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ABSTRACT The COVID-19 pandemic presents significant challenges due to its high transmissibility and
mortality risk. Traditional diagnostic methods, such as RT-PCR, have limitations that hinder timely and
accurate screening. In response, AI-powered computer-aided imaging analysis techniques have emerged
as a promising alternative for COVID-19 diagnosis. In this paper, we propose a novel approach that
combines the strengths of Convolutional Neural Network (CNN) and Vision Transformer (ViT) to enhance
the performance of COVID-19 diagnosis models. CNN excels at capturing spatial features inmedical images,
while ViT leverages self-attention mechanisms inspired by human radiologists. Additionally, our approach
draws inspiration from subclinical diagnosis, a collaborative process involving attending physicians and
specialists, which has proven effective in achieving accurate and comprehensive diagnoses. To this end,
we employ an early fusion strategy integrating CNN and ViT, then fed into a residual neural network.
By fusing these complementary features, our approach achieves state-of-the-art performance in accurately
identifying COVID-19 cases on two benchmark datasets: Chest X-ray and Clean-CC-CCII. This research
has the potential to enable timely and accurate screening, aiding in the early detection and management of
COVID-19 cases. Our findings contribute to the growing knowledge of AI-powered diagnostic techniques
and demonstrate the potential for advanced imaging analysis methods to support medical professionals in
combating the ongoing pandemic.

INDEX TERMS Medical image classification, transformer, convolutional neural network.

I. INTRODUCTION
The COVID-19 pandemic is widely recognized as a sig-
nificant public health crisis due to its high transmissibility
and mortality risks. Recent trends have shown a reversal in
death disparities since the end of the first Omicron wave last
March [1]. Especially, the virus remains a significant threat,
claiming more than 400 lives per day nationwide and over
100 lives inMassachusetts last week [2]. Therefore, the recent
resurgence of COVID-19 in some parts of the US necessitates
continued monitoring and implementation of preventive mea-
sures to mitigate the spread of the virus.While widely utilized
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for COVID-19 detection, RT-PCR has certain limitations that
hinder its effectiveness. These include time-consuming pro-
cedures, the possibility of false-negative results, limited avail-
ability of equipment, and stringent testing criteria. These fac-
tors can delay and impede the prompt and accurate screening
of individuals potentially infected with the virus. In response
to these challenges, there is a growing interest in leveraging
AI-powered computer-aided imaging analysis [3], [4], [5] for
COVID-19 diagnosis. By analyzing lung regions in Chest
X-ray (CXR) images and CT scans, these AI-driven systems
aim to provide an alternative and complementary approach
to detecting COVID-19. Developing such machine-driven
instruments is crucial to accurately and efficiently recognize
COVID-19 in diagnostic imagery, helping to overcome the
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limitations of traditional diagnostic methods and enabling
timely and reliable identification of infected individuals.

The Transformer architecture [6], initially developed for
natural language processing, has found application in com-
puter vision tasks due to its unique ability to capture
long-range dependencies and global context information.
This adaptation has given rise to Transformer-based models
like the Vision Transformer (ViT) [7], which offer a com-
pelling alternative to traditional Convolutional Neural Net-
works (CNN) in computer vision. In contrast to CNN, which
relies on a hierarchical feature extraction process to combine
lower-level features and construct higher-level representa-
tions, Transformer-based models leverage the self-attention
mechanism to capture global dependencies among image
patches or pixels. This self-attention mechanism enables
them to effectively model the relationships between dif-
ferent parts of the image, regardless of their spatial prox-
imity. By considering the entire image simultaneously,
Transformer-based models can capture fine-grained details
and exploit long-range dependencies, improving image clas-
sification tasks’ performance. One notable advantage of
Transformer-based models is their scalability, which is par-
ticularly valuable in complex and large-scale visual data
applications. Transformer-based models excel in training on
benchmark datasets [8], [9], enabling them to learn intricate
patterns and generalize well to unseen examples. The abil-
ity of Transformer-based models to capture global context
information and effectively handle large-scale visual data has
opened up new possibilities in computer vision. Applications
such as autonomous driving [10] and satellite imagery analy-
sis [11] benefit from these models’ capabilities, pushing the
boundaries of what is achievable in computer vision tasks.

When attending physicians encounter challenging cases
in subclinical diagnosis, they often seek consultation from
specialists for further diagnosis discussion. This collabora-
tive approach, driven by the expertise of multiple healthcare
professionals, has proven effective in achieving accurate and
comprehensive diagnoses. Motivated by this collaborative
model, we explore the application of ViT and CNN with
transfer learning for medical image analysis. On the one
hand, the ViT model, analogous to a consulting doctor, brings
unique strengths in capturing global contextual information
and learning representations from visual data. On the other
hand, the CNN model, resembling an attending physician,
excels in capturing local patterns and extracting intricate
details frommedical images. Building upon this idea, we pro-
pose a novel hybrid model that synergistically integrates
the strengths of both the CNN and ViT models in medical
image classification. By combining the expertise of these two
models, we aim to improve the accuracy and efficiency of
diagnosing medical conditions based on visual information.
This hybrid approach holds significant promise for medical
image analysis, as it allows for a more comprehensive and
accurate assessment of the underlying conditions. By leverag-
ing the complementary strengths of the CNN andViTmodels,

we can enhance the overall diagnostic capabilities, leading to
improved patient care and treatment outcomes.

In this paper, our contributions are threefold:

• We investigate the performance of state-of-the-art
transformer-based visual classification models on the
ChestXray [12] and Clean-CC-CCII [13] datasets,
which comprise Chest X-ray and CT scan images,
respectively.

• Inspired by the collaborative doctor consultation,
We propose a novel hybrid model incorporating an early
fusion strategy for combining transformer and CNN
features, improving accuracy and efficiency in medical
image analysis.

• We conduct extensive experiments. Our approach
achieves impressive results, with accuracy rates of
98.86% and 95.62% observed on the ChestXray and
Clean-CC-CCII datasets, respectively.

The remainder of this paper is organized as follows.
In Section II, we briefly review methods for COVID-19 diag-
nosis. Then, we present our proposed method in Section III.
Experiments and evaluation are discussed in Section IV.
Finally, conclusions and future work are in Section V.

II. RELATED WORK
In recent years, there has been a surge in the development of
various methods for diagnosing COVID-19, with the primary
objective being the classification of medical cases into differ-
ent categories, such as COVID-19, pneumonia, and normal.
This section reviews relevant research on classification tasks
according to the classes above.

A. CNN METHODS
CNN have significantly impacted medical imaging by lever-
aging their capacity to learn intricate and sophisticated rep-
resentations through data-driven approaches. Jia et al. [14]
proposed a method that addressed the challenge of gradient
vanishing by dynamically combining features from various
layers of MobileNet and ResNet. This approach effectively
preserved important information throughout the network
architecture, leading to improved performance. Song et al.
[15] focused on refining the input data by removing bound-
ary regions and filling in missing areas surrounding the
lungs. They employed a modified ResNet50 architecture
augmented with a feature pyramid network (FPN) module
and a multi-layer perceptron (MLP) for prediction. Barzekar
and Yu [16] proposed a novel CNN architecture called
C-Net for the automated classification of biomedical images,
specifically histopathological images for cancer diagnosis.
The C-Net architecture consisted of multiple CNNs (Outer,
Middle, and Inner) that worked together as feature extractors
to classify images in terms of malignancy and benignancy.
Aytaç et al. [17] presented a novel adaptive momentum opti-
mizer for training CNN in medical image classification. The
adaptive momentum dynamically adjusted the momentum
rate based on error changes, eliminating the need for complex
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hyperparameter tuning. Musallam et al. [18] addressed the
challenges of accurate diagnosis of brain diseases using a
Computer-Aided Diagnosis (CAD) system for magnetic res-
onance imaging (MRI) images. It proposed a three-step pre-
processing approach to enhance the quality of MRI images,
along with a new CNN architecture designed specifically
for diagnosing glioma, meningioma, pituitary, and normal
images.

B. TRANSFORMER-BASED METHODS
Attention-based ‘‘Transformer’’ models have revolutionized
deep learning by capturing long-range dependencies and
learning powerful feature representations. ViT architectures
have emerged as a considerable advancement, replacing
convolutions with image patch sequences and achieving
state-of-the-art performance across computer vision tasks.
Sun et al. [19] proposed a novel pure transformer-based
multi-view network for mammographic image classifica-
tion. Their approach utilized a ‘‘cross-view attention block’’
structure to effectively fuse multi-view information, allowing
for comprehensive analysis of the mammographic images.
Additionally, they introduced a ‘‘classification token’’ mech-
anism to gather all relevant information for making accu-
rate predictions in the final classification task. Xu et al. [20]
introduced a transformer-based multi-modality deep learning
framework designed to effectively fuse multiple sources of
data for skin tumor analysis. Their approach incorporated
clinical images, dermoscopic images, and clinical patient-
wise metadata, enabling comprehensive and informative
analysis for improved skin tumor diagnosis and classifi-
cation. Almalik et al. [21] proposed a novel method called
Self-Ensembling Vision Transformer (SEViT) to enhance the
robustness of ViT against adversarial attacks. SEViT lever-
aged the resilience of initial blocks’ feature representations to
adversarial perturbations and combined multiple classifiers’
predictions with the final ViT classifier to improve robust-
ness. The proposed architecture was evaluated on chest X-ray
and fundoscopymodalities, demonstrating its effectiveness in
defending against various adversarial attacks in the gray-box
setting.

C. HYBRID METHODS
The hybrid models used in medical image classification
have emerged as promising approaches for improving the
accuracy and robustness of diagnostic systems. Several stud-
ies have proposed different hybrid architectures to lever-
age the strengths of CNN and transformers. For instance,
Kumar et al. [22] employed a hybrid CNN approach by inte-
grating a ResNet 152 layer into the CNN architecture.
Kumar et al. [23] introduced PHTrans, a model that com-
bines transformers and CNNs in parallel to capture both
global and local features and achieve superior segmenta-
tion performance. Zhou et al. [24] integrated DHRNet and a
hybrid transformer to extract local and global features, allow-
ing for exploring long-range dependencies. Rocha et al. [25]

proposed a method called Hybrid CNN Ensemble (HCNNE)
that combined features extracted by convolutional neural
networks (CNN) and local binary patterns (LBP) for image
classification. The method utilized an ensemble of multi-
ple classifiers, where the Euclidean distance between LBP
feature vectors and the confidence of CNN features clas-
sified by support vector machines were used as input to
a multilayer perceptron classifier. Additionally, these fea-
tures were used as input for other classifiers to create the
final voting ensemble. Yuan et al. [26] presented CTCNet,
a hybrid model that combines Swin Transformers and Resid-
ual CNNs, effectively blending complementary features
using a cross-domain fusion block. MedViT [27] offerred
a robust CNN-Transformer hybrid architecture specifically
designed for medical image diagnosis. Their model over-
comes concerns related to adversarial attacks and the relia-
bility of deep medical diagnosis systems by leveraging the
local feature extraction capabilities of CNN and the global
connectivity of transformers. Additionally, they introduce
an efficient convolution operation to mitigate computational
complexity, and strategies to learn smoother decision bound-
aries and enhance model robustness. Jang and Hwang [28]
proposed a three-dimensional Medical image classifier called
a Multi-plane and Multi-slice Transformer (M3T) network
for accurate classification of Alzheimer’s disease (AD) in
3D MRI images. The M3T network combined 3D CNN,
2D CNN, and Transformer to leverage their strengths in
representation learning and attention relationships. The 3D
CNN captured local abnormalities using inductive bias, while
the Transformer captured wider region abnormalities without
inductive bias.

III. PROPOSED APPROACH
In this section, we introduce two important components of our
approach: Deep Doctor and Deep Consultation. Deep Doctor
represents our individual deep learning model, while Deep
Consultation refers to the early fusion strategy. Additionally,
we present the Deep Network Architecture, which serves as
the classification model. These components are fundamental
to our method and have significant implications for the over-
all framework.

A. DEEP DOCTOR
1) DenseNet-201
DenseNet-201 [29] is a deep CNN architecture that stands out
for its dense connections between layers. These connections
are designed to improve information flow and maximize
feature reuse, leading to enhanced parameter efficiency and
performance.

The architecture of DenseNet-201 consists of 201 layers,
starting with a convolutional layer and a max pooling layer.
The core building blocks of DenseNet are the dense blocks,
which contain multiple convolutional layers. Within each
dense block, the output feature maps of each convolu-
tional layer are concatenated with the input feature maps
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FIGURE 1. Our proposed approach. The method involves utilizing DenseNet-201 and T2T-ViT models for feature extraction, as shown in the above and
below parts of the images, respectively. The features extracted from the early fusion are then fed into a feedforward network, which includes a skip
connection.

of subsequent layers. This dense connectivity enables direct
access to earlier layer features, facilitating effective informa-
tion sharing and enabling the network to capture fine-grained
details from earlier stages. The transition layers are intro-
duced between dense blocks to manage computational com-
plexity and control the growth of feature maps. Transition
layers employ average pooling and 1×1 convolutional layers
to reduce the dimensionality of feature maps. This reduc-
tion helps to compress and refine the learned representations
while also promoting efficient computation. At the end of
the DenseNet-201 network, a global average pooling layer is
applied. This layer aggregates the feature maps by computing
the average value of each channel across spatial dimensions,
resulting in a global representation of the input image. This
pooling operation helps to capture the most salient infor-
mation from the entire image and facilitates robust feature
extraction. Finally, the aggregated features are fed into a fully
connected layer with a softmax activation function. This last
layer maps the extracted features to predicted class probabil-
ities, allowing the model to make predictions about the input
image’s class label.

Overall, DenseNet-201’s architecture leverages dense con-
nections to facilitate information flow and promote feature
reuse. This design choice improves the network’s abil-
ity to capture fine-grained details and effectively learn
from the input data. The combination of dense connectiv-
ity, transition layers, and global average pooling enables
DenseNet-201 to achieve powerful and accurate image clas-
sification performance.

2) VISION TRANSFORMER (ViT)
The ViT [7] is the first full-transformer model that directly
applies the Transformer architecture to images, enhancing
the spatial relationship among image pixels. The ViT model
takes an input image and splits it into non-overlapping
patches. These patches are then flattened and transformed
into sequences of token embeddings.

The ViT model consists of a conventional transformer
encoder, followed by a linear classification head. The

transformer encoder incorporates multiple transformer
blocks, each containing a self-attention mechanism. This
self-attention mechanism allows the model to selectively
attend to different patches in the input image, capturing
the interdependencies and contextual relationships between
them. The output of the final transformer block is passed to
the linear classification head, which generates a probability
distribution across the potential image classes. This allows the
ViT model to classify the input image based on the learned
representations and relationships captured by the transformer
blocks. By directly applying the Transformer architecture to
images, the ViT model overcomes the limitations of tradi-
tional CNNs by explicitly modeling long-range dependencies
and capturing global context. This approach enhances the
ability of the model to understand the spatial relationships
among image pixels and effectively extract meaningful fea-
tures for classification.

Overall, the ViT model offers a novel and powerful
approach to image analysis, leveraging the strengths of the
Transformer architecture to improve spatial understanding
and achieve state-of-the-art performance in various image-
based tasks.

3) TOKENS-TO-TOKEN ViT (T2T-ViT)
The T2T-ViT [30] architecture introduces a novel approach
to image processing by employing a vision transformer
model. It consists of two key components: the Tokens-to-
Token (T2T) module and the T2T-ViT backbone, which work
together to enhance the model’s ability to extract meaningful
features from images.

The T2T module plays a vital role in structuring the input
image into tokens while capturing local structural informa-
tion. It involves two main operations: Re-Structurization and
Soft Split (SS). In the Re-Structurization step, the image is
divided into fixed-size patches, treating each patch as an indi-
vidual token. This process allows the model to capture local
content present in the image. Subsequently, the SS operation
further splits each patch into multiple sub-tokens, enabling
the model to capture more detailed local information. This

VOLUME 11, 2023 95349



T.-T. Nguyen et al.: Collaborative Consultation Doctors Model

iterative sub-tokenization enhances the model’s capacity to
extract fine-grained features. In the final layer of the T2T
module, a class token and a Sinusoidal Position Embed-
ding (PE) are combined. The class token serves as a global
representation, encapsulating comprehensive image informa-
tion and capturing the overall content and context of the
image. On the other hand, the Sinusoidal Position Embed-
ding encodes the spatial position of each token within the
image, providing the model with an understanding of the rel-
ative spatial relationships between tokens. By incorporating
positional information, the model develops spatial awareness
and can leverage this information during processing. The
T2T-ViT backbone acts as the core architecture that utilizes
the structured tokens generated by the T2T module. It con-
sists of transformer layers, which process the tokens and
extract meaningful representations. The transformer layers
employ self-attention mechanisms to model the relationships
between tokens, allowing the model to capture global context
information. By combining both local and global information
derived from the structured tokens, the T2T-ViT architecture
enables the model to capture intricate details and comprehend
contextual relationships within the image.

This unique integration of the T2T module and the
T2T-ViT backbone empowers the T2T-ViT model to effec-
tively leverage both local and global information from the
image. By capturing fine-grained details and understanding
contextual relationships, themodel achieves improved perfor-
mance across various image analysis tasks. This innovative
architecture expands the capabilities of vision transform-
ers, enabling them to process images with enhanced spatial
awareness and capture rich visual information.

4) TRANSFORMER iN TRANSFORMER (TNT)
TNT [31] model is an architecture that extends the Trans-
former framework by introducing a Transformer block within
each patch of an image. This allows for enhancedmodeling of
the spatial relationships among image pixels, leading to more
detailed and accurate representations.

In the TNT model, the input image is first divided into
non-overlapping patches. Each patch is then flattened and
transformed into a sequence of token embeddings. These
token embeddings serve as the input to the Transformer in the
Transformer block. The Transformer in Transformer block
consists of multiple sub-layers, including a self-attention
mechanism and feed-forward neural networks, similar to
the traditional Transformer. However, an additional sub-
transformer in TNT is embedded within the Transformer
block to capture finer details and interactions between tokens
within each patch. The sub-transformer operates at a smaller
scale, focusing on the interactions among visual words within
a visual sentence. Visual sentences are created by subdivid-
ing each patch into smaller sub-patches called visual words.
The sub-transformer independently calculates features and
attention between visual words within each visual sentence.
The shared network in TNT is responsible for computing
the features and attention between visual words. This shared

network ensures consistency and coherence across the visual
words within a visual sentence, capturing relevant informa-
tion and relationships. After processing the visual words
within each visual sentence, the features are aggregated to
represent the entire patch. This aggregation step combines
the detailed features extracted from the sub-transformer with
the global context captured by the conventional Transformer
layers. The final output of the TNT model is obtained by
applying a linear classification head to the features from
the last Transformer block. This classification head gener-
ates a probability distribution across potential image classes,
enabling the model to make predictions.

By incorporating a Transformer in a Transformer block, the
TNT model enhances the ability to capture intricate spatial
relationships among image pixels. It enables the extraction
of fine-grained details and improves the overall representa-
tion of the input image. This approach has shown promis-
ing results in various computer vision tasks, demonstrating
its potential for advancing the field of image analysis and
understanding.

5) PoolFormer
PoolFormer [32] introduces the MetaFormer concept, which
modifies the encoder part of the vision transformer archi-
tecture by replacing the token mixer with a PoolFormer
module while keeping the other components unchanged. The
PoolFormer module consists of a parallel set of multi-head
self-attention layers that operate on patch embeddings, fol-
lowed by position-wise feedforward networks.

In the PoolFormer module, each multi-head self-attention
layer processes the patch embeddings, capturing the rela-
tionships between patches. These self-attention layer out-
puts are then pooled across the patch dimension using a
pooling operation. This pooling operation aggregates the
information from different patches and produces a fixed-size
representation for each patch. The resulting patch represen-
tations obtained from the pooling operation are then passed
through a set of transformer layers. These transformer lay-
ers further refine the visual representation by integrating
local and global information within the patches. The trans-
former layers utilize self-attention mechanisms to model
the dependencies between patches and capture contextual
relationships.

By employing the PoolFormer module in the MetaFormer
architecture, the encoder part of the vision transformer is
transformed. The module effectively captures the relation-
ships between patches and generates informative representa-
tions by pooling and integrating information from multiple
patches. This modification enhances the vision transformer’s
ability to process images and extract meaningful visual
features.

6) CONFORMER
The Conformer [33] architecture is a unique dual net-
work structure that combines convolutional operations and
self-attention mechanisms to leverage both local features and
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global representations. It consists of two main branches: a
convolutional neural network (CNN) branch and a trans-
former branch.

The CNN branch focuses on capturing local contextual
information by applying convolutional operations to the input
data. Convolutional layers are adept at extracting spatial fea-
tures and capturing local patterns within the data. This branch
helps the Conformer model capture fine-grained details and
local relationships. On the other hand, the transformer branch
is responsible for capturing global contextual information by
utilizing self-attention mechanisms. Self-attention allows the
model to analyze the relationships between different elements
in the input sequence and capture long-range dependencies.
By incorporating self-attention, the transformer branch can
capture global patterns and establish contextual relationships
across the entire input. The Conformer architecture employs
a stem module called the Feature Coupling Unit (FCU) to
integrate local features and global representations effectively.
The FCU progressively fuses the feature maps obtained from
the CNN branch with the patch embeddings from the trans-
former branch. This interactive fusion process ensures that
both local and global information are properly combined,
enhancing the overall representation learning capability of
the model. In terms of classification, the Conformer archi-
tecture utilizes the features obtained from the CNN branch
and feeds them into one classifier. Simultaneously, it extracts
the class token from the transformer branch and feeds it into
another classifier. This dual classifier setup allows the model
to leverage both local and global information for accurate
classification.

By combining the strengths of the CNN and transformer
branches, along with the integration provided by the FCU,
the Conformer architecture can effectively capture both local
and global contextual information. This makes it well-suited
for various tasks that require a comprehensive understanding
of the input data, such as image classification and sequence
modeling.

B. DEEP CONSULTATION
We argue that DenseNet-201 and T2T-ViT have their own
respective strengths. DenseNet-201 employs dense blocks
that enable efficient learning of local features, allowing it
to capture fine-grained details in the images. On the other
hand, T2T-ViT utilizes self-attention mechanisms to model
relationships between image patches, enabling it to capture
long-range dependencies and understand the global context
of the image. By fusing the features extracted from both
models through early fusion, we obtain a more compre-
hensive representation of the input image. This combined
representation incorporates both the detailed local features
learned by DenseNet-201 and the holistic global context
captured by T2T-ViT. The early fusion strategy not only
facilitates the integration of these complementary features but
also enhances the overall performance of the classification
model in subsequent tasks. The resulting fused features pro-
vide a more robust and informative representation, leading

to improved accuracy and effectiveness in medical image
classification and analysis.

We consider the output tensor Fd of DenseNet-201, which
represents the features extracted from the last fully connected
layer. This tensor has a shape of (N ,Cd ), where N is the
number of samples and Cd is the number of output features.
Similarly, we denote the output tensor of T2T-ViT as Ft .
Unlike DenseNet-201, T2T-ViT does not have a conventional
fully connected layer. Instead, it incorporates a class token
and a sinusoidal position embedding, which are concatenated
with the final output of the Tokens-to-Token module. The
resulting tensor Ft has a shape of (N ,Ct ), where Ct corre-
sponds to the shape of the flattened feature maps generated by
the Transformer encoder. To combine the information from
DenseNet-201 and T2T-ViT, we concatenate the two tensors
along the feature dimension. This fusion operation results in
a new tensor F with a shape of (N ,Cd+Ct ), which represents
the fused feature. Mathematically, we define the early fusion
as the concatenation of Fd and Ft :

F = [Fd ,Ft ] ∈ RN×(Cd+Ct ) (1)

where [, ] denotes the concatenation operation along the fea-
ture dimension.

C. DEEP NETWORK ARCHITECTURE
We introduce a feedforward neural network architecture
for multi-class classification tasks in computer science and
deep learning. Fig. 1 provides an overview of our proposed
method. The architecture begins with an input layer that
receives a 1D tensor containing the fused feature represen-
tation of the training data. This tensor is then passed through
a fully connected layer with 1024 units, establishing connec-
tions between each unit and every element of the input tensor.
The output of the fully connected layer is then processed by
a rectified linear unit (ReLU) activation function, introducing
non-linearity to the network and enabling it to learn complex
patterns and representations. To enhance performance and
prevent overfitting, batch normalization is applied, normaliz-
ing the input to each neuron within mini-batches by adjusting
the mean and variance. To facilitate learning of residual map-
ping and identity mapping, another fully connected layer with
1024 units is utilized. The output of this layer is concatenated
with the previous layer’s output, forming a residual con-
nection. This mechanism allows the network to capture the
difference between the input and the desired output (residual
mapping) while preserving important information from the
input (identity mapping). The concatenated tensor resulting
from the residual connection is then passed through another
ReLU activation function, further enhancing the non-linear
representations learned by the network. Additionally, a skip
connection is incorporated by concatenating the output of
this activation function with the input tensor, ensuring the
preservation of original input information and facilitating
better information flow through the network. Finally, the con-
catenated tensor undergoes further processing through a fully
connected layer with a softmax activation function. This layer
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generates a probability distribution over the different classes,
enabling the network to classify the input into the appropriate
class. In summary, our proposed architecture includes input
processing, feature extraction, non-linear transformations,
residual connections, skip connections, and final classifica-
tion. This approach aims to improve the network’s ability
to capture complex patterns and make accurate multi-class
classifications.

IV. EXPERIMENTS AND EVALUATION
A. EXPERIMENTAL SETTINGS
1) DATASETS
We adopt two datasets, ChestXray and Clean-CC-CCII for
the benchmark.

ChestXray [12] contains chest X-ray images of patients
with COVID-19, pneumonia, and normal lungs. ChestXray
dataset includes 6,432 X-ray images divided into two subsets.
In particular, the training and testing set comprise 5,144 and
1,288 images, respectively.

Clean-CC-CCII [13] comprises 340,190 slices/images for
COVID-19 and normal encompassing both normal and com-
mon pneumonia cases. Clean-CC-CCII dataset is split into
training and testing sets. In particular, the training contains
272,117 slices from 3,195 scans of 2,164 patients, and the
testing set incorporates 68,073 slices from 798 scans of
534 patients.

2) EVALUATION METRICS
We use four metrics to evaluate the model performance:

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1 − score =
2 × (Precision× Recall)
Precision+ Recall

(4)

Accuracy =
TN + TP

TN + TP+ FN + FP
(5)

True Positive (TP) and True Negative (TN) represent
the number of correctly classified COVID-19 and non-
COVID-19 scans, respectively. On the other hand, False
Positives (FP) and False Negatives (FN) correspond to
misclassified COVID-19 cases and non-COVID-19, respec-
tively. The evaluation of ChestXray and Clean-CC-CCII
datasets compromise both normal and pneumonia for the non-
COVID-19 class. Additionally, the Accuracy is calculated as
the macro-averaging value for all test data, and it serves as an
evaluation metric of the model’s overall performance.

B. IMPLEMENTATION DETAILS
We adopt a multi-GPU training strategy and employ the
MMClassification Toolbox and PyTorch libraries for train-
ing our classification models. Initially, we train individ-
ual models using MMClassification, leveraging pre-trained
DenseNet201 and T2T-ViT models as feature extractors.

We enhance these models by adding fully connected lay-
ers with residual connections, batch normalization, dropout,
and activation functions, as described in Section III-C. The
models are compiled with an Adam optimizer and utilize the
Cross-Entropy loss function. During training, we pro-
vide the training features and labels, specify the batch size
and the number of epochs, and perform a 20% validation
data split from the training set. The best model weights
are automatically saved if they lead to improved validation
accuracy at each epoch.

C. QUANTITATIVE ANALYSIS
1) EXPERIMENTAL RESULTS
We conduct an extensive analysis of the ChestXray dataset
and the results, as shown in Table 1, including accuracy,
precision, recall, and F1-score. These metrics serve as crit-
ical indicators of the model’s effectiveness in classifying
COVID-19, normal, and pneumonia cases. Among the mod-
els, the T2T model achieved an accuracy of 88.51%. While
its precision of 93.89% suggests a high level of correctness
in positive predictions, its relatively lower recall of 81.6%
implies a significant number of missed positive cases. Con-
sequently, the F1-score of 85.9% reveals a moderate overall
performance. In contrast, the ViT model demonstrated supe-
rior performance with an accuracy of 92.24%. Its balanced
precision of 91.59% and recall of 92.97% indicate its ability
to correctly identify positive cases while minimizing false
positives and false negatives. The F1-score of 92.24% reflects
its strong overall performance. The DenseNet-201 model
achieved a slightly higher accuracy of 93.18% compared
to the ViT. It consistently exhibited stable precision, recall,
and F1-score values of around 93%, highlighting its relia-
bility in classifying the cases. The T2T-ViT model further
improved the performance, reaching an accuracy of 95.42%.
However, its relatively lower recall of 76.04% suggests the
presence of a notable number of missed positive cases. Con-
sequently, the F1-score of 81.59% indicates a comparatively
lower overall performance compared to other models. On the
other hand, the PoolFormer model showcased strong perfor-
mance, attaining an accuracy of 97.13% and an impressive
F1-score of 97.26%. Its high precision and recall values
indicate its effectiveness in accurately identifying positive
cases while maintaining a low rate of false positives and false
negatives. Similarly, the Conformer model exhibited notable
performance with an accuracy of 97.28% and an F1-score of
97.49%. Its high precision and recall values further reinforce
its ability to classify cases accurately.

Our proposed method showcases outstanding performance
across precision, recall, and F1-score metrics, providing
strong evidence for the effectiveness of our early fusion
approach in the ChestXray dataset. It outperforms all other
methods with an exceptional accuracy of 98.86%. Further-
more, it exhibits high precision, recall, and F1-score values
consistently around 98%, indicating its superior capability
in accurately classifying COVID-19, normal, and pneumonia
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TABLE 1. Experimental results on the ChestXray dataset. The best results
for each evaluation are shown in red.

cases. The comprehensive analysis presented in Table 1
corroborates the exceptional performance of our proposed
model, as evidenced by its top-ranked accuracy, precision,
recall, and F1-score metrics. These results affirm its efficacy
in accurately classifying chest X-ray images in the ChestXray
dataset.

2) COMPARISONS TO THE STATE-OF-THE-ART METHODS
We compare our proposed model with other state-of-the-art
methods on the Chest X-ray dataset, as presented in Table 2
and Table 3 to provide a comprehensive evaluation. The
Late Consultation and Early Consultation methods achieved
accuracy scores of 93.94% and 95.03%, respectively, indicat-
ing their reasonable performance but falling slightly behind
the top-performing models. While these models demonstrate
solid performance, they exhibit lower recall scores, suggest-
ing potential limitations in accurately identifying positive
cases, which is critical in medical imaging applications.
In contrast, our proposed method stands out by achieving the
highest accuracy of 98.21% along with impressive precision,
recall, and F1-score values. This indicates its superior per-
formance in accurately classifying the different categories of
chest X-ray images.

Moving beyond the ChestXray dataset, we also evalu-
ated the performance of our method on the Clean-CC-CCII
dataset. Our approach showcases outstanding performance,
achieving an accuracy score of 95.62% along with high
precision, recall, and F1-score values. Comparatively, the
CovidNet method serves as a baseline, performing well with
an accuracy score of 88.69%, precision of 90.48%, recall of
88.08%, and F1-score of 89.26%. However, the COVID-AL
method exhibits lower performance metrics, and the ViT
method demonstrates slightly lower performance metrics
compared to the top-performing methods.

In summary, our proposedmodel demonstrates exceptional
performance on both the ChestXray and Clean-CC-CCII
datasets, surpassing other state-of-the-art methods in terms
of accuracy, precision, recall, and F1-score. This reinforces
the effectiveness of our approach in accurately classifying
COVID-19, normal, and pneumonia cases in various medical
imaging datasets.

D. QUALITATIVE ANALYSIS
We utilize t-Distributed Stochastic Neighbor Embedding
(t-SNE), a non-linear dimensionality reduction technique

TABLE 2. Comparison of state-of-the-art methods on the ChestXray
dataset. The best results for each evaluation are shown in red.

TABLE 3. Experimental results on the Clean-CC-CCII dataset. The best
results for each evaluation are shown in red.

used to visualize high-dimensional data in a low-dimensional
space while preserving the local and global structure
of the data. As illustrated in Fig. 2, we reveal that
DenseNet-201 generates clusters with no significant corre-
lation, resulting in difficulty in visually distinguishing data
points and possible confusion in interpretation. Although
T2T-ViT refers to the ability to separate different cate-
gories in visually clear and easy to interpret, overlapping are
still presented between COVID-19 and pneumonia classes.
In contrast, the fused feature demonstrated a powerful dis-
tribution, which indicates well-separated, distinct clusters
with minimal overlap. A powerful distribution in a clus-
ter implies that the underlying features are highly infor-
mative and relevant for distinguishing between different
groups or categories. Accordingly, fused features prove effec-
tive in the Linear SVM model and the feedforward neural
network.

On the other hand, T2T-ViT demonstrates an improved
ability to separate different categories in a visually clear
and interpretable manner. However, despite its strengths,
there are still regions of overlap between the COVID-19 and
pneumonia classes. This suggests that T2T-ViT may face
difficulties in fully disentangling the complex visual charac-
teristics exhibited by these classes, possibly due to the similar
radiological manifestations they can share.

In contrast, the fused feature representation exhibits a
powerful distribution of clusters, showcasing distinct and
well-separated groups with minimal overlap. This indicates
that the fused features successfully capture highly informa-
tive and discriminative characteristics, enabling a more reli-
able differentiation between different groups or categories.
Notably, the effectiveness of the fused features is evident in
their integration into the Linear SVM model and the feed-
forward neural network, where they contribute to improved
classification performance.

We continue with the analysis of chest X-ray images illus-
trated in Fig. 3. The proposed model exhibits noteworthy
proficiency in accurately predicting COVID, normal, and
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FIGURE 2. t-SNE visualization of extracted features from individual models and fused features on the ChestXray testing set.

pneumonia classes, underscoring its discriminative capabil-
ity among these categories. Nevertheless, it is essential to
recognize that the model occasionally produces inaccurate
predictions, specifically in misclassifying pneumonia and
normal chest X-ray images. This observation implies that
the model encounters difficulties in effectively capturing the
subtle distinctions between these two classes, which could be
attributed to overlapping radiographic features or variations
in image quality.

Furthermore, when considering the diagnosis of
COVID-19, normal, and pneumonia cases using CT scans,
the level of confusion among these categories becomes
more pronounced compared to chest X-ray images. This
increased confusion arises from the shared visual character-
istics observed in COVID-19 and pneumonia cases, such as
ground-glass opacities, consolidation, and interstitial thick-
ening, which pose challenges for accurate differentiation.
In contrast, normal CT scans typically do not display any
abnormal findings. The instances of confusion depicted
in Fig. 4 provide valuable insights into the complexities
encountered during the diagnostic process, underscoring the
importance of further advancements to enhance the model’s
performance and reliability in accurately classifying such
intricate scenarios.

In conclusion, the utilization of t-SNE visualization and
in-depth analysis of the model’s performance highlights the
strengths and limitations of different approaches. The find-
ings underscore the significance of advancing the fusion
of features from diverse models to improve the accuracy
and reliability of medical image analysis. Furthermore, they
emphasize the ongoing need for refinement and augmentation
of existing models to effectively address the challenges posed
by complex imaging datasets in medical diagnosis.

E. ABLATION STUDY
The ablation study conducted in Table 4 aimed to investi-
gate different combinations of hybrid CNN and Transformer
features for the classification of chest X-ray images. The
results provide valuable insights into the performance of
these combinations and help inform the proposed approach,

TABLE 4. Ablation study comparing fused features with SVM to the
proposed method. The best results for each evaluation are shown in red.

which replaces the SVM component with a residual neural
network.

The combination of Poolformer and HRNet achieved an
accuracy of 88.98%, demonstrating its effectiveness in cor-
rectly classifying the majority of test samples. It exhibited
balanced precision, recall, and F1-score values, indicating a
good trade-off between accurately identifying positive cases
and minimizing false positives and false negatives. Similarly,
the TnT and DenseNet201 combination achieved a slightly
higher accuracy of 89.67%with comparable precision, recall,
and F1-score values. Further improvement was observed
with the Poolformer and DenseNet201 combination, which
attained an accuracy of 90.37%. This combination show-
cased high precision, recall, and F1-score values, highlighting
its effectiveness in accurately classifying COVID-19, nor-
mal, and pneumonia cases. The successful integration of
Poolformer and DenseNet201 resulted in enhanced perfor-
mance, leveraging their complementary features. The ViT
and DenseNet201 combination achieved an even higher accu-
racy of 94.10%. It consistently demonstrated precision, recall,
and F1-score values around 94.00%, indicating its robust per-
formance in accurately classifying chest X-ray images. This
combination effectively leveraged the powerful vision-based
capabilities of the ViT model alongside the dense feature
extraction of DenseNet201.

The combinations of Conformer with PoolFormer,
Conformer with HRNet, and Conformer with DenseNet201
achieved high accuracies of 96.04%. 96.04% and 96.12%,
respectively. These combinations showcased the effectiveness
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FIGURE 3. Illustration of cases on the X-ray images predicted by our proposed method. The first row shows the
visualizations of accurate predictions, while the second row displays the opposite.

FIGURE 4. Illustration of wrong predictions on CT scan images predicted by our proposed method.

of integrating the Conformer model, known for capturing
long-range dependencies, with different CNN-based models.
The resulting models exhibited exceptional precision, recall,
and F1-score values, underscoring their ability to classify
chest X-ray images accurately.

The combination T2T-ViT of DenseNet201 demonstrated
superior performance, achieving an accuracy of 97.75%. Its
high precision, recall, and F1-score values showcased its
effectiveness in correctly identifying positive cases while
minimizing false positives and false negatives. This com-
bination harnessed the strengths of both T2T-ViT and
DenseNet201 models, resulting in significant improvements
in classification performance. Based on the insights gained
from the ablation study, the proposed approach outperformed
all other combinations, achieving the highest accuracy, pre-
cision, recall, and F1-score of 98.21%. Replacing the SVM
component with a residual neural network proves to be a
successful modification, enhancing the model’s classification
performance.

V. CONCLUSION
In this paper, we introduce a novel approach that combines
CNN and ViT techniques to enhance the performance of

COVID-19 diagnosis models. Given the limitations of tradi-
tional diagnostic methods in the timely and accurate screen-
ing of potentially infected individuals during the COVID-19
pandemic, AI-powered computer-aided imaging analysis
techniques have emerged as promising alternatives. By har-
nessing the spatial feature extraction capabilities of CNN and
the self-attention mechanisms of ViT inspired by human radi-
ologists, our proposed hybrid model achieves state-of-the-art
performance in accurately identifying COVID-19 cases on
two benchmark datasets, Chest X-ray and Clean-CC-CCII.
The fusion of CNN and ViT features enables a more com-
prehensive analysis of medical images, facilitating improved
diagnostic accuracy and aiding in efforts to combat the ongo-
ing pandemic.

In the future, we will focus on further advancing the
proposed hybrid approach for COVID-19 diagnosis. The
effectiveness of the feature fusion strategy of CNN and ViT
should be explored and optimized in different scenarios and
datasets. Additionally, efforts should be made to expand the
evaluation to larger and more diverse datasets to assess the
generalizability of the hybrid model. Furthermore, incor-
porating additional clinical and demographic data into the
model can potentially enhance its diagnostic capabilities and
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provide more valuable insights. By continued research and
refinement of the proposed approach, we can contribute to
the collective endeavors to mitigate the impact of the ongoing
COVID-19 pandemic and improve the effectiveness of diag-
nostic methods in similar public health crises.
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