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ABSTRACT Recent advancements in the domain of recommender systems have stemmed from the
inspiration of representing the user-item interaction into graphs. These heterogeneous graphs comprehen-
sively capture the non-linear relationships between users and items alongwith features and emneddings.
Graph Convolution Networks (GCNs) are state-of-the-art graph-based learning models that learn and repre-
sent the graph structures by recursively stacking layers of convolution and non-linear activation operations.
GCNs are augmented with the strength of deep learning paradigms resulting in achieving better performance
as compared to traditional CF (Collaborative Filtering) methods. Despite modern improvements in the
domain of recommender systems, cold-start users are a daunting challenge in the design of recommender
systems since the conventional recommendation services are based on solely one data source. During the
recent years, cross-domain recommendation methods have gained popularity because of the availability of
information in multiple domains for cold start users. We supplement this information by utilizing the data
contained in the metadata of users alongwith the strength of modelling graphs using GCNs. Our proposed
algorithm seams the strength of GCNs with cross-domain paradigm utilizing the richness in metadata in
user’s feedback to overcome the sparsity in user-item rating matrix. The combined advantages of GCNs and
cross-domain approaches alleviated the issues of cold-start users by transferring user preferences from a
source domain to a target domain.

INDEX TERMS Cross-domain recommendation, collaborative filtering, graph based representation, deep
learning, coldstart users, graph convolution networks.

I. INTRODUCTION
The volume of data introduced everyday into the world of
information since the past few decades has made it a digital
global village. Perhaps the most dramatic outcome of this
digital revolution is the amount of data that’s now avail-
able. The ever growing information has given birth to the
need of Recommender Systems (RS). These systems help
in filtering this information and recommending only a sub-
set of choices pertaining to user’s interest. Recommender
system find its application in nearly all walks of practical
life, for instance, in the field of educational data science,
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making recommendations to tourists, suggesting literature to
an online reader, recommending technical gadgets based on
purchase history of a user, biomedical image analysis [12] or
identifying deceptive images created by forgery [6]. There are
many recommendation systems now that take demographics
alongwith user’s historical record to make recommendations.
LAPTA [13] proposes location-aware personalized traveler
assistance service based on user preferences and the global
positioning system (GPS). Last decade has witnessed tremen-
dous work in the world of recommender systems which
includes traditional techniques like Collaborative Filtering
(CF) and Content-based Filtering (CB) [9]. Traditional tech-
niques are based on the principle of gauging user’s interest
by extrapolating user’s preferences in the content he has been
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FIGURE 1. Sparsity in user-item rating matrix.

showing interest. CF has a strength of not depending on
the content of the items or meta-data for recommendation,
rather it operates on implicit or explicit feedback of the
user. Implicit feedback means inferring user’s preferences by
user’s interaction with the content. Number of page visits,
number of clicks, observing user’s browsing history, analyz-
ing the record of online purchases made etc are few examples
of implicit feedback sources. On the contrary, explicit feed-
back includes getting feedback or rating explicitly on an item
or asking the user to rank a collection of items from most
liked to least liked etc. CF can be perceived as building a
user’s profile according to its behaviour (either implicit or
explicit). Despite promising results shown by CF and CB,
they suffer from the issues of data sparsity, cold-start user,
scalability etc. The exponential growth in the number of
online users interacting with items makes it nearly impos-
sible to acquire user’s feedback explicitly on every item it
comes across with which results in sparse user-item rating
matrix as shown in Figure 1. To solve issue of cold-start,
B. Hawashin [34] proposed to implicitly learn user’s interests
through patterns using machine learning instead of solely
focusing on user-item ratings. A paradigm of techniques that
learn personality traits to alleviate cold-start problem has
attracted significant attention lately. Hu and Pu et.al [35]
dealt with cold-start problem by incorporating personality
traits with the traditional CF technique. The latest research
by Han et.al. [36] proposed a personality interpretable model
that uses machine learning algorithms to classify personali-
ties in a semi-supervised manner.

CF finds its application in design of a lot of recommen-
dation techniques when combined with neural network (e.g.
RNN, CNN etc). CF and CB suffer degradation in perfor-
mance due to sparsity and cold start. Since the world we exist
in can be perceived as a real manifestation of a graph struc-
ture, therefore the learning of the associations between nodes
can be learnt by applying graph learning techniques [18]. The
users and items are the object nodes, and the items we show
interest in are further linked to other users which can be visu-
alized as a massive graph structure. Such characteristics are
even more relevant in RS where the objects (users and items)
are linked with each other through various connections [5].

This perception has led graph learning to emerge as one of
the most distinctive domain in many recommendation sce-
narios owing to its great prospective in deriving knowledge
embedded in graphs. Graph Learning-based Recommender
Systems (GLRS) have been comprehensively explored in the
recent times [20]. GCNs have particularly gained popularity
due to their ability to iteratively aggregate feature informa-
tion from the local neighbourhood of a node using neural
networks [25]. This is graphically illustrated in Figure 2.
However, this can result into over generalization due to over-
whelming size of graph structure. An attention mechanism
is a possible solution that weighs the significance of a node
in a neighbourhood. Owing to the strengths of deep learning
andGCN,we propose a crossdomain recommendation frame-
work using MetaData based on Graph Convolution Networks
(MD-GCN).

The major contributions of this paper can be summarized
as:

• This proposed recommendation framework encodes
similarity and interaction information as collaborative
signal and further employs graph neural technique for
embedding generation.

• This proposed model improvises the text embed-
ding approach using GloVe embeddings by fusing the
strengths of CNN and LSTMmodels thereby generating
the features of metadata comprehensively.

• Augmenting the embedding function with attention
mechanism for overlapping users in both domains to
ensure data richness and diversity. The overlapping users
serve as a bridge for both domains.

The rest of this paper is organized as follows. Section II
describes the related work in this domain. Section III explains
the details of our proposed recommendation. Experimental
results are presented and analysed in Section IV. Finally,
Section V concludes the paper.

II. RELATED WORK
A. CONVENTIONAL RECOMMENDATION
Conventional recommender systems can be mainly classified
into two types: content-based filtering (CB) and collaborative
filtering (CF) based recommender systems [20]. Evident from
the name, the content based recommendation needs content
of the choices made by the users. During the course of time,
the choices made by the user consolidate the preferences he
has in terms of content. This can be thought of as a profile of a
user signifying his interests [20]. Later on, this profile is used
in content based recommendation algorithms to make similar
suggestions [30]. The formulation of this profile involves the
application of many data mining and machine learning tech-
niques. A contrasting technique focuses on finding the pattern
based on the choices that the users makes. This paradigm of
technique is called collaborative filtering [10]. It is guided
by the motivation that a user’s preference can be guessed
from the collaborative preference of like-minded users. This
like-mindedness is inferred from the ratings of the items that
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the user records. Both CB and CF suffer from discrepancy
in results when there is no data to formulate the profile of the
user because of the introduction of a new user to the inventory.
Such a user is termed as a ‘cold start user’. The most popular
techniques of CF is matrix factorization (MF) [15], [24],
in which latent embeddings are computed to model a pattern
that generates ratings.

B. DEEP LEARNING NEURAL NETWORKS FOR
RECOMMENDATION
Recent advancements in machine learning (ML), specifi-
cally Deep Learning (DL), witnessed a paradigm shift in
recommendation architectures, primarily due to seamless
correspondence between natural language processing and
recommender frameworks [3], [5]. The capability of identi-
fying various patterns and occurrences renders DL the most
suited for future applications in realm of personalized con-
tent and product recommendations. Complex problems are
effectively solved using DL’s core principle of learning deep
interpretations from data at multiple levels of representations
and abstractions, for modelling non-linear interactions in the
data, with non-linear activations. This is accomplished by
discovering hidden patterns in the data and understanding the
deep / intricate relationships between many interdependent
variables. The strength of DL lies in it’s to identify and learn
hidden patterns from the data, correlate them and enhance the
rules for decisions.

Neural Networks have gained prominence with the enor-
mous spread of social networks and knowledge bases since
they have been in use for representation of graph-structured
data. Neural Networks allow the application of DL tech-
niques, to learn about the regular as well as irregular /
arbitrary structure of the graphs, thus giving rise to the
term deep neural networks [1], [2]. Numerous variants of
deep neural networks (AE, CNN, RNN, GNN) are available
to boost performance of recommendations by focussing on
different areas. AE techniques are employed for unsuper-
vised ML tasks, where the primary aim is to learn data
approximations, representations, and encodings. CNNs are
predominantly used for extraction of latent factors and fea-
tures, especially from images and text due to their capability
of reducing the number of parameters without loss of qual-
ity. This is achieved by their ability to share weights and
local connections. RNNs are very effective for problems that
are sequence-based in nature since they can process time
series data and make predictions about the next output using
patterns. Speech recognition and language modelling are
common domains for these artificial intelligent techniques.
PLSPL(Personalized Long Short-term Preference Learning)
[37] proposed to use check-in history of users to recommend
next Point-of-Interest(POI). The long-term dependencies are
learnt using contextual features of POIs with attention,
whereas short-term dependencies are learnt through two par-
allel LSTMs. Both are fused together to obtain final probabil-
ities of candidate list of POI. AFRAM (Aspect-based Fashion
Recommendation with Attention Mechanism) [39] proposed

to mine the user and item reviews to extract aspects. Each
mining module was assembled with CNN and LSTM side-
by-side with attention mechanism to trace local and global
aspects from the reviews. These aspects were later fused to
map preferences. Wang.et.al [38] exploit features of movies
and demographics of users to propose a model that fuses
CNN and LSTM to capture contextual dependencies. CNN
focuses on the description data of movies while LSTM learns
interdependencies of user’s features and ratings.

The prominence of graph neural networks (GNN) has
resulted in many techniques that exploit the graph topology
and node connectivity to improve recommendations [18]. It is
achieved by focusing on preservation of network structure,
when moving to low-dimensional space i.e. mapping the
nodes with higher proximities in network closer to each other
in low dimensional embedding space. DeepWalk employs
techniques to learn representations of graph nodes based on
randomwalk. Later, this neighbourhood of a node is used to
learn feature representations of neighbouring nodes to make
improved recommendations using DL approaches. The limi-
tation of GNN is its inability to aggregate edge information
while learning graph structure. This limitation is addressed
by multiple improvements in GNN that has led to many
variants namely Graph Convolution Networks (GCN) [25],
Deep Convolutional Neural Networks (DCNN) [17], Graph
Attention Networks (GAT) [19], [21], and Gated Graph Neu-
ral Networks (GGNN) [5] etc.

C. GRAPH CONVOLUTION NETWORKS
The handicap of overwhelming computational power that
comes with the large graph-structured datasets has set
the foundation for research in the field of graph mod-
elling [26], [27]. The motive behind this research is to pre-
serve the structural and graphical essence of the graph while
converting it into low dimensional space.MF techniques have
been used to learn the graph representation by assuming that
the input data exists in the low dimensional representation.
However lately, owing to the inspiration from the CNN,
a new paradigm of techniques has been explored to map
the graph structure into low dimensional space preserving
its characteristics [20]. Graph Convolution Networks (GCN)
has increasingly been used on graph data as it has shown
promising results in recommender systems [16], [29]. GCN
improves a user’s embedding, based on the learned informa-
tion through diffusion of its neighbourhood in a graph [4].
GCN has demonstrated encouraging results, in contrast to
the conventional collaborative filtering techniques, as real-
world data mostly resembles the graph structure [3]. GCN
employs two basic operations - node embedding with con-
volutional neighbourhood aggregation; and non-linear con-
version of embeddings transformed by a neural network
as shown in Figure 2 [23]. Notable contributions of GCN
are Social network analysis [41] and recommendation sys-
tems [21], that learn by iteratively stacking multiple layers of
convolution aggregation operations and non-linear activation
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operations. NGCF [8] and PinSage [20] implemented GCN to
the user-item bipartite graph. STARGCN [28] addresses the
cold start problem by reconstructing the embeddings for the
new nodes. Furthermore, graph-based methods are improved
by involving high-hop neighbours to model the embedding
learning for sparse users [32], [33]. Examples of such models
are GraphSage [18] and GAT [19] which redefine the target
node’s embedding by aggregating neighbour’s embedding
based on attention mechanism. KGAT [21] explicitly mod-
els the high-order connectivities in a knowledge graph and
by linking items and users attribute information to effec-
tively model users and items relationship. Inspite of the
considerable improvements shown in the results of these
techniques, they disregard the heterogeneity of the graphs.
Social networks is an example of such heterogeneous net-
work. GraphRec [8] and DiffNet [7] take into account the
heterogeneous nature of social network graph to learn user
embeddings and item embeddings but till date scalability
and coldstart problem remain unresolved in the crossdomain
recommender systems.

III. METADATA BASED CROSSDOMAIN FRAMEWORK
USING GCN
A. MOTIVATION
To address the issue of sparsity, researchers have been explor-
ing alternate sources to supplement the missing rating infor-
mation. Cross-Domain Recommender Systems (CDRS) use
multiple sources to supplement missing information in target
domain by exploiting either user-overlap or item-overlap con-
ditions or both. Pan et al. [32] proposed a Coordinate System
Transfer (CST) technique which works on the condition when
both source and target domains have homogeneous items but
such homogeneity does not exist in real world. Lately, many
recommendation methods have been employing graph neural
networks in their recommendation frameworks. GCNs have
particularly gained popularity among graph neural networks
due to their ability to use local neighbourhood to collect and
aggregate feature information [25]. KGCN [11] applies this
technique by aggregating embeddings of a node’s neighbours
in a knowledge graph connected through relations of sim-
ilar nature. Though this technique completely ignores the
intra-relation among nodes during aggregation of embed-
dings which results in inadequacy in capturing collaborative
signals through user-item graph. KGAT [21] addressed this
issue by integrating user-item relations into the knowledge
graph as a triple (user, Interact, item). This caused extensive
modelling of sparse user-item relations generating extraneous
attributes and failure in attentively modelling user-specific
preferences on entities and relations. To address drawbacks of
previous models discussed above, we propose a cross-domain
recommendation framework that allows transfer of informa-
tion among heterogeneous domains in a graphical setting.

B. SYSTEM DESCRIPTION
The motivation of crossdomain approach is to solve the prob-
lem of sparsity as source domain is dense in information as

compared to target domain (sparser domain). Preferences of
coldstart users in source domain (richer domain) are formu-
lated.With the help of mapping function among two domains,
they are mapped onto the sparser domain. Even though both
the domains are varied, their correlation makes it possible to
use these domain’s knowledge interchangeably. In the first
step, metadata and rating matrices in separate domains are
handled to learn domain specific features, whereas in the sec-
ond step, linked users are used to learn a crossdomain map-
ping function based on neighbourhood among both domains.
The knowledge graph serves as a basis of graph modelling for
users and items embeddings. This heterogenous graph con-
tains information regarding user-user similarity, item-item
similarity and interaction information. The content-based
similarity between users and items enables us to identify a
neighbourhood graph which is fed into a multiple layered
GCN. The embeddings of all nodes are propagated alongwith
generating attention aware embeddings for overlapping users.
Figure 3 graphically illustrates the system flow where after
initial preprocessing of the input data, it is directed further for
vector generation for the transformation of metadata into vec-
torized form. The vector’s semantic similarity and interaction
relationship defines the GCN graph. Crossdomain mapping
function is learnt by the neural network during training of the
model.

C. MATHEMATICAL FORMULATION OF THE PROBLEM
1) GENERATING SEMANTIC SIMILARITY OF USERS
Let U = {u1, u2, . . .} and V = {v1, v2, . . .} be the user
and item sets, Rs and Rt be two rating matrices from the
source and target domains respectively, where Rs

uv is the
rating that user u gives to item v in the source domain and
Rt
uv is the corresponding rating in the target domain. Given

two matrices, Rs and Rt , and cross-domain user and item
sets, U and V , the aim is to make recommendation for those
users and/or items in the target domain for whom the rating
matrix is sparse.
UL signifies the set of linked users common to both

domains. The training set is vector pair {U s
v∗,U

t
v∗}vϵUL of

the overlapping users for both domains. The proposed rec-
ommender task is to predict unknown ratings Rux for item
x and user u in target domain based on known rating Rui
of user u for item i in source domain. Let G be the plot
description of a movie which is composed of words such as
w1,w2,w3, ...,wl .

GPlotDescription← {w1,w2,w3, ...,wl}

From textual description of plots, a Corpus C is built,
comprising of all movies and is represented as:

CCorpusGeneration← {G1,G2,G3, ...,Gx}

To generate profile of a user, PU , a certain threshold
θϵ[1 − 5] is set for all the items that receive a positively
higher rating from the user. This profile can be thought of as a
document containing salient tags pertaining to user and item
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FIGURE 2. Embedding aggregation and propagation in GCN approach.

where the metadata of a user comprises of the tags associated
with positively appraised items Ti and features from user’s
feedbackRu,

PU = {Ti,RU }

A pre-trained GloVe embedding matrix is used to initialize
the input matrixWgϵRe×n where e and n are the embedding
dimensions of both the CNN and the vectors. CNN proves
viable in the field of text classification as it has the ability to
learn dominant features in sentences along-with the relation-
ships among words that are closer to each other in a sentence.
The convolution windows in CNN can be perceived as filters
that slide over a word along with it’s neighbouring words
to output an embedding for that phrase. These convolution
operations are window-based feature extractors that detect
patterns in text.While CNNmodel focuses on learning spatial
features, LSTM model is known to learn long-term relation-
ships between word sequences. The combination of CNN and
biLSTM enables the model to capture both long-term and
short-term contextual information of the text. The strengths
of both models result in condensing the text semantically in
a computationally resource-efficient manner [40].
A total of e words are transformed into vectors where each

word is expressed in n dimensional vector. GloVe generates
feature matrix based on feature-feature co-occurrence.

X =


w10 w11 w13 . . . . . . w1n
w20 w21 w23 . . . . . . w2n
. . . ..

wi0 wi1 wi3 . . . . . . win
. . . ..

we0 we1 we3 . . . . . . wen



e×n

After applying a pre-trainedGloVe embeddingmodel, mul-
tiple convolution layers with ReLU activation function are
applied to extract local features fi from this profile,

fi = ReLU (Wh ⊗ X (:,wi:i+h−1)+ b (1)

where ⊗ signifies a convolution operation. Wh is a convolu-
tional kernel of size h× s. The kernel size is adjusted by -1 so

as to ensure that it does not match/exceed the dimensions of
word vector. This kernel is applied on multiple possible size
of word vectors in a sentence to produce contextual feature
maps.

f = [f1, f2, . . . . . . fn−h+1] (2)

Now that the word embeddings are generated that charac-
terizes vector for each word in our dataset, these pretrained
GloVe embeddings are fed into sentence encoder which
utilizes bi-LSTM with maxpooling. The motivation behind
using bi-LSTM is to effectively capture the context of a word
by reading the sentence in forward and reverse order. Given
a sequence of word vectors, w10,w11,w12, the bi-LSTM
reads the sentence in forward and backward order and later
concatenates the two vectors as shown in the equation.

−→
ht =

−−−→
LSTMt (w1, . . . ,wT )

←−
ht =

←−−−
LSTMt (w1, . . . ,wT )

ht = [
−→
ht ,
←−
ht ]

Later, themaxpooling operation creates the vectors of same
dimension ht but delivers the maximum (most salient) value
over the hidden units for each dimension. The dominant
feature Xf after max-pooling is given by,

Xf = max0<i<s−h{hi} (3)

where,
i = 0, 1, 2, ..., s − h and Si:j represent a sub-matrix of S

from row i to j
S is a sentence containing w words.
Higher the similarity score among semantic vectors of two

users, higher the likelihood of similar preferences in future.
This semantic similarity score between any two feature vec-
tors VGu and VGa of users u and a respectively is calculated
by cosine similarity,

Sua =

∑d
z=1

(
XGuz − X̂Gu

)
.
(
XGaz − X̂Ga

)√∑d
z=1

(
XGuz − X̂Gu

)2√∑d
z=1

(
XGaz − X̂Ga

)2 (4)
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FIGURE 3. System flow of proposed MD-GCN architecture.
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A graph G = {V, E} is a non empty finite set of V vertices
E edges that signify the relationships between nodes based on
node-node similarity and user-item interaction. If user ui has
a rating record for item vj, then the ratings are normalized by
Rij⧸ max R. The ratings are normalized to cater for the fact
that some users tend to rate too high or low overall instead of
giving a range of ratings. Apart from the user-item interaction
graph, a similarity graph S ϵ Rm×m is constructed using
semantic similarity among users based on threshold θ , where,
Sij = 1 if user ui is similar to user uj and zero otherwise.
This graph is employed to graphically place users who have
similar preferences closer in proximity since for a node with
sparse data, propagating embeddings from neighbourhood of
likeminded users is a plausible approach.

2) ATTENTION BASED CROSS-DOMAIN KNOWLEDGE
FUSION
Based on the heterogenous graph of users and items, the
overlapping user’s embeddings are combined to generate
all-domain consolidated embedding that has a contribution
from all domains. As mentioned earlier, bridge users controls
the transfer knowledge among both domains, therefore, this
transfer knowledge is guided by the cross-information func-
tion for overlapping users. Mathematically,

Û = γsUs + (1− γs)Ut (5)

where, Ûs, is the combined embedding of the bridge user,
γs, controls the contribution of latent factors of bridge user
from both domains, source domain Us and target domain Ut .
γs therefore is the weight matrix that controls contribution
from both domains and is learnt through jointly align and
translate task that models an encoder-decoder model with
attention [14] that employs a feed-forward neural network
which is trainable together with whole sequence to sequence
model. It identifies the parts of embedding that have max-
imum influence on the combined embedding. The attention
mechanism lines up the input and output sequences with an
alignment score trained by a feedforward neural network.
It picks up most salient features of input to get a certain out-
put. In this context, the attention layer rearranges the attention
weights to pick the most salient feature in the source embed-
dings to achieve a certain target embedding. The learning of
attention score is supervised by autoencoder recurrent neural
network based on previous target embedding and previous
decoder’s hidden state si−1 and the hidden state of the input
embedding,

eij = a
(
si−1, hj

)
where, inputs around position j and the output at position i
match and a is the feedforward neural network. The softmax
activation function is applied to the attention score to obtain
attention weight as,

γij =
exp(eij)∑Tx
k=1 exp(eik )

(6)

Algorithm 1 Training the MD-GCN Framework
Input:Rs,Rt ,Us,Ut ,Vs,Vt
Output:Trained MD-GCN Framework
Phase 1: Textual Semantic Similarity
Obtain metadata for the users & items in the source & target
domains D = {d1, d2, ..., dm+n}
Obtain dense user & item vectors U∗C ,V ∗C for both domains
using pre-trained GloVe model
Obtain the user-user similarity matrix SAU , STU in the source
domain & target domain respectively via cosine similarity
Obtain the item-item similarity matrix SAV , STV in the source
domain & target domain respectively via cosine similarity
Generate user-item graph GA and GT for source & target
domain using SAUS

T
U , SAV , STV ,Rs,Rt

Initialize GCN with GloVe embeddings, for node i, h0i = ei
Update and propagate embeddings of a node i at level k based
on neighbourhood N (i),
hki = ReLU

(
W .

{∑
oϵN (i)

1
|N (i)|h

k−1
i

}
+ b

)
Phase 2: Latent Embedding for Bridge Users
for each bridge user u in GA and GT do
an attention weight is normalized using softmax activation
function
Calculate attention weight of output sequence given input
embedding
end while
end for
Compute combined embedding Ûs for bridge user using
attention weight γ
Phase 3: Neural Learning for Cross-Domain Recommen-
dation
for each user u in Training set Tu
Obtain user-item rating y
Initialize the weights in the MLP
the objective loss function of MLP does not converge over Tu
do
Calculate relevance of user embedding vector and item
embedding vector
Calculate predicted rating ŷ
Compute the current loss of MLP using actual rating
Train the parameters of the deep neural network
Back-propagate errors, compute the weights & update param-
eters
end while
end for

This will give probabilities to all the input embeddings
(that will sum up to 1) with maximum probability assigned
to most informative domain embedding among Us and Ut .

3) EMBEDDING THE GRAPH USING GCN
Preceding layers produce a heterogeneous graph (fusing the
interaction relationship from adjacency matrix and simi-
larity relationship from semantic similarity matrix S dis-
cussed in Section III-C1) where each node has an embedding
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associated with it. Given this graph, GCN takes in two kinds
of input:
• Input embedding matrix N × e matrix, where N is the
number of nodes and e is the number of latent embed-
dings for each node coming from the preceding layer.

• N × N adjacency matrix of the graph structure G
This initial embedding is further fed into the GCN for

aggregation and convolution operation through multihop
neighbours as shown in Figure 4. The connections in the
graph signify two types of relationships, similarity relation-
ship among similar type of nodes (based on node’s metadata),
and interaction relationship (from adjacency matrix).

Embedding broadcast and aggregation is performed where
each node propagates its embedding in its neighbourhood
while accumulating the embeddings it receives to update
it’s embedding. This broadcast and aggregation using L hop
neighbours based on the knowledge graph is the essence
of GCN framework. The knowledge graph exploits the
higher-order connectivity of a node’s graphical neighbour-
hood. Since a user’s preferences are inspired by their L-hop
neighbours, graph convolution operators are used to aggre-
gate the embeddings of a user’s neighbourhood. The input
of this graph convolution network are the embedding matrix
learnt in the last phase and the adjacency matrix. The embed-
dings are the representations of a node’s neighbours that are
transformed through dense neural network and later fed to an
aggregator functionwhich results in a vector representation of
a node. The adjacencymatrix is inferred from user-item rating
matrix. Populating the graph with embeddings is focussed at
mapping the nodes to low-dimensional spacewhile sustaining
the structure of the graph.

Let Y ϵ R(M+N )×D be the embedding matrix of users
and items. By feeding the embeddingmatrix Y into GCNwith
graph G < U ∪V,A >where A is constructed from the rating
matrixR as:

∀i ϵ U ∪ V , h0i = ei (7)

The GCN iteratively carries out the embedding propagation
and non-linear transformation as shown in the eq 10 and 11.
Each node’s embedding in the heterogenous graph is updated
in the iterative process. Therefore, the final embedding H (K )

explicitly injects upto K -th order collective connections
between users and items.

Following this, aggregation of node’s embedding is carried
out in order to aggregate the embedding of neighbouring
nodes from the user-item adjacency relationship and simi-
larity relationship in one heterogeneous graph. For example,
the neighbourhood based user latent factor of node i, is given
by hi, after aggregating user’s embeddings of its neighbours
N (i), as follows:

hki = σ
(
W .Aggreneighbours

({
hko,∀oϵN (i)

})
+ b

)
(8)

where σ is a nonlinear activation function and Aggre is
an aggregation function. One natural aggregation function
for Aggreneighbours is the mean operator which takes the

element-wise mean of the vectors in {hko,∀oϵN (i)} as shown
mathematically in the following equation,

hki = σ

W .

 ∑
oϵN (i)

βihko

+ b
∀oϵN (i) (9)

Since all neighbours contribute equally to the representa-
tion of a target node in a mean-based aggregator, βi is set to

1
|N |(i) . Furthermore, multiple layer GCN, with convolutional
network layer hli for node i is given by,

hki = ReLU

W .

 ∑
oϵN (i)

1
|N (i)|

hk−1i

+ b
 (10)

where hki denotes the ith node’s current representation at k
step in the forward propagation. First, each node’s oϵN (i)
representations are aggregated. Preceding representations
(i.e k−1) step are accumulated to define a node’s embedding
at kth step, whereas, the k = 0 (‘‘base case’’) representations
are defined as the node’s input embeddings. Even though,
in order to fully exploit the higher order connectivities in a
GCN, we need to stack multiple graph convolutional network
layers, however, stacking multiple layers results into consid-
erable drop in the performance due to gradient vanishing or
over smoothing. Hence, K=2 ismost optimized depth for opti-
mized performance results for GCNs [25]. Therefore, final
embedding at layer ′k ′ after GCN aggregation from nodes’s
neighbours and concatenating node’s current embedding is
given by,

hki = σ
(
W ·

[
hk−1i ⊕ nk−1i

])
(11)

where nk−1i is aggregated neighbourhood embedding vector
and σ is the activation function ReLU in this case). Above
equation calculates the current layer embedding for a node by
concatenating its preceding convolutional layer embedding
with the aggregated embedding from all its neighbours.

4) TRAINING THE NEURAL NETWORK AND OUTPUT LAYERS
After propagating and calculating the embeddings for each
node through GCN layers, a neural network is adopted to
model user-item interactions and learn the prediction score.
The embeddings of a node are calculated through aggregation
operators applied on local neighbourhood of the node. The
user-item rating is normalized and interaction matrix Rϵ

Rm×n contains the normalized ratings.
The output R̂ui represents the relevance between user u

and item i. The input embedding matrices consists of joint
embeddings for overlapping users and embeddings for dis-
tinct users. Let Y ain be the input embedding matrix for domain

a. Then, Y a = U j
: Ua where U j is the joint embeddings for

overlapping users inferred from both domains and Ua is the
embedding for distinct users in domain a. Similarly, Zain = V a

is the input embedding for items of domain a. These input
embedding matrices are fed into MLP with network weights
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FIGURE 4. Illustration of user and item embedding propagation.

W a and activation function ReLU , output embeddings are
calculated as,

Yi = α(. . . .α(Y ain.W
a).W a)

Zj = α(. . . .α(Zain.W
a).W a)

where,
α is the activation function, ReLU
Later, the loss is calculated and backpropagated as,

R̂ui = cos
(
Y ai ,Zaj

)
=

Y ai .Zaj
∥Y ai ∥.∥Z

a
j ∥

(12)

loss
(
Rui, R̂ui

)
= Rui log R̂ui + (1−Rui) log

(
1− R̂ui

)
(13)

IV. EXPERIMENTS
A. DATASETS
The proposed technique is evaluated on benchmark domains
of Amazon dataset, MoviesandTV, Books, DigitalMusic. The
source domain is required to be richer in information there-
fore, Amazon-Movie dataset is chosen as source domain and
Amazon-Books and Amazon-Music as target domain for our
set of experiments.

The sparsity of the Amazon dataset domains varies
between ≈ 93.7% to ≈ 99.46% which makes them a
good selection for solving coldstart problems in RSs [4].
Since the technique requires considerable metadata pertain-
ing to a user therefore users who have atleast rated and
reviewed 8 movies are chosen. The Amazon-Book dataset
consists of 9,876 explicit ratings Rui ϵ {1, 2, 3, 4, 5} given by
51,800 users on approximately 21,453 books. Amazon-Music
rated and reviewed items 3658 by 10,262 users. Moreover
Amazon-MoviesandTV dataset has users 78,500 who rated
25,645 with a total of 42,877 user-item ratings. The 5-core
dataset provided by McAuley.et.al [30] where each user and
each item has at least 5 associated fields of metadata. These
datasets vary in sparsity. The statistics of these datasets are
summarized in Table 1.

TABLE 1. Statistics of experimental dataset.

B. DATASET PREPROCESSING
The Amazon5-Core dataset [30] contains product’s ratings,
reviews, andmetadata. SinceAmazon-Movies domain is used
as a source domain in the proposed technique, therefore,
to address sparsity in remaining movies, data was supple-
mented with descriptions elicited by [41]. The dataset is later
fed through many preprocessing steps such as lemmatization,
tokenization, stopwords removal etc. Length of each movie
description is set to 300. Meaningful words are picked using
TF-IDF technique and threshold is set heuristically as shown
in Figure 5. Grid Search cross validation technique with an
estimator is employed which while ‘fitting’ it on a dataset,
evaluates all the possible combinations of parameters and
retains the best combination [42]. The threshold is ranged
from 0.25 through till 0.75 to analyse the performance of
TF-IDF on three domains of Amazon datasets, Amazon-
Movies, Amazon-Music and Amazon-Books. As evident
from the figure, the precision of Amazon-Movies grows till
TF-IDF threshold is ranged from 0.20 till 0.5 and drops later.
Similar trend is observed for domain Amazon-Music where
the graph steadies from threshold=0.35 till 0.55 and drops
later. Amazon-Books performs well for threshold 0.52. The
threshold is therefore averaged and found to give maximum
precision at an average of 0.5. Top 1000 words are selected
to form a vocabulary size. The source domain consists of
a database that consists of users with minimum 5 fields of
metadata and ratings and items (movies) with descriptions.
This preprocessed information is used in the next step to
generate vectors for the users and items.

To generate vector representations of the metadata of the
itemsGloVe300d is used. The user’s metadata, tags and item’s
description and tags turn into a vector signifying the latent
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FIGURE 5. Sensitivity analysis of TF-IDF vs precision.

embedding of the user’s and item’s. Since the model is a pre-
trained model, for a new word that does not exist in theGloVe
embedding, a new vector equal to embedding size is created
with zeros initialized. These are fed through series of 1D
convolution and pooling operations to learn most significant
feature. LSTM network is employed to encode sentences to
compute their semantic similarity. This network uses hidden
vectors of the sentences to work out the Manhattan distance
between them to gauge the similarity between the two sen-
tence pairs.

C. EXPERIMENTAL SETUP
To evaluate the performance of the proposed technique
against other recommendation techniques, the data is divided
into training, test set and validation set by randomly splitting
the data into a training set (60%), a test set (20%) and a
validation set (20%) to tune the hyperparameters. The results
stated constitute the average of 10 experiments conducted
and the training lasts for 100 epochs. The performance of the
algorithm is tested for varying values of top-K neighbours
results of which are discussed in Section IV-F.

To produce vectors, a pretrained GloVe embedding model
is employed with input length of word set to 30. It encodes
each word into a 300 element vector. These vectors are fed
to a 1 layer-CNN having 300 filters and activation function
ReLU , later succeeded by one maxpooling layer and one
LSTM layer. This network helps transform word vectors into
sentence embedding with parameters as shown in Figure 6.
GCN is implemented using PyTorch, with batchsize=128

and learning rate=0.001. The model is optimized using Adam
optimizer to update all parameters during training phase.
The maximum number of node neighbours in GCN is set to
25 and similarity threshold is limited to 0.8. This proves to be
a reasonable tradeoff and relegates the neighbourhood that
results in a computational efficiency. To incorporate higher
hop neighbours, the depth of neighbourhood is set to 2. The

FIGURE 6. Model parameters using GloVe embeddings.

size of the hidden layer is equal to embedding size with ReLU
as activation function for each layer.

For training of neural network, the model parameters are
initialized using Gaussian distribution. The embedding size is
varied through the values of [8, 16, 32, 64, 128]. The size of
the hidden layer is the same as that of embedding dimension
with ReLU as activation function. The learning rate is set to
0.001, the regularization coefficient λ is 0.002, and the batch
size is 128.

An observed interaction is treated as a positive sample and
an absence of an interaction as a negative sample. For training
purposes, one negative instance for 5 positive instance is
sampled. The training is stopped when the RMSE continues
to increase for 5 successive epochs.

To simulate cold-start scenario, 50% of bridge users are
simulated to be cold-start users (specifically, 30% are set
for test users and 20% are set for validation of the results).
The remaining 50% is used for training purposes. Since the
cross-domain mapping function is to be learnt on overlap-
ping users therefore their interactions in target domain are
masked. To create an even distribution, 50% of training set
bridge users are sampled randomly. Splitting the overlap-
ping users into training, testing and validation set by the
ratio of 50%-30%-20% and random sampling makes a fair
distribution for training and testing. To further evaluate the
performance, we simulate a variable cold-rate, which is used
to describe the level of cold-start scenario (the larger the
value, the higher the degree of cold-start). The fraction of
these items is varied through 5%, 10%, 20% and 30% of the
total data records and sampled repeatedly 10 times to generate
different cold-start users sets.

D. BASELINES
To make a reasonable and fair comparison, the effectiveness
of the proposed technique is established with the following
renowned research baselines in the paradigm of cross-domain
RSs. These baselines implement deep neural network and
matrix factorization techniques as their strengths to design
recommendation algorithm.

• EMCDR [16] : Embedding and Mapping framework
for Cross-Domain Recommendation is a cross-domain
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TABLE 2. HR scores @ varying holdout percentages on Amazon datasets using proposed algorithm.

recommendation model that employs a Linear Matrix
Translation (LIN) and then a Multilayer Perceptron
(MLP) to learn latent space mapping through vector
pairs of bridge users. This results in two variations of
this technique, MF_EMCDR_LIN that uses MF as its
latent factor model and a linear cross-domain mapping
function and MF_EMCDR_MLP, that adopts MF as its
latent factor model, but has an MLP based cross-domain
mapping function.

• GCCA-ISSM [23]: Cross-domain recommender system
using generalized canonical correlation analysis exploits
user’s demographic data, ratings and reviews to build
a user profile. User’s latent features are learnt using
canonical correlation analysis to provide better recom-
mendations for new users.

• DHCD [22] : Deep Hybrid Cross-Domain Model gen-
erates user and items latent representation by modelling
user’s ratings and reviews. These domain indepen-
dent latent representations are then fused with domain
specific representations to transfer knowledge across
domains which will serve as a function to predict pref-
erences for new users.

• CDLFM [29]: Cross-Domain recommendation [21] for
cold-start users via Latent Feature Mapping uses the
three kinds of similarities to identify neighborhood of a
user. These neighbours are later used to learn a mapping
function for a coldstart user through MLP and GBT
(Gradient Boosting Trees).

E. PERFORMANCE METRICS
The proposed technique is evaluated using RootMean Square
Error (RMSE) and Mean Absolute Error (MAE). These two
metrics are conventionally used to evaluate RSs [1]. RMSE
signifies how closely the predicted rating matches with the
actual rating. Mathematically, it is given by:

RMSE =

√√√√ ∑
yuiϵTE

(
yui − ŷui

)
|TE |

(14)

where, yui is the actual rating for a test record belonging to
test dataset TE whereas ŷui is the predicted rating and |TE |
is the total number of test ratings. MAE is the average of all
the absolute differences of the actual ratings to the forecasted
ratings. The lower the MAE score, the closer the predicted
ratings are to the actual ratings. MAE is computed using the

following formula:

MAE =

∑n
i=1 |yui| − |ŷui|

n
(15)

where, yui is the actual rating for an item i whereas ŷui is
the predicted rating and n is the total number of items being
evaluated. Even though both the terms signify the strength of
recommendation accuracy of a recommendation technique,
the RMSE penalizes the term more than MAE when the error
is high.

The RMSE and MAE analyse the results from the per-
spective of rating accuracy considering the historical data,
but they do not give an insight into whether right prefer-
ences were made for the user or not. Alternative metrics that
reflect effectiveness of choices made suiting to the user are
HitRatio@K (HR) and Normalized Discounted Cumulative
Gain (NDCG@K). HR signifies if a target item was present
or not in the ranked list of items ‘K’, that the recommendation
model produced or not. The presence marks a ‘hit’ whereas
absence marks a ‘miss’. Mathematically, represented as,

HitRatio @ K ==
Number of hits in K

|T |
(16)

where, K is the ranked list of items and T denotes the number
of interactions in the test set. Since HR only checks the
presence of an item in the ranked list irrespective of its rank
therefore nDCG@K is measured to assess the rank of the
‘hit’. It is a rank-sensitive quality metric that assigns higher
scores to hits that are top ranked items in the list. nDCG can
be perceived as a relevance score for items that made to the
recommendation list. nDCG is a ratio of Cumulative Gain
(CG) to Ideal Cumulative Gain where CG is a sum of the total
relevance scores of all the items in the recommendation list
and DCG takes into account the rank of the result controlled
in logarithmic factor.

CDk =
k∑
t=1

reli

DCGk =
k∑
t=1

2reli−1
log2(i+ 1)

nDCG@k =
DCGk
IDGCK

(17)

where, IDCG is the maximum possibleDCG for a given set of
results in the test set. BothHR and nDCG requires generating
top k items for a user. Top K recommendations are made by
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FIGURE 7. Top K performance of all methods on Amazon Datasets w.r.t hitRatio@K and nDCG@K.

FIGURE 8. MAE and RMSE performance comparison with baselines using Amazon Datasets.

intentionally removing an item for a user in training set and
during testing phase checking if that item is present in the
recommendation list or not.

Precision signifies the proportion of positive identifica-
tions that were actually correct. Precision is given by,

Precision =
TPK

TPK + FPK
(18)

where TPK , FPK are true positive and false positive items in
the Top-K recommendation list respectively.

F. RESULTS AND ANALYSIS
The proposed technique is evaluated on the domains of
benchmark dataset Amazon using different holdout percent-
ages (10%, 20%, 30%, 40% and 50%). The richer domain
Amazon-Movies is chosen as source domain while keeping
sparser domains Amazon-Books and Amazon-Music as tar-
get domains. For example, we can recommend a category of
a book to a user by judging his preference from the genre

of a movie he prefers. If a user shows preferences for sci-fi
movies in movies domain and rates them high, we recom-
mend similar category books to the user even if his taste in
books is sparse. This transfer of knowledge among domains
to judge choices serves to improve recommendation accuracy.
Table 2 records the HitRatio results of the proposed tech-
nique with varying holdout percentages ranging from 50%,
40%, 30% and 20% and different embedding dimensions
k for 8, 16, 32, 64 and 128. A 20% holdout percentage
means 20% data is heldout while rest 80% percent of data
is used for training and validation. This 80% can be used in
ratio of 60% (train) and 20%(validation) or 64%(train) and
16%(validation) etc. Lesser values of holdout percentages
results in better HR scores within the same embedding size
and the performance decreases with increase in the holdout
data percentage. This is because as the percentage of holdout
data increases, the chunk of data available for training and
validation decreases. The proposed technique shows promis-
ing results for 20%, 30% and 40% holdout data percentage
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TABLE 3. MAE performance comparison among baselines with varying sparsity.

TABLE 4. RMSE performance comparison among baselines with varying sparsity.

since more data is available for training and validation. For
k=128 neural embedding layer, the technique trains well and
learnsmore details of latent factors hence achieving improved
performance. To draw comparison with other neural based
recommendation baselines, the hyperparameters are set to
default setting i.e. k=128, minibatch size of 1024, the param-
eter of the neural network are set to Gaussian distribution
with default learning rate=0.001, the regularization parame-
ter=0.001 and epoch=100. These settings were kept constant
to gauge HR@K and nDCG@K performance with baselines
graphically shown in Figure 7. These two metrics are gauged
with the size of the recommendation list. Compared with
other baselines, it is observed that our proposed technique
outperforms EMCDR, GCCA_ISSM, CDLFM, and DHCD.
The size of the recommendation list varies from 1 to 10. The
proposed technique is observed to improve HR@Top10 of
DHCD by 8.52% on Amazon Dataset. The NDCG of our
method at Top10 outperforms DHCD with 13.13% improve-
ment. Compared with the CDLFM model, the HR of our
method at Top10 is improved by 6.69% on Amazon Dataset.
The NDCG of our method at Top10 outperforms CDLFM
with 11.48% improvement. Figure 8 graphically illustrates
the MAE and RMSE performance in comparison with other
baselines.

Table 3 and Table 4 tabulate the comparison of recommen-
dation accuracy in terms of MAE and RMSE of the proposed
technique against other cross-domain models stated in litera-
ture so far. The MAE comparison of the proposed technique
with other crossdomain techniques are drawn keeping spar-
sity values ranging from 10, 20, 30, 40 and 50 as shown in
Figure 8. The overall comparison with other cross-domain
recommendation model exhibits that our approach outper-
forms all baselines by assessing all benchmark metrics. This
establishes the superiority of our technique for sparse sce-
narios. A series of experiments were conducted to study the
impact of neighbourhood size on the performance of the
proposed mode. The value of K is ranged from 10 till 50.
It has been observed that increasing the number of neighbours
in the user-item graph resulted in increased HR and nDCG
showing that similar historical choices continue resulting
in similar future preferences. The best results are observed
at K=40.

V. CONCLUSION
The proposed model employs a graph neural technique to
make rating predictions while utilizing metadata from mul-
tiple domains. This addresses the problem of cold-start in
target domain since a richer domain supplements the data
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adding to the richness of information. MD-GCN empirically
investigates the advantage of fusing metadata through graph
convolution network for recommendation tasks. Particularly,
we have fused the metadata and interaction information
jointly to model a graphical structure. This helps in learn-
ing a user’s representation through hierarchical graph atten-
tion model that also incorporates preferences of likeminded
users. To model user’s preferences, the proposed technique
enforces an attention based mechanism for overlapping users
from both domains for knowledge transfer. This approach
implements GCN framework alongwith utilizing the dense
information in the metadata from both domains to gener-
ate the recommendation list. This considerably reduced the
cumulative prediction error. In addition, the proposed method
is verified to perform well on the coldstart problem. Our
extensive experimental results showed that our technique
outperformed the baselines in terms of the MAE and RMSE
metrics.
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