expand our research to encompass a broader range of
threats and vulnerabilities specific to SDN environ-
ments. This includes analyzing emerging attack vectors
and understanding their potential impact on network
security.

2) Development of countermeasures and algorithms:
Our future work will involve the development of inno-
vative countermeasures and algorithms to mitigate
identified threats. We will explore novel approaches
that enhance the resilience and security of SDN con-
trollers and networks.

3) Integration of deep learning and machine learning:
We plan to integrate deep learning and machine learn-
ing techniques into our security framework to improve
threat detection and response. This includes exploring
simulation-based or dataset-based training to enhance
real-time attack detection and automate adaptive net-
work rule adjustments.

4) Dynamic network rule updates: We recognize the
importance of adapting network rules in response to
detected threats. Our future work will focus on devel-
oping strategies to dynamically update network rules
based on real-time threat intelligence, ensuring effec-
tive mitigation and minimizing the impact of attacks.

5) Research validation and refinement: Thorough
research and validation will be conducted before imple-
menting our proposed approaches. We will carefully
select appropriate algorithms and datasets to emulate
various attack scenarios and validate the effectiveness
of our defense strategies.

6) Continuous research updates: As we progress,
we will continuously update our research findings to
reflect the latest findings and advancements in SDN
security. This ensures that our work remains relevant
and provides valuable insights for the broader research
community.

7) Enhancing Practicality Assessment of Countermea-
sures: To safeguard the SDN control plane from
diverse attacks, our research has spotlighted perti-
nent countermeasures. Yet, an avenue ripe for future
exploration involves refining the practical assessment
of these measures. Future research can delve into
establishing a standardized framework for evaluating
factors like feasibility, cost-effectiveness, and integra-
tion. By grounding theoretical efficacy in real-world
implementation ability, upcoming studies can empower
network practitioners with more effective decision-
making tools. This pursuit could bridge the gap

91578 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

between theory and practice, ultimately propelling the
field of SDN security forward.

These future research directions underline our commit-
ment to advancing SDN security by addressing emerging
threats, developing effective countermeasures, leveraging
advanced techniques, and continuously updating our research
to reflect the latest developments in the field.

IX. CONCLUSION
This research paper has delved into the realm of
Software-Defined Networking (SDN) security, with a spe-
cific focus on the control plane. Throughout our investigation,
we have made some contributions that enhance the under-
standing of SDN security and provide practical guidance for
researchers and practitioners in the field.

Firstly, we have established a comprehensive attack clas-
sification and taxonomy, which organizes the various attacks
targeting the SDN control plane based on their specific attack
surfaces. This structured classification offers a deeper under-
standing of SDN environments’ attack vectors, facilitating
more effective security measures.

Moreover, we have presented a unique taxonomical rep-
resentation of the identified attacks, offering a systematic
framework for analyzing and comprehending their char-
acteristics. This taxonomical approach enables researchers
and practitioners to gain a clear and organized view of the
attacks, allowing for a better understanding of the relation-
ships between different attack types. Additionally, we have
proposed countermeasure taxonomies aligned with the attack
taxonomy. These countermeasures provide practical guid-
ance for implementing effective security measures in SDN
environments. By aligning the countermeasures with the cor-
responding attack categories, we offer a targeted and proac-
tive approach to mitigating or preventing these attacks.

Lastly, our research paper conducts a thorough research
gap analysis, identifying limitations and research needs in
SDN security. By highlighting these gaps, we provide valu-
able insights for future researchers, guiding them toward
potential research directions and enabling them to address the
current shortcomings in the field.

Overall, the contributions made in this research paper sig-
nificantly enhance the understanding of attacks against SDN
control planes. The classification and taxonomy of attacks,
taxonomical representation, countermeasure taxonomies, and
research gap analysis collectively contribute to the body
of knowledge on SDN security. This research serves as a
foundation for future research and development in the field,
enabling the implementation of robust security measures and
the advancement of SDN technology.

As the field of SDN continues to evolve, researchers and
practitioners must remain vigilant and proactive in addressing
security challenges. By leveraging the insights and recom-
mendations provided in this paper, stakeholders can fortify
their SDN deployments, ensuring their network infrastruc-
ture’s integrity, availability, and confidentiality.

REFERENCES
[1] L. Yang, R. Dantu, T. Anderson, and R. Gopal, ‘‘Forwarding and control

element separation (ForCES) framework,’’ Tech. Rep. RFC3746, 2004.
[2] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo,

‘‘The softrouter architecture,’’ in Proc. ACM SIGCOMM Workshop Hot
Topics Netw., 2004, pp. 1–6.

[3] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov, ‘‘Linux netlink as an
IP services protocol,’’ Tech. Rep. RFC3549, 2003.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, ‘‘Ethane: Taking control of the enterprise,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, 2007.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, ‘‘NOX: Towards an operating system for networks,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110,
Jul. 2008.

[7] Software-Defined Networking (SDN) Definition, ONF.
[8] N. Feamster, J. Rexford, and E. Zegura, ‘‘The road to SDN: An intel-

lectual history of programmable networks,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.

[9] D. B. Rawat and S. R. Reddy, ‘‘Software defined networking architecture,
security and energy efficiency: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 19, no. 1, pp. 325–346, 1st Quart., 2017.

[10] A. Voellmy, H. Kim, and N. Feamster, ‘‘Procera: A language for high-
level reactive network control,’’ in Proc. 1st Workshop Hot Topics Softw.
Defined Netw., Aug. 2012, pp. 43–48.

[11] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, ‘‘Network
configuration protocol (NETCONF),’’ Tech. Rep. RFC6241), 2011.

[12] A. Abdou, P. C. van Oorschot, and T.Wan, ‘‘Comparative analysis of con-
trol plane security of SDN and conventional networks,’’ IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 3542–3559, 4th Quart., 2018.

[13] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
‘‘A security enforcement kernel for OpenFlow networks,’’ in Proc. 1st
Workshop Hot Topics Softw. Defined Netw., Aug. 2012, pp. 121–126.

[14] K. Dhamecha and B. Trivedi, ‘‘SDN issues a survey,’’ Int. J. Comput.
Appl., vol. 73, no. 18, pp. 30–35, Jul. 2013.

[15] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
‘‘Extending networking into the virtualization layer,’’ in Proc. Hotnets,
2009, pp. 1–6.

[16] Directory, Indigo Virtual Switch (IVS), Sdxcentral, Denver, CO, USA,
2023.

[17] PicOS: Delivering Networking Freedom, Pica8, 2023.
[18] A. Voellmy and P. Hudak, ‘‘Nettle: Taking the sting out of programming

network routers,’’ in Proc. Int. Symp. Practical Aspects Declarative Lang.
Cham, Switzerland: Springer, 2011, pp. 235–249.

[19] Y. Yiakoumis, J. Schulz-Zander, and J. Zhu, ‘‘Pantou: OpenFlow 1.0 for
OpenWRT,’’ Tech. Rep., 2011.

[20] L.-D. Aaronshang, ‘‘Pica8 Xorplus,’’ Tech. Rep., 2016.
[21] F. Hu, Q. Hao, and K. Bao, ‘‘A survey on software-defined network and

OpenFlow: From concept to implementation,’’ IEEE Commun. Surveys
Tuts., vol. 16, no. 4, pp. 2181–2206, 4th Quart., 2014.

[22] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ‘‘Software-defined networking: A com-
prehensive survey,’’ Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[23] W. Stallings, ‘‘Software-defined networks and openflow,’’ Internet Pro-
tocol J., vol. 16, no. 1, pp. 2–14, 2013.

[24] A. Lara, A. Kolasani, and B. Ramamurthy, ‘‘Network innovation using
OpenFlow: A survey,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1,
pp. 493–512, 1st Quart., 2014.

[25] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, ‘‘A survey of software-defined networking: Past, present,
and future of programmable networks,’’ IEEE Commun. Surveys Tuts.,
vol. 16, no. 3, pp. 1617–1634, 3rd Quart., 2014.

[26] S. Dong, K. Abbas, and R. Jain, ‘‘A survey on distributed denial of
service (DDoS) attacks in SDN and cloud computing environments,’’
IEEE Access, vol. 7, pp. 80813–80828, 2019.

[27] J. Singh and S. Behal, ‘‘Detection and mitigation of DDoS attacks in
SDN: A comprehensive review, research challenges and future direc-
tions,’’ Comput. Sci. Rev., vol. 37, Aug. 2020, Art. no. 100279.

VOLUME 11, 2023 91579



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

[28] M. Arif, G. Wang, O. Geman, V. E. Balas, P. Tao, A. Brezulianu, and
J. Chen, ‘‘SDN-based VANETs, security attacks, applications, and chal-
lenges,’’ Appl. Sci., vol. 10, no. 9, p. 3217, May 2020.

[29] J. C. Correa Chica, J. C. Imbachi, and J. F. B. Vega, ‘‘Security in SDN:
A comprehensive survey,’’ J. Netw. Comput. Appl., vol. 159, Jun. 2020,
Art. no. 102595.

[30] F. S. D. Silva, E. Silva, E. P. Neto, M. Lemos, A. J. V. Neto, and
F. Esposito, ‘‘A taxonomy of DDoS attack mitigation approaches featured
by SDN technologies in IoT scenarios,’’ Sensors, vol. 20, no. 11, p. 3078,
May 2020.

[31] A. N. Alhaj and N. Dutta, ‘‘Analysis of security attacks in SDN network:
A comprehensive survey,’’ in Contemporary Issues in Communication,
Cloud and Big Data Analytics, H. K. D. Sarma, V. E. Balas, B. Bhuyan,
and N. Dutta, Eds. Singapore: Springer, pp. 27–37, 2022.

[32] V. Thirupathi, C. H. Sandeep, N. Kumar, and P. P. Kumar, ‘‘A compre-
hensive review on SDN architecture, applications and major benifits of
SDN,’’ Int. J. Adv. Sci. Technol., vol. 28, no. 20, pp. 607–614, 2019.

[33] Y.-D. Lin, P.-C. Lin, C.-H. Yeh, Y.-C. Wang, and Y.-C. Lai, ‘‘An extended
SDN architecture for network function virtualization with a case study on
intrusion prevention,’’ IEEE Netw., vol. 29, no. 3, pp. 48–53, May 2015.

[34] C. Janz, L. Ong, K. Sethuraman, and V. Shukla, ‘‘Emerging transport
SDN architecture and use cases,’’ IEEE Commun. Mag., vol. 54, no. 10,
pp. 116–121, Oct. 2016.

[35] K. Raghunath and P. Krishnan, ‘‘Towards a secure SDN architecture,’’
in Proc. 9th Int. Conf. Comput., Commun. Netw. Technol. (ICCCNT),
Jul. 2018, pp. 1–7.

[36] K. Cabaj, J. Wytrebowicz, S. Kuklinski, P. Radziszewski, and K. T. Dinh,
‘‘SDN architecture impact on network security,’’ in Proc. FedCSIS, 2014,
pp. 143–148.

[37] S. M. Mousavi and M. St-Hilaire, ‘‘Early detection of DDoS attacks
against SDN controllers,’’ in Proc. Int. Conf. Comput., Netw. Commun.
(ICNC), Feb. 2015, pp. 77–81.

[38] K. Benton, L. J. Camp, and C. Small, ‘‘OpenFlow vulnerability assess-
ment,’’ in Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw.
Defined Netw., Aug. 2013, pp. 151–152.

[39] D. Gao, Z. Liu, Y. Liu, C. H. Foh, T. Zhi, and H.-C. Chao, ‘‘Defending
against packet-in messages flooding attack under SDN context,’’ Soft
Comput., vol. 22, no. 20, pp. 6797–6809, Oct. 2018.

[40] L. Ran, Y. Cui, C. Guo, Q. Qian, G. Shen, and H. Xing, ‘‘Defending
saturation attacks on SDN controller: A confusable instance analysis-
based algorithm,’’ Comput. Netw., vol. 213, Aug. 2022, Art. no. 109098.

[41] S. Khamaiseh, E. Serra, Z. Li, and D. Xu, ‘‘Detecting saturation attacks
in SDN via machine learning,’’ in Proc. 4th Int. Conf. Comput., Commun.
Secur. (ICCCS), Oct. 2019, pp. 1–8.

[42] X. Huang, K. Xue, Y. Xing, D. Hu, R. Li, and Q. Sun, ‘‘FSDM: Fast
recovery saturation attack detection and mitigation framework in SDN,’’
in Proc. IEEE 17th Int. Conf. Mobile Ad Hoc Sensor Syst. (MASS),
Dec. 2020, pp. 329–337.

[43] Q. Li, J. Cao, M. Xu, and K. Sun, ‘‘Flow table overflow attacks,’’ in
Encyclopedia of Wireless Networks. Cham, Switzerland: Springer, 2019,
pp. 1–3.

[44] A. Patwardhan, D. Jayarama, N. Limaye, S. Vidhale, Z. Parekh, and
K. Harfoush, ‘‘SDN security: Information disclosure and flow table over-
flow attacks,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2019, pp. 1–6.

[45] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, ‘‘Rosemary: A robust, secure, and high-
performance network operating system,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2014, pp. 78–89.

[46] C. Röpke and T. Holz, ‘‘Retaining control over SDN network services,’’ in
Proc. Int. Conf. Workshops Networked Syst. (NetSys), Mar. 2015, pp. 1–5.

[47] C. Ropke and T. Holz, ‘‘On network operating system security [RH],’’
Int. J. Netw. Manag., vol. 26, no. 1, pp. 6–24, 2016.

[48] C. Röpke, ‘‘SDN malware: Problems of current protection systems and
potential countermeasures,’’ Sicherheit-Sicherheit, Schutz Und Zuverläs-
sigkeit, 2016.

[49] S. Hogg, ‘‘SDN security attack vectors and SDN hardening,’’ Tech.
Rep., 2014.

[50] Y. Sinha and K. Haribabu, ‘‘A survey: Hybrid SDN,’’ J. Netw. Comput.
Appl., vol. 100, pp. 35–55, Dec. 2017.

[51] L. Richardson and S. Ruby, RESTful Web Services. Springfield, MO,
USA: O’Reilly, 2008.

[52] B. Chandrasekaran and T. Benson, ‘‘Tolerating SDN application fail-
ures with LegoSDN,’’ in Proc. 13th ACM Workshop Hot Topics Netw.,
Oct. 2014, pp. 1–7.

[53] P. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran, ‘‘Secur-
ing the software defined network control layer,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp., San Diego, CA, USA, 2015, pp. 1–15.

[54] D. Tatang, F. Quinkert, J. Frank, C. Röpke, and T. Holz, ‘‘SDN-
guard: Protecting SDN controllers against SDN rootkits,’’ in Proc. IEEE
Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-SDN),
Nov. 2017, pp. 297–302.

[55] P. Congdon, ‘‘Link layer discovery protocol and MIB,’’ V1. 0 May,
vol. 20, no. 2002, pp. 1–20, 2002.

[56] S. S. Baidya and R. Hewett, ‘‘Link discovery attacks in software-defined
networks: Topology poisoning and impact analysis,’’ J. Commun., vol. 15,
pp. 596–606, 2020.

[57] T.-H. Nguyen and M. Yoo, ‘‘Analysis of link discovery service attacks
in SDN controller,’’ in Proc. Int. Conf. Inf. Netw. (ICOIN), Jan. 2017,
pp. 259–261.

[58] S. Hong, L. Xu, H. Wang, and G. Gu, ‘‘Poisoning network visibility in
software-defined networks: New attacks and countermeasures,’’ in Proc.
Netw. Distrib. Syst. Secur. Symp., 2015, pp. 8–11.

[59] OpenDaylight, A Linux Foundation Collaborative Project, 2013.
[60] C. Ropke and T. Holz, ‘‘SDN rootkits: Subverting network operating sys-

tems of software-defined networks,’’ in Research in Attacks, Intrusions,
and Defenses, H. Bos, F. Monrose, G. Blanc, Eds. Cham, Switzerland:
Springer, 2015, pp. 339–356.

[61] J. C. Mogul and P. Congdon, ‘‘Hey, you darned counters! Get off
my ASIC!’’ in Proc. 1st Workshop Hot Topics Softw. Defined Netw.,
Aug. 2012, pp. 25–30.

[62] C. Ropke, ‘‘SDN Ro2tkits: A case study of subverting a closed source
SDN controller,’’ in Proc. SICHERHEIT, 2018, pp. 1–12.

[63] A. Aseeri, N. Netjinda, and R. Hewett, ‘‘Alleviating eavesdropping
attacks in software-defined networking data plane,’’ in Proc. 12th Annu.
Conf. Cyber Inf. Secur. Res., Apr. 2017, pp. 1–8.

[64] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras,
and G. Gu, ‘‘Flow wars: Systemizing the attack surface and defenses
in software-defined networks,’’ IEEE/ACM Trans. Netw., vol. 25, no. 6,
pp. 3514–3530, Dec. 2017.

[65] N. Long and R. Thomas, ‘‘Trends in denial of service attack technology,’’
CERT Coordination Center, vol. 648, no. 651, p. 569, 2001.

[66] W. Eddy, ‘‘TCP SYN flooding attacks and common mitigations,’’
Tech. Rep., 2007.

[67] A. M. Abdelmoniem and B. Bensaou, ‘‘The switch from conventional
to SDN: The case for transport-agnostic congestion control,’’ 2022,
arXiv:2209.04729.

[68] S. Kim, J. Son, A. Talukder, and C. S. Hong, ‘‘Congestion prevention
mechanism based on Q-leaning for efficient routing in SDN,’’ in Proc.
Int. Conf. Inf. Netw. (ICOIN), Jan. 2016, pp. 124–128.

[69] M. Saravanan, A. S. Sundaramurthy, D. Sundar, and K. H. Sadia,
‘‘Extending SDN framework for communication networks,’’ in Internet
of Things. IoT Infrastructures. Rome, Italy: Springer, 2016, pp. 539–550.

[70] R. Macedo, R. de Castro, A. Santos, Y. Ghamri-Doudane, and
M. Nogueira, ‘‘Self-organized SDN controller cluster conformations
against DDoS attacks effects,’’ in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2016, pp. 1–6.

[71] Z. Shu, J. Wan, D. Li, J. Lin, A. V. Vasilakos, and M. Imran, ‘‘Security
in software-defined networking: Threats and countermeasures,’’ Mobile
Netw. Appl., vol. 21, no. 5, pp. 764–776, Oct. 2016.

[72] R. Shashidhara, N. Ahuja, M. Lajuvanthi, S. Akhila, A. K. Das, and
J. J. Rodrigues, ‘‘SDN-chain: Privacy-preserving protocol for software
defined networks using blockchain,’’ Secur. Privacy, vol. 4, no. 6, p. e178,
Nov. 2021.

[73] A. Irfan, N. Taj, and S. A. Mahmud, ‘‘A novel secure SDN/LTE based
architecture for smart grid security,’’ inProc. IEEE Int. Conf. Comput. Inf.
Technol., Ubiquitous Comput. Commun., Dependable, Autonomic Secure
Comput., Pervasive Intell. Comput., Oct. 2015, pp. 762–769.

[74] N. Dayal and S. Srivastava, ‘‘Analyzing behavior of DDoS attacks to iden-
tify DDoS detection features in SDN,’’ in Proc. 9th Int. Conf. Commun.
Syst. Netw. (COMSNETS), Jan. 2017, pp. 274–281.

[75] P. Kumar, M. Tripathi, A. Nehra, M. Conti, and C. Lal, ‘‘SAFETY:
Early detection and mitigation of TCP SYN flood utilizing entropy in
SDN,’’ IEEE Trans. Netw. Service Manag., vol. 15, no. 4, pp. 1545–1559,
Dec. 2018.

91580 VOLUME 11, 2023



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

[76] J. Clarke-Salt, SQL Injection Attacks and Defense. Amsterdam,
The Netherlands: Elsevier, 2009.

[77] G. E. Rodríguez, J. G. Torres, P. Flores, and D. E. Benavides, ‘‘Cross-
site scripting (XSS) attacks and mitigation: A survey,’’ Comput. Netw.,
vol. 166, Jan. 2020, Art. no. 106960.

[78] S. Zaman, M. S. Kaiser, R. T. Khan, and M. Mahmud, ‘‘Towards SDN
and blockchain based IoT countermeasures: A survey,’’ in Proc. 2nd Int.
Conf. Sustain. Technol. Ind. 4.0 (STI), Dec. 2020, pp. 1–6.

[79] D. Chasaki and C. Mansour, ‘‘SDN security through system call learn-
ing,’’ in Proc. 11th IFIP Int. Conf. New Technol., Mobility Secur. (NTMS),
Apr. 2021, pp. 1–6.

[80] T. Sasaki, A. Perrig, and D. E. Asoni, ‘‘Control-plane isolation and
recovery for a secure SDN architecture,’’ in Proc. IEEE NetSoft Conf.
Workshops (NetSoft), Jun. 2016, pp. 459–464.

[81] M. H. N. Ba, J. Bennett, M. Gallagher, and S. Bhunia, ‘‘A case study of
credential stuffing attack: Canva data breach,’’ inProc. Int. Conf. Comput.
Sci. Comput. Intell. (CSCI), Dec. 2021, pp. 735–740.

[82] Q. Yan, F. R. Yu, Q. Gong, and J. Li, ‘‘Software-defined networking
(SDN) and distributed denial of service (DDoS) attacks in cloud comput-
ing environments: A survey, some research issues, and challenges,’’ IEEE
Commun. Surveys Tuts., vol. 18, no. 1, pp. 602–622, 1st Quart., 2016.

[83] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, ‘‘Beyond credential
stuffing: Password similarity models using neural networks,’’ in Proc.
IEEE Symp. Secur. Privacy (SP), May 2019, pp. 417–434.

[84] Z. Su and G. Wassermann, ‘‘The essence of command injection attacks in
web applications,’’ ACM SIGPLAN Notices, vol. 41, no. 1, pp. 372–382,
Jan. 2006.

[85] A. Stasinopoulos, C. Ntantogian, and C. Xenakis, ‘‘Commix: Detect-
ing and exploiting command injection flaws,’’ Dept. Digit. Syst., Univ.
Piraeus, Piraeus, Greece, White Paper, 2015.

[86] S. Deng, X. Gao, Z. Lu, and X. Gao, ‘‘Packet injection attack and
its defense in software-defined networks,’’ IEEE Trans. Inf. Forensics
Security, vol. 13, no. 3, pp. 695–705, Mar. 2018.

[87] F. M. Alotaibi and V. G. Vassilakis, ‘‘Toward an SDN-based web applica-
tion firewall: Defending against SQL injection attacks,’’ Future Internet,
vol. 15, no. 5, p. 170, 2023.

[88] N. Hubballi, Y. Singh, and D. Garg, ‘‘XSSMitigate: Deep packet inspec-
tion based XSS attack quarantine in software defined networks,’’ in Proc.
IEEE Int. Conf. Consum. Electron. (ICCE), Jan. 2023, pp. 1–6.

[89] H.-C. Chen, A. Nshimiyimana, C. Damarjati, and P.-H. Chang, ‘‘Detec-
tion and prevention of cross-site scripting attack with combined
approaches,’’ in Proc. Int. Conf. Electron., Inf., Commun. (ICEIC),
Jan. 2021, pp. 1–4.

[90] D. Choukse, D. N. Kanellopoulos, and U. K. Singh, ‘‘Developing secure
web applications,’’ Int. J. Internet Technol. Secured Trans., vol. 4,
nos. 2–3, pp. 221–236, 2012.

[91] R. Yeluri, E. Castro-Leon, R. Yeluri, and E. Castro-Leon, ‘‘Network
security in the cloud,’’ in Building Infrastructure for Cloud Security: A
Solutions View. 2014, pp. 123–140.

[92] J. Twycross and M. M. Williamson, ‘‘Implementing and testing a virus
throttle,’’ in Proc. 12th USENIX Secur. Symp., 2003.

[93] J. Xu, L. Wang, and Z. Xu, ‘‘An enhanced saturation attack and its
mitigation mechanism in software-defined networking,’’ Comput. Netw.,
vol. 169, Mar. 2020, Art. no. 107092.

[94] H. Wang, L. Xu, and G. Gu, ‘‘FloodGuard: A DoS attack prevention
extension in software-defined networks,’’ in Proc. 45th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., Jun. 2015, pp. 239–250.

[95] M. Belyaev and S. Gaivoronski, ‘‘Towards load balancing in SDN-
networks duringDDoS-attacks,’’ inProc. Int. Sci. Technol. Conf. (Modern
Netw. Technologies) (MoNeTeC), Oct. 2014, pp. 1–6.

[96] F. Klaedtke, G. O. Karame, R. Bifulco, and H. Cui, ‘‘Access control
for SDN controllers,’’ in Proc. 3rd Workshop Hot Topics Softw. Defined
Netw., Aug. 2014, pp. 219–220.

[97] Y. Tseng, M. Pattaranantakul, R. He, Z. Zhang, and F. Naït-Abdesselam,
‘‘Controller DAC: Securing SDN controller with dynamic access con-
trol,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–6.

[98] S. Buzura, V. Lazar, B. Iancu, A. Peculea, and V. Dadarlat, ‘‘Using
software-defined networking technology for delivering software updates
to wireless sensor networks,’’ in Proc. 20th RoEduNet Conf., Netw. Educ.
Res. (RoEduNet), Nov. 2021, pp. 1–6.

[99] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, ‘‘Network monitoring
in software-defined networking: A review,’’ IEEE Syst. J., vol. 12, no. 4,
pp. 3958–3969, Dec. 2018.

[100] V. Pashkov, A. Shalimov, and R. Smeliansky, ‘‘Controller failover for
SDN enterprise networks,’’ in Proc. Int. Sci. Technol. Conf. (Modern
Netw. Technologies) (MoNeTeC), Oct. 2014, pp. 1–6.

[101] N. Mhaskar, M. Alabbad, and R. Khedri, ‘‘A formal approach to network
segmentation,’’ Comput. Secur., vol. 103, Apr. 2021, Art. no. 102162.

[102] N. Kong, ‘‘Design concept for a failover mechanism in distributed SDN
controllers,’’ Tech. Rep., 2017.

[103] D. R. Kuhn, E. J. Coyne, and T. R. Weil, ‘‘Adding attributes to role-based
access control,’’ Computer, vol. 43, no. 6, pp. 79–81, Jun. 2010.

[104] H. Wolfson, ‘‘Out-of-band flow control for reliable multicast,’’ MIT
Lincoln Lab., Cambridge, MA, USA, Tech. Rep., 2000.

[105] E. Rescorla, ‘‘The transport layer security (TLS) protocol version 1.3,’’
Tech. Rep. 2018.

[106] T. Ylonen and C. Lonvick, ‘‘The secure shell (SSH) protocol architec-
ture,’’ Tech. Rep. 2006.

[107] S. Vinoski, ‘‘Advanced message queuing protocol,’’ IEEE Internet Com-
put., vol. 10, no. 6, pp. 87–89, Nov. 2006.

[108] K. Phemius, M. Bouet, and J. Leguay, ‘‘DISCO: Distributed multi-
domain SDN controllers,’’ in Proc. IEEE Netw. Operations Manage.
Symp. (NOMS), May 2014, pp. 1–4.

[109] S. A. Shah, J. Faiz, M. Farooq, A. Shafi, and S. A. Mehdi, ‘‘An architec-
tural evaluation of SDN controllers,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2013, pp. 3504–3508.

[110] J. Liu, Y. Li, H. Wang, D. Jin, L. Su, L. Zeng, and T. Vasilakos, ‘‘Lever-
aging software-defined networking for security policy enforcement,’’ Inf.
Sci., vol. 327, pp. 288–299, Jan. 2016.

[111] A. Tootoonchian and Y. Ganjali, ‘‘HyperFlow: A distributed control plane
for openflow,’’ in Proc. Internet Netw. Manag. Conf. Res. Enterprise
Netw., vol. 3, 2010, p. 5555.

[112] A. Voellmy and J. Wang, ‘‘Scalable software defined network con-
trollers,’’ in Proc. ACM SIGCOMM Conf. Appl., Technol., Architectures,
Protocols Comput. Commun., Aug. 2012, pp. 289–290.

[113] H. Pan, Z. Li, P. Zhang, K. Salamatian, and G. Xie, ‘‘Misconfiguration
checking for SDN: Data structure, theory and algorithms,’’ in Proc. IEEE
28th Int. Conf. Netw. Protocols (ICNP), Oct. 2020, pp. 1–11.

[114] D. Das, U. Sharma, and D. K. Bhattacharyya, ‘‘Detection of HTTP
flooding attacks in multiple scenarios,’’ in Proc. Int. Conf. Commun.,
Comput. Secur., 2011, pp. 517–522.

[115] R. Mohammadi, C. Lal, and M. Conti, ‘‘HTTPScout: A machine learning
based countermeasure for HTTP flood attacks in SDN,’’ Int. J. Inf. Secur.,
vol. 22, no. 2, pp. 367–379, Apr. 2023.

[116] V. Chauhan and P. Saini, ‘‘ICMP flood attacks: A vulnerability analysis,’’
in Cyber Security. Berlin, Germany: Springer, 2018, pp. 261–268.

[117] M. M. Joëlle and Y.-H. Park, ‘‘Strategies for detecting and mitigating
DDoS attacks in SDN: A survey,’’ J. Intell. Fuzzy Syst., vol. 35, no. 6,
pp. 5913–5925, Dec. 2018.

[118] B. Hang, R. Hu, and W. Shi, ‘‘An enhanced SYN cookie defence method
for TCP DDoS attack,’’ J. Netw., vol. 6, no. 8, p. 1206, Aug. 2011.

[119] A. Bijalwan, M. Wazid, E. S. Pilli, and R. C. Joshi, ‘‘Forensics
of random-UDP flooding attacks,’’ J. Netw., vol. 10, no. 5, p. 287,
May 2015.

[120] H.-C. Wei, Y.-H. Tung, and C.-M. Yu, ‘‘Counteracting UDP flooding
attacks in SDN,’’ in Proc. IEEE NetSoft Conf. Workshops (NetSoft),
Jun. 2016, pp. 367–371.

[121] Y.-H. Tung, H.-C. Wei, Y.-W. Ti, Y.-T. Tsou, N. Saxena, and C.-M. Yu,
‘‘Counteracting UDP flooding attacks in SDN,’’ Electronics, vol. 9, no. 8,
p. 1239, Aug. 2020.

[122] J. Tang, Y. Cheng, and Y. Hao, ‘‘Detection and prevention of SIP flooding
attacks in voice over IP networks,’’ in Proc. IEEE INFOCOM, Mar. 2012,
pp. 1161–1169.

[123] J. Rosenberg and H. Schulzrinne, ‘‘Session initiation protocol (SIP):
Locating SIP servers,’’ Tech. Rep., 2002.

[124] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, ‘‘RTP: A trans-
port protocol for real-time applications,’’ Tech. Rep., RFC3550, 2003.

[125] J. Lazzaro, ‘‘Framing real-time transport protocol (RTP) and RTP
control protocol (RTCP) packets over connection-oriented transport,’’
Tech. Rep., 2006.

[126] M. A. Aladaileh, M. Anbar, A. J. Hintaw, I. H. Hasbullah,
A. A. Bahashwan, T. A. Al-Amiedy, and D. R. Ibrahim, ‘‘Effectiveness
of an entropy-based approach for detecting low- and high-rate DDoS
attacks against the SDN controller: Experimental analysis,’’ Appl. Sci.,
vol. 13, no. 2, p. 775, Jan. 2023.

VOLUME 11, 2023 91581



Z. A. Bhuiyan et al.: On the (in)Security of the Control Plane of SDN Architecture: A Survey

[127] M. A. Aladaileh, M. Anbar, A. J. Hintaw, I. H. Hasbullah,
A. A. Bahashwan, and S. Al-Sarawi, ‘‘Renyi joint entropy-based
dynamic threshold approach to detect DDoS attacks against SDN
controller with various traffic rates,’’ Appl. Sci., vol. 12, no. 12, p. 6127,
Jun. 2022.

[128] T. G. Gebremeskel, K. A. Gemeda, G. Krishna, and J. R. Perumalla,
‘‘DDoS attack detection and classification using hybrid model for
multicontroller SDN,’’ Wireless Commun. Mobile Comput., vol. 2022,
Nov. 2022, Art. no. 9965945.

[129] Y. Shen, C. Wu, D. Kong, and Q. Cheng, ‘‘Flow table saturation attack
against dynamic timeout mechanisms in SDN,’’ Appl. Sci., vol. 13, no. 12,
p. 7210, Jun. 2023.

[130] R. Ne. Carvalho, J. L. Bordim, and E. A. P. Alchieri, ‘‘Entropy-based
DoS attack identification in SDN,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. Workshops (IPDPSW), May 2019, pp. 627–634.

[131] J. Wang and L. Wang, ‘‘SDN-defend: A lightweight online attack detec-
tion and mitigation system for DDoS attacks in SDN,’’ Sensors, vol. 22,
no. 21, p. 8287, 2022.

[132] T. Zhang and Y. Wang, ‘‘RLFAT: A transformer-based relay link forged
attack detection mechanism in SDN,’’ Electronics, vol. 12, no. 10,
p. 2247, May 2023.

[133] M. Reazul Haque, S. Chin Tan, Z. Yusoff, K. Nisar, R. Kaspin, I. Haider,
S. Nisar, J. P. C. Rodrigues, B. S. Chowdhry,M.A.Uqaili, S. P.Majumder,
D. B. Rawat, R. Etengu, and R. Buyya, ‘‘Unprecedented smart algorithm
for uninterrupted SDN services during DDoS attack,’’ Comput., Mater.
Continua, vol. 70, no. 1, pp. 875–894, 2022.

[134] S. Badotra, S. Tanwar, S. Bharany, A. U. Rehman, E. T. Eldin,
N. A. Ghamry, and M. Shafiq, ‘‘A DDoS vulnerability analysis system
against distributed SDN controllers in a cloud computing environment,’’
Electronics, vol. 11, no. 19, p. 3120, Sep. 2022.

[135] Q. Ren, Z. Guo, J. Wu, T. Hu, L. Jie, Y. Hu, and L. He, ‘‘SDN-ESRC:
A secure and resilient control plane for software-defined networks,’’ IEEE
Trans. Netw. Service Manag., vol. 19, no. 3, pp. 2366–2381, Sep. 2022.

ZAHEED AHMED BHUIYAN received the
master’s degree in computer science and engi-
neering (CSE) from United International Uni-
versity (UIU), Bangladesh. He is currently a
Research Assistant under the supervision of
Prof. Md. Motaharul Islam. His major is cyberse-
curity. His research interests include the Internet
of Things (IoT), cloud computing, cloud secu-
rity, networking, software-defined networking,
healthcare technologies, green computing, artifi-

cial intelligence, satellite internet communication, and grid-level energy
storage systems. He is particularly interested in the Fourth Industrial Rev-
olution (4IR) because of its fusion of AI, robotics, the IoT, and quantum
computing advances.

SALEKUL ISLAM (Senior Member, IEEE)
received the Ph.D. degree from the Department
of Computer Science and Software Engineering,
Concordia University, in 2008. He is currently
a Professor and the Director of the Institutional
Quality Assurance Cell (IQAC), United Interna-
tional University, Bangladesh. Previously, he was
a FQRNT Postdoctoral Fellow with the Énergie,
Matériaux et Télécommunications (EMT) Centre,
Institut National de la Recherche Scientifique

(INRS), Montreal, Canada. His research interests include future internet
architecture, blockchain, edge cloud, software-defined networks, multicast
security, security protocol validation, machine learning, andAI. He is serving
as an Associate Editor for IEEE ACCESS and Frontiers in High-Performance
Computing journals.

MD. MOTAHARUL ISLAM (Member, IEEE)
received the Ph.D. degree in computer engineer-
ing from Kyung Hee University, South Korea,
in 2013. He has been a Professor and the Director
of the Master’s Program with the Department of
Computer Science and Engineering, United Inter-
national University (UIU), Dhaka, Bangladesh.
Before joining UIU, he served at many other uni-
versities at home and abroad, such as the Islamic
University of Madinah, Saudi Arabia, the Islamic

University of Technology, BRAC University, and the University Grants
Commission of Bangladesh. He has published around 100 articles in the
last ten years. His research interests include the smart Internet of Things,
IP-based wireless sensor networks (IP-WSN), WSN virtualization, cloud
computing, and green computing.

A. B. M. AHASAN ULLAH received the master’s
degree in computer science and engineering (CSE)
from United International University Bangladesh
(UIU). He is currently the Senior Assistant Vice
President of Infrastructure and Networks with the
ICT Security and Risk Department, ICT Division,
LankaBangla Finance Ltd., Bangladesh. His major
is cybersecurity. His research interests include the
Internet of Things (IoT), cloud computing, cloud
security, networking, and software-defined net-

working. He has a huge interest in the Fourth Industrial Revolution (4IR)
because of its fusion of AI, robotics, the IoT, and quantum computing
advances.

FARHA NAZ received the bachelor’s degree in
computer science and engineering (BSCSE) and
the master’s degree in computer science and engi-
neering (MSCSE) from United International Uni-
versity (UIU). She is currently a full-time Teacher
with the Eminent School of Dhaka. Her research
interests include cloud computing, cloud security,
networking, software-defined networking, health-
care hypothesis, application development, tenta-
tive application structure, and module design. Her

utmost interest is in software design and management.

MOHAMMAD SHAHRIAR RAHMAN (Mem-
ber, IEEE) received the B.Sc. degree in computer
science and engineering from the University of
Dhaka, Bangladesh, in 2006, and the M.S. and
Ph.D. degrees in information science from the
Japan Advanced Institute of Science and Tech-
nology (JAIST), in 2009 and 2012, respectively.
He was a Research Engineer with the Informa-
tion Security Group, KDDI Research, Japan. He is
currently a Professor and the Director of CITS,

United International University, Bangladesh. He has coauthored more than
50 research articles and submitted eight coauthored Japanese patent applica-
tions. His research interests include secure protocol construction, privacy-
preserving computation, and security modeling. He is a member of the
International Association for Cryptologic Research (IACR).

91582 VOLUME 11, 2023


