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ABSTRACT Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a classic density-
based clustering method that can identify clusters of arbitrary shapes in noisy datasets. However, DBSCAN
requires two input parameters: the neighborhood distance value (Eps) and the minimum number of sample
points in its neighborhood (MinPts), to perform clustering on a dataset. The quality of clustering is
highly sensitive to these two parameters. This paper introduces a parameter-adaptive DBSCAN clustering
algorithm based on theWhale Optimization Algorithm (WOA-DBSCAN) to tackle this issue. The algorithm
determines the parameter range based on the dataset distribution and utilizes the silhouette coefficient as
the objective function. It iteratively selects the two input parameters of DBSCAN within the parameter
range using the WOA. This approach ultimately achieves adaptive clustering of DBSCAN. Experimental
results on five typical artificial datasets and six real UCI datasets demonstrate the effectiveness of the
proposed WOA-DBSCAN algorithm. Compared with DBSCAN and its related optimization algorithms,
WOA-DBSCAN shows significant improvements. The F-values of WOA-DBSCAN increased by 9.8%,
13.2%, and 2%, respectively, in two-dimensional artificial datasets. Additionally, the accuracy values on
low to medium dimensional real datasets increased by 22.3%, 10%, and 23.3%. Hence, WOA-DBSCAN
can maintain the clustering ability of DBSCAN while achieving adaptive parameter clustering.

INDEX TERMS DBSCAN algorithm, parameter adaptive, whale optimization algorithm, data mining.

I. INTRODUCTION
Cluster analysis is the process of dividing a set of objects
into categories and making the objects in each category pos-
sess similarities to each other but differ from the objects in
the other categories. In short, it is the process of grouping
similar data points into the same category or cluster based
on a similarity measure between the data. In addition, since
clustering is an essential technique in unsupervised machine
learning that does not require a training dataset, its most
prominent advantage is that it can classify different datasets
into different categories directly based on their distributional
characteristics when faced with many unknown datasets.

The associate editor coordinating the review of this manuscript and

approving it for publication was Dongxiao Yu .

It saves the manual labeling of data sets and has been used in
applications in data processing and databasemanagement [1].

The commonly used methods in cluster analysis include
K-mean, hierarchical, and density clustering. Among the
density clustering methods, the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm [2]
is one of the most popular algorithms, which defines clus-
tering as the largest group of points connected by density.
This makes the DBSCAN algorithm highly adaptable to most
datasets, identifying distributions of arbitrary shape in the
dataset and separating outliers that do not belong to any
cluster. Therefore, DBSCAN is widely used in power system
analysis [3], traffic flow prediction [4], image segmentation
and other fields [5]. Although the DBSCAN algorithm has
been widely used, it still has some drawbacks: two input
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parameters are required, the neighborhood distance value
of the samples (Eps) and the minimum number of sample
points in the neighborhood (MinPts). Clustering results are
susceptible to these two parameters [6], and good clustering
results often depend on the user’s domain knowledge, which
can affect the usefulness of DBSCAN.

Meta-heuristics are optimization algorithms that solve
complex problems by simulating specific behavioral mecha-
nisms in natural and social systems. Standard meta-heuristic
algorithms include Genetic Algorithms, Particle SwarmOpti-
mization, Simulated Annealing, Ant Colony Optimization.
These algorithms are widely used in scheduling optimiza-
tion, industrial control and power systems due to their abil-
ity to improve the quality of the current solution through
multiple iterations. The population intelligence optimization
algorithm is a typical representative of meta-heuristic algo-
rithms, which is simple, flexible, easy to implement, and
can effectively avoid falling into the local optimal solution.
WOA (Whale Optimization Algorithm) is a new optimization
algorithm proposed by Mirjalili and Lewis [7], inspired by
the humpback whale’s hunting behavior and adopts the spiral
and approximation to search for the optimal solution. The
WOA algorithm has high optimization accuracy and is able
to quickly converge to the optimal solution at a relatively low
cost, achieving good results in solving optimization prob-
lems [8]. In addition, due to the characteristics of a whale
optimization algorithm with a small number of parameters
and global solid search ability, some researchers and scholars
apply it in the field of clustering. Nasiri et al. [9] proposed
a method to complete clustering by a whale optimization
algorithm by initializing the clustering center, dividing the
objects into different groups, and then the sum of the dis-
tances of the objects in the groups as the fitness function,
and finally achieved the clustering of the data, and com-
pared to the other heuristic methods, the WOA algorithm
performed best. Singh et al. [10] improved on this by propos-
ing an Enhanced Whale Optimization Algorithm (E-WOA)
for clustering, which improves the search space through the
positional updating of the water wave search algorithm, and
employs the forbidden and neighborhood search strategies
to enhance the algorithm’s global search capability, com-
pared to other heuristics, the E-WOA algorithm has more
superior performance and feasibility than other heuristics.
Although the meta-heuristic algorithm can achieve data clus-
tering autonomously, it requires a significant amount of time
for iteration. It is unable to identify the noise in the dataset,
which makes the meta-heuristic algorithm more demanding
on the dataset compared to the most popular algorithms based
on density clustering.

In summary, we propose a WOA-based parameter adap-
tive DBSCAN algorithm (WOA-DBSCAN) based on the
parameter sensitivity of the DBSCAN algorithm as well as
the solid global searching ability of the WOA algorithm,
which exploits the fast convergence and strong optimization
ability of the WOA algorithm [24] to iteratively optimize the

parameters of the DBSCAN adaptively. The silhouette coeffi-
cients are used as the fitness function of the WOA-DBSCAN
algorithm, and the optimal number of clusters ensures the
clustering quality. Compared to the DBSCAN algorithm,
this algorithm excels in efficiently acquiring parameters for
clustering. It also demonstrates outstanding performance on
real datasets in medium to low dimensions; this suggests its
capability to aid in tasks like database management, image
segmentation, and anomaly detection in real-world scenarios.
Additionally, the algorithm boasts simplicity in structure, low
implementation complexity, and high clustering precision.

In order to provide a comprehensive account of the
algorithm, this paper focuses on demonstrating the funda-
mentals of the algorithm, illustrating the working principle
of WOA-DBSCAN, performing experimental analyses, and
providing conclusions.

The contributions of this paper are as follows:
(1) A new composite algorithm is proposed to improve the

efficiency of theDBSCANalgorithm by combining thewhale
optimization algorithm.

(2) The proposed algorithm is verified by testing on five
artificial and six real datasets, which show excellent perfor-
mance on low and medium-dimensional real datasets.

(3) The difficulty of parameter selection in the DBSCAN
algorithm is better addressed.

(4) Alleviates the problem of decreasing flexibility faced
by existing adaptive DBSCAN parameter algorithms, thus
maintaining the clustering quality.

The rest of the paper is organized as follows. Section II
reports related work in parameter optimization for DBSCAN
algorithms, distinguishing between K-nearest neighbor,
mathematical and meta-heuristic approaches and focusing on
the strengths and weaknesses of the current research in all
three approaches. Section III introduces the basic concepts
and operational procedures of the DBSCAN and WOA algo-
rithms and details the implementation of theWOA-DBSCAN
algorithm. In Section IV, we present the experimental study
conducted to evaluate the modeling capabilities of WOA-
DBSCAN on synthetic and natural datasets, compare it with
the results obtained by several popular clustering algorithms,
and discuss the results. Finally, Section V concludes and
provides directions for the following research phase.

II. RELATED WORK
Three main approaches have been proposed in the literature
for estimating the parameters of the DBSCAN algorithm: The
k-nearest neighbor algorithm, the mathematical algorithm,
and the metaheuristic algorithm. In the K-nearest neighbor
algorithm, a list of parameters is generated from theK-nearest
neighbor distribution in the dataset. Then the parameters in
the list are evaluated individually to obtain optimal clus-
tering. In mathematical algorithms, the parameters used for
clustering are estimated utilizing matrices or probabilities.
Finally, there is a meta-heuristic algorithm, which searches
for the optimal solution utilizing spatial search by evaluating
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the internal metrics of the clustering effect as an objective
function. The applications and challenges of the DBSCAN
algorithm have been presented in [3], [4], [5], and [6], and in
this section, we discuss the research of the three approaches.

A. K NEAREST NEIGHBOR ALGORITHM
K nearest neighbor algorithm is based on the distribution
matrix of each object in the dataset according to the order
from small to large to obtain K average distance values, and
then through the indicators to evaluate the clustering effect of
the K distance values, finally, the optimal solution is obtained
among the K distance values. Sunita and Parag [11] employed
KNN to develop an adaptivemethod for determining a sample
point’s neighborhood distance (Eps) in a variable-density
dataset. By analyzing the density distribution of each attribute
of the sample points, they derived the overall density dis-
tribution characteristics, enabling clustering datasets with
uneven density distributions. This method performs excep-
tionally well on high-dimensional datasets. Cassisi et al. [12]
introduced the IS-DBSCAN algorithm based on spatial hier-
archy, utilizing the selection of reverse nearest neighbors for
parameter optimization. It provides users with guidance for
input parameters when employing the DBSCAN algorithm.
The algorithm only requires one input parameter, K, which
reduces the number of input parameters but significantly
increases the time complexity. Lv et al. [13] further opti-
mized the IS-DBSCAN algorithm and proposed the ISB-
DBSCAN algorithm. This algorithm redefines the neighbor
relationship of sample points and introduces the concept of
kernel density reachability. It also introduces a new data
index structure to speed up the algorithm’s runtime and
reduce the DBSCAN’s dependence on parameters. Bryant
and Cios [14] proposed the RNN-DBSCAN algorithm, esti-
mating the observed density of clusters by traversing the K
nearest neighbor graph and considering the inverse nearest
neighbor number of the samples. Li et al. [15] introduced
the KANN-DBSCAN algorithm, an adaptive DBSCAN clus-
tering algorithm based on K-mean nearest neighbors. The
algorithm utilizes the K-mean nearest neighbor method to
generate candidate datasets and determines the number of
clusters under different K values. The optimal Eps param-
eter is identified when the generated clusters are consis-
tent for three consecutive times, and the corresponding
MinPts are obtained using the mathematical expectation
method. Li et al. [16] proposed a Partition KMNN-DBSCAN
Algorithm, which constitutes a K-median nearest neighbor
set as a list of Eps by calculating the K-nearest neighbor
distance matrix of the input dataset and then finding the
median of the K-nearest neighbor distances of all elemental
points. The median method and the given list of Eps parame-
ter values are then used to generate a list of Minpts parameter
values. For the current Eps parameter list, the number of
elemental points contained in the Eps neighborhood of all
elemental points under different Eps is obtained sequentially.
The median of the number of element points in the Eps

neighborhood of all element points is used as theMinpts value
corresponding to the current Eps value. The Minpts values
corresponding to all Eps values are obtained to form a list
of Minpts parameters, and the Minpts values correspond to
the Eps values. Different K corresponds to different Eps and
Minpts parameter values. The optimal parameters are then
judged based on the stability of the K values. However, the
method has two drawbacks: the quality of the parameter list is
not controllable, andMinPts is generated from the Eps param-
eters by a bijective function, which reduces the flexibility
of the parameter input. Li et al. [17] optimized DBSCAN by
transforming Eps and MinPts into the input nearest neighbor
parameter K, leveraging the basic properties of the nearest
neighbor graph. The feasibility of the algorithm was verified
using an artificial dataset. Li et al. [18] proposed the GNN-
DBSCAN algorithm, combining grid division and K-nearest
neighbors. Core sample points are selected through grid divi-
sion, and data sets are clustered based on the dynamic radius
of K-nearest neighbors. The nearest neighbor parameter K
requires user input and is adaptively changed dynamically
to avoid using multiple input parameters. Chen et al. [19]
employed the K-nearest neighbor method to determine the
distribution characteristics of the dataset. They generated a
list of Eps and MinPts parameters and then determined the
optimal parameters based on inter-cluster and intra-cluster
density, yielding good clustering results. While the K-nearest
neighbor algorithm accurately finds the Eps parameter in
the DBSCAN algorithm, finding the MinPts parameter is
only possible mathematically or by transforming it into other
parameters to achieve the best result. This indirect approach
to finding the parameter selection can impact the flexibility
of parameter selection.

B. MATHEMATICAL ALGORITHMS
The methods of reducing the influence of parameters in
mathematical algorithms are divided into three main types.
The first is to reduce the input parameters to a single,
reducing the difficulty of determining the parameters due to
permutations and combinations; the second is to form the
optimal set of solutions; and the third is to fit the param-
eters according to the results of the parameters and the
clustering. Jeong et al. [20] utilized a quad-tree to define the
density layer. They proposed the AA-DBSCAN algorithm,
which automatically determines the Eps parameter but does
not adopt the MinPts parameter. Wu et al. [21] proposed
a linear DBSCAN algorithm called ISH-DBSCAN, which
maps original sample points to hash buckets using multi-
ple hash functions. This ensures that close original sample
points remain similar after mapping. Initial parameter opti-
mization was achieved, but the effectiveness of determining
the parameters was average. Hou et al. [22] introduced a
parameter-free clustering algorithm based on dividing the
dataset. They applied histogram equalization to the similarity
matrix and selected parameters based on the results to form
dominant sets (D-sets). The parameters for the final input
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of the DBSCAN algorithm are automatically determined by
the dominance sets (D-sets). Wang et al. [23] proposed the
MDBSCAN algorithm, which combines the idea of dataset
division with the adjacency table in statistics. This algorithm
generates two different Eps parameters and gradually deter-
mines the values of Eps and MinPts using the adjacency list.
However, the optimization process is more complex and can
involve multiple parameters. Wang and Lin [24] introduced
an improved adaptive parameter DBSCAN algorithm. They
determine the value range of Eps through kernel density
estimation and then calculate MinPts using the mathematical
expectation method. The maximum value of the silhouette
is selected to determine the corresponding Eps and MinPts.
Lu et al. [25] proposed an adaptive grey clustering algorithm
(SAG-DBSCAN) based on a grey relational matrix to obtain
a local density metric, which is capable of dividing the dataset
into dense and discrete subsets and then clustering the densely
populated subsets using the DBSCAN algorithm, where the
input parameter MinPts is determined by the number of
densely populated subsets, and the Eps is the set. Eps is
the maximum nearest neighbor distance of the dense subset.
After completing the clustering of the dense subsets, the
data in the discrete subsets are then divided according to the
clustering with the dense subset class clusters. The parameter
optimization research based on mathematical statistics also
involves studying the distancematrix of the dataset. However,
similar to the DBSCAN algorithm optimized by K-nearest
neighbors, there is still an issue of non-adaptability in the
MinPts parameter.

C. META-HEURISTIC ALGORITHMS
Meta-heuristic algorithms are feature models refined by sim-
ulating the recognition of relevant behaviors and functions
in biological, physical, social, and other fields. This class
of algorithms achieves the search for optimal solutions by
setting the internal clustering evaluation index as the objec-
tive function, relying on the unique search mechanism of the
algorithm as well as its powerful search capability. By sim-
ulating the behaviors of different mechanisms in reality, this
kind of algorithm can exactly fit with the density space clus-
tering algorithms such as DBSCAN and DPC [9]. As a result,
recent research on DBSCAN parameter optimization has
been dominated by meta-heuristic algorithms. Hua et al. [26]
proposed the PACA-DBSCAN algorithm, which utilizes the
ant colony algorithm to optimize DBSCAN. It aims to
reduce the sensitivity of DBSCAN parameters concerning
the density of sample points. Juan and Julián [27] combined
genetic algorithms with DBSCAN. Their method initially
groups data information using elemental analysis and then
iteratively optimizes the solution parameters using genetic
algorithms. Promising results have been achieved in clus-
tering various datasets. However, genetic algorithms still
face challenges such as coding difficulties, slow conver-
gence, and long iteration cycles in optimizing numbers. Mina
and Majid [28] introduced a fuzzy earthworm algorithm-
based optimization for DBSCAN. Their approach employs

a fuzzy logic controller to adjust and optimize the param-
eters of the DBSCAN dynamically, showing good clus-
tering results, particularly on 3D datasets. However, the
dynamic changes of parameters in the adaptive clustering
optimization process increase the algorithm’s optimization
difficulty. Adibifard et al. [29] proposed an improved adap-
tive DBSCAN, GA-DBSCAN-KMEANS, based on genetic
algorithms and the K-means algorithm. Genetic algorithms
are used to set subpopulation optimization parameters, and
the K-means algorithm matches the best-quality subpop-
ulation to generate new individuals, resulting in higher
accuracy results. However, this algorithm involves a large
number of iterations and lacks efficiency. Cao et al. [30] sug-
gested using the particle swarm optimization algorithm to
solve the optimal DBSCAN parameters. They utilize the
DBI index as the fitness function and employ the parti-
cle swarm algorithm for iterative optimization, achieving
an adaptive DBSCAN algorithm. Zhu et al. [31] proposed
the HS-DBSCAN algorithm based on the parameters of the
harmonic-optimized DBSCAN algorithm. They enhance the
algorithm’s robustness by predicting appropriate clustering
parameters through a novel harmonic search algorithm, lead-
ing to improved clustering outcomes. However, the algorithm
exhibits slow convergence. Zhou et al. [32] proposed an
adaptive density spatial clustering method (CSA-DBSCAN)
incorporating chameleon swarm algorithms, which optimizes
the value of Eps to an exact value of 0.01, and the input
parameters are used as the location of the chameleon swarms
for optimization. Then the noise points are assigned to differ-
ent class clusters by K Nearest Neighbor Algorithm (KNN).
The algorithm can find accurate clustering results quickly
and segment color images efficiently. However, the algorithm
has two problems: the search boundary is not determined,
and the number of iterations is too many. Yang et al. [33]
used a novel meta-heuristic algorithm-arithmetic optimiza-
tion method. They combined it with oppositional learning
to implement an algorithm for DBSCAN parameter opti-
mization (OBLAOA-DBSCAN). It features fast convergence
speed and high accuracy through a mathematical optimizer
that selects different optimization strategies at initialization
and gradual convergence.

Compared with the CSA-DBSCAN algorithm, the
OBLAOA-DBSCAN algorithm determines the parameter
ranges through the normalized distance matrix and better
improves the efficiency of the spatial search through the
feature of opposites learning and double examination at each
iteration.

Although intelligent heuristics can simultaneously opti-
mize the parameters in the DBSCAN algorithm, issues such
as excessive iterations and suboptimal optimization are com-
monly observed.

III. METHODOLOGY
A. DBSCAN ALGORITHM THEORY
The DBSCAN algorithm was proposed by Ester et al.
in 1996 [2] as a density-based clustering algorithm. The main
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Algorithm 1 DBSCAN Algorithm
Input: Sample set D = {x, x2, . . . ,xm};

Neighborhood parameters (Eps, MinPts);
1: Initializing a collection of core objects;
2: for j = 1, 2, . . . , m;
3: Determine the ε -neighborhood of sample xj NEps (xj);
4: if |NEps(xj)| ≥ MinPts;
5: Add sample xj to the set of core objects: � = �

⋃
{xj};

6: end if;
7: end for;
8: Initialize the number of clusters: k=0;
9: Initialize the set of unvisited samples: 0 = D;
10: while � ̸= Ø;
11: Record the current set of unvisited samples: 0old = 0;
12: Random selection of a core object o ∈ �, Initializing the queue Q =< o >;
13: 0 = 0\{o};
14: while Q ̸= Ø;
15: Fetch the first sample in the Q queue q;
16: if |NEps(q)| ≥ MinPts;
17: △ = NEps(q)

⋂
0;

18: Add the samples in △ to the queue Q;
19: 0 = 0\△;
20: end if;
21: end while;
22: k = k + 1, Number of clusters generated Ck = 0old\0;
23: � = �\Ck ;
24: end while;
Output: Cluster division C = {C,C2, . . .Ck}.

idea is to define clusters as the maximal sets of density-
connected points and partition the regions with sufficient
density into clusters. The algorithm starts by randomly select-
ing an unvisited point and counts the number of points within
the adjacent area radius of the point, which is less than Eps.
If the number of points is greater than or equal to MinPts,
the current point and its nearby points form a cluster, and the
starting point is marked as visited. Then, all the points in the
cluster are recursively processed in the same way to expand
the cluster. If the number of neighboring points is less than
MinPts, the point is temporarily marked as a noise point. This
algorithm continuously processes unvisited points until all
data points are assigned to a cluster or marked as noise. If the
cluster is fully expanded, all points are marked as visited, and
then the same algorithm is used to process non-visited points.
The clustering process ends when all objects are marked as a
particular cluster or noise. The pseudo-code for the DBSCAN
is shown in algorithm 1.

B. WHALE OPTIMIZATION ALGORITHM THEORY (WOA)
Professor MIRJALILI created a specialized whale optimiza-
tion algorithm. The algorithm is known for its simplicity
and fast convergence, which combines three different behav-
iors: prey enveloping, hunting, and searching, and requires
only the input of the population number S and the number

of iterations T. The enveloping process is simulated by
equations (1)-(4).

χ
j+1
k = χ∗

k − A · Dk (1)

Dk =

∣∣∣C · X∗
k − X jk

∣∣∣ (2)

A = 2a · r1 − a (3)

C = 2 · r2 (4)

In Equation 1, X j+1
k represents the k-th component of the

sample space coordinate X j+1,X
∗

k is the current optimal solu-
tion position. In Equation 4, X jk is the current whale position
In (3) and (4), A and C are vector coefficients, a linearly
decreases from 2 to 0 with the increase of the number of
iterations, r1 and r2 are random numbers between 0 and 1.

1) BUBBLE ATTACK PHASE
Since whales spit out bubbles as they spiral swim, the entire
bubble net attack is divided into two parts: shrink-wrap and
update the spiral position. In the shrink-wrap method, the
coefficient vectors are varied to simulate the behavior of
humpback whales. In the spiral position updating method,
the spiral motion of the whale is found based on the spiral
equation expressed in (5). A humpback whale shrink-wrap or
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spiral motion can be calculated using (6).

X j+1
k = Dk · ebl · cos(2π l) + X∗

k (5)

X j+1
k =

{
X

∗

k − A · Dk , p < 0.5
X

∗

k + Dk · ebl · cos(2π l), p ≥ 0.5
(6)

In Equation 5, b is a constant defining the shape of the
logarithmic spiral, l is a random number in [−1, 1], andDk is
a random variable defined by (1). In Equation 6, the variable
p is a random number in [0, 1], A is a coefficient vector
represented by (3).

2) PREY SEARCH PHASE
In order to avoid the solution at this stage being locally
optimal, WOA uses search predation to expand the search
area, the basic idea is that in the mathematical model of
predator-prey behavior with constricted enclosures, the range
of values of A is restricted to [−1, 1], but when |A| ≥ 1,
the whale individuals choose one whale individual at random
from the current whale population to approach. Search pre-
dation causes the current whale individual to deviate from
the target prey, and enhance the global search ability of the
whale population. The mathematical model of search preda-
tion behavior is shown in (7).

X j+1
k = Xrand (t) − A · Dk (7)

In Equation 7, Xrand (t) is the random selection of whale
individuals from the current population. In the optimization
process of specific problems, individual whales use different
position update methods to continuously approach the opti-
mal solution.

3) STEPS OF THE WHALE OPTIMIZATION ALGORITHM
TheWOA algorithmfirst initializes a random set of solutions,
and in each iteration, the search agent updates the position
of the initial solution based on the randomly selected search
agent or the optimal solution obtained so far. The parameter
a in (3) is linearly decreased from 2 to 0 with the number of
iterations, so as to gradually approach the optimal solution
from exploration. When |A| > 1, A random search agent is
selected, and when |A| < 1, the optimal solution is selected to
update the search agent position. According to the randomly
varying p value in (6), the whale can switch between spiral
and circular movements. Finally, the run is terminated by
meeting the termination criteria. The specific steps of the
WOA algorithm are as Algorithm 2.

C. WOA-DBSCAN ALGORITHM
1) BASIC IDEA
The DBSCAN algorithm is a well-known density-based clus-
tering algorithm capable of identifying clusters of arbitrary
shapes in noisy datasets while effectively handling out-
liers. However, the clustering performance of the DBSCAN
algorithm is significantly affected by two input parame-
ters, and enhancing its performance often requires man-
ual parameter adjustment through numerous experiments.

FIGURE 1. Flow chart for parameter range determination.

Furthermore, the DBSCAN algorithm lacks robustness,
as changes in the target dataset necessitate the readjustment
of the Eps and MinPts parameters, limiting its applicability.
TheWhale Optimization Algorithm (WOA) is a novel heuris-
tic algorithm that demonstrates faster convergence when
addressing multi-objective optimization problems compared
to other algorithms. Moreover, the WOA algorithm produces
more acceptable optimal solutions through parameter range
exploration and optimal cluster selection. To address these
issues, this paper proposes the WOA-DBSCAN algorithm.
By employing the WOA algorithm, it swiftly identifies the
global optimal solution. The algorithm automatically deter-
mines the number of clusters in the dataset using density
peaks and incorporates the silhouette coefficient as the fitness
function. It iteratively searches for the optimal value of the
silhouette coefficient and ultimately provides the optimal
solution to optimize the input parameters Eps and MinPts of
DBSCAN.

2) DETERMINING PARAMETER RANGES AND OPTIMAL
NUMBER OF CLUSTERS
a: ADAPTIVE CALCULATION OF PARAMETER RANGE
The range of Eps parameters is determined by the distribution
characteristics of sample points in the data set, the parameter
range adaptive calculation flow is shown in Fig. 1 and the
main steps are as follows:

Step 1 Calculate the distance matrix between samples in
the data set according to (8);

Step 2 Integration of the elements of the distance matrix
into a single column by superposition;

Step 3 Sort the entire column elements, and select the
median as the maximum Eps value, combined with the mini-
mum value, it is the value range of Eps;
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Algorithm 2Whale Optimization Algorithm
Input: the whale population Xi (i = 1, 2, . . . , n), Number of iterations T;

Fitness calculation rules F ();
1: z = find (max (F (Xi)));
2: X∗

= Xz;
3: t = 1;
4: while (t < T);
5: for each search agent;
6: Generate A, C and a based on position, randomly generate parameters 1 and p;
7: if1 (p < 0.5);
8: if2 (|A| < 1);
9: X j+1

k = X∗
k − A · Dk ;

10: else;
11: X j+1

k = Xnoul(t) − A · Dk ;
12: end if2;
13: else;
14: X j+1

k = Dk · ebl · cos(2π l) + X∗
k ;

15: end if1;
16: end for;
17: Update when optimal solution exists X∗;
18: t = t + 1;
19: end while;
Output: X∗.

Step 4 According to the mathematical expectation method
of (9), the average number of sample points is calculated
within the maximum Eps-neighbor, obtained the range of
MinPts in the entire data set.

Dij =
(
xi − xj

) (
xi − xj

)T (8)

In Equation 8, Dij represents the value in the distance
matrix. Unlike formulas (1) and (2), xi and xj represents the
sample point.

MinPts = E(Eps) =
1
n

n∑
i=1

Pi (9)

In Equation 9, Pi represents the number of sample points
included in each Eps of sample point i. The integrated process
is shown in Fig. 1.

In this paper, the S2 dataset [34] is utilized as a case study,
where Fig. 2 illustrates the distribution of sample points.
The dataset comprises 2000 sample points categorized into
5 groups. Following the aforementioned steps, the calculated
median Eps for the dataset is 18.46. Hence, the Eps parameter
range for the S2 dataset is [0, 18.46], and the value range for
MinPts is [0, 431].

b: DETERMINING THE OPTIMAL NUMBER OF CLUSTERS
In this paper, the decision diagram of the density peak clus-
tering algorithm is used to adaptively calculate the number of
clusters in the data set. This algorithm is based on two basic
assumptions: (1) the local density of a cluster center (density
peak point) is greater than that of its neighbors around it; (2)
the distances between different cluster centers are relatively

FIGURE 2. Two-dimensional display of the S2 dataset.

large. In order to find the cluster centers that satisfy these two
conditions at the same time, which algorithm calculates the
local density of each sample point in the data set ρ and its
distance δ to the sample point whose local density is larger
than that of the sample point, construct a ρ−δ visual-decision
diagram, selecting the sample points with larger ρ and δ as
the center of each cluster in the dataset. To automatically
determine the cluster center of the dataset, γi = ρi×δi is used
as theweight of the cluster center, γi is arranged in descending
order, and the slope of the two-point line segment is used to
represent the downward trend of the weight of the cluster cen-
ter. Using the analysis proposed by Liu et al. [35] to compare
the distance relationship between suspected center points to
determine the number of clusters. Taking the data set S2 as
an example, the values of the first 50 points of the weight γi
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FIGURE 3. Optimal number of clusters decision diagram.

of the cluster center are shown in Fig. 3. It can be seen from
the figure that the slope of the fifth point and the sixth point is
obviously greater than that of the sixth point and the seventh
point. So the number of cluster centers in dataset S2 is 5.

3) FITNESS FUNCTION SELECTION
The parameter optimization process of the WOA-DBSCAN
algorithm involves the selection of a fitness function, which
directly impacts the accuracy of the optimization results. This
study chooses the silhouette coefficient as the fitness function
for the WOA algorithm to optimize the parameters. Com-
pared to other clusters, the silhouette coefficient measures
the similarity between a sample point and its cluster. Among
various evaluation indicators like the Davies - Bouldin Index
(DBI) and Calinski - Harabasz score (CH), the silhouette
coefficient is widely used and capable of assessing the clus-
tering quality effectively [36]. A more significant silhouette
coefficient indicates stronger intra-cluster relationships and
greater inter-cluster distance, aligning with density-based
clustering algorithms such as DBSCAN, DPC, and MDCA
principles. Using Euclidean distance enables a more pre-
cise representation of dissimilarities between clusters. While
the silhouette coefficient may provide lower evaluations for
concave-shaped cluster structures, we have enhanced the
reliability of the optimal solution by determining parameter
ranges and selecting the best cluster number. The calculation
of the silhouette coefficient is presented in (12).

s(i) =
b(i) − a(i)

max {a(i), b(i)}
(10)

In Equation 10, a(i) represents the average distance of the i-
th object to other objects in the cluster where it belongs, and
b(i) represents the average distance of the i-th object to the
objects in other clusters except the cluster where i is located.
where s(i) ∈ [−1, 1], and the closer s(i)d is to 1, the higher
the clustering quality.

4) ITERATIVE PROCESS OF PARAMETER OPTIMIZATION
The input parameters of DBSCAN algorithm, Eps and
MinPts, were optimized by simulating the enveloping

FIGURE 4. Coefficient vector distribution plot.

FIGURE 5. Iterative process flow chart.

predation behavior of whales. The input parameter of the
DBSCAN algorithm is taken as the coordinate of the individ-
ual whale (Eps,MinPts), and the optimal solution coordinate
of each iteration is (Eps∗,MinPts∗), where the value range
of (Eps,MinPts) is determined according to the method in
Section A of Methodology. Simulate the behavior of whale
individuals (Eps,MinPts) to surround and prey to the opti-
mal solution (Eps∗,MinPts∗). The coefficient vector division
structure is shown in Fig. 4, and the iterative process flow
chart is shown in Fig. 5.
The simulated whale algorithm involves bubble attack and

random search behavior which is divided into two parts:
shrinking encircling and spiral hunting, as shown in Fig. 6.
The current solution (Eps,MinPts) and the optimal solution
(Eps∗,MinPts∗) form the search space, and based on the
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FIGURE 6. Shrink bounding update schematic.

FIGURE 7. Schematic diagram of spiral position update.

FIGURE 8. Flow chart of the update of the shrinkage boundary.

change in the iteration count, the current solution randomly
updates to any position in the next interval. Fig. 7 shows
the spiral hunting behavior of the whale, where the cur-
rent solution (Eps,MinPts) approaches the optimal solution
(Eps∗,MinPts∗) along a spiral path. The hunting behavior in
the WOA-DBSCAN algorithm involves randomly selecting
a whale individual to update its position using the shrinking
encircling method, as illustrated in Fig. 6.
This method determines the search prey for the selected

whale individual. The flow chart is shown in Fig. 8 and steps
of bubble attack and searching for prey are as follows:

Step 1. Determine whether the coefficient vector A of the
searched individual is [−1, 1].

FIGURE 9. The optimal fitness function iteration value change graph of
the S2 dataset.

Step 2. Use the individual whose coefficient vector A is
in [−1, 1] to implement the bubble attack behavior to the
optimal solution (Eps∗,MinPts∗), 50% of the individuals
use the spiral The trajectory updates the position, and other
individuals use the method of contraction encircling to update
the position parameters.

Step 3: The individuals whose coefficient vector imple-
ments the behavior of searching for prey, that is, randomly
select other whale individuals, and then, update the position
by contraction encircling.

Step 4 Determine whether the number of iterations is
reached or whether all whale individuals converge to the
optimal solution. If the convergence times have not been
reached or the optimal solution has not been reached, return
to step 1 of the surrounding prey behavior. otherwise, the
optimal solution is output.

Taking dataset S2 as an example, the WOA-DBSCAN
algorithm optimizes the input parameters Eps and MinPts
of the DBSCAN algorithm. The algorithm utilizes 500 ran-
domly generated whale individuals and performs 10 iter-
ations. The iterative changes of the fitness function value
are depicted in Fig. 9. By the third iteration, the fitness
value of the optimal solution stabilizes at 0.648. At this
point, the optimal solution corresponds to a parameter Eps
of 6.0002 and MinPts of 37. Therefore, the WOA-DBSCAN
algorithm effectively achieves adaptive clustering in the
DBSCAN algorithm based on the dataset’s data distribution
characteristics.

5) ALGORITHM IMPLEMENTATION STEPS
In the WOA-DBSCAN algorithm, we only need to enter
the sample set D, the number of whales S, and the number
of iterations T. The pseudo-code for the WOA-DBSCAN
algorithm is shown in Algorithm 3, where the section about
the whale optimization algorithm is in lines 10–18. The run-
ning procedure is shown in Fig. 10.

6) ALGORITHM PERFORMANCE ANALYSIS
For a dataset with n number of sample points, the space com-
plexity of the DBSCAN algorithm mainly comes from the
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FIGURE 10. Core algorithm flow chart.
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Algorithm 3WOA-DBSCAN Algorithm
Input: Sample set D = {x1, x2, . . . , xm},Population Size S, Number of iterations T;
1: Calculate the distance matrix for dataset D D∗

= {ξ1, ξ2, . . . , ξm};
2: Calculate the median of each column in D∗ K = {k1, k2, . . . , km};
3: Get the range of Eps values Eps = [min(K ),max(K )];
4: Get the range of values for MinPtsMinPts = [E(min(K )),E(max(K ))];
5: Calculate the local density ρ and the sample point distance δ, Determine the number of clusters based on the distance
relationship (best_n);
6: Generate (Eps, MinPts) list of individual whalesa parameters based on Eps and MinPts;
7: t = 1;
8: While (t < T);
9: Obtain the profile coefficient value s(i) of an individual whale with the number of clusters n;
10: The solution that matches the number of clusters and has the largest Sil houette is the optimal solution;
11: Determining the magnitude of the coefficient A by the position of (Eps, MinPts) and (Eps, MinPts∗);
12: if |A| ≤ 1;
13: 50% of individual whales Xj+1

k = X∗
k − A · Dk , others X

j+1
k = Xrame (t) − A · Dk ;

14: else;
15: X j+1

k = Xradi (t) − A · Dk ;
16: end if;
17: t = t + 1;
18: end while;
19: Initializing a collection of core objects;
20 for j = 1, 2, . . . ,m;
21: Determine the ε-neighborhood of sample xj : NFop

(
xj

)
;

22: if
∣∣NEss (xj)∣∣ ≥ MinPts∗;

23: Add sample xj to the set of core objects: � = �
⋃ {

xj
}
;

24: end if;
25: end for;
26: Initialize the number of clusters: k = 0;
27: Initialize the set of unvisited samples: 0 = D;
28: while � ̸= ∅;
29: Record the current set of unvisited samples: 0old = 0;
30: Random selection of a core object o ∈ �, Initializing the queue Q =< 0 >;
31: 0 = 0\{o};
32: while Q ̸= ∅;
33: Fetch the first sample in the queue q;
34: if NEps∗ (q) ≥ MinPts∗;
35: 1 = NEps∗ (q) ∩ 0;
36: Add the samples in 1 to the queue Q;
37: 0 = 0\1;
38: end if;
39: end while;
40: k = k + 1, Number of clusters generated Ck = 0old \0;
41: � = �\Ck ;
42: end while;
Output: Cluster division C = {C1,C2, . . . ,Ck}.

cluster labels and the identification of the sample point cate-
gories (core points, boundary points, and noise points), so the
space complexity of the DBSCAN algorithm is O(n). Com-
pared with the DBSCAN algorithm, the WOA-DBSCAN
algorithm adds the optimization and iterative process of the
whale algorithm, and the part that mainly increases the space
complexity is the fitness function. When the number of

samples generated by the whale algorithm ism, the generated
space complexity isO(m). Therefore, the space complexity of
the WOA-DBSCAN algorithm is O(n+ m).
The time complexity of the WOA-DBSCAN algorithm

is mainly spent in the DBSCAN algorithm and during the
optimization iterative process of the whale algorithm. When
the number of sample points in the data set is n, the time
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complexity of the DBSCAN algorithm mainly comes from
the time required to find the points in the Eps-neighbor of
each sample point and the determination of the type of each
sample point according to the points in the Eps-neighbor.,
the worst-case time complexity of the DBSCAN algorithm
is O(n2). The time complexity of the whale optimization
algorithm mainly comes from the process of optimization,
iteration and each fitness function calculation of individuals
in the population. Under the assumption that the population
size is S and the number of iterations is T , the difference
between Eps and MinPts for each optimization is calculated.
The parameters are all two-dimensional matrices, so the time
complexity of the whale algorithm in the optimization phase
isO(2ST ). In the iterative process of the whale algorithm, the
time complexity of the total number of iterations is O(n2T ).
The time complexity of the fitness function optimization
mainly comes from the calculation of the silhouette coeffi-
cient. The total silhouette coefficient of the clustering effect
evaluation needs to first calculate the silhouette coefficient
of a single vector, and then average the silhouette coeffi-
cients of all sample points. The class results in the total
silhouette coefficient, so the time complexity of the total
silhouette coefficient is O(n2). To sum up, the upper limit of
the total time complexity of theWOA-DBSCAN algorithm is
O(n2(2 + T ) + 2ST ), which is consistent with the DBSCAN
algorithm in magnitude.

IV. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT AND COMPARISON
ALGORITHMS
TheWOA-DBSCANalgorithm is implemented inMATLAB,
using a Windows 10 operating system with a 64-bit archi-
tecture. The hardware environment consists of an Intel Core
I5-7200 processor, 4GB of RAM, and a 128GB hard disk.

B. RELATIONSHIPS BETWEEN THE ALGORITHMS USED IN
THE EXPERIMENTS
RNN-DBSCAN [17] is an improved version of the DBSCAN
clustering algorithm based on reverse K-nearest neighbors.
This algorithm reduces the two parameters, Eps and MinPts,
to the expected quantity of reverse nearest neighbors, denoted
as K, and performs clustering by controlling the input of
K. KANN-DBSCAN [15] is similar to the RNN-DBSCAN
algorithm in that it also estimates parameter values using
nearest neighbor algorithms. However, KANN-DBSCAN
determines the Eps parameter based on the average near-
est neighbor distance and then establishes a relationship
with MinPts through mathematical expectations. It pro-
vides a parameter list containing the parameters required
to achieve excellent clustering, which are selected based
on their performance. AF-DBSCAN [37] clusters data by
mathematically fitting the clustering results, and eventually
identifies the optimal parameters based on the fitting results
obtained from multiple experiments. DBSCAN [2] is the
most classic density-based clustering algorithm and one of

TABLE 1. Introduction to the data set.

themost widely used algorithms currently. In this experiment,
the DBSCAN algorithm achieved the optimal results after
multiple parameter adjustments based on existing research.
WOA-DBSCAN algorithm draws inspiration from K-nearest
neighbors and density peak clustering algorithms. It aims to
accelerate the iteration of the Whale Optimization Algorithm
and ensure the clustering quality of the DBSCAN algorithm.
The algorithm utilizes silhouette coefficient to search for the
optimal solution.

C. EXPERIMENTAL DATASET
In this paper, five well-known artificial data sets and six real
data sets are used for testing, and the performance of the
algorithm is comprehensively evaluated. The details of the
dataset and its summary information are shown in Table 1.
All data sets are under the same conditions; run the WOA-
DBSCAN algorithm and compare the obtained results. The
Aggregation dataset represents a cluster-connected dataset,
Compound consists of clustered datasets with uneven clus-
ter density, R15 represents clustered datasets with uniform
but unconnected density, Spiral represents a bar-like dataset
with uniform density, and P2Glob contains two different
shapes with uniform density. Among the six real datasets,
the Sym dataset was obtained from the Waikato Environment
for Knowledge Analysis (WEKA) data mining software. In
contrast, the remaining datasets were sourced from the UCI
machine learning repository [40], which is used to test the
performance of the algorithm under accurate data. Detailed
descriptions of the datasets and their clustering effects can be
found in Sections B and D of Part IV.

D. CLUSTERING EVALUATION INDICATORS
To assess the feasibility of the WOA-DBSCAN algorithm
and compare its clustering quality with other algorithms,
this paper introduces the F- value as a clustering-specific
index [41]. The F value (F − Score) is a comprehensive
measure used to evaluate clustering results. Precision, which
represents the accuracy of clustering, is defined as the ratio of
correctly identified data to the total number of identified data.
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Recall rate, on the other hand, represents the ratio of correctly
identified data to the actual total number of data. The F value
is calculated using (11).

F =
2 × Precision× Recall
Precision+ Recall

(11)

Furthermore, we have introduced additional clustering
metrics to comprehensively evaluate the clustering results
of different algorithms. These metrics include Accuracy
(ACC) [42], Adjusted Mutual Information (AMI) [43], and
Adjusted Rand Index (ARI) [44]. The accuracy rate, ACC,
measures the ratio of correctly clustered records to the total
number of records, and its calculation formula is provided
in (12).

ACC =
ncorrect
ntatal

(12)

Among them, ncorrect represents the number of correct
clusters, ntatal represents the number of all clusters, and the
value range of ACC is [0, 1] The closer it is to 1, the better
the clustering effect.

Mutual information is usually used to measure the degree
of agreement between two data distributions. The actual cat-
egory labels are used to evaluate the clustering quality. The
value range of AMI is [−1, 1]. The closer it is to 1, the better
the clustering effect. The definition of the index is shown in
the (13).

AMI (U ,V ) =
MI (U ,V ) − E {MI (U ,V )}

F(H (U ),H (V )) − E {MI (U ,V )}
(13)

In Equation 13, E {MI (U ,V )} is the expectation of
MI (U ,V ), and the calculation method is shown in (14).

E {MI (U ,V )}

=

R∑
i=1

C∑
j=1

min(ai,bj)∑
k=(ai+bj−N )+

k
N

log(
N × k
ai × bj

)

·
ai!bj!(N − ai)!(N − bj)!

N !k!(ai − k)!(bj − k)!(N − ai − bj + k)!
(14)

In Equation 14, (ai+bj−N ) is max(1, ai+bj−N ), ai and
bj are the sum of the i-th row and j-th column of MI (U ,V ),
respectively, see (15) and (16).

ai =

C∑
j=1

mij (15)

bj =

R∑
i=1

mij (16)

Adjusted Rand Index to evaluate the pros and cons of the
clustering algorithm by comparing the results of the cluster-
ing algorithm with the real classification situation. The value
range of ARI is [−1, 1]. The definition of ARI index is shown
in (17).

ARI =
RI − E|RI |

max(RI ) − E|RI |
(17)

E. EXPERIMENTS WITH ARTIFICIAL DATA SETS AND
DISCUSSION
Fig. 11 presents the visualization of clustering results
obtained byWOA-DBSCAN and other algorithms on various
artificial datasets, with the DBSCAN algorithm’s parameters
optimized for multiple inputs. To provide a more comprehen-
sive evaluation of the clustering quality of different compari-
son algorithms, Table 2 displays the clustering index F values
and lists the parameter values used for each algorithm in
the experiment. The parameters for WOA-DBSCAN, RNN-
DBSCAN, KANN-DBSCAN, and AF-DBSCAN are all cal-
culated through self-adaptive calculations. The parameters
for DBSCAN are the ones that yield the best clustering per-
formance. In Table 2, the bold and emphasized values indicate
superior experimental results.

The Aggregation dataset represents a cluster-connected
dataset with uniform density. The RNN-DBSCAN, WOA-
DBSCAN, KANN-DBSCAN, and DBSCAN algorithms can
accurately cluster this dataset. However, the AF-DBSCAN
algorithm needs help to identify accurate clusters. Evalua-
tion results based on F-Score, ACC, ARI, and AMI indi-
cate that the RNN-DBSCAN algorithm achieves the best
clustering results, followed closely by the WOA-DBSCAN
algorithm, with a slight difference between them. The
DBSCAN algorithm performs relatively well after adjusting
its parameters.

The Compound dataset represents uneven density, different
cluster shapes, and inclusive clusters. The WOA-DBSCAN,
KANN-DBSCAN, and DBSCAN algorithms can accurately
identify the cluster types in this dataset. Evaluation results
based on F-Score, ACC, ARI, and AMI show that the WOA-
DBSCAN algorithm achieves higher accuracy, followed by
the DBSCAN algorithmwith multiple parameter adjustments
and the KNN-DBSCAN algorithm. The evaluation results for
all three algorithms are above 0.8.

The R15 and Spiral datasets represent a single shape
and uniform density. The WOA-DBSCAN, RNN-DBSCAN,
KANN-DBSCAN, and DBSCAN algorithms can accu-
rately identify clusters with precise clustering. The KANN-
DBSCAN algorithm and the regular DBSCAN algorithm
sometimes misclassify a few points as noise, while the AF-
DBSCAN algorithm merges clusters in the central part that
should not be merged. Evaluation results based on F-Score,
ACC, ARI, and AMI show that all five algorithms perform
well, with the WOA-DBSCAN algorithm demonstrating the
best overall performance.

The P2glob dataset represents a dataset with two differ-
ent shapes. The RNN-DBSCAN algorithm, affected by the
reduced input parameter dimension, has some impact on the
clustering effect when the cluster shapes are significantly
different. The KANN-DBSCAN algorithm, which performs
well on other datasets, exhibits poor performance on the
P2glob dataset. Analysis shows that the Eps and MinPts
parameters generated by the KANN-DBSCAN algorithm
have a gradient ascent feature and are highly correlated. As a
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FIGURE 11. Visualization of clustering results of artificial datasets by different algorithms.

result, when the Eps parameter is reasonable, the MinPts
parameter becomes unreasonable, leading to a lack of correct
solutions. Evaluation results based on F-Score, ACC, ARI,
and AMI show that the WOA-DBSCAN algorithm performs
the best on this dataset, followed by the regular DBSCAN
algorithm.

In summary, the WOA-DBSCAN algorithm, compared to
other optimized DBSCAN parameter algorithms, achieves
better clustering results on various types of two-dimensional
artificial datasets. Compared to the DBSCAN algorithm, the
adaptive parameters improve accuracy (ACC) while main-
taining the flexibility of the DBSCAN algorithm.

F. UCI DATASET VALIDATION AND DISCUSSION
Table 3 presents the clustering results of theWOA-DBSCAN,
along with the comparison algorithms, RNN-DBSCAN,
KANN-DBSCAN, AF-DBSCAN, and DBSCAN, applied to
six UCI datasets. The bold and emphasized values in the table
represent superior experimental outcomes.

The Iris dataset, consisting of 150 iris flower samples
with four attributes, demonstrates good performance by
both the WOA-DBSCAN and AF-DBSCAN algorithms.
The WOA-DBSCAN algorithm achieves the best clustering

result with a comprehensive accuracy of 0.9, followed by
the AF-DBSCAN algorithm with a comprehensive accu-
racy of 0.742. The RNN-DBSCAN, KANN-DBSCAN, and
DBSCAN show similar performance on this dataset.

For the Wine dataset, which contains 178 wine sam-
ples with 13 features and three clusters, the RNN-
DBSCAN algorithm achieves the best clustering result,
followed by the parameter-adjusted DBSCAN algorithm.
The accuracy of the clustering results for all algorithms is
above 0.6.

The Sym dataset, composed of 350 samples with two fea-
tures and three categories, demonstrates good performance by
the WOA-DBSCAN, KANN-DBSCAN, and AF-DBSCAN
algorithms. The WOA-DBSCAN algorithm achieves the
highest clustering effect with a value of 0.912, while
the RNN-DBSCAN, KANN-DBSCAN, and AF-DBSCAN
algorithms perform similarly with clustering effects
around 0.72.

The Seeds dataset consists of three types of wheat seeds
described by seven geometric parameters. The experimental
results in Table 3 show that the WOA-DBSCAN, RNN-
DBSCAN, AF-DBSCAN, and DBSCAN algorithms achieve
similar clustering effects, with the RNN-DBSCAN algorithm
performing slightly better.
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TABLE 2. Clustering parameters and F-Score of different comparison algorithms.

The Zoo dataset, representing animals from a zoo, con-
tains samples from six animal classes described by 17
parameters. According to the experimental data in Table 3,
the WOA-DBSCAN algorithm performs the best, followed
by the RNN-DBSCAN algorithm. In contrast, the KANN-
DBSCAN, AF-DBSCAN, and DBSCAN algorithms show
similar clustering effects.

In conclusion, the WOA-DBSCAN algorithm outperforms
other adaptive DBSCAN algorithms by efficiently cluster-
ing multidimensional real datasets without input parameters.
Determining the parameter ranges and the number of class
clusters helps the whale optimization algorithm converge
more quickly. The constraint of increasing the number of
class clusters also ensures that the optimal solution found
by WOA-DBSCAN matches the actual characteristics of the
dataset. This is one of the reasons why the algorithm per-
forms well on low and medium-dimensional real datasets.
However, using Euclidean distance for sample distance cal-
culation is quickly limited by the dimension, which leads
to a decrease in clustering stability when the dataset dimen-
sion is high. The RNN-DBSCAN algorithm is highly stable,
and the clustering effect is better after parameter tuning.

The DBSCAN algorithm lacks practical parameter tun-
ing based on the clustering effect of the actual dataset.
The KANN-DBSCAN algorithm shows abnormal conver-
gence in cluster number generation for high-dimensional real
datasets. The AF- DBSCAN algorithm performs poorly on
two-dimensional artificial datasets with suboptimal cluster-
ing effects.

G. SUMMARY OF EXPERIMENTAL RESULTS AND
PARAMETER SENSITIVITY ANALYSIS
1) SUMMARY OF EXPERIMENTAL RESULTS
For each object in the datasets, the classification result
is deterministic, allowing us to evaluate the clustering
performance using ACC, AMI, and ARI metrics. WOA-
DBSCAN algorithm, which we proposed, combines the
K-Medians Nearest Neighbor algorithm [16] to determine
the value ranges of Eps and MinPts. It also incorporates the
concept of density peak clustering to identify the optimal
number of clusters. This guarantees the speed of convergence
of the algorithm and the quality of the optimal solution, result-
ing in excellent clustering performance on both 2D artificial
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TABLE 3. Comparison of ACC, AMI, and ARI indicators of each algorithm.

datasets and some real-world datasets. RNN-DBSCAN per-
forms well on 2D artificial datasets, with all evaluation met-
rics exceeding 0.9. However, as this algorithm simulates the
Eps andMinPts parameters through the reverse nearest neigh-
bor count, it limits the clustering capability of the DBSCAN

algorithm. Therefore, in some UCI real-world datasets, the
DBSCAN algorithm with multiple parameter adjustments
achieves even better clustering results. KANN-DBSCAN
shows good performance on most artificial datasets but is
not suitable for datasets with significantly different shapes.
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FIGURE 12. ARI of WOA-DBSCAN on aggregation dataset with different
parameters.

Additionally, during experiments with high-dimensional real-
world data, KANN-DBSCAN encounters the issue of param-
eter K failing to converge. AF-DBSCAN determines the most
appropriate parameters by fitting the impact of parameter
changes on the DBSCAN algorithm. However, we found that
this method has relatively high requirements for datasets,
especially being sensitive to datasets with uneven densities.
DBSCAN is the result of multiple parameter adjustments
based on existing research. During the experiments, the Eps
parameter’s step size for DBSCAN was set to 0.01, and
the MinPts parameter’s step size was set to 1. Grid-based
parameter tuning was performed for each dataset. However,
due to the step size, the ARI on some datasets could not reach
the optimal value, which might lead to a potential underesti-
mation of DBSCAN algorithm’s clustering capability in our
experimental results.

2) PARAMETER SENSITIVITY ANALYSIS
Parameter sensitivity analysis is a method to assess the extent
to which algorithm outputs are affected by changes in param-
eters. For the WOA-DBSCAN algorithm, the objective of
parameter sensitivity analysis is to understand how adjusting
parameter values impacts clustering results. We conducted
this analysis using the representative Aggregation dataset,
with a primary focus on two parameters: the population size
(S) and the number of iterations (T). The population size
is varied from 10 to 60 with a step size of 10, while the
number of iterations ranges from 1 to 22 with a step size of
2. Figure 12 displays the average value of the Adjusted Rand
Index (ARI) across multiple experiments.

As shown in Figure 12, as the values of S and T increase,
the ARI metric approaches 1, and this process is linear before
reaching the optimal clustering. Therefore, when S and T
are large enough, WOA-DBSCAN can achieve parameter-
adaptive clustering.

V. CONCLUSION
Clustering is a widely used data mining technique that
helps reveal data distributions and interesting patterns [45].
DBSCAN, a well-known density-based clustering algorithm,
excels in clustering analysis and can handle datasets with
noise and arbitrary shapes. However, its clustering quality
heavily depends on input parameters. This paper introduces
WOA-DBSCAN, a WOA-optimized DBSCAN algorithm,
to address this concern.WOA-DBSCAN automatically deter-
mines the number of clusters in a dataset by utilizing den-
sity peaks, employs the silhouette coefficient as the fitness
function, and seeks optimal values for DBSCAN’s input
parameters, Eps and MinPts. By doing so, WOA-DBSCAN
effectively resolves the sensitivity issue of input parameters in
the DBSCAN algorithm and achieves parameter adaptability
for DBSCAN. Experimental results on artificial and natural
UCI datasets demonstrate that WOA-DBSCAN outperforms
traditional DBSCAN and its various enhanced algorithms.
It also exhibits impressive performance on medium and low-
dimensional real datasets.

Furthermore, the example dataset shows that
WOA-DBSCAN produces good clustering results even in
noisy data. Therefore, the algorithm can be widely used in
anomaly detection, such as abnormal behavior recognition,
state evaluation, pattern recognition, etc. However, WOA-
DBSCAN needs further research. We plan to expand this
project in the future to include two key areas. First, we
will further evaluate its scalability to ensure the effective
operation of the project in different scenarios. Second, we
will experiment with more and more complex data sets to
adapt to the needs of different scenarios.
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