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ABSTRACT Although Deep Learning (DL) architectures have been used as efficient prediction tools in a
variety of domains, they frequently do not care about the uncertainty in the predictions. This may prevent
them from being used in practical applications. In seismic reservoir characterisation, predicting facies from
seismic data is typically viewed as an inverse uncertainty quantification issue. The goal of the current study
is to analyse the dependability of rock facies classification model in order to quantify the uncertainty while
maintaining the high accuracy by using and evaluating monte carlo dropout based deep learning (MCDL),
a computationally efficient technique. The proposed method is unique since it can quantify the epistemic
uncertainty of the classified facies in blind or unseen well conditioned on Seismic attributes in the bayesian
approximation achieved by MCDL framework. The findings show that MC dropout is successful in terms of
accuracy and reliability, with a blind test F1-scores of 98% and 82% in predicting facies from synthetic
and seismic datasets respectively. Moreover, the applications in a 2D section indicate that the internal
regions of the seismic sections are generally classified with less epistemic uncertainty than their boundaries,
as calculated from the different realizations of the MCDL network. For comparison, a plain DL and support
vector machine (SVM) are also implemented and the findings suggest that our method outperformns the
other models in comparison which indicates the potential of the model to be implemented in a robust rock
facies classification.

INDEX TERMS Uncertainty, facies classification, Monte Carlo dropout, deep learning.

I. INTRODUCTION
Machine learning (ML) employs computational techniques to
find significant patterns in datasets. In order to make judge-
ments based on the data at hand and the domain expertise,
machine learning (ML) and deep learning (DL) mehtods have
been applied in a variety of fields in recent years. The accu-
racy and dependability of these models both are taken into
account while assessing them. For regression tasks accuracy
is commonly evaluated by statistical error measures such as
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the Mean-Squared-Error (MSE), coefficient of determination
(R2), and for classification tasks, precision, recall, F1 score
are mainly considered.

However, Although ML has a lot of potential, the uncer-
tainty might cause the outputs from such models to become
unreliable. Situations containing unknown, incomplete or
imperfect knowledge are referred as uncertainty, which can
arise from the whole analytical process, including the gather-
ing, organising, and analysis of huge data [1]. The majority
of ML approaches have a significant hurdle when dealing
with vague data [1]. Reference [2] (2020) concentrated on
how uncertainty affects the effectiveness of learning from
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large datasets; nonetheless, reducing the inherent uncertainty
in a sizable dataset is of special significance [2]. Even little
faults can aggravate any flaws in the whole analytic process
when these problems are scaled up to the level of huge data
through positive feedback loops [1]. As a result, even if
ML models can provide an ideal solution depending on the
training set, if the uncertainty in the model perameters and
data are not taken into account, such optimal models run a
high chance of failing in real-world deployment. Having trust
in the expected solution’s quality is crucial since decisions
based on inaccurate forecasts might result in large losses.
Datasets of the right size and accuracy are necessary for the
anticipated answers from such models to be trustworthy.

The scientific community has been increasingly interested
in recent years in quantifying the uncertainty around ML
models. Epistemic and aleatoric uncertainties are the two
basic forms of uncertainty thatmay bemodelled in the context
of ML [3], [4]. The uncertainty in the model parameters is
known as epistemic uncertainty. Aleatoric uncertainty has
something to do with the noise that the training dataset
itself contains. When using ML models for a particular issue
domain, the literature has examples of several modelling
strategies to assess aleatoric or epistemic uncertainty or both.
Although quantifying uncertainty can enable its mitigation,
uncertainty cannot be eliminated. This stochasticity is cap-
tured by Uncertainty Quantification (UQ) as a probability
distribution. As a result, UQ does not necessarily result in an
improvement in accuracy; rather, because of its probabilistic
character, UQ enables the inclusion of a confidence interval
in the output of the present model, enhancing its reliability
and transparency.

There are two basic forms of uncertainty that ML and
DL models confront in terms of dependability. The intrin-
sic unpredictability or variability in the data itself causes
aleatoric uncertainty, also known as irreducible uncertainty
or data uncertainty. Even with more samples, it cannot be
removed. The information used to construct the model may
originate from a variety of sources, including simulations or
programmed data as well as experimental observations. Data
dispersion and inaccuracies brought about by measurement,
gathering, or creation procedures are referred to as noise in
the data. Uncompleted domain coverage is another source of
uncertainty, as models are frequently built using a small set
of data and may not generalise successfully.

The source of epistemic uncertainty, also known as knowl-
edge uncertainty or subjective uncertainty, is the model.
By giving the model sufficient training examples, it may be
decreased. Epistemic uncertainty may be caused by a variety
of things, such as selecting extremely straightforward or intri-
cate model structures, stochastic optimisation techniques,
or certain statistical error measures.

Uncertainty Quantification (UQ) approaches are useful for
reducing how uncertainties affect decision-making processes.
The three basic categories of UQ methods–Bayesian tech-
niques (e.g. Monte Carlo dropout and variational inference),

ensemble methods (e.g. deep ensemble and deep ensemble
Bayesian), and alternative approaches e.g. deep Gaussian
Process are discussed. Making more informed judgements
is made possible by using these strategies for analysing and
controlling model prediction uncertainty.

Facies are sedimentary rock formations that can be distin-
guished from one another by their physical characteristics
(such as sedimentary structure and grain size), and which
were created in a specific depositional setting due to the
influence of a hydrodynamic regime that was relatively con-
sistent. Facies classification goals to predict lateral variations
and subsurface depositional sequences [5] in order to iden-
tify suitable reservoir zone for hydrocarbon and geothermal
extraction [6].

Facies are often described by geologists using core anal-
ysis, stratigraphy, and sedimentology. Practically speaking,
however, facies categorization is frequently carried out util-
ising data from core samples, well log response, and seismic
response. The manual interpretation of facies from seismic
data frequently requires a great deal of the interpreters’ time,
talent, and knowledge. In this context, data-driven techniques
might help interpreters by easing several difficulties con-
nected with facies analysis from seismic data. However, due
to the complexity of seismic-signals and different degrees
of resolution, machine learning based facies classification at
the seismic scale is typically less accurate than the observed
facies characterization. Although data is frequently avail-
able, the requisite volume and precision cannot always be
attained, and the data itself may occasionally change as a
result of future environmental unpredictability. Moreover,
due to the ambient noise and/or instrumental noise that affect
the seismic data, uncertainty arises during model training
which makes it essential to build models that can address the
uncertainty in the prediction.

In the past, researchers have classified facies from seismic
and well log data using a variety of statistical and mathemat-
ical models. In the past, these techniques have relied on algo-
rithms for pattern recognition and clustering [7], [8], which
aim to group the dataset into the appropriate number of facies
based on the similarity in characteristics (elastic or petro-
physic parameters). In a research Monte Carlo classification
method using well logs combinedwith rock physics models is
employed to calculate posterior uncertainty [9], [10]. To clas-
sify seismic facies, Z. Liu et al. worked on convolutional
neural network (CNN). In another research, J. S. Dramsc et
al. worked on the performance Analysis of State-of-the-Art
CNN Architectures in seismic Facies classification.

In their study, Grana et al. evaluated DL algorithms and
Monte Carlo probablistic method for the classification of
facies using seismic datasets. To meet the needs of a huge
number of tagged objects, unsupervised approaches and
semisupervised generative adversarial networks are also used
in recent years [13], [14], [15].

Seismic datasets driven facies classification models, how-
ever, include certain difficulties on account of limited training
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examples and the presence of noise in the training data, and
that makes models inefficient if an adequate uncertainty han-
dling framework is not taken into consideration. To measure
the epistemic uncertainty along with the predictions, numer-
ous techniques have been employed in recent years. Conven-
tionally, in this particular field uncertainty quantification is
commonly being practiced using Bayesian inferences [16].
When using CNN on picture datasets, Das et al. [17] utilised
an approximated Bayesian computing technique to estimate
the posterior distribution of predictions. In order to esti-
mate the aleatoric uncertainties in the lithology classification
model, Rough Set Theory (RST) is employed [18]. Liu and
Grana [19] used an ensembled approach to analyse the related
uncertainty in the facies categorization in a geostatistical
inversion problem.

However, the majority of these available methods operate
on the foundation of mapping one input to one output and
hence they do not output the uncertainty consequent to the
model parameters (epistemic uncertainty) [11], [14], [20].
Retraining such a Neural Network (NN) model results in
a different prediction due to differing starting values of
the parameters, indicating that the model’s uncertainty is
not acknowledged or taken into consideration [21]. In his
model, Ghahramani [21] presented a probabilistic strategy
for examining epistemic uncertainty throughout the deep
learning training phase. In a recent study Touhid et al. pro-
posed Bayesian deep learning (BDL) approach to quantify the
DL model uncertainty in the facies prediction model using
seismic data [22]. Abdullah et al. in a reseach workrd on a
comprehensive review of common BDL models used in the
healthcare field [23]. Athough BDL can produce good results
it is computationally expensive and takes a long time to con-
duct the inference [24]. Another difficulty in BDL network
is the prior probability distribution, commonly referred to as
the prior which needs the expert’s opinion about the data and
model parameters (weights) [23]. The computational cost of
BDL and gaussian process is a disadvantage since it becomes
unaffordable for very large high dimension networks.

Recently, a technique called MC-dropout (MCD) was cre-
ated that is computationally more effective [25], [26], [27].
It is possible to think of a NN with any number of hidden
layers as a bayesian approximation problem of the proba-
bilistic deep gaussian process if dropout is employed before
the weight layers [24], [26]. In essence, dropout works as a
regularisation approach during training to reduce over-fitting
in DL. In a MCDL model, a distinct set of neurons are
being dropped out in each iteration of training, because in
every training iteration it randomly samples the neurons to be
dropped out in each layer (based on the dropout rate of that
particular layer). As a result, the architecture of the model
varies a bit in every iteration, and the final result may be
thought of as an average of several neural nets that were
each trained on a single batch of data, driving the network
to acquire more reliable and comprehensive representations.
During MCDL inference or testing entails making several
forward runs through the network while dropout is enabled

and considering all the predictions give the epistemic uncer-
tainty of the model. MCDL is simple and significantly less
complex than BDL because in MCDL the model doesn’t
need to approximate the true posterior distribution with the
model parameters during inference (Variational Inference).
variational inference in BDL performs to provide a proba-
bilistic framework for estimating intractable posterior dis-
tributions [22]. Another advantage of MCDL over BDL is,
Monte Carlo Dropout-based neural networks do not explic-
itly require a prior distribution to construct the posterior
distribution.

Therefore, at test time, the prediction is no longer deter-
ministic. By utilizing the stochastic outputs, epistemic uncer-
tainty is calculated int his model. In this article, Monte Carlo
dropout based deep learning (MCDL) algorithm is employed
as an alternative of BDL [24] and the application is shown in
two different cases; identify four facies classes: shale, brine
sand, hydrocarbon sand and others using synthetic dataset
and identify two facies classes: shale and sand using seismic
dataset.

This work is presented as follows; methodology is
described in section II, application of the model is in
section III the application of the model is done and the find-
ings are shown; section IV consists of the blind test results and
comparison between the proposed model and other models;
in Section V the overall research is discussed and section VI
concludes the paper.

II. METHODOLOGY
A. DROPOUT IN A NEURAL NETWORK
Here is a quick summary of the Srivastava et al. [25] neu-
ral net dropout model for the situation of a single hidden
layer NN. This is done for convenience of notation, and it
is simple to generalise to additional levels. Let, W1,W2 be
the weight matrices that, respectively, connect the input layer
to the hidden layer and hidden layer to the output layer.
These weight matrices linearly transform the layers’ inputs
before employing some element-wise non-linearity σ (.). The
symbol b is the biases that shifts the input of the non-linearity.
Let us assume themodel inputs areG dimensional vectors and
the outputs are C dimensional vectors and it has H hidden
units. Hence,W1 is a G× H matrix,W2 is a H × C matrix,
and b is a H dimensional vector. A standard neural net would
output, yp = σ (xoW1 + b)W2 for some input xo [24].
By sampling a pair of binary vectors v1, v2 of G and

H dimensions respectively, dropout is implemented. The
elements of the vectors follow a Bernoulli distribution
with a probability parameter Pi ∈ [0, 1] for i = 1, 2.
Hence, v1,q ∼Bernoulli(P1) for q = 1, . . . ,G, and
v2,h ∼Bernoulli(P2) for h = 1, . . . , h. Given a particular
input xo, 1−P1 portion of the objects of the input set are set to
zero: xo o v1 where o signifies the Hadamard product [24].
The first layer’s output is, σ ((xo o v1)W1 + b) o v2, that
is linearly transformed to the output of the dropout model
yp = (σ ((xo o v1)W1 + b)) o v2W2. Which is equivalent
to multiplying W1,W2 by the binary vectors to nullify the
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entire rows:

yp = σ (xo(v1W1)+ b(v2W2)) (1)

The same workflow is repeated for all the layers. To keep
the notation neat, v1 is used as the symbol for diag(v1) with
the diag(.) operator that maps a vector to a diagonal matrix
whose diagonal is the elements of the vector. For using the
NNmodel in regression problem Euclidean loss (square loss)
is used [25]:

E =
1
2N

N∑
n=1

||yn − ypn ||
2
2 (2)

where xo1 , . . . , xoN are N inputs (observed), y1, . . . , yN are
the corresponding outputs (observed), and yp1 , . . . , ypN are
the model predicted outputs.

For classification model, predicting the probability of an
object xo being classified with label 1, . . . ,C ,output of the
model yp is passed through a softmax function to get nor-
malised values: p̂nd = exp(ypnd )/(

∑
d ′ exp(ypnd ′)). Taking the

log of this function results in a softmax loss [24],

E = −
1
N

N∑
n=1

log(p̂n,cn ) (3)

where, cn ∈ [1, 2, . . . ,C] denotes the observed class for
an input n. Often a regularisation term is added at the time
of optimization. An L2 regularisation is usually used that is
weighted by some weight-decay λ. Weight-decay is used to
scale the derivatives of the loss function and by doing this the
complexity of the model is reduced [24]. The weight-decay
for the dropped-out weights is scaled by the probability of
the weights to not be dropped [24]. Dropout, Ldropout can be
explained as,

Ldropout := E + λ1||W1||
2
2 + λ2||W2||

2
2 + λ3||b||22 (4)

For every input point and forward pass in the model (evalu-
ating themodel’s output), new realisations are sampled for the
binary vectors vi. The derivatives that are found from the loss
function are propagated to the parameters in the backward
pass using the same values [24].

To keep a consistent output magnitude, the dropped
weights v1W1 and v2W2 are scaled by 1

Pi
. This is comparable

to scaling the weightsW i by Pi at test time and initialising the
weightsW i with scale 1

Pi
during training [24].

For general conditions or NN with more than one layer;
Let yp denote the output of the model with L layers and E(.,.)
to denote the loss function e.g. softmax loss or the Euclidean
loss (square loss). W i denotes the NN’s weight matrices of
dimensions Hi × Hi − 1, and bi denotes the bias vectors of
dimensions Hi for each layer i = 1, . . . , L. yoi denotes the
observed output corresponding to input xoi for 1 ≤ i ≤N data
points. Considering an L2 regularisation weighted by weight
decay λ and T as the number of stochastic forward passes,
dropout can be defined as,

Ldropout :=
1
N

T∑
t=1

E(yi, ypi )+ λ

L∑
i=1

(||W i||
2
2 + bi||

2
2||) (5)

In dropout, binary variables are sampled for each input
point and each network unit in each of the layers (except
from the final one). For layer i, each binary variable has a
chance of Pi of taking the value 1. If a unit’s equivalent binary
variable takes the value 0, it is considered dropped (i.e., its
value is set to zero) for the specified input. In the backward
pass propagating the derivatives to the parameters, the same
values are utilised.

B. OBTAINING MODEL UNCERTAINTY
MCDropout basedDeep Learningmethodsmay be viewed as
a probabilistic approach that can quantify the posterior uncer-
tainty [see Fig. 1]. Given the training data dtr , a prediction
network, MCDL(.) and a new data point x̂, we can calculate
the probability of possible output values ŷ.

Let p
(
ŷ|x̂, dtr

)
, be the predictive distribution, with target, ŷ,

input x̂; and some training examples, dtr = (xoi , yoi )
N
i=1. After

obtaining a predictive distribution, it is possible to inspect
the variance among the predictions and uncover the uncer-
tainty in the predictions. To learn a predictive distribution,
an approach is to learn a distribution over the functions, or,
correspondingly, a distribution over the parameters (i.e. the
parametric posterior distribution p(8|dtr ) whereW , b ∈ 8.

The described Monte carlo dropout technique [24] offers a
scalable way to learn a predictive distribution. As discussed
in the previoun section, the purpose of Dropout is to switch
off some neurons during the training time. MC dropout per-
forms to randomly switch-off the neurons in a deep learning
model, which regularizes the network. Each dropout config-
uration corresponds to a slightly different sample from the
approximate parametric posterior distribution q(8|dtr ):

8t ∼ q(8|dtr ) (6)

where 8t is a particular dropout configuration, or, corre-
spondingly, a simulation ∼, sampled from the approximate
parametric posterior q(8|dtr ).

Sampling from the approximate posterior p(8|dtr ) enables
Monte Carlo integration of the model’s likelihood, ŷ|x̂, 8)
which uncovers the predictive distribution, as follows:

p(ŷ|x̂) ≈
∫

σ

p(ŷ|x̂, 8)q(8|dtr )d8

≈
1
T

T∑
t=1

p(ŷ|x̂, 8t ), such that, 8t ∼ q(8|dtr ) (7)

The likelihood can be expressed to be normally distributed
for coherence of understanding:

p(ŷ|x̂, 8) ≈ 3(f (x̂, 8), s2(x̂, 8)), (8)

with the Gaussian function 3 specified by the mean
f (x̂, 8) and variance s2(x̂, 8) parameters, which are outputs
from the MCDL model:

f (x̂, 8), s2(x̂, 8) ∼ MCDL(x̂) (9)

Figure 1 shows how MC dropout performs; each of the
dropout configurations results a slightly different output by
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FIGURE 1. Prediction in a NN with dropout.

randomly turning neurons on (blue circles) and off (grey
circles) with each forward propagation. Multiple forward
passes with different dropout configurations result a pre-
dictive distribution over the mean p(f (x̂, 8)). The variance
between the predictions, s2(x̂, 8) is the epistemic uncertainty
of the model. The overview of the methodology is shown in
Figure 1.

Algorithm 1 Prediction in Monte Carlo Dropout Deep
Learning
Input: New data x̂, prediction network, MCDL(8), number

of realizations, T .
Output: predictive mean, Eq(ŷ|x̂)(ŷ), epistemic uncertainty or

variance, Varq(ŷ|x̂)(ŷ)
for t = 1 to T do

ytp← MCDL(x̂, 8t
1, . . . , 8

t
L)

end
// predictive mean
Eq(ŷ|x̂)(ŷ)←

1
T

∑T
t=1 y

t
p(x̂, 8

t
1, . . . , 8

t
L)

// epistemic uncertainty
Varq(ŷ|x̂)(ŷ)← τ−1ID +
1
T

∑T
t=1 yp(x̂, 8

t
1, . . . , 8

t
L)
T ytp(x̂, 8

t
1, . . . , 8

t
L)

− Eq(ŷ|x̂)(ŷ)TEq(ŷ|x̂)(ŷ)
return Eq(ŷ|x̂)(ŷ), Varq(ŷ|x̂)(ŷ)

To estimate the first two moments of the predictive dis-
tribution empirically, T sets of vectors of realisations are
sampled here from the Bernoulli distribution {vt1, . . . , v

t
L}
T
t=1

with vti = [vti,j]
Hi
j=1. Mathematically, MC dropout may be

approximated by using {8t
1, . . . ., 8

t
L}
T
t=1 ∈ 8 at test time)

and the mean prediction and the variance can be calcu-
lated. This variance among the T stochastic forward passes
tells us how much the predictions are varying due to the
slight variation of NN parameters each time and hence the
variance is the epistemic uncertainty of the model. giving
{8t

1, . . . ., 8
t
L}
T
t=1 ∈ 8. We estimate,

Eq(ŷ|x̂)(ŷ) ≈
1
T

T∑
t=1

ytp(x̂, 8
t
1, . . . , 8

t
L) (10)

TABLE 1. Facies class No. and their names.

FIGURE 2. MCDL facies classification workflow.

Performing T stochastic forward passes across the network
and get the mean prediction results is also equivalent to
this. Moreover, the model uncertainty (epistemic uncertainty)
can be calculated by taking into account all the individual
realization results.

Given some precision hyper-parameter τ we estimate the
second raw moment in the same way [24]:

Eq(ŷ|x̂)((ŷ)
T (ŷ)) ≈ τ−1ID +

1
T

T∑
t=1

yp(x̂, 8
t
1, . . . , 8

t
L)
T

× ytp(x̂, 8
t
1, . . . , 8

t
L) (11)

To obtain the model’s predictive variance we have [24],

Varq(ŷ|x̂)(ŷ) ≈ τ−1ID

+
1
T

T∑
t=1

yp(x̂, 8
t
1, . . . , 8

t
L)
T ytp(x̂, 8

t
1, . . . , 8

t
L)

− Eq(ŷ|x̂)(ŷ)
TEq(ŷ|x̂)(ŷ) (12)

which is equivalent of calculating the variance of T stochastic
forward passes through the neural net. Here, ŷ is a row vector
and hence, the sum is over the outer-products. Predictive
variance gives an actual value to how much the predictions
vary from the mean prediction.

III. APPLICATION OF METHODOLOGY
A. DATASET PREPARATION
Facies information from the core description of the Synthetic
datasets showed that the corresponding wells are composed
of three major lithofacies; Shale, Brine Sand and Hydro-
carbon Sand; Accordingly, 4 classes are considered where
the ‘other’ class consists of the facies types other than the
described three major facies classes. A total of 5 wells
(Well-1, Well-2,..,Well 5) along with their facies class infor-
mation are used in this research. Among them, all the wells
except Well-3 are used to train the model, since Well-3 is
selected for a blind test to see how the model performs
in an unknown well. The name of the facies and their
corresponding facies numbers are shown in the table 1.
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TABLE 2. Data Overview.

FIGURE 3. Observed vs predicted and the associated epistemic uncertainty (blind test illustration).

TABLE 3. Classification accuracy (F1-Score) for different methods.

On the other hand, according to the core description of
the Seismic datasets it is found that the corresponding wells
consist of twomajor facies; Shale and Sand. A total of 7 wells
(Seismic-Well1, Seismic-Well2. . . Seismic-Well6) along with
their facies class information are used in this case and all the
wells except Seismic-Well2 are used to train the model, since
Seismic-Well2 is selected for a blind test. The name of the
facies and their corresponding facies numbers are shown in
the table below:

The training attributes are normalised using min-max nor-
malisation to make the experiment computationally faster.

The feature importance is calculated (see section iii.C) on the
original dataset to reduce the size of the conditional attribute
set and to choose the most crucial ones. Figure 2 below
displays the stages for application.

B. IMPLEMENTATION DETAILS
The MCDL model was trained in CPU mode @ 2.10GHz
Intel(R) Xeon(R) Silver 4110 processor with a RAM
of 32 GB.

C. FEATURE SELECTION
In order to anticipate a target characteristic, feature selection
refers to approaches that may compute the scores for all
the input attributes and output the order of the most crucial
ones. A higher score means that the particular characteris-
tic will have a bigger impact on the model being used to
forecast that particular variable. Extreme gradient boosted
trees (XGBoost) approach is employed for our investigation.
A collection of decision trees, XGBoost is an improved
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FIGURE 4. Blind test performance summary of MCDL.

FIGURE 5. Visualization of the actual vs predicted classes and the associated epistemic uncertainty in the whole seismic section prediction.

FIGURE 6. Visualization of the actual vs predicted classes and the associated epistemic uncertainty in the whole seismic section prediction.

version of Gradient Boosting. An F-score (feature score),
which indicates the frequency of features in the ensem-
ble, is used by XGBoost to determine the importances of
the features. A feature’s significance in the classification
process increaseswith its F-score. The overview of the dataset
before and after the feature selection is shown in Table 2
below.

D. MONTE CARLO DROPOUT BASED DEEP LEARNING
IMPLEMENTATION
Depending on the way in which an algorithm learns from
data sets, DL (and also ML) algorithms fall into four

categories: supervised, unsupervised, semi-supervised, and
reinforcement. Our problem is a supervised learning task.
For this facies classification problem, a neural network
architecture is implemented where, the deep layers are cus-
tomized into monte carlo dropout deep layers. In this archi-
tecture, the inputs are the selected features and accordingly
4 or 2 nodes are used in the output-layer to get the softmax
probability of the 4 or 2 facies classes (for the synthetic
and seismic datasets respectively). 128 nodes has been used
for each of the 5 fully connected hidden layers. The hidden
layers use the ReLU activation function with batch normal-
ization [26]. To get the model error in the MCDL network,
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a categorical-cross-entropy loss function is used in the
output.

To get predictive distribution from the output, the model
randomly switches off neurons in the NN based on the
dropout rate of 0.05. A total of 100 dropout configuration 8t
or realisations are considered in this application. Each8t cor-
responds to a slightly different sample from the approximate
parametric posterior distribution p(8|dtr ) which intuitively
produces slightly different softmax outputs in each of the
output nodes. To conduct the classification for a sample, for
each of the 4 output nodes, themean is calculated. The highest
mean value (among the four means) decides the class for the
particular sample, and the uncertainty is calculated from the
standard deviation among the node outputs of the selected
class.

Figure 3 illustrates the observed vs predicted classifica-
tion results along with the uncertainty information the blind
test well and Figure 4 visualises the detailed performance
summary

E. IMPLEMENTATION OF THE MCDL MODEL IN 2D
ARBITRARY SECTION
The trained model is implemented in 2D arbitrary sections,
as shown in Figure 5 (synthetic case) and Figure 6 (seicmic
case). In this implementation the result can be explained as a
set of blind test result, where, each of the the common depth
point (CDP) along the X axis are individual blind well (see
Figure 5 and 6). For example, Figure 3(a) in section iii(D) is
basically the result of one of these CDP’s (CDP=908000 in
particular) in Figure 5.
For both of the synthetic and seismic cases, pre-

diction is done for each of the CDP points (see
Figure 6b and Figure 6b) along with the associated epistemic
uncertainty (see Figure 6c and Figure 6c).

IV. BLIND TEST PERFORMANCE COMPARISON WITH
OTHER MODELS
For comparison we have adapted two other techniques to
obtain the facies classification results: Deep Learning (DL)
and XGBoost (XGB).

A. DEEP LEARNING (DL)
Numerous classification models have been built using Arti-
ficial Neural Nets and their variations throughout the
years [28], [29]. Because of the robustness and remark-
able capacity of locating a complicated mapping between
nonlinearly linked with input and output data, they are quite
effective for predictions [30], [31]. To analyse DL model
performance, the same dataset is used. The same training
and blind testing sets are considered to calculate the model
performance. In this DL implementiation, the same MCDL
architecture (excluding the dropouts in each layer) is con-
sidered. In another words, Five dense layers with 128 nodes
each with ReLU activation function is used as hidden layers.
For the output layer, softmax probability activation function is
used in 4 or 2 nodes to classify the 4 or 2 facies classes (for the

Synthetic and Seicmic cases respectively). The classification
result of the DL model is shown in Table 3.

B. SUPPORT VECTOR MACHINE (SVM)
SVM is amachine learning tool proposed byVladmir Vapnik,
has been used for 20 years to solve several problems, includ-
ing facies prediction [32].SVMworks by mapping non-linear
inputs to a very high dimension feature space and creates a
linear decision surface to predict its target [33]. To exam-
ine how SVM performs, the same training and blind test
datasets are used. For implementing the SVM model, radial
basis function kernel has been used. During the SVM model
training, to find the optimal hyperparameter values for C and
gamma value, a random search method is implemented [33].
C is a hyperparameter which is used to control error and
Gamma is also a hyperparameter which used to give curvature
weight of the decision boundary [33]. By using the optimal
setting, blind test is perform and accuracy is calculated.

C. COMPARISON RESULT
Table 3 below compares the facies classification accuracy
among MCDL, DL and XGB.

From Table 3 it is clear that MCDL performs slightly better
than both DL and XGB.

D. 2D ARBITRARY SEISMIC SECTION COMPARISON
RESULT
Similarly the 2D arbitrary section results are achieved for
the deterministic soft computing methods in comparison
(DL and SVM). Figure 7 and Figure 8 illustrate the prediction
results with these methods for synthetic case and seismic case
respectively.

V. DISCUSSION
To generate the most-likely model in the facies classifica-
tion model, MCDL method is adapted [24], [25]. Under this
architecture, in each MCDL iteration, a separate group of
neurons are randomly sampled to be dropped out in each
layer (in accordance with that layer’s dropout rate). As a
result, the architecture of the model changes significantly
from one iteration to the other, leading to an ensemble of
several distinct neural network configurations, each trained
on a single batch of data. All of the pre-trained neurons and
connections are utilised at inference time, or when predicting
using the new data. Considering all the outputs from the
realizarions, the uncertainty is calculated.

In terms of blind test accuracy, it is perceived that MCDL
performs better than the other two methods in comparison.
Morever, in the standard deterministic models in comparison
(DL and SVM), a single prediction is obtained for a given
input, with no information about the uncertainty of the used
data or the model fitness.

To distinguish the facies classes, the proposed method has
been extended to predict facies in the complete 2D arbi-
trary section. The result in Figures 5 and Figure 6 signifies
that the MCDL model can classify the facies classes quite
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FIGURE 7. Visualization of the observed vs predicted classes for the two methods in comparison (DL and SVM).

FIGURE 8. Visualization of the observed vs predicted classes for the two methods in comparison (DL and SVM).

efficiently. From Figure 5 and figure 6 it is also visible
that the uncertainty is observed mostly in the misclassified
regions or in some points in the boundary regions between
two different classes. Hence, the measured uncertainty can
give us the indication of how much trustworthy the predic-
tion is. On the other hand, the 2D results for DL and SVM
(as shown in Figure 7 and Figure 8) show that a plain deep
learning network fails to predict the facies in several regions.
Although, SVM performs a bit better than plain DL, the
prediction is not as good as MCDL. Therefore, the MCDL
model’s robustness is not only in its prediction accuracy but
also in finding the region where the prediction is uncertain.
In another words, MCDL can express the trustworthiness of
a particular prediction.

However, by altering the output layer parameters (a sig-
moid function with a single activation unit instead of a
softmax function with four or two units in our model), a simi-
lar model can be constructed to predict continuous attributes,
such as reservoir properties or elastic properties.

VI. CONCLUSION
The presented facies classification method using monte carlo
dropout based deep learning allows to generate multiple
stochastic realizations for each prediction. By utilizing all
the realizations and taking the mean of them leads to a
more precise prediction. Additionally, MCDL can identify
the out of distribution input noise by expressing the model’s
uncertainty by using the stochasticity among the realizations.
For example, when the input data is outside the distribution
that the model was trained on, the model shows more epis-
temic uncertainty in that particular prediction. The computa-
tion cost in MCDL is very low comparing to bayesian deep
learning. The measured epistemic uncertainty in a particular
point can give the proper indication of the trustworthiness
of that prediction. However, although MCDL can quantify

the epistemic uncertainty efficiently, to build a more reliable
model, both aleatoric and epistemic uncertainty should be
considered. To implement both epistemic and aleatoric uncer-
tainty under the same network, in future, work on Evidential
Deep Learning methodology.
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