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ABSTRACT Big data classification is a challenging task because most known classification methods need
a long time and a lot of processing resources to execute such a task and use the vast amount of available
data. In this paper, we propose a novel big data classification method that leverages the power of the KNN
classifier and the efficiency of the ensemble learning technique to create a newmethod capable of performing
classification tasks on big data efficiently. The proposed method picks tiny data chunks at random from a
big dataset, with each chunk including random examples of a small number of randomly selected features.
A weak KNN classifier is employed on each data chunk to perform classification on new (unseen) data,
and the majority voting rule is used to reach the final classification decision based on the outcomes of the
weak classifiers. The proposed method has a constant classification time, according to the time complexity
analysis. Furthermore, the proposed method was found to be more efficient on a single node than existing
methods, some of which run on a large cluster of nodes. Because of its speed and enhanced performance, the
proposed method can be considered an ideal classifier for handling complex data types such as Geospatial
data, Big trajectory data, and Big Data in general.

INDEX TERMS Big data, geospatial data, trajectory data, classification, ensemble learning, KNN.

I. INTRODUCTION
For decades, researchers have been studying and evaluating
big data methodologies and tools. This interest stems from
the massive volume of data exchanged and saved by social
media users, medical organizations, educational institutions,
and others.

According to statistical reports, the number of users on
different social media platforms has reached more than 2 bil-
lion [1]. WhatsApp, for example, has over 600 million users,
more than half a billion photos, and one hundred million
videos transferred and shared between users on a daily
basis [2]. Also, due to the huge advance in smartphone tech-
nology, it has become easier for users to share text\images
and write posts on such social media platforms. Some reports
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show that the number of posts on Twitter in 2007 was 5K,
this number became around 500 million after about 6 years,
in 2013 [3], which indicates the massive amount of available
data on social media in general. This amount of data is not
restricted to social media, as many other platforms generate
and store huge data volumes [4], [5], [6], [7].

This amount of data needs to be processed and ana-
lyzed in order to use it for building useful knowledge
discovery and machine learning big data-based applica-
tions, like facial big data applications [8], [9], [10], sig-
nal big data [11] and various industry big data-based
applications [12], [13], [14].

Volume (big), Variety, and Velocity are among the most
distinguishing characteristics of Big data, and as a result, it is
attractive to have an efficient classification/prediction system
to learn from such Big data. Such applications include, but are
not limited to, medical [15], [16], financial [17], [18], [19],
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Security [20], [21] and image-based applications [22], [23],
[24], [25].

The fundamental difficulty with big data classification is
that most well-known powerful models, such as support vec-
tor machines (SVM), artificial neural networks (ANN), and
decision trees, cannot be employed for big data classification
because of the very long time necessary to train these models.

K-nearest neighbors (KNN) is one of the simplest and
most efficient classification algorithms, which might produce
performance comparable to other more popular classifiers
like ANN and SVM [26], [27] for some tasks.
However, like other classifiers, KNN suffers from its time

complexity which is O(nd) where n is the number of exam-
ples and d is the number of features (dimensions). The typical
KNN is challenging to employ for big data classification due
to its time complexity, as it is called a lazy classifier because
no learning model is generated, and so a test example must
be compared to the entire big data set to infer its proper class.

Assuming that we have a test point x, Sx is a set of
the K nearest examples, which can be expressed as Sx ⊆
D s.t. |Sx | = K and ∀(x ′, y′) ∈ D\Sx , dist(x, x ′) ≥ max

(x ′′,y′′)∈Sx
dist(x ′′, y′′), where dist is a distance metric. i.e. each example
in D but not in Sx is at least as far away from x as the furthest
example in Sx . The KNN model mdl() is a function which
provides the most frequent label in Sx : mdl(x) = mode({y′′ :
(x ′′, y′′) ∈ Sx}). This should be performed for all the testing
examples using a distance metric. Minkowski distance for
example is calculated as follows:

MD(x, x ′) = (
d∑
i=1

|xi − x ′i |
p)

1
p (1)

where x and x ′ are feature vectors of equal number of dimen-
sions d .
Therefore, O(nd) is the time complexity of finding the

nearest neighbor to a testing example. If one wants to find the
nearest example for each example in D, the time complexity
grows to be O(ndD), which is not practical even for medium-
volume datasets.

This typical KNN can be approximated using less time
complexity algorithms such as the KD tree, which has a query
time complexity of O(log n). However, such approximation
requires constructing a model (tree) on the training data,
which is not the case in the standard KNN, and KD tree model
construction consumes O(n log2n) [28].

Other available similar methods are more or less expensive
including the work of Hassanat [29], [30], [31], [32], which is
based on creating a binary tree to speed up the KNN, reducing
its testing time to be logarithmic, however, we still need a
linear time (at best) for creating these binary search trees.

To the best of our knowledge, all of the well-known big
data classification approaches require time for testing and/or
training, which is proportional to the size of the big data set.
Given the huge volume and variety of big data, it would be
tempting to develop a new classifier that consumes a constant
amount of time regardless of the size of the big dataset.

In light of the central limit theorem, would a limited number
of random sub-samples of instances suffice for training a big
data set rather than using all of the big data set examples?

This paper attempts to answer this question by introducing
a new ensemble classifier based on weak KNN classifiers,
each of which works on a sub-sample of big data exam-
ples with replacement. This type of approximated KNN is
designed to make the classification process run efficiently
on a fixed (constant) number of sub-samples of big data,
resulting in a constant-time classifier-the aim of this paper.

Unlike existing KNN approximation approaches, the pro-
posed method is based solely on the constant predetermined
size and number of sub-samples used, requires no training,
and therefore, runs in constant time.

The rest of this paper is organized as follows, the sec-
ond section reviews the literature on big data classification
approaches, the third section presents the proposed method,
the fourth section describes the big datasets used for evaluat-
ing the proposed classifier as well as the experimental design,
and the fifth section reports the results and comparisons to the
state-of-the-art big data classification methods.

II. LITERATURE REVIEW
The KNN classifier has been a temptation for academics to
speed up Big data classification because it is a lazy classifier,
requiring no learning phase. As a result, a plethora of big data
classification approaches based on the lazy and slow KNN
algorithm have been developed in the literature. For exam-
ple, the furthest-pair-Based binary search tree (FPBST) [30]
is an interesting method, which is based on constructing
a binary search tree to speed up the classification process.
The data examples are inserted into the tree depending upon
their distance from the furthest pair, i.e., the examples that
have the maximum distance in the dataset. The method was
tested on around 20 datasets and reported good classification
results. The main defect of this method is that it requires a
model construction time, which reached around 50 minutes
on HIGGS (11 million records) dataset [33]. If we neglect the
model construction time, the model consumes a logarithmic
amount of time during the testing stage.

Another method proposed in [34] used a MapReduce
approach to split the big task between various workers.
In order to compute the exact KNN, they used Spark
in-memory computation to make the calculation of KNN
fast and feasible for big data classification problems. Even
though the method was running on a cluster of nodes, the time
required to accomplish the classification task is high on large
datasets like HIGGS. Also, the method requires a cluster of
nodes, which might be costly, and for many users, this option
is not always available.

Jesus Maillo and co-workers proposed a method called
Fuzzy-KNN [35]. The method consists of two phases. The
first one is transformation, in which the class membership
degrees are added to the training set. Then, in the second
phase, they apply the class membership to the test sub-
set in order to perform the classification. They tested their
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method on three popular big datasets, namely PokerHand,
SUSY and HIGGS. The results they recorded illustrated that
their method works well. However, the running time on the
HIGGS dataset needed around 3 days to complete, which is
much longer than what the approximation algorithms take to
achieve almost the same accuracy.

A run-time comparison is done in [36]. The authors com-
pared the run times of KNN in the Hadoop and Spark ecosys-
tems. They tested the work on the HIGGS dataset. To show
the difference between these two systems, they performed
classification using clusters with a different number of nodes
ranging from 2 to 6. The run time they observed was 10 min-
utes for Spark and slightly above 15 minutes for Spark when
6 nodes are used. When only two nodes were used, the run
time was about 1.6 hours for Hadoop and around 16 minutes
for Spark. This shows that finding the exact KNN is very
costly, even when the algorithm runs on a cluster of nodes.
Therefore, more innovative approaches to approximation are
needed to overcome the huge time complexity associatedwith
the exact KNN.

Another MapReduce-based implementation of KNN was
done in [37]. The method was tested using various num-
bers of Map and Reduce operations. The run time on
datasets like SUSY, with 5 Million examples, required about
3.4 hours [30].
In [38] the authors proposed a new KNN-based method

to improve the performance of KNN on big datasets. The
method works by aggregating the most relevant samples
together using a mini-classifier, extreme learning machine
(ELM), then applying the exact KNN of the groups in order
to find the nearest neighbor. In this method, they need to train
mini-classifier(s) in order to prepare the training data for the
KNN, which requires more time. They tested their method on
popular big datasets such as HIGGS and SUSY. The average
time their algorithm consumed, according to the reported
results, on a dataset like HIGGS was about 5K seconds.

Norm-based binary tree (NBT) and Minimum/Maximum
norms-based binary tree (MNBT) are two methods proposed
in [32]. In NBT the examples are stored recursively in a
binary search tree based on their norm values. In MNBT, the
examples are stored in a binary search tree based on their
distance from the examples of the minimum and maximum
2-norms. Although these two algorithms are fast in perform-
ing predictions, they require a tree construction time, which
is sO(nd + nlogn). In addition, the fastest algorithm among
these two, NBT, recorded inferior average accuracy on sev-
eral tested datasets, 0.354, which indicates a considerable
trade-off between time and accuracy.

Hassanat and co-workers [39] proposed an innovative rapid
classification approach based on the well-known magnetic
force (MF). This classifier calculates the magnetic force at
each discrete point in the feature space based on the number
of points belonging to a certain class/magnet. The mag-
netic forces recorded in the training model by various mag-
nets/classes are used to classify unseen examples. According

to their experimental results using 28 distinct datasets, theMF
classifier achieves equivalent classification accuracy when
compared to existing classifiers. More crucially, it is demon-
strated that the MF classifier classifies an unseen example in
a constant time while creating its trained model in a linear
time.

MUlti-Layer heterogeneous Ensemble System (MULES)
was introduced in [40]. The work presented a new classi-
fication framework that consists of several heterogeneous
classifiers. Also, an evolutionary feature selection algorithm
was introduced in order to improve the classification results.
Their results show that the model performs better than several
state-of-the-art methods.

The field of ensemble learning is wide and there are many
other methods were developed for various purposes including
but not limited to [41], [42], and [43].

Other Big Data classification-related works are also worth
mentioning, such as [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53], [54], [55], [56], [57], [58], [59], and [60] etc.
According to the literature on big data classification meth-

ods, the majority of them require two types of time, training
and testing, and both timeframes are proportional to the size
of the dataset. To the best of our knowledge, no classifier,
regardless of the size of the big data set being classified,
works in constant time, with the exception of the MF classi-
fier in the testing phase, which requires a linear time at best in
the training phase. Consequently, The proposed constant-time
ensemble learning classifier for Big Data (CTELC) fills the
gap.

Nevertheless, the most similar work found in the liter-
ature to the proposed method is the work of Louppe and
Geurts [61], who proposed a supervised learning ensemble
framework for classification tasks based on the concept of
Random Patches (RP). This ensemble is built from random
subsets of instances and features from the entire training
dataset. Each individual model in the ensemble is generated
using a decision tree-based estimator. For classification tasks,
the voting rule is employed, whereas for regression tasks,
the average of all model outputs is used. The RP classifier
was tested on 29 datasets and compared to various popular
ensemble approaches, delivering comparable accuracy but
drastically decreasing memory requirements, especially in
cases with severe memory restrictions.

However, The number of examples and features for each
random patch were tuned on the validation set using a grid-
search procedure, using the grid 0.01, 0.1, . . . , 0.9, 1.0 [61],
which means that at some point some random patches may
be formed by all examples and all features, i.e. the size of
each patch is proportional to the size of the training dataset,
which renders the proof of this method to be a constant time
invalid regardless of the classifier used, particularly, when
using decision trees, as the time complexity of building a
decision tree is typicallyO(ndlogn) [62]. Therefore, the main
significant distinction between the proposed method and
other approaches found in the literature is its constant time
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characteristic. Thus, the key distinctiveness of the proposed
CTELC is the endeavor to attain a constant time complexity
classifier, which distinguishes it from earlier techniques in the
literature. We have found this to be an essential contribution,
especially when dealing with big datasets.

III. THE PROPOSED CTELC
Given a big training datasetDwhich has n observations and d
features. The proposed CTELC selects a random number of
subsets with replacement λ ∈ N and each subset Sλ ⊂ D.
Each one of the created subsets has α ≪ d number of
features and β ≪ n number of observations. The subsets
in S might have intersected samples and features. On each
Sλ ∈ S we create a KNN, this KNN is a weak classifier as
it uses a small number (α) of features from D. It is worth
mentioning here that every Sλ has an equal number β of
random observations from each class γ in D. In the testing
phase of a vector x⃗, we use all the created weak KNN clas-
sifiers to give the final prediction y using the majority voting
rule. The majority voting is applied using mode(R) where
R is a list containing the predictions, one from each weak
KNN classifier. Algorithm 1 illustrates the procedure of the
proposed CTELC (split stage), while Algorithm 2 shows the
procedure of obtaining prediction (prediction stage) using the
weak KNNs created in Algorithm 1. Also, Figure 1 illustrates
the proposed CTELC.

It is worth noting that eachweakKNNclassifier has its own
set of related features that were allocated at random during
the split stage. We use these features during testing to pass
the appropriate features from the test set to the corresponding
KNN. Furthermore, as shown in Algorithm 2, the final pre-
diction is made by taking the most frequent label value from
all of the weak KNN classifiers.

Algorithm 1 Pseudocode of the Split Stage of the Proposed
CTELC. Here, η Is the Number of Estimators (η Is Equal to λ
as We Create an Estimator for Each Chunk of the Data)
Require: Dtrain, α, β, η

Ensure: List of weak KNN classifiers (cls), List of random
features for each subset(F)

1: while idx ≤ η do▷ for the number of estimators η (weak
KNNs), idx = 1

2: RF ← arrayof α randomfeatures (indices ∈ [0−d])
3: RS ← arrayof β randomsamples (indices ∈ [0−n])
4: S[idx]← D[RS,RF] ▷ add a subset of D to S.

Note that every subset in S has equal number of random
samples from each class in D

5: F[idx]← RF ▷ add RF to F to be used in the
classification phase

6: cls[idx]← KNN (S[idx]) ▷ create weak using the
subset S[idx]

7: idx = idx + 1
8: end while

We are undertaking simple bagging on short chunks of
data, as indicated by the algorithms 1 and 2. Because the

Algorithm 2 Pseudocode of the Prediction Stage of the
Proposed CTELC

Require: −→xtest , F, cls, η

Ensure: ŷ: prediction
1: while idx ≤ η do▷ for the number of estimators η (weak

KNNs), idx = 1
2: RF ← F[idx]
3: subvector ← −→xtest [RF]
4: Votes[idx]← cls[idx].predict(subvector)
5: idx = idx + 1
6: end while
7: ŷ← mode(Votes)

samples in one category belong to the same class (subject),
we can take fewer of these examples than the original and
yet get a decent approximation of the entire subset. Multi-
weak KNNs aid in obtaining patterns that a single weak KNN
cannot. As a result, the algorithm is highly fast because it runs
for a constant time for each given testing example. Note here
in Algorithm 1-step 6 the KNNfit does not take time as fitting
KNN does not require any tuning or parameters optimization,
rather, it stores the data to be used for the prediction stage.
Therefore, the time required to build KNN on each chunk can
be considered zero.

The distance in each weak KNN is calculated for α features
instead of d . Therefore, equation 1 becomes as follows:

MD(x, x ′) = (
α∑
i=1

|qi − q′i|
p)

1
p (2)

where q and q′ are the feature vectors the first obtained from
the training set, and the second obtained from the testing set,
both having length = α and their values obtained from the
same sub-features from the original feature space. The power
value p = 2 is used in the conducted experiments.

A. COMPLEXITY ANALYSIS
As can be seen in Figure 1, and Algorithms 1 and 2: Given
a big dataset with n examples, d features, and γ classes.
When testing an example x⃗, the proposed CTELC applies the
KNN only on the selected random number of subsets with
replacement λ, each of which has only α features, which
is ≪ d , and β examples for each class γ , which is ≪ n.
Therefore, the time complexity of testing an example x⃗ in the
worst case will be: O(λ β α γ ) and since λ is a predefined
constant number, α ≪ d , β ≪ n, and γ ≪ n, then all of the
four values can be considered as constants, hence the testing
time complexity becomes: O(4c) where c is a constant. The
time of the voting process, which is finding the mode of an
array of size λ is also a constant time. this makes the overall
time complexity of the proposed CTELC =O(5c)≈O(c), and
can be asymptotically approximated to O(1).

As a result, regardless of the size of the training data, the
proposed CTELC can achieve classification/prediction in a
constant time.
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FIGURE 1. Typical diagram of the proposed CTELC. The selected features for each data chunk
are presented in different colors.

Similarly, space complexity can be demonstrated to be a
constant because the memory allocated by the big dataset
classified can be released while keeping only the selected
subsets of total size = S(λ β α γ ) ≈ S(c). Such a low
space complexity is critical for mobile applications and other
scenarios where memory use is a concern.

IV. DATASETS AND EXPERIMENTAL DESIGN
A. DATASETS
In this work, we used a variety of datasets ranging from
medium size to big size. Table 1 shows the datasets used in
our experiments and comparisons.

Although most researchers in this area have used two
datasets, HIGGS and SUSY,wewant to evaluate the proposed
CTELC on a variety of datasets to demonstrate performance
in light of varying data volumes. As one can see from Table 1,
SUSY and HIGGS are the biggest datasets with 5 million
and 11 million samples, respectively. Also, MiniBooNE and
Mnist digits dataset are consideredmedium-size datasets with
130K and 70K samples, respectively. The other datasets are

small-size datasets. However, we include these small-size
datasets just to present comparative results to illustrate how
the algorithm works on such small datasets.

B. EXPERIMENTS DESIGN
In our experiments, there is no specific validation approach
as we are comparing with several algorithms, each of which
used a different approach for validation. However, the main
used approaches are 5-fold and 10-fold cross-validations. For
the performance evaluation, we used accuracy, following the
rest of the research articles in this domain. Table 2 gives
information about the computer’s specifications on which the
experiments are conducted.

V. RESULTS AND DISCUSSION
The proposed CTELC, as previously described, includes sev-
eral hyper-parameters, α, β, and η. Such hyper-parameters
can be adjusted independently for each problem. However,
as mentioned in [63], selecting a large number of features
for a classification problem introduces geometric distortions
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TABLE 1. A summary of the datasets used to evaluate the proposed CTELC classifier and the ratio of the data used by CTELC to the original data volume.

TABLE 2. The specification of the computer used for the experiments.

FIGURE 2. Grid search on two datasets and the average of both datasets.
The results were obtained using a 5-fold cross-validation approach.

and results in high prediction error [64], [65]. The effect of
high dimensional feature space will increase in our case as
we are trimming the population by selecting only β number
of samples instead of the whole sample space. When the
number of features is too small the error as the features will
not be sufficient to distinguish and detect the unique pattern
from the feature vectors. Due to the previous reasons, we set
the number of features to be

√
d , where d is the number

of features in the original dataset. However, if d is a large

number, we choose a constant number of features to preserve
the proposed CTELC classifier’s constant time advantage.

To approximately optimize β and η for the proposed
algorithm, we perform a grid search on two different vol-
ume datasets and consider the best values for the rest of the
datasets. The datasets used for grid search are MiniBooNE,
around 130K samples, and Usps datasets, about 9K samples.
Figure 2 shows the grid search results of selecting a differ-
ent number of samples and various numbers of estimators,
on these two datasets, in addition to the average on these two
datasets.

As one might anticipate, as the number of examples and
estimators increases, the accuracy goes up. Figure 2(a) shows
that we record high accuracy values, almost 0.86, even when
the number of samples is small, 250, compared to the whole
available population, 130K. That is, according to the central
limit theorem [66], if one takes ‘‘enough’’ random samples
from a population, it would give results as if the whole
population is considered. The aim here is to define ‘‘enough’’,
i.e. to find the best possible β and η values by which we
achieve acceptable accuracy within a reasonable time delay.
For the rest of the experiments, we set β and η values to be
250 and 20, respectively.

As a result, we can estimate how much data the proposed
CTELC uses from the actual dataset. Table 1 gives informa-
tion about the ratio of data used by CTELC to the samples
in the original dataset. Obviously, the ratio depends mainly
on the values of β, η as well as the number of classes in
a given dataset. The proposed CTELC’s major purpose is
to efficiently classify enormous volumes of data. However,
in the case of a small dataset with a large number of classes,
we should feed themodel with more samples than the original
dataset, which unjustifiably raises the model’s space com-
plexity. For example, the original Homus dataset contains
around 15K samples divided into 32 classes, and when we
use the proposed CTELC on this dataset, we need to feed
it with 160K samples, which is a constant, but it is also a
tenfold increase in data size, in order to solve a task that
can be solved using the exact KNN. When using CTELC on
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HIGGS and SUSY, nevertheless, we simply need to feed the
model 0.0009 and 0.002 from the original data, respectively.
However, the proposed CTELC can be utilized on smaller
datasets after adjusting β and η to be appropriate for the
volume of the input dataset, as partitioning has been shown
to be beneficial in tackling the class imbalance problem even
on relatively small datasets [67].
We maintain good accuracy while feeding the model a

substantially lesser number of examples from the big datasets.
The findings, accuracy, and time on the largest datasets
utilized in this research, HIGGS, and SUSY, are shown
in Table 3

FIGURE 3. The time consumed by the proposed CTELC on HIGGS and
SUSY datasets.

TABLE 3. Accuracy comparisons between the proposed CTELC and other
methods on HIGGS and SUSY datasets.

A careful inspection of Table 3 demonstrates that the pro-
posed CTELC outperforms all previous approaches evaluated
on SUSY and the majority of approaches tested on HIGGS,
while employing a significantly smaller subset of the original
data with each estimator. Figure 3 shows the time consumed
by the proposed CTELC on HIGGS and SUSY datasets.
Table 4 contains the information on the proposed CTELC’s
performance on other common datasets.

Although the Mnist dataset contains 70000 examples,
which is greater than the Nist (44951 examples), Table 4
shows that the time consumed on Nist (44951) was 11.80S,
which is longer than that consumed on Mnist (9.20S), this
is true because in these experiments we used the

√
d as the

number of features for each Random patch, which depends
on the data used, Knowing that the amount of features in Nist
is 1024, as opposed to Mnist’s (784). Another key parameter
is the number of classes, which increases the space complex-
ity and size of the model, and hence the time consumed;
in this case, the Nist has 26 classes, whereas the Mnist has
only 10 classes. It is worth noting that the CTELC’s time
consumption can bemodified by its hyperparameters (λ, β, α,
and γ ), which determine the size of the final ensemble model
for each dataset, but it can be asymptotically approximated to
constant.

As indicated in Table 4, a similar argument can be extended
to the time consumed by the CTELC when applied to the
other datasets. The constant time characteristic of the CTELC
is advantageous for a variety of datasets, providing efficient
and reliable classification while retaining competitive accu-
racy levels.

As seen in Table 4, the results are primarily determined
by the dataset used. In terms of accuracy, some datasets
performed poorly, such as the Covtype dataset.

The fundamental reason for this is that the Covtype is
extremely sparse, with many zero-valued attributes. When
CTELC creates a sub-model that selects from the available
features, it is quite likely that the model will select all features
with zero values. When this occurs with several estimators,
the entire model is influenced, and these estimators all con-
tribute equally to the final decision.

The second problem is that the Covtype dataset is severely
class imbalanced, limiting the sample pool from which the
CTELC draws samples to offer generalization when new
unseen data is tested.

One thing to note from Table 4 is that the accuracy of RP
is better than the proposed method in most cases. However,
when it comes to run time, the proposed method significantly
outperforms the RP, except for Covtype. The RP is faster on
Covtype because the decision tree ignores the zero-valued
features due to their low gain, while the KNN does not.

TABLE 4. The results (accuracy/time) of the proposed CTELC compared to
RP using 5-fold cross-validation.

The accuracy results of CTELC on some datasets, such
as SUSY and HIGGS, were much better than that of most
methods compared; however, for some datasets, such as
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TABLE 5. The results (accuracy/time) of the proposed CTELC compared to
RP (with memory constraint = 0.5).

Covtype and NIST, we were not optimistic due to the sparse
nature of both datasets, and one more thing is the number
of random patches used in these experiments, which was 20,
compared to RP, which used 250 random patches; we reduced
this number because our focus in this paper was on the
efficiency of the method, However, this hyperparameter can
be modified to include additional data in the learning process,
which would logically lead to an improvement in overall
accuracy outcomes, providing that the increase is not propor-
tional to the dataset used, i.e. the overall size of all ensembles
remains constant.

To further illustrate the significance of the proposed
method over the RP1 method proposed in [61], we used the
largest two datasets mentioned in their study, CIFAR-10 and
Mnist, to compare RP’s performance to the proposed method.
CIFAR-10 contains 60K samples and 3072 features, in total.
While the Mnist has 70K samples and 784 features. For this
sub-experiment, we ran each method 3 times. Also, follow-
ing [61], we took 50% as training and 25% as testing and
ignored the validation set as it is not strictly needed for this
illustration. Furthermore, we used 0.5 memory constraint, for
RP, as it is the threshold where the authors in [61] reported
the best accuracy. For both methods, the number of the used
estimators is set to 25.

We utilized both methods using the same training and test-
ing sets. The performance achieved on both datasets, by RP,
is around the accuracy reported by the authors [61] (the small
difference in the accuracy might be due to the randomness in
the sample selection). The accuracy of CTELC is slightly less
than the RPmethod on both datasets. However, when it comes
to execution time we see that CTELC provides a significant
improvement. Tables 4 and 5 show the results (accuracy and
time in seconds) of both RP and CTELC.

Another analysis is done using the simple additive weight-
ing (SAW) method. SAW is one of the basic and widely used
Multi-Criteria Decision Analysis (MCDA) techniques [69],
[70]. The analysis is done on the comparison recorded in
Table 4. In this analysis, we assumed that time and accu-
racy have the same importance. Based on the average of the

1The implementation is available in the SKlearn library: https://scikit-
learn.org/stable/modules/ensemble.html

normalized scores across all datasets, the Proposed CTELC
has a higher average score, 0.814, than the RP method, 0.729.
This suggests that, when considering both accuracy and time
with equal importance, the Proposed method performs better
on average across the given datasets.

Moreover, We used the Welch Two Sample t-test for each
case to evaluate if there was a statistically significant differ-
ence between CTELC and RP for both accuracy and time
results presented in Table 4:
• Accuracy Test: The null hypothesis (there is no mean-
ingful difference in accuracy between the two methods).
The test shows that the p-value is 0.1854, and since it
is greater than the standard significance level of 0.05,
we do not have enough evidence to reject the null
hypothesis or to prove otherwise. However, the 95%
confidence interval for the mean difference between the
CTELC and RP is -0.3446 to 0.0735. And the sam-
ple means are 0.7189 and 0.8544 for CTELC and RP
respectively, therefore, the accuracy test results show
that there is no statistically significant difference in
accuracy between CTELC and RP. Moreover, the con-
fidence interval contains zero, indicating that there is no
notable difference in accuracy between the twomethods.

• Time Test: The null hypothesis (there is no meaningful
difference in consumed time by the two methods). The
p-value is 0.03481, and therefore,We have adequate evi-
dence to reject the null hypothesis because the p-value
is less than the conventional significance level of 0.05.
The 95% confidence interval for the mean difference
between the CTELC and RP is -58.738 to -2.58, the sam-
ple means are 10.591 and 41.2500 for CTELC and RP
respectively, therefore, there is a statistically significant
difference in time consumption between the CTELC and
RP, according to the time test. Moreover, the confidence
interval does not include zero, showing that the time
consumption of the two methods differs significantly.
When compared to the RP, the CTELC has a much
reduced mean time consumption.

Overall, the t-tests show that, while there is no statis-
tically significant difference in accuracy between the two
methods, there is a statistically significant difference in time
consumption, with the CTELC being faster than the RP.
This demonstrates the novelty and efficiency of the CTELC
method in terms of time consumption when compared to the
RP method. However, this does not necessarily mean that
there is no difference in accuracy between both methods,
perhaps if we used a larger number of datasets, RP could win
in terms of accuracy because it uses larger sizes of patches,
while CTELC uses a constant size.

To demonstrate the effect of data sparsity on CTELC
results, we run a basic variance-threshold feature selection
on the dataset Covtype to remove the problematic zero-
valued features. We noticed a considerable improvement in
the performance of the CTELC, over 22%, from 0.4 to 0.64.
This happens because this dataset contains many zero-value
features, therefore, many weak estimators might work on
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TABLE 6. The accuracy of the proposed CTELC compared to other methods using 10-fold cross-validation.

TABLE 7. P-values of the pairwise comparisons using Nemenyi-Wilcoxon-
Wilcox all-pairs test for the accuracy results reported in Table 6.

these features, which results in degradation in the overall
performance. We argue that the performance would increase
much more if the data was preprocessed using a more robust
and efficient feature selection algorithm before being sent to
the proposed CTELC.

Table 6 includes performance comparisons of CTELCwith
other KNN-based big data classification methods. As can be
seen from this table and Figure 4 the CTELC method out-
performs all methods compared on two datasets and provides
comparative results on the others. In order to statistically
analyze these results, we choose the Friedman test, a non-
parametric statistical test that is frequently used to compare
the mean ranks of the performance of a number of methods
in order to ascertain whether they are substantially differ-
ent [71]. The null hypothesis of the Friedman test is that all
compared methods are not equally effective. After applying
the Friedman test to the data obtained in Table 6 we get
χ2(5) = 15, p = 0.01036, since the p − value < 0.05 this
allows for rejecting the null hypothesis indicating that there
are significant differences in accuracy obtained on datasets
based on the method used.

The effect size (degree of difference) for the Friedman test
can be calculated using Kendall’s coefficient of concordance
(also known as Kendall’s W). A substantial effect size is
indicated byKendall’sW,which is 0.6. Cohen’s interpretation
standards (0.1: little effect; 0.3: moderate effect; and > 0.5:
significant effect) provide the foundation for Kendall’s W.

The Nemenyi-Wilcoxon-Wilcox all-pairs test was used to
determine which methods are significantly different because
the Friedman test does not reveal which methods have a
significant effect. The results are displayed in Table 7.
The Nemenyi-Wilcoxon-Wilcox all-pairs test results show

that the p-value for the comparison between CTELC and
NBT is 0.03, which is lower than the significance level of
0.05, as can be seen from the P-values in Table 7. This

FIGURE 4. Visualizing the accuracy results reported in Table 6.

implies that the performance of CTELC and NBT varies
statistically significantly. However, CTELC and FPBST have
a P-value of 0.8821, showing that neither the performance of
these two approaches nor the performance of CTELC and the
other methods, differs statistically significantly from one to
another.

Because each of the previous Big data classification meth-
ods was evaluated on a different machine, time comparisons
with reported consumed times are invalid. As a result, assess-
ing the speed-up rates of various methods in this field is a
good way to compare their efficiency. The speed-up equation
is formulated as follows:

speedup =
Time(KNN )
Time(Method)

(3)

where Time(KNN ) is the time consumed by KNN classifica-
tion, while Time(Method) is the time consumed by the com-
pared classification method on the same dataset. Figure 5,
shows the speed-up rates of the proposed CTELC compared
to other methods.

As shown in Figure 5, the proposed CTELC achieves com-
parable, if not superior, speed-up rates on several datasets.
It is worth noting, however, that the recorded speed time for
other algorithms is only for their run time.

As previously stated, each of the majority of these
approaches has a construction/training time that is often
significantly longer than their run time. In CTELC, such a
construction/training time is 0 because the proposed method
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FIGURE 5. Speed up rates of the proposed CTELC compared to other methods on different
datasets.

does not require time to build a model on training data.
In terms of construction/training time, the proposed method
would thus be superior to all existing methods, and none of
these methods can compete with the proposed constant-time
classifier in this regard.

VI. CONCLUSION
A new ensemble learning method for big data classification
is proposed in this paper. The proposed method operates in a
constant time and is unaffected by the volume of the training
set, making it an ideal classifier for Big Data.

The experiments on 11 medium and big datasets, including
HIGGS and SUSY, demonstrate that the proposed CTELC
performs efficiently and swiftly completes the classification
task. Comparing the proposed CTELC to other state-of-
the-art big data classification methods reveals that it can
efficiently and effectively function on big datasets, and obtain
comparable if not superior results. A significant advantage of
the proposed method is that it can be parallelized to set to
work on a cluster of nodes, which we believe will result in
faster and more accurate classification.

While the CTELC is similar to the RP ensemble classifier,
it has significant differences that lead to its innovation. Unlike
RP, which uses an online grid search during classifier train-
ing on each dataset, the CTELC uses an offline grid search
once and forever. Furthermore, RP uses Decision Trees as
its estimator, whereas CTELC makes use of the efficiency of
KNN, a classifier that does not require substantial training
time. This study demonstrates that, while the CTELC has
slightly less accuracy than the RP, it greatly outperforms it
in terms of speed. This trade-off, in which a slight loss of
accuracy is exchanged for astounding speed, increases the
CTELC’s appeal, especially in scenarios such as Big Data
classification, online applications, and resource-constrained
machines. In these situations, acquiring a constant time clas-
sifier, such as that provided by CTELC, is extremely valuable
and satisfies the need for quick and efficient processing.

The key limitation of the proposed CTELC is that its
performance suffers when a given dataset is sparse or contains

many zero-valued features. In such circumstances, we recom-
mend doing a feature selection before applying the proposed
method to eliminate the superfluous features. However, fur-
ther research is needed to critically look at and address the
issue of sparsity to enhance the performance of the proposed
method. Another limitation of this study is the use of only
one distance metric, the Minkowski, which is not always the
optimum distance to employ; other distance measures, such
as Hassanat [72], [73], [74], maybe a better option.

In addition to focusing on the mentioned limitations, the
future plans will include a MapReduce implementation of
the proposed method to speed it up. Also, we think that
adding some kind of weights to the predictions of the indi-
vidual estimators based on the nearest neighbor concept may
improve the classification performance. Furthermore, when a
MapReduce implementation is provided for this method, the
effect of the parameter K will be worth a deep discussion.
We also plan to investigate the performance of the proposed
method on more big datasets such as RLCP, KddCup 1999
(DOS vs. normal classes), and ECBDL14 (which has about
32 million instances).
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