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ABSTRACT The imaging spectrometer is limited by a short response time and narrow channel, resulting in a
low signal-to-noise ratio of hyperspectral images. The accurate estimation of noise has a significant impact on
some preprocessing and downstream tasks. The existing noise estimation methods for hyperspectral images
are all focused on satellite and aviation data, and there is little research on hyperspectral images with high
spatial resolution. For this type of image, This article proposes a noise estimation method based on a stacked
autoencoder. Firstly, the image is divided into multiple uniform regions using the K-means algorithm, and
then a stacked automatic encoder is set for each uniform region. Reconstruct the spectral signal on each
pixel through the corresponding stacked automatic encoder. Calculate the residual between the reconstructed
image and the original image to achieve signal-to-noise separation. Finally, the image is divided into a large
number of subblocks, and the subblocks containing edges are removed. The remaining subblocks are used for
noise estimation in this band. The applicability of some classic noise estimation methods was experimentally
tested, and the effectiveness and stability of the proposed method were verified through simulation and real
data experiments.

INDEX TERMS Hyperspectral images, noise estimation, stacked autoencoder, K-means algorithm.

I. INTRODUCTION
Hyperspectral images are data cubes with high spectral
resolution obtained by imaging spectrometers, which can
record the two-dimensional geometric distribution of objects
in the field of view and the continuous spectral curve of
each pixel position [1], [2]. The detector needs to respond
to hundreds of narrowband channel image signals in a short
time, and the received signal energy is limited, resulting in a
low signal-noise ratio of the acquired hyperspectral images.
Images with low signal-noise ratio have a great impact on
practical applications [3], and effective noise estimation can
provide a reference for preprocessing effects such as noise
removal and data dimensionality reduction, and can also be
used as one of the input parameters to directly affect the
algorithm effect [4], [5].

The noise in hyperspectral images is mainly composed of
periodic noise and random noise, manifested as high energy
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values at specific frequencies in the frequency domain. It can
be effectively removed through frequency domain filtering.
The influence of random noise has always existed and is
usually considered additive noise [6]. There are three main
methods for noise estimation in remote sensing images: The
laboratory method, the dark current method, and the image
method. The first two methods need specific experimental
conditions, and the use conditions of the image method are
relatively simple. There are two main types of methods for
estimating noise by image method, the idea of the first type
of method is to select some uniform regions in the image and
calculate the mean of the standard deviation of these uniform
regions as the noise value of the band image. Fujimotor et al.
initially proposed manually selecting more than four uniform
areas for noise estimation [7], but it was difficult to find large
uniform areas and could not be automated. Gao proposed the
local mean and local standard deviations method(LMLSD),
which assumes that the image is composed of a large number
of uniform small blocks, and by calculating the standard
deviation of these uniform subblocks as the local noise size,
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and selecting the average of the local standard deviations
containing the largest number of subblocks as the noise
estimation of the entire image, it is inevitably affected by the
subblocks containing marginal ground, resulting in erroneous
noise estimates [8]. Corner et al. proposed to remove the
texture information in the image by the Laplace operator and
the gradient method, and then perform noise estimation [9],
based on Corner’s idea, the local homogeneous block
standard deviations method (LHBSD) was proposed, which
removes the subblocks containing the edges and then uses
the remaining subblocks for noise estimation, after which the
research of such spatial dimension-based methods focuses on
improving the effectiveness of edge culling. The second type
of effective method is based on spectral dimension, and its
basic idea is to usemultiple linear regression to remove highly
correlated signals and use residual images to estimate noise.
Roger and Arnold used this principle to first propose the
spectral and spatial de-correlation method(SSDC) to estimate
image noise [10], which achieved good results. To reduce the
influence of inhomogeneous subblocks, the residual-scaled
LMLSD (RLSD) was proposed, and the standard deviation
of the residual obtained by SSDC was replaced by the local
standard deviation in LMLSD for noise estimation. Gao
proposed to divide the homogeneous regions according to the
continuity of the spatial distribution of the features, perform
multiple linear regression in each homogeneous region to
obtain the residuals, and then perform noise estimation [11].
Sun proposed to use the first principal component obtained by
the minimum noise fraction transformation dimensionality to
determine the homogeneous region by superpixel segmenta-
tion, which provided more accurate local sample statistics,
and Zhang et al. proposed to divide the homogeneous region
by double determination of spectral angle distance and
Euclidean distance [12], which reduced the impact of edge
and texture features in the image on the estimation results.
Wang et al. proposed to use a correlation vector machine to
remove the nonlinear relationship between bands [13], which
improved the stability of the estimate system.

Since the emergence of aerospace imaging spectrometers,
noise estimation methods have been targeting hyperspectral
images with low spatial resolution. With the development
of detector level and the small portability of imaging spec-
trometer, hyperspectral images with ‘‘dual-high-resolution’’
characteristics appear in many close-range shooting appli-
cations, that is, images with high spatial resolution and
high Spectral resolution [14]. The improvement of spatial
resolution in hyperspectral images has brought some new
problems. For example, the information on terrain features is
highly detailed, and the spectral variability of the same terrain
features is enhanced. Traditional methods mostly assume
that the image is composed of a large number of uniform
subblocks. This assumption is not valid in highly detailed
hyperspectral images. The relationship between hyperspec-
tral bands often manifests as a nonlinear relationship. The
stacked autoencoder can replace linear equations and fit
nonlinear functions. Moreover, its simple structure does

not incur a significant computational burden. In this paper,
an autoencoder-based noise estimation method is proposed
for ‘‘dual-high-resolution’’ images. The K-means clustering
algorithm is used to quickly divide into several types of
homogeneous regions, and an autoencoder is trained in each
homogeneous region to reconstruct the real signal, ultimately
obtaining a residual image. To improve the stability of the
method, principal component analysis is performed on the
original image. Perform edge detection on the first principal
component. Delete sub blocks that contain obvious edges.
Calculate the standard deviation of the remaining sub blocks
and sort them. Delete the top 10% and bottom 10% of the
total. Use the remaining 80% as the valid value.

The remainder of this paper is organized as follows.
In Section II, we described the noise characteristics of
hyperspectral images. In Section III, we propose a noise
estimation method and specific implementation steps based
on stacked autoencoders. In Section IV, we give the selection
of parameters and the experimental results and compare them
with several comparison algorithms. Finally, conclusions are
provided in Section V.

II. HYPERSPECTRAL IMAGE NOISE CHARACTERISTICS
Ahyperspectral image is a data cube of sizeM×N×B, which
can be seen as consisting ofB grayscale images of sizeM×N .
Essentially, noise can be treated as an additional source of the
signal [15], and the actual observed hyperspectral images can
be described as:

Hk = Fk + Nk (1)

where Hk represents the observed gray value distribution in
the k-th band, Fk represents the real value of the gray value
distribution in the k-th band, and Nk represents the noise
distribution in the k-band.
Noise on a single image is generally assumed to consist of

Gaussian noise Nk,g and Poisson noise Nk,p, mixed noise is:

Nk = Nk,g + Nk,p (Fk) (2)

The Poisson process can be regarded as a special het-
eroscedasticity Gaussian process [16], and the mixed noise
obeys the following distribution:

Nk ∼ N
(
0, σ 2

k,g + σ 2
k,pFk

)
(3)

where σ 2
k,g is the variance of Nk,g and σ 2

k,p is the variance of
Nk,p, N denote normal distributions.
The standard deviation of the final mixed noise in the k-

band is:

σk =

√
σ 2
k,g + σ 2

k,pFk (4)

For hyperspectral images, images in each band can be treated
as a single static image [17], with different sizes of noise in
different bands.
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FIGURE 1. Flowchart of the proposed method.

III. PROPOSED METHOD
In this section, we describe how to achieve hyperspectral
noise estimation using autoencoders. The method in this
paper is mainly composed of the following parts: (1) K-means
algorithm for classification; (2) The autoencoder is used to
reconstruct the image in each homogeneous region; (3) The
reconstructed image is different from the original image to
achieve signal-to-noise separation; (4) Divides the original
image into a large number of subblocks, detect the edges of
the original image, and remove the subblocks that contain the
edges; (5) the standard deviation of the remaining subblocks
is calculated and the noise value is estimated. Fig.1 shows the
overall flow of the method.

A. HOMOGENEOUS REGION SELECTION
K-means can easily and quickly divide hyperspectral images
into several homogeneous regions. The principle is to
randomly select k pixels as the initial clustering center.
Classify the remaining pixels into the class with the smallest
distance and update the cluster center. Complete clustering
without reallocating pixels or reaching the maximum number
of iterations. The handheld imaging spectrometer has a
smaller field of view and contains fewer ground objects. The
value of k is generally between 2 and 4. Algorithm 1 provides
the specific process of implementing K-means clustering in
hyperspectral images.

Measure the distance between pixels and class centers
using Euclidean distance. The pixels in the final hyperspectral
image are divided into several categories.

Algorithm 1 K-means clustering

1. Input hyperspectral image H ∈ RM×N×B

2. Randomly select k pixels a(1)
1 , a(1)

2 , · · · , a(1)
k as the initial

cluster center
3. The distance from the pixel to the center of the cluster is
calculated as follows: dist(1)i,j =

∥∥∥hi − a(1)
j

∥∥∥
2
, And put it in

the closest category.
4. Recalculate the cluster centers for each category as follows:
a(2)
j =

1
|Sj|

∑
h∈Sj h

5. Repeat steps 3, 4 until the termination condition is reached

B. CORRELATION REMOVAL
Each pixel on a hyperspectral image is a nearly continuous
spectral curve with strong correlations in adjacent bands,
in fact, this correlation often appears as a nonlinear rela-
tionship. When the autoencoder obtains raw and closed
inputs, the hidden layer can perform well in encoding, and
the stacked autoencoder composed of multiple autoencoders
has better performance [18]. A stacked autoencoder is an
unsupervised neural network model that learns the implicit
features of the input data, intending to restore the original
data. Stacked autoencoders are used to reconstruct real
signals in homogeneous regions to achieve signal-to-noise
separation. The training process of the stacked autoencoder
is shown in Fig.2.

An autoencoder is essentially a three-layer neural network,
which is an input layer, a hidden layer, and a reconstruction
layer. By minimizing the error of the input layer and
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FIGURE 2. Training process of stacked autoencoders.

the reconstruction layer, the deep features of the data are
generated in the hidden layer. The loss function is defined as
the mean squared error of input and reconstruction, as shown
in the following formula:

loss =
1
B

∥y− ỹ∥22 (5)

The input is mapped to the hidden layer through the
‘‘encoder’’, and the hidden layer data is implicitly projected
to the reconstruction layer through the ‘‘decoder’’. A stacked
autoencoder is a superposition of multiple autoencoders. Its
training is layer-by-layer, not directly training the entire
network. For coding networks with L-layers, the network
structure is trained as follows: d (0) → d (1) → · · · →

d (L). The first step is to complete the training of d (0) →

d (1)& → d̃ (0), and obtain the network parameters W (1)

and b(1) of the first layer. d̃ (·) is the reconstruction layer of
d (·). Then carry out training for d (1) → d (2) → d̃ (1) and
continue until the end of training for d (L) → d (L−1) → d̃ (L).
Ultimately, all network parameters are stacked into a stacked
autoencoder.

Encoder and Decoder have the same number of layers,
symmetrical left and right. The parameters of the symmetry
layer can also have a transpose relationship, which can halve
the parameters of the model, speed up training and reduce
the risk of overfitting. The l-layer output of the stacked
autoencoder is:

y(l) = f
(
W (l)y(l−1)

+ b(l)
)

(6)

It is worth noting that training and reconstruction are
whole, and each input data undergoes training and reconstruc-
tion. Every time noise estimation is performed, an untrained
model is used. The reconstructed spectral curve on each
pixel is reassigned to the original position to generate
the reconstructed image H̃ . The original image and the
reconstructed image are subtracted to obtain the residual
image: 1H = H − H̃ , which achieves signal-noise
separation.

C. EDGE CULLING
To mitigate the effects of texture information, remove edges
from the image. First, principal component analysis was
performed on H , the first principal component is used for
edge detection. Edge detection is done by the Canny operator.

Algorithm 2 Estimation of noise value in the b-th band

1. Input R ∈ RB×R×C×h×w and Ê ∈ RR×C×h×w

2. for (i, j) = 1 to (R,C)
for (m, n) = 1 to (h,w)
if Ê (i, j,m, n) =1
Rb (i, j) = O

end
end

end
3. for (i, j) = 1 to (R,C)

if std Rb (i, j) ̸=0
add std Rb (i, j)tovb

end
end
4. Sort vb, (1, p) = size(vb).
5. v̂b = vb (0.1p : 0.9p)
6. n = mean(v̂b)

FIGURE 3. Spectral curves extracted from real datae.

The operator first uses a Gaussian smoothing filter to smooth
the image to remove noise, and uses a finite difference
of first-order bias to calculate the gradient amplitude and
direction. In the process of processing, it will also go through
a process of non-maximum suppression and finally use two
thresholds to connect the edges and output a binary image
E ∈ RM×N .

Divide residual image 1H evenly into residual subblock
data R ∈ RB×R×C×h×w, divide edge image E evenly into edge
subblock data Ê ∈ RR×C×h×w. Where B is the number of
bands; h, w is the size of the subblock; R is the number of
subblocks on each column, and C is the number of subblocks
on each row.

Algorithm 2 gives the pseudocode to obtain the noise
estimate of the b-th band. This process will be repeated in
other bands.

IV. EXPERIMENT AND ANALYSIS
A. DATA DESCRIPTION
Experiments were performed using two types of data to
compare noise estimate methods. The first is simulated
data that is considered synthesis, and the second is real
hyperspectral data.
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TABLE 1. MEAP between estimated and real values.

1) SIMULATED DATA
The spectral curves of three features were selected from the
real hyperspectral image to synthesize the simulation image,
and the three curves selected were shown in Fig.3.

Addwhite Gaussian noise to the analog image according to
a certain signal-to-noise ratio, which in this paper is defined
as:

SNR = 10 lg
up
σp

(7)

where up is the grayscale mean of the p-band and σp is the
standard deviation of the Gaussian white noise added in the
p-band.

The simulated hyperspectral data is 600 × 600 × 89 pixels
in size and is added with the noise of 15 dB, 20 dB, and
25 dB. Fig.4 shows four different spatial distributions of the
simulated data. Fig.4(a) is hyperspectral data consisting of
only one spectrum. Fig.4(b) Hyperspectral data with sparse
subblocks synthesized from three spectra with a subblock size
of 200 × 200 pixels. Fig.4(c) is a synthesis of hyperspectral
data with denser fringes from three spectra with a fringe
height of 10 pixels. Fig.4(d) is hyperspectral data synthesized
by three spectra with a denser subblock size of 10×10 pixels.
The different color blocks in the figure represent different
spectra.

2) REAL DATA
Fig.5 shows three hyperspectral images acquired at different
times and places, all with a size of 1000 × 1000 ×

89 pixels and a wavelength range of 449nm-801nm. Images

FIGURE 4. Spatial distribution of simulated data. (a) homogeneous
(b) sparse subblock (c) dense fringe (d) dense subblock.

FIGURE 5. Spatial distribution of real data.(a) Data 1 (b) Data 2 (c) Data 3.

are taken at close range with high spatial resolution. Each real
hyperspectral image will be divided into four sub-images A,
B, C, and D of size 500 × 500 × 89, and the four sub-images
can be regarded as obtained in the same experiment and
should have the same noise.

B. PARAMETER SETTINGS
The methods for conducting experiments are this method,
LMLSD, LHBSD, SSDC, andRLSD.According to the tips of
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FIGURE 6. Noise estimate results on the simulated data. (a) homogeneous (b) sparse subblock (c) dense fringe (d) dense subblock.

FIGURE 7. Noise estimation result for Data 1. (a) proposed method (b) SSDC (c) LMLSD (d) LHBSD (e) RLSD.

the literature [6], the subblock size of LMLSD and LHBSD
is set to 4 × 4, and the edge detection operator in LHBSD
adopts the canny operator. The subblock size of SSDC and
RLSD is set to 15× 15. In this article method, the input layer
dimension of the stacked autoencoder is 89, the dimensions of
the hidden layers of the three layers are set to 50, 30, and 50,
the dimension of the reconstruction layer is 89, the subblock
size is selected as 10 × 10, and the edge detection part is
completed by the canny operator.

C. RESULTS AND ANALYSIS
1) RESULTS AND ANALYSIS OF SIMULATED DATA
The noise estimates for each method on the simulated data
will be compared with the real noise values. The experimental
results on simulated data with 20 dB of noise are shown in
Fig.6. The estimated error on each SNR data is quantified in
Table 1 using the mean absolute percentage error (MEAP).

For homogeneous simulated data, most of the MEAP of
the noise estimation values of the five methods mentioned in
the paper are below 10%, which can accurately evaluate the
noise. From the comparison between the various methods,
whether it is homogeneous data or complex data, LMLSD,
LHBSD, and RLSD perform noise estimate effects that are
not as good as the proposed method and SSDC. When
evaluating homogeneous data, SSDC performed better than
the method here, but the MEAP were all below 1%, and
there was no significant difference. When the image has a
dense texture, the MEAP between the noise estimation value
and the real value of the method in this paper is still less
than 1%, while the noise estimation value of other methods
has a slightly larger deviation, reaching 10%. The estimate
of SSDC in Fig.6(c) and Fig.6(d) shows a jagged overall
appearance and a large deviation from the noise real value,
indicating that complex textures have a great influence on
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FIGURE 8. Noise estimation result for Data 2. (a) proposed method (b) SSDC (c) LMLSD (d) LHBSD (e) RLSD.

FIGURE 9. Noise estimation result for Data 3. (a) proposed method (b) SSDC (c) LMLSD (d) LHBSD (e) RLSD.

SSDC. The proposed method performs better than SSDC in
estimating complex scenarios. Experiments also show that
single-direction texture and multi-directional texture have no

almost effect on the estimation effect of the proposedmethod.
The signal-to-noise ratio has a significant impact on all four
comparison algorithms. Although the error of the proposed
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TABLE 2. SMEAP between each regions.

method slightly increases with the decrease of signal-to-noise
ratio, it remains below 1%, which can still be considered as
having low sensitivity to signal-to-noise ratio.

2) RESULTS AND ANALYSIS OF REAL DATA
In each data, noise estimation is carried out for its four regions
A, B, C, and D. The experimental results corresponding to
the three hyperspectral images are shown in Fig.7, Fig.8,
and Fig.9. The error between the two estimation curves was
measured using symmetric mean absolute percentage error
(SMEAP), and the average value was used to describe the
overall error of the four estimation curves, as shown in
Table 2.

The results in Table 2 show that the proposed method
and SSDC are superior to other methods in the stability
and robustness of noise estimation, and this method is
only slightly ahead of SSDC. Due to the effect of H2O in
the atmosphere, an obvious absorption peak in the image
spectrum used in the experiment is located near the 79th band,
and the estimated curve of the proposedmethod ismore stable
than that of other methods. The A and C, B and D regions
of data 1 contain similar features and similar proportions.
The result is that the estimation error between A and C,
B and D is small, and if they are not similar, the error is
large. The experiments of the other two groups of data have
similar phenomena, indicating that the type and proportion
of feature distribution have a certain degree of influence
on the estimation effect. An interesting phenomenon is that
the difference between RLSD and SSDC is only the last
effective value-taking strategy. According to the experimental
results, the effect of RLSD is very poor, and this effective
value-taking strategy may not be suitable for hyperspectral
images with high spatial resolution. From the perspective of
overall experiments, there are many fine and dense textures in
hyperspectral images with high spatial resolution. The texture

of natural objects is more complex than that of artificial
objects, which has a great impact on the effect of noise
estimation.

V. CONCLUSION
In this paper, a new method for hyperspectral image noise
estimation is proposed. K-means is used to divide homo-
geneous regions, and the powerful reconstruction capability
of stacked autoencoders is used to achieve signal-noise
separation. Experiments on the simulated data show that the
method can estimate the noise well with different signal-
noise ratios. Experiments on three true hyperspectral images
show that the stability and robustness of the proposed
method are superior to other methods in the case of high
spatial resolution. This paper does not try other clustering
algorithms, and better clustering algorithms may improve
the reduction effect of stack autoencoders for homogeneous
regions. Furthermore, generalizing the proposed method to
specific applications of noise removal will be the focus of our
future work.
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