
Received 18 July 2023, accepted 14 August 2023, date of publication 21 August 2023, date of current version 5 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3307026

Dynamic, Context-Aware Cross-Layer
Orchestration of Containerized Applications
RUTE C. SOFIA 1, (Senior Member, IEEE), DOUG DYKEMAN2, PETER URBANETZ2,
AKRAM GALAL 1, (Member, IEEE), AND DUSHYANT ANIRUDHDHABHAI DAVE 1
1fortiss GmbH, Research Institute of the Free State of Bavaria for Software Intensive Systems and Services, 80805 Munich, Germany
2Zurich Research Laboratory, IBM Research Europe, 8803 Zürich, Switzerland

Corresponding author: Rute C. Sofia (sofia@fortiss.org)

This work was supported in part by the Horizon Europe Cognitive Decentralised Edge Cloud Orchestration (CODECO) under Grant
101092696, and in part by the fortiss-IBM Center for Artificial Intelligence (C4AI) EDGE.

ABSTRACT Container orchestration handles the semi-automated management of applications across Edge-
Cloud, providing features such as autoscaling, high availability, and portability. Having been developed for
Cloud-based applications, container orchestration faces challenges in the context of decentralized Edge-
Cloud environments, requiring a higher degree of adaptability in the verge of mobility, heterogeneous
networks, and constrained devices. In this context, this perspective paper aims at igniting discussion on
the aspects that a dynamic orchestration approach should integrate to support an elastic orchestration of
containerized applications. The motivation for the provided perspective focuses on proposing directions to
better support challenges faced by next-generation IoT services, such as mobility or privacy preservation,
advocating the use of context awareness and a cognitive, cross-layer approach to container orchestration to
be able to provide adequate support to next-generation services. A proof of concept (available open source
software) of the discussed concept has been implemented in a testbed composed of embedded devices.

INDEX TERMS Context-awareness, IoT, edge computing, machine learning, data observability.

I. INTRODUCTION
Internet-based services, and in particular Internet of Things
(IoT) services provide a way to exploit data across differ-
ent vertical domains to reach a higher degree of efficiency.
Up until recently, IoT data processing and storage has been
mostly based on Cloud solutions, which implied transmit-
ting all the collected data from IoT devices to the Cloud.
However, the increasing amount of generated data and the
frequent exchange of such data with the Cloud brought in
new challenges, such as delay in processing data, increase in
energy consumption and costs [1]. Edge computing [2] is a
paradigm that can assist in overcoming some IoT challenges,
by pushing the computation and data processing ‘‘closer’’ to
the end user or to field-level devices. This decentralization
of computation and networking functions in the so-called
Edge-Cloud continuum [3] envisions the distribution of com-
putation, data, storage, and application logic often across

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

multiple operational regions controlled by different service
operators. Today, the spread of different functions across the
Edge-Cloud IoT device is made possible through software-
and hardware-based virtualization solutions that provide
support to easily setup and deploy applications based on
micro-service architectures [4]. The most popular software-
based virtualization approaches considered in the context
of the Edge-Cloud continuum are virtual machines (VM),
managed by and virtual machine monitors (VMM), also
known as hypervisors, and container technologies, such as
Docker [5], [6], [7]. Container technologies and hypervisors
provide the basis to run applications efficiently by supporting
isolation of applications within the system (software and
hardware). The key differences between these technologies
are related to the level of isolation provided. When consid-
ering a container solution such as Docker, the application is
isolated via containerized images, but still shares the same
kernel with different containers on the same host. Hence,
processes running inside containers that compose an appli-
cation can be accessible to the host system, assuming that

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

93129

https://orcid.org/0000-0002-7455-5872
https://orcid.org/0000-0002-3852-7436
https://orcid.org/0009-0006-4599-4776
https://orcid.org/0000-0002-0945-2674


R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

privileges for such an application exist. VM approaches make
anything running inside a VM independent from the host
operating system. At start time, a VM boots a new dedicated
kernel slice for a VM environment, and therefore activates
required operating system processes, which a container-based
approach does not need to have. Performance issues and com-
parisons between different approaches are available in the
related literature [8]. The focus of this paper is on container-
based technologies and, in particular, solutions that manage
container technologies, known as container orchestrators [9].
Due to the flexibility introduced by container-based

approaches, today IoT services that have been traditionally
deployed on the Cloud, e.g., an IoT data analytics service,
can now be easily deployed across Edge-Cloud. Container-
based approaches for IoT enable the exploration of new
computational models and facilitate the deployment of new
business models derived from the expanded data process-
ing capabilities from the Edge to the Cloud [10]. However,
the generalized use of container technologies to support a
fast and flexible deployment of IoT services across Edge-
Cloud is only feasible if there is an adequate control plane,
capable of managing the setup and run-time of containerized
applications. Container orchestrators provide a way to reduce
human intervention and increase efficiency in the overall
setup and lifetime management of IoT services and applica-
tions on Edge-Cloud [11], [12], [13]. Specifically, container
orchestration refers to the handling and scheduling of the
workload (micro-service, component of an application plus
its state) of individual containers for applications based on
micro-service architectures. Some of the tasks handled by
orchestrators include: configuration and scheduling as well
as provisioning of containers; checking availability of con-
tainers; scaling the system to balance application workloads
across the overall infrastructure; allocating resources to the
different containers, and monitoring their health; securing
the communication exchange between containers. The most
popular examples of container orchestrators are Kubernetes
(K8s),1 Docker Swarm (DS)2 [14].
The current generation of container orchestrators addresses

the scheduling and distribution of workload across Edge-
Cloud in a semi-static fashion, relying on a replication
approach. By replication, it is meant that the overall orches-
tration of containerized applications relies on an approach
where the orchestrator is responsible for handling multiple
replicas of the same containerized applications, or of its
containerized micro-services, deciding to activate, or to stop
specific replicas due to a preconfigured set of rules. This
approach is semi-static, requires support by a human operator
for each deployed and active application.

However, next-generation IoT and Internet services rely on
multiple applications across the Edge-Cloud continuum.With
the integration of computation on the Edge and in particular
on the so-called far Edge/deep Edge [15], applications and

1https://kubernetes.io/
2https://dockerswarm.rocks/

their micro-services will be running across mobile, often con-
strained interconnected nodes. Hence, a high degree of vari-
ability in terms of computational and networking resources
has to be supported, and next-generation container orchestra-
tors have to be able to account for such behavior.

Consequently, the motivation that led to this work concerns
the belief that in order for container orchestrators to achieve a
higher degree of elasticity, required in the midst of challenges
such as mobility, intermittent connectivity, and the deploy-
ment of applications across restricted devices, it is important
to devise new features based upon context-awareness, learn-
ing, and adaptation capabilities.
Context-awareness in this paper refers to the ability of a

system to consider knowledge about its environment Con-
text awareness refers to the ability of a system to con-
sider knowledge about its environment, to perform specific
actions [16], [17], to perform specific actions. In this context,
a system can be a computational system; a cyber-physical
system; a set of cyber-physical systems. Usually, contextual
information falls into a wide range of categories such as com-
puting context (e.g., available processors, memory, nearby
resources); user context (e.g., location, user profiles, nearby
users); environmental context (e.g., lighting, temperature,
etc.).

In the context of the perspective provided in this paper,
context-awareness refers to functional and non-functional
requirements provided by the application and system; from
the network; from the user; and from the data. In other words,
container orchestration mechanisms need to take into account
a jointly devised cross-layer approach to provide adequate
support to next generation IoT services and Internet services.

To achieve such a dynamic behavior, this perspective
paper identifies and debates different aspects that need to
be addressed, and proposes a high-level functional design
for a context-aware orchestration, focusing on the following
challenges:

• What kind of context-awareness, which parameters are
relevant to integrate into an orchestrator?

• How to model context in a way that is relevant to be
applied in the overall management of Edge-Cloud appli-
cation lifetime management?

• What is the role ofMachine Learning (ML) in the overall
orchestration process? Which type of learning pattern is
required?

• Is current replication enough, or are there use-cases
where it would be beneficial to fully handover (offload)
application workload and its state from one location to
another?

In order to contribute to answering the aforementioned
research questions, this paper provides the following contri-
butions.

• Provides a novel perspective and promotes a debate
about current container orchestration approaches and
proposes steps to achieve a more dynamic orchestration
behavior, better suited for next-generation IoT services
across the Edge-Cloud continuum.

93130 VOLUME 11, 2023



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

• Proposes the use of context awareness, detailing spe-
cific indicators that can be considered, and the process
to integrate context awareness into reference container
orchestrators.

• Proposes an architecture for dynamic container orches-
tration based on ML and context awareness. integrat-
ing parameters related to application requirements, data
requirements, system requirements, network require-
ments, and user behavior.

• Describes a first proof-of-concept (Movek8s) deployed
in a testbed based on embedded devices, to assist the
reader and developers in understanding the overall pro-
posed concept.

The remainder of the paper is organized as follows.
Section II describes the work related to ours, explaining
our key contributions. Section III covers background on
what is container orchestration; which architectural solu-
tions are available, their advantages, and gaps. Section IV
provides an overview of scenarios across different verti-
cal domains, where container orchestration requires a more
dynamic behavior than the one available today. Section V
addresses the integration of ML on container orchestra-
tors; approaches as of today; why further decentralization
is required in the training and learning process, and which
advantages such decentralization may bring. Section VI dis-
cusses data observability and its role in achieving a robust and
dynamic container orchestration across Edge-Cloud. Section
VII proposes a functional architecture for dynamic orches-
tration, explaining the role of context-awareness; ML-based
orchestration; and how such a framework may interact with
an orchestrator such as Kubernetes. Section VIII describes a
proof of concept, Movek8s,3 implemented on a test bed com-
posed of embedded devices. This proof-of-concept helped us
in understanding the implications of integrating a simple form
of context-awareness (location) into a container orchestrator
(Kubernetes) and is described to assist the reader in under-
standing how the proposed framework may be instantiated
and the purpose of doing so. Section IX concludes the article
and proposes a few directions for future work.

II. RELATED WORK
Current orchestrators such as K8s and DS offer fundamental
features such as (i) resource control, (ii) service scheduling,
(iii) load-balancing, (iv) auto-scaling, and (v) high service
availability. However, they have some limitations such as
lack of elasticity to handle a more variable service behaviour,
or support for a higher degree of automation, i.e., zero
configuration [25]. his section summarizes analysed related
work, highlighting contributions expected by our proposal
concept. To assist the reader, a summary of the analysed
approaches including advantages and disadvantages is pro-
vided in Table 1.
A first category of related literature considers a more

adaptive behavior, based on improvements to orchestration

3https://git.fortiss.org/iiot_external/movek8s

scheduling. For example, Bulej et al. propose a self-adapting
Kubernetes (K8s) scheduler aimed at a better support of time-
sensitive applications [18]. Their approach relies on continu-
ous probing to assess current performance and to allowK8s to
detect and react to failures, in order to satisfy bounded latency
requirements. This brings in some degree of adaptation, but
has the disadvantage of requiring constant probing by the
system. Rossi et al. have proposed a scheduling approach
that takes into account geolocation [19]. Their approach
considers the application of Reinforced Learning (RL) to
dynamically control the number of application replicas across
different locations and address the distribution based on an
optimization problem that takes into consideration network-
aware heuristics, e.g. path or hop delay. Zhang et al. outline a
predictive container autoscaling algorithm (ASARSA) [20].
ASARSA combines Automated Integrated Moving Average
(ARIMA) and Artificial Neural Network models to schedule
containers in a timely manner and improve the accuracy
of scheduling decisions. Although ARIMA scales well with
large-scale datasets, it is limited to linear models [26]. Sim-
ilarly, Toka et al. have also described the application of
ML in the scheduling process for autoscaling aspects, where
the authors have provided a taxonomy for the application
of ML in container orchestration [26]. In this category of
related work, there is a specific focus on improving, via self-
adaptation, an existing feature of K8s, often related with
the support of time-sensitive applications, for instance, auto-
scaling, or load-balancing. This adaptation is often based on
heuristics that take into consideration functional application
or networking requirements, such as latency.

Another category of related work concerns the application
of context-awareness to orchestrators, so that the overall
orchestration process can be adapted to existing conditions,
and the resulting application deployment becomes smoother.
Ogbuachi et al. have presented a debate on the use of context
awareness in the context of edge-based applications on a 5G
infrastructure [21]. The authors defined context as cluster and
network data that should be integrated into the K8s scheduler,
proposing a measure of usability of a node. Specifically, their
algorithm, which has been shown to improve behavior in
comparison to K8s, relies on collected node (e.g., CPU,mem-
ory) and network data (e.g., network delay) and current work-
load, as well as requirements of the applications, to propose
an adaptation while preserving fairness in terms of workload
distribution. Kaur et al. propose a multiobjective scheduling
optimization based on integer linear programming, KEIDS,
which aims to minimize energy usage for Industrial IoT
(IIoT) environments [22]. Context is defined in their work
as node energy usage, Carbon footprint emissions, and also
performance interference, and their algorithm shows relevant
performance improvements in terms of energy consumption
efficiency in comparison to existing K8s schedulers, based on
real-time Google traces. Energy and latency, along with spe-
cific node usage indicators such as CPU and memory, are the
most common context indicators considered in elastic orches-
tration. However, there are other relevant context indicators

VOLUME 11, 2023 93131



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

TABLE 1. Advantages and disadvantages of the related work analyzed and of our proposed concept.

that can be sensed throughout the supported system, beyond
the network and application requirements [23].

In this work, we aim at explaining why it is relevant to con-
sider other types of parameter to define context, in particular
external parameters to a system, and how these parameters
can be modeled and applied in terms of container orches-
tration. It is our opinion that orchestration based on multi-
ple parameters (metadata) that is collected across different
OSI layers can achieve more elasticity and robustness and
is expected to increase the level of efficiency and fairness
of a system in terms of application workload scheduling
decisions.

The proposed approach for a dynamic container orches-
tration to be debated in the next sections aims at supporting
an heterogeneous multi-provider Edge-Cloud continuum by
considering requirements derived from the application and
application based parameters; system awareness (e.g., infor-
mation about the computational status of nodes); network-
awareness (e.g., information about specific available paths or
links); data awareness (e.g., information about the status of
data, such as data freshness). These aspects shall be further
debated in Section VII, where our perspective on the building
blocks of a dynamic container orchestration framework is
debated.

The need to allow K8s to support a higher degree of
decentralization in terms of application workload setup and
run-time, in particular considering more variable environ-
ments across Edge-Cloud, has been the subject of a literature
review in the context of Smart Cities [24]. The authors debate

on the need to consider custom parameters (custom context
indicators) based on networking or application requirements,
to allow K8s to support Edge environments. However, it is
relevant to go beyond a specific domain and to address
this support in a global way, not necessarily tied to a spe-
cific domain, e.g., Manufacturing, Smart Cities, as shall be
explained in Section IV.

III. CONTAINER ORCHESTRATION BACKGROUND
A. TERMINOLOGY
This subsection introduces the terminology used through-
out the paper. An application is defined as being based
on a micro-service architecture, where each component
(micro-service) can be run independently based on container
technology, such as Docker. This is named containerized
micro-service, or containerized application. A containerized
micro-service is therefore composed of the binary system,
workload, data, and state, i.e., a set of global variables defined
in themicro-service and required at run-time. A containerized
application therefore consists of one or several containerized
micro-services which are interconnected via specific inter-
facing policies. The different micro-services may run on the
same device, in a decentralized way (independently, e.g.,
a broker and an application monitor), or in a distributed way,
across different devices or virtual machines. To scale the
application, it is feasible to consider transparent replication
or offloading, also known as relocation.

Replication implies that an application and its micro-
services are copied across different locations, i.e. there are

93132 VOLUME 11, 2023



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

multiple replicas of the application in a system, some active,
and some inactive.With replication, the decision to activate or
stop an application is made based on a specific configuration
and a set of policies. Replication requires a way to synchro-
nize state across an ‘‘old’’ and a ‘‘new’’ environment where
the application is deployed, and implies that even inactive
applications consume resources (at least storage).

Offloading implies moving an application and its micro-
services across different environments. Therefore, with
offloading, the ‘‘old’’ environment, the application workload,
and its state are deleted and not simply made inactive; a copy
of workload and of state, followed by eventual adaptation of
state, is done in the ‘‘new’’ environment.

The applications supported in this process can be stateless
or stateful. Stateless applications do not require data storage
to work. An example is a Web search. Stateful applications
keep state on clusters and require that state (data, status of
the application) to be kept and eventually found.

Edge, Cloud definitions, including the notions of far
Edge/near Edge follow the line of thought being driven in
the European initiative Next Generation IoT (NGIoT),4 and
in particular the vision for smart, decentralized Edge-Cloud
environments for IoT applications [15]. Moreover, as shall be
explained further in the next section, there are a few defini-
tions used throughout the paper that relate with orchestration.
Container follows the definition of K8s, where it is a

package with the overall settings (workload, state, data) to
allow the execution of an application in an independent way.

A Pod follows also the K8s definition, being a logical
wrapper entity for containers to be executed in a K8s clus-
ter. This logical wrapper ‘‘holds’’ a group of one or more
containers with shared storage and network resources, and
also a common namespace, providing a definition to run the
containers.

A cluster corresponds to the logical environment in which
the pods run in a way that has been orchestrated by a human
operator.

Hence, a container runs logically in a pod. A pod may
hold more than one container. A cluster can hold multiple
Pods (not necessarily related); Pods are grouped via logical
boundaries, their namespace. Therefore, a pod is the unit of
replication in a cluster.

The applications across Edge-Cloud are therefore orches-
trated viamultiple clusters, where an Edge environment, or an
Edge-Cloud environment may be inside a single cluster (e.g.,
if under the operation of a same service provider) or of
multiple clusters (e.g., across multi-domain environments).

B. CONTAINER TECHNOLOGY
Container technology such as Docker5 provides a virtual-
ization solution to isolate applications together with their
state, and eventually data, and thus provides the means to run
applications in a way that is independent of the underlying

4https://www.ngiot.eu/
5https://www.docker.com/

FIGURE 1. High-level perspective of the K8s architecture.

Operating System (OS) and hardware. Docker popularized
the container pattern and has been an important player in the
development of the underlying technology, but the container
ecosystem is much broader than just Docker.

The management of containerized applications is per-
formed via container orchestrations, as explained earlier.
Container orchestrators assist in configuring and managing
the overall application setup and life cycle. As has also been
explained, the two most relevant container orchestrators that
exist today are K8s and DS, which are explained further in
the following subsections. Out of these, several other variants
have been derived.

C. KUBERNETES (K8s)
K8s has been affirming itself as the de facto container
orchestrator. As an open source solution, it provides support
for automating the deployment of applications, as well as
supporting an adequate scaling and overall run-time man-
agement. Originally developed for Cloud-based services, K8s
requires some adaptation for Edge-based services.

The general management approach of K8s, for which the
architecture is represented in Figure 1, relies on the concept
of Pod, i.e., an abstraction element to manage one or more
containers, with shared resources and collection of network
configuration of containers that share the same IP and port
space.

The pods are assigned to worker nodes, where a local
daemon (Kubelet) manages the life cycle of the worker nodes.
Kubelet is also the entry point into the K8s control plane. The
control plane is therefore composed of pods that reside on the
main nodes and implement etcd, the scheduler, the controller
manager and the API server.

VOLUME 11, 2023 93133



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

etcd is a key value internal database that represents the
desired state of a cluster, based on the Raft consensus proto-
col [27]. It stores all the information about the pods, in which
node they should run, number of instances, etc.

The controller is the control-plane component (control
loop) that runs processes that continuously check the state of
the cluster, and compare them to the desired state in etc. then
being able to make or to request changes when required.

The controller usually performs rescheduling based on
actions provided by the API server, but it can also execute
the action itself. For example, a controller can scale nodes in
a cluster. When the desired state is updated, the controllers
will detect the mismatch and try to bring the cluster state
to the desired one. K8s has some built-in controllers, but
new controllers can be easily added to a cluster, for example,
by running them as a pod or even outside the cluster.

The desired state of the cluster is defined by the user via
the API server. This component receives the commands of
the user and stores the desired state in etcd.

The scheduler (kube-scheduler) handles the decision on the
pod (new or unscheduled) to node matching, so that Kubelet
(worker nodes) can run the pods. In a first phase (filtering),
the scheduler checks which nodes can meet the scheduling
requirements. These nodes are named feasible nodes. In a
second phase (scoring), the scheduler ranks the feasible nodes
for the ‘‘best’’ pod deployment, calculating scheduling pri-
orities, also defined in the desired state.

Since the scheduling algorithm can be very simple and
since scheduling is an optimization problem, there are some
ways to extend the scheduler so that it handles pod placement
with finer-grained detail. The three main ways to extend the
scheduler are:

• Calculating scheduling and priorities to the scheduler
and recompile it from source code.

• Implement a complete new scheduler that can run
instead or in parallel with the default scheduler.

• Implement a scheduling extender, which provides call-
backs that the default scheduler calls at the end of each
phase of the decision, as proposed by Santos et al. for
the case of latency and bandwidth [28].

Once pods are assigned to nodes, kubelet handles the
execution of pods. K8s does not actually offload application
workload from one node to another; instead, it relies on repli-
cation: the K8s scheduler sends commands to kubelet on the
selected nodes to start the container; and sends commands to
kubelet in the old nodes, to stop containers. The containerized
application state changes, however, since the container in
the new location is not the same as the original. Therefore,
keeping the state adequately synchronized between new and
old containers requires additional configurations from the
cluster administrator.

D. DOCKER SWARM
DS is the native Docker orchestration tool, currently known
as Docker Swarm Mode. While K8s was first designed to

FIGURE 2. High-level perspective of the docker swarm architecture.

manage a single cluster, DS has been devised to support the
management of nodes across multiple clusters.

Similarly to K8s, the DS architecture consists of two types
of nodes: manager and worker nodes. Manager nodes run in
the control planewhichmaintains the desired state of the clus-
ter and assign tasks (containers) to the working nodes, and
these execute the given tasks. On each worker node, an agent
is running and reports its internal state to the manager node,
as illustrated in Figure 2.

The control plane integrates four components:

- Orchestrator: evaluates the state of the cluster by com-
paring it with the desired one and creates the tasks for
each service description.

- Allocator: enables the assignment of tasks to worker
nodes by referring to their corresponding IP address.

- Scheduler: receives the created tasks and checks the
available nodes and its resources to decide where they
will run.

- Dispatcher: connects to each worker node and sends
task assignments to them. Eachworker node periodically
reports its health status to the Dispatcher.

A nodemanager can also be aworker node, and the robustness
of the swarm can be improved by having more than one
manager node. This robustness is widely known as high
availability. The capability of havingmultiple manager nodes
is a feature embedded in Docker Swarm, which uses a Raft
implementation to maintain a distributed and consistent inter-
nal state of the entire swarm. This internal state of cluster is
stored in etcd.

E. COMPARISON OF K8s AND DS
K8s and DS offer common capabilities such as a scheduler to
allocate containers to nodes, high availability, state and health
check of containers, and more. Both solutions use declar-
ative languages, meaning that the human operator defines
the desired state of the clusters via specific tools with some
degree of flexibility and high level of interoperability. Due

93134 VOLUME 11, 2023



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

to its integration into Docker, DS provides an easy way of
working with its API, in contrast to K8s, which introduces its
own CLI, making the learning curve steeper.

K8s implements its functionalities following a modular
approach, where different functional blocks and services
communicate through the API server. If new features (or
third-party applications) are to be considered, then these
require also integration to the API server.

Regarding performance aspects, DS performs better and
adds less overhead, as shown byNickoloff [28], who provides
a performance evaluation for multiple aspects, for example,
the time required to start thousands of containers in both K8s
and DS considering a cluster with one thousand nodes. Pan
et al. experimented with the same tools to investigate the
overhead of each tool compared to containers running directly
with Docker [29]. The results show a larger overhead of K8s.
Beltre et al. also compare the performance of these tools
and against bare metal solutions, but focused on communi-
cations in HPC applications [30]. Their analysis shows that
both K8s and DS can achieve near bare-metal performance
on Remote Direct Memory Access (RDMA) networks, when
high-performance transports are enabled.

To provide a better comparison of key features in K8s and
DS, and how orchestrators should evolve, Table 2 provides
a descriptive comparison of features for K8s and DS, and
proposes a few directions towards a novel generation of
dynamic orchestrators. The proposed features are the basis
for the discussion in the following sections.

F. REPLICATION AND OFFLOADING
Container orchestrators manage containerized applications
based on human intervention, having as a basis replication,
as has been explained earlier.

In Edge-Cloud environments, and in particular in far Edge
environments, replication may create challenges, as devices
are often mobile and resource constrained. Hence, it is also
important to focus on the possibility of offloading and to
debate and evaluate the implications of such a process in the
context of dynamic container orchestration.

Replication focuses on scaling aspects: replicas of micro-
services are deployed in different nodes, and can be activated
or deactivated to achieve a specific performance objective.

Offloading is often used in Edge environments when there
is a need, for instance, to run an application independently
on the Edge to meet latency or other types of requirements.
Offloading implies a load reduction in the former environ-
ment, but requires additional management to ensure stability
of the overall system.

In dynamic environments, for instance, Edge-based envi-
ronments involving mobile devices such asUnmanned Aerial
Vehicles (UAVs), Automated Guided Vehicles (AGVs) or even
cars, there is a need not only to scale up the system, but in
many cases also to scale down resource usage. Adding to this,
environments that encompass multiple clusters belonging to
different operators may require that security parameters be

updated whenever a container is moved to a new domain,
or provisioning of a dynamic and distributed trust manage-
ment scheme.

With the replication model, this implies that during a
scheduling process, which is usually based on a two-phase
filtering and ranking scheme, the eligible nodes are selected
based on available static resources at some instant in time.

Assuming a very dynamic environment, where new pods
are frequently assigned to new nodes to reduce latency, then
it may happen that the system may reach a point where the
existing resources are not enough to meet the current system
requirements. It should be highlighted that K8s never moves
Pods from one node to another to free up resources. In vari-
able mobility environments, offloading seems to be a more
interesting model. However, its application may imply addi-
tional adjustments to the system, and therefore it is important
to understand the offloading requirements and steps. It is also
relevant to understand which indicators (beyond node usage
indicators such as CPU and memory) should be passed to
a container orchestrator scheduler in order to best meet the
requirements of more dynamic environments. This aspect -
which context indicators to consider and why - is addressed
in the next subsection. It is also important to understand
why offloading should occur and the impact of offloading
workload and respective state at an instant in time, as well
as on future system operation.

IV. GUIDING SCENARIOS
The integration of IoT services across different vertical sec-
tors is expected to grow, backed up by the technological
capability to distribute micro-services. A key enabler for this
is the capability to deploy a service in a way that improves
the overall system performance, which is frequently tied to
latency reduction - the closer the workload is to the user
or data source, the smaller the latency. This distribution
of micro-services brings additional advantages, in particu-
lar for scenarios involving mobile devices. A key issue in
this context is mobility of devices that are tied to the user
mobility behavior. Similarly, more advanced scenarios are
based on devices (IoT-Edge) that are mobile independent of
users. In general, providing mobility support is an essential
requirement for future orchestrators. Examples of application
categories that can profit from a more dynamic orchestration
are described in the remainder of this section, including:

– Time-sensitive applications, e.g., IIoT critical applica-
tions that require bounded latency and low jitter.

– Pervasive sensing applications, for example Mobile
Crowd Sensing (MCS) applications that are time sensi-
tive and require low energy consumption.

– Mobile content/video streaming, requiring low latency,
which is supported via storage closer to the user.

A. MANUFACTURING
A worker in a factory relies on a certified device that can be
used only in specific areas, to perform machine maintenance.

VOLUME 11, 2023 93135



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

TABLE 2. Comparison of features between K8s and DS, and expected features in a dynamic orchestrator.

During a specific period of time (in a day, in a week)
the worker relies on the device to collect information on
machines. The worker then moves to another location, leav-
ing the device on the specific premises. On the new premises,
the worker will use another device, but the application must
be transferred in advance.

While the worker is performing his tasks, the orchestrator
predicts (based on learning of the worker mobility patterns)
that the worker will likely move to a new location to continue
his work. Therefore, it triggers a decision to offload the
application to a device at the predicted location to allow work
to continue without interruption. Part of the orchestration

93136 VOLUME 11, 2023



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

implementation will be to ensure that the data required by the
application is available locally. For example, if the applica-
tion includes production monitoring, production plans, and
related data should be prefetched to the device at the new
location.

In this case, the regular mobility of the user represents
a type of user behavior trigger, which can be fed into an
orchestrator to best estimate when and where to offload
the application workload and state, and to ensure that any
required data are available.

B. SMART CITIES
Smart Cities benefit greatly from the use of AI services.
Coupledwith ubiquitous connectivity (LoRa/LoRaWAN, 5G,
etc.), it allows cities to consider different sensing aspects
to improve the overall city planning. An example can be
Audio/Video processing at Edge servers co-located with cam-
eras in parking lots. Today, the collected data is sent to the
Cloud for further processing. Based on Edge computing, it is
feasible to run specific AI/ML in co-location with cameras
and process the data locally.

An adaptation based on specific context indicators brings
benefits in the sense that the application running may adapt,
in specific locations, the running ML model to best suit the
context (e.g., peak number of vehicles in certain seasons) and
the overall needs (e.g., energy reduction, or need to process
data faster during a specific time of the day).

Here, a dynamic orchestrator would support the required
adaptation. For instance, it would be feasible to perform
system adaptation on the Edge nodes to run specific micro-
services based on service or situation needs (e.g., on a camera,
count the number of electric vehicles around; assess abnormal
situations based on noise).

C. FARMING
A set of UAVs is used in the context of crop life cycle
monitoring. The UAVs carry a data analysis application,
which supports local pre-processing of the collected IoT data,
to circumvent the issue of intermittent connectivity, and to
reduce energy consumption. The pre-processed datasets are
timestamped and downloaded to an Edge node when connec-
tivity is available. Thanks to the global view of data provided
by Pathfinder, it is simple for a back-end application running
in the cloud to gather the pre-processed data and complete
the overall crop monitoring and planning. This can be done
without implementing any application-specific mechanisms,
aside from a naming convention including time-stamping.

D. MOBILITY
e-Mobility solutions are becoming increasingly decentralized
and integrate different e-Mobility services (e.g., transports,
energy monitoring) in an attempt to provide personalized
recommendations to the user. Such recommendations require
heavy data analysis, today performed in the Cloud. With the
increase in the heterogeneity of possible e-Mobility services
and with the integration of support for a more dynamic

lifestyle, where commuting requires the use of different
infrastructures, feedback to the user becomes more complex.
The use of context-awareness and of a dynamic orchestrator
facilitates the integration of new services, and the possibility
to handle data locally. Here, the role of the orchestrator is
to assist the data exchange across federated cluster envi-
ronments, making it possible for the application to provide
recommendations interactively in real-time.

As an example, consider an employee traveling to attend
a meeting in another city. Based on user preferences and
predicted traffic, a travel plan is created that includes a train
to the destination city and then a taxi to the meeting loca-
tion, which might be convenient in an unfamiliar city. If at
the destination train station, local traffic is not as expected,
the traveler may reroute his trip to use a local subway or
tram system that bypasses unexpected road congestion. The
orchestrator predicts the need to run the planning application
on the Edge near the destination train station, with up-to-
date data on local road and public transportation operations
in order to interact with the traveler to make it easy to adapt
the trip.

In this example, the orchestrator would rely on user pref-
erences (e.g., preferred means of transportation), location
(distance to a station), and dynamic information (traffic
conditions or service interruptions) to ensure that the nec-
essary information is collected to assist the user in making
good, dynamic decisions for planning and adapting travel
plans.

V. THE ROLE OF AI/ML IN CONTAINER ORCHESTRATION
A. KEY CHALLENGES
ML-based container orchestration technologies have been
leveraged in cloud computing environments for various
purposes, such as resource efficiency, load balancing,
energy efficiency and service level agreement (SLA) assur-
ance [26], [31]. One main challenge when making an offload-
ing decision relates to the learning and adaptation capability
considering both internal and external system variables. The
load on the system resources, as well as the number of users
and the data being consumed, change constantly, and both
users and the system nodes may be mobile, thus adding to
the dynamics of the overall system [32], [33]. Therefore,
integrating intelligence into this process is both challeng-
ing and essential [34]. Managing computing resources and
optimizing costs in multi-cluster Edge-Cloud environments
are highly demanding tasks, as container adoption is grow-
ing using multiple container management platforms [25].
Whether on-premises, in public Cloud environments, or both,
the operational overhead for container adoption is significant.
As administrators cannot predict the computing resource
demands of applications, they typically reserve more com-
puting resources for an application workload and state than
needed. Therefore, the integration of learning and prediction
using AI/ML is recognized as an essential element of con-
tainer orchestration [35].

VOLUME 11, 2023 93137



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

B. FEATURES AND BENEFITS
Supporting elasticity and internal and external system dynam-
ics are fundamental requirements in Edge-Cloud environ-
ments, and therefore, offering appropriate resource scaling
is one of the most important features. Adopting AI/ML
techniques in the orchestration process will ensure better
adaptability, as it will increase overall operational efficiency
and provide more flexibility by replacing manual configu-
ration with digital intelligence, reducing the need for man-
ual resource monitoring, tracking of data usage, calculating
the optimal configurations, and changing the configurations
accordingly [36]. These tasks are automated and become
routine when they are completed using AI / ML tech-
niques in the orchestration process. Common issues, such
as over-provisioned computing resources and deployments
with poorly selected number and size of pods, or under-
provisioning of resources, e.g., for time-critical workloads,
may be avoidable with ML. ML integration is also beneficial
for helping to predict resource consumption appropriately in
a way that can best adapt the system over time. Therefore, the
use of AI/ML in orchestrators provides a learning mechanism
for the patterns of use of the application resource and allows
the prediction of resources down to the container level. While
continuously generating recommendations, the system learns
based on additional data. Overall, this can result in a reduction
in spending while increasing the application service quality
and delivering the necessary performance.

The interlock of AI/ML with the orchestration mechanism
can provide precise offloading decisions based on the overall
dynamic operation and state of a system, across time, and also
taking into consideration the overall context of the system.
Such a context can be based on different external and internal
parameters, e.g., derived from network or application require-
ments; from data observability; from the user behavior as will
be discussed later in subsection VII-A.

The optimization of the objectives and metrics of ML-
based approaches for container orchestration has been inves-
tigated, and multiple methods have been extensively dis-
cussed in related literature. Figure 3 provides a taxonomy
for the application of ML in different features of container
orchestration [26]. This taxonomy addressed benefits ranging
from resource efficiency, energy efficiency, and cost effi-
ciency, for instance.

The proposed taxonomy details the use of ML in five spe-
cific orchestration categories: application architecture, infras-
tructure, optimization objectives, behavior modeling, and
resource provisioning. In the context of the proposed taxon-
omy, the application architecture represents the behavior and
internal structures of the containerized application compo-
nents. Infrastructure indicates the environments or platforms
where applications operate considers single Cloud, multi-
Cloud, and Hybrid Cloud infrastructure patterns. Federated
Clouds in this context fall into hybrid Clouds. Optimization
objectives are the improvements that ML-based approaches
attempt to achieve. Behavior modeling leverages ML mod-
els for pattern recognition and simulation of system and

FIGURE 3. ML-based container orchestration taxonomy [26].

application behaviors, besides forecasting future tendencies
according to collected data. Although resource provisioning
prescribes the resource management policies of containerized
applications at different phases of the container life cycle
under various scenarios [26]. While relevant, the cited tax-
onomy isolates the use of ML across the different proposed
categories, without considering, for instance, that several
aspects are interlocked. For instance, optimization objectives
provide examples of specific efficiency measures to consider,
not considering the integration of other aspects, e.g., behavior
modeling.

In our opinion, the integration of ML in orchestration
serves the overall goal of improving adaptability and as such,
requires a cross-category approach, where a central point
is considering multi-objective optimization approaches that
improve the overall system efficiency, adapting to different
environments, without the need for additional manual inter-
vention. For this purpose, Figure 4 provides a high-level
perspective on the key aspects that are required in a dynamic
orchestrator. As illustrated, we advocate the integration of
context based on multiple parameters (data observability,
application and network requirements, user behavior) that
bring context-awareness to an adaptiveML-based layer, capa-
ble of behavior modeling and prediction. Such approach
needs to be abstracted from underlying architectures, being
able to be deployed on Cloud-based architectures, Edge-
Cloud, or fully decentralized Edge Architectures. For this
purpose, it is relevant to understand what kind of ML-based
approach can be used to reach decentralization. These aspects
are discussed next.

C. ML-BASED ARCHITECTURES FOR EDGE-CLOUD
The implementation of ML-based approaches generally fol-
lows three phases: data pre-processing, model training, and
model testing. In data pre-processing, the learning task and
the learning parameters shall be declared, while the datasets
are loaded to perform the training and import the required
libraries according to the learning task and datasets. Once
the data is pre-processed, it is used to train the model. After-
ward, the model is tested based on the achieved convergence
accuracy and evaluation parameters. All these phases are
conducted based on different ML architectures, of which

93138 VOLUME 11, 2023



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

FIGURE 4. ML as a key aspect in dynamic container orchestration.

federated learning is an example [37]. This section aims
at explaining main differences between existing types of
architectures (centralized vs decentralized; distributed, feder-
ated and swarm learning). The section does not exhaustively
describe different algorithms that can be used across Edge-
Cloud, given that such aspects would require a deeper, survey-
oriented analysis, and the focus of this work is on advocating
a need for a cognitive and decentralized orchestration and to
provide a first insight into the role of cross-layer context-
awareness in this process. For this topic, we also direct the
reader to related literature on the topic of AI approaches to
the Edge-Cloud continuum [38], [39].

1) CENTRALIZED LEARNING
In centralized ML architectures, data training is performed
in a central location, usually the Cloud. This often requires
having an infrastructure capable of supporting heavy data
transmission from a high number of data sources towards
the Cloud. In general, centralized training is computationally
efficient assuming a not so large number of sources, and
adequate interconnections to the Cloud. However, centralized
approaches imply, in particular when considering personal
data, eventual security and confidentiality breaches, since
data is stored in the cloud [37].

2) DISTRIBUTED LEARNING
The increased risks of moving large amounts of data to a
centralized entity motivated the evolution of the distributed
ML approach, where training, prediction, and inference are
based on live streaming data. Distributed learning relies on
a multi-node approach, where datasets are locally trained
(per node). Distributed learning engages the server to dis-
tribute a pre-trained or generic ML model to the participating
entities. Distributed learning is particularly beneficial when
there are frequent and large updates of data, and, eventually,
some devices are resource constrained - hence, distributed
learning approaches become beneficial in Edge-Cloud envi-
ronments [37].

3) FEDERATED LEARNING
Federated learning (FL) follows a hierarchical approach,
where an algorithm training can consider datasets on different

Edges, without having to transmit such datasets to the Cloud
(only learning parameters are transmitted). Therefore, this
technique reduces the amount of data transferred and mini-
mizes the privacy concerns of the user’s private data.

FL can be based on a centralized approach or on a decen-
tralized approach. In a centralized approach, FL considers,
for instance, a Cloud server to orchestrate the algorithm and
ensure coordination of different learning parameters e.g., for
different datasets on different edges. Hence, there is an initial
selection of specific (edge) nodes to consider in the training
and to aggregate the updates. This approach partially inherits
the issues of centralized learning approaches, as the Cloud
server can become a bottleneck. However, it prevents privacy
issues. For the decentralized FL, the different involved enti-
ties (nodes) coordinate the global model to consider directly.
In this case, the main issue may be related to the underlying
infrastructure [37].

4) SWARM LEARNING
Swarm learning6 is a decentralized approach to protecting
privacy that is built on the principles of Distributed Ledger
Technology (DLT), thus supporting learning in a decentral-
ized way near data sources. Raw data are kept local, while
learning parameters are shared via a swarm network, and
hence, models are built independently at the edge. Swarm
Learning integrates security to support data sovereignty, con-
fidentiality, via smart contracts involving on pre-authorized
participants. Swarm learning therefore supports a dynamic
onboarding of nodes, via smart contracts. Once a new node
enters (via a smart contract), it obtains a model and performs
local training until specific synchronization conditions are
met. Then, the model parameters are exchanged via a swarm
API, and merged to create an updated model with updated
parameter settings, before a new training round is started.
Warnat-Herresthal et al. provided an example of the appli-
cation of Swarm Learning in the context of clinical disease
classifiers, showing promising results in terms of decentral-
ized learning, while maintaining data privacy [40].

5) SUMMARY
In the Internet and with the increasing integration of IoT
across different vertical domains, sending large amounts of

6https://github.com/HewlettPackard/swarm-learning

VOLUME 11, 2023 93139



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

data to the Cloud for training and inference introduces major
issues when confronted with the existing decentralization
trend in the Internet.

In this context, FL and its variants (centralized, decen-
tralized, hierarchical) have been contributing to allow to
decentralize the learning process across Edge-Cloud. Fed-
erated learning allows participant nodes to collaboratively
train local models on their data without revealing sensitive
information to a central Cloud. However, while it provides
anonymity, it does not preserve privacy.

Swarm learning, on the other hand, seems to bring addi-
tional benefits in comparison to FL. The most visible is
protecting privacy (privacy preservation). A not-so-visible
benefit concerns the possibility of integrating more nodes
(hence, more local training on different edges) and higher
heterogeneity in terms of local model training.

To assist the evolution of container orchestrators, it is
important to consider decentralized and privacy-preserving
approaches, with Swarm learning being a relevant example
to consider. Other variants of decentralized FL may bring
advantages in this context, in particular approaches that con-
sider aspects such as mobility [41], constrained devices, and
synchronization [42].

Three specific challenges must be addressed by design,
when considering future container orchestrators and keep-
ing in mind the need to integrate a decentralized learning
approach for orchestration: mobility of involved entities [43];
preservation of privacy, as attempted via swarm learning;
and the capability to perform training involving constrained
devices [44].

VI. THE NEED FOR DATA OBSERVABILITY IN
IoT-EDGE-CLOUD COMPUTING
Data observability includes providing a view of many aspects
of data from an organization, for example, including infor-
mation describing where data is stored, how it is structured
(schema), where it originated (lineage), how it is classified,
how it is used, how it is protected - in order to allow greater
value from data and, in general, better manage and protect
the data. Data observability becomes increasingly important
as IT environments are expanded to include Cloud resources,
since like the IT resources themselves, the data becomesmore
distributed and more difficult to manage efficiently. Edge
computing further increases the amount and distribution of
data by adding compute and data domains that are closer to
real-world data workflows across different domains such as
Smart Cities, Agriculture, Manufacturing, Health.

A. MOTIVATION
Our objective is to improve the way data are used and man-
aged in the Edge Cloud IoT and the internal processing and
data domains of the company. We want to ensure that data
can be found, that data pipelines work as intended to provide
data for processing, and above all that data are protected and
used in compliance with organization policies and applicable
regulations. Improved data observability is essential for the

orchestration of computation. By incorporating information
describing data and the state of the networks and systems on
which that data is processed, we will be able to significantly
improve process orchestration.

Some of our specific objectives for improving data observ-
ability across compute and storage hierarchies include:
– Knowing where data is stored and available for pro-

cessing: Data needs to be moved to where it will be
processed, or processing moved to the data. Moving data
may mean copying and possibly transforming complete
data sets. Alternatively, data can be queried remotely
to avoid copying. Rich data observability will make it
possible to further optimize orchestration by accounting
for the cost of accessing data.

– The ability to exploit and manage data as things
change: In dynamic IoT Edge environments, events can
occur that affect how data can be used or protected.
The flow of data might be interrupted by a disruption
in the systems where it is generated. A data pipeline
might break due to changes in the data structure or a
change in the IT environment. A new deployment of an
application that processes source data to produce higher-
value assets, such as machine learning models, may
fail. The prevention or rapid detection of such situations
is essential to minimize disruptions in the real-world
systems that are monitored and managed.

– Providing end-to-end observability: The objective of
Edge computing is to bring computation and data storage
closer to where data is produced. Therefore, many Edge-
computing scenarios will require the use of multiple
Edge clusters to accomplish this. The administrative
control of the domains may belong to different parts of a
company or be provided by different service providers.
Optimization of orchestration and data management
requires visibility of data and the state of resources
across these domains.

– Compliance: As data processing and storage becomes
more distributed and data are moved or copied through
the IOT-Edge-Cloud and on-premise domains, the risk of
violating either company policies or regulations grows.
Therefore, it is essential to monitor these environments
to ensure that the data is stored and processed in com-
pliance with applicable policies and laws.

– Data Protection: Similarly, in dynamic IoT-Edge-
Cloud environments, data becomes more exposed to
theft or tampering. In the case of sensitive data, special
attention is required to ensure that the data is properly
protected while at rest and when moved or copied. Pro-
cesses that include vulnerabilities that expose data, for
example, by encrypting data using weak or poorly con-
figured cryptographic algorithms, might be deployed.
All cryptographic components (algorithms, configura-
tion, keys, certificates) must be adequate to achieve the
required level of protection.

– Flexibility to deal with diverse systems: Expanding
existing distributed IT environments to include Cloud

93140 VOLUME 11, 2023



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

and Edge resources requires monitoring and controlling
an increasingly wider range of systems. Therefore, the
monitoring system must be easy to adapt to these new
systems.

Orchestration across multiple domains can benefit from
rich, cross-domain data observability. Orchestration needs to
account for the cost of moving data or moving processing,
therefore considering factors such as the size of the datasets,
frequency of access, frequency of data updates, and network
bandwidth and latency. The availability of data lineage infor-
mation and metrics on the frequency of updates and freshness
of copies of datasets may help with locating copies of data
that enable better overall orchestration decisions. In general,
making good orchestration decisions requires having an up-
to-date view of the resources available across all domains.
In particular, triggers need to be available to make it possible
to adapt the system to changes that may disrupt running
processes, thus warranting re-orchestration.

B. PATHFINDER DATA OBSERVABILITY
Pathfinder is a system developed by IBMResearch to provide
observability of data by automatically collecting, linking, and
enriching metadata describing data, as well as the systems
that process and store the data [45], [46]. Pathfinder collects
metadata from a wide range of sources so that information
that is normally siloed is available from a single source
to simplify orchestration and data management tasks. The
complete collection of linked and enriched metadata is called
the Enterprise Data Map (EDM).

Pathfinder is event-oriented - built on Apache Kafka - to
support applications that need to be informed of changes in
system state.

Pathfinder uses connectors to interface with the systems to
collect metadata. For example, a connector to a database or
file system can provide information on the tables or files that
are available. Connectors to data catalogs can provide meta-
data on how data is classified, who owns the data, and other
relevant information found in catalogs. Connectors to data
pipelines provide information on data lineage and transforma-
tions that have been performed on source data to produce new
datasets. The Pathfinder connector model ensures that the
system can be extended to support new sources of metadata.

The independence of Pathfinder connectors from the core
system simplifies the deployment and administration of
the system in an environment with multiple administrative
domains. The Pathfinder core system does not require any
permissions to access any of the systems from which meta-
data is collected. The connectors collect and share metadata
that can be shared with the core system. The only requirement
is that the connectors and core system have connectivity.
Connectors can be deployed and provided with credentials
under control of the domain in which they are run. Thanks
to this flexibility, Pathfinder can create an end-to-end view
of data and other resources, including across multi-domain
environments.

Pathfinder uses enrichers to add additional information
to the EDM based on the collected metadata combined
with other information and analysis. As a simple example,
an enricher could be created to analyze the quality (relative
to some desired metric) of a dataset, which is then added to
the metadata and thus available to all applications that might
process that data. Amore complex enricher would be required
to evaluate policies, making use of the information in the
EDM to determine if data is being stored and processed in
compliance with those policies. In this case, Pathfinder has a
compliance role by implementing data security and privacy
controls [47]. If metadata is available that describe known
vulnerabilities to processes running in an IT environment, this
view can be enriched by tagging data assets that are exposed
due to those vulnerabilities.

Significant value in a data observability system comes
from the fact that data is linked and enriched so that the
collection of metadata (the Pathfinder EDM) provides more
information and value than the sum of the individual pieces.
For example, if the EDM includes the data classification
learned from a data catalog and lineage information learned
from a data pipeline to show where the data has been copied
and how they have been transformed, a compliance enricher
can be created. Since we view data compliance evaluation as
one of the fundamental elements of Pathfinder, the system
must have a data model that explicitly includes all the infor-
mation required to implement this enricher.

If an application wants to include metadata that is only
of interest within that application, it is sufficient that the
connector for that application adds the information with
an appropriate tag linked to the relevant element(s) in the
EDM. This information cannot be interpreted by Pathfinder
but can be used by all components of the application that
understand it.

VII. DYNAMIC CONTAINER ORCHESTRATION
FRAMEWORK
The previous sections focused on presenting container
orchestration as it is today and existing tools that can provide
better offloading support; AI/ML for the learning and sys-
tem adaptation; Pathfinder as a relevant tool to provide data
observability results.

In this section, we propose a conceptual framework to
support dynamic container orchestration, as represented in
Figure 5, which provides a high-level scheme for the func-
tional blocks of the proposed dynamic container orchestra-
tion.

This framework could be implemented within an exist-
ing orchestrator or as a third-party application. The expla-
nation provided in this section considers the case where
such a framework would be implemented as a third-party
application to K8s, thus interacting with the K8s sched-
uler. The different components are explained in the fol-
lowing subsections, after explaining what type of context
should be considered to achieve a more elastic container
orchestration.

VOLUME 11, 2023 93141



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

FIGURE 5. High-level block diagram of the proposed framework.

A. CONTEXT-AWARE OFFLOADING TRIGGERS
In current container orchestration solutions, the need to repli-
cate resources is usually based on system requirements (e.g.,
CPU usage of a node reaches a specific level or energy level
is perceived as high); application requirements (e.g., bounded
latency); network policies. To further support dynamic Edge-
Cloud environments, container orchestration needs to inte-
grate context-awareness into the offloading process.

A first step towards achieving context-aware orchestration
is the definition of a basic set of context-awareness parameter
categories to consider in the offloading process, how tomodel
context, and how such modeling can be integrated.

Our proposal is to consider the following categories of
context-aware triggers as illustrated in Figure 6 and discussed
next: i) system; ii) network; iii) application; iv) data observ-
ability; v) user behavior and preferences.

The acquisition of context parameters is handled via the
context acquisition block. This requires a sensing module
or a sensing interface that may be present on each worker
node in an orchestration system and is passively fed with
context. It can also be performed via a monitoring protocol
that may require active probing instead of passive sensing.
The Pathfinder system described in Section VI-B provides
a general mechanism to generate some of the context-aware
triggers. Pathfinder connectors interface with the systems
distributed across the Edge-Cloud environment and gather
information on their status. This information is then avail-
able in the Pathfinder EDM. For example, server utilization
statistics can be gathered across all domains. If a particular
server’s utilization exceeds a defined threshold, an event can
be generated to trigger re-orchestration. Similar triggers can
be defined to ensure that the system reacts to network delays
and problems with applications (e.g., if an application is no
longer responsive, it can be restarted). Pathfinder enrichers
also generate data compliance triggers based on how the
data is classified, how it has been transformed, where it is
stored, and the purpose for which it is being used. Note
that if information cannot be determined automatically (for

example, for processing), reports can be generated for offline
investigation.

1) SYSTEM TRIGGERS
System triggers refer to internal parameters of a system,
such as CPU or memory utilization, that can be engineered
to improve the efficiency of the overall system. In current
orchestrators, the overall Edge-Cloud infrastructure is mod-
eled in accordance with the needs of an application, to ade-
quately scale over time. For instance, an application may
require more CPU capability than the capability existing at a
specific node. The orchestrator system adds such a capability
on the basis of available nodes. Common system parameters
available in orchestrators are CPU, memory, and storage.
Energy consumption can be integrated into an orchestrator
scheduler, via third-party solutions.

2) NETWORK TRIGGERS
Regarding the networking level, the context surrounding the
nodes in different container orchestration tools can help to
better define opportunities for replication / transfer over time
and space. Current orchestrators rely on a networking overlay
and do not consider specific functional or non-functional net-
working requirements. A containerized application is often
deployed on a collective set of nodes, which are intercon-
nected via an IP network, public, or private. Moreover, there
is frequent interaction between containers and between con-
tainers and the data they process.

Accordingly, each container should be accessible and dis-
coverable thanks to the container networking mechanism.

The horizontal Pod autoscaling feature of K8s provides ser-
vice availability and scalability by increasing the number of
replicas/Pods. As a result, load-balancing between replicas of
an application is necessary by distributing requests/demands
equally to all pods in a K8s cluster. Taking into account
that these requests might be forwarded to remote worker
nodes, this approach can result in long delays, especially in
Edge computing environments where the worker nodes are
geographically dispersed [48].

93142 VOLUME 11, 2023



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

FIGURE 6. Proposed context-aware categories and examples of specific parameters that can be
sensed.

Starting from the RTT, latency and the allocated bandwidth
between the worker node and the master node, up to traffic
load-balancing operations, varied QoS aspects from a node,
path, and link perspective are examples of functional require-
ments that should be considered in the orchestration process.
Examples of non-functional requirements are, for instance,
mobility or portability.

Currently, and due to the fact that orchestrators rely on
overlay networks, what is considered from a network per-
spective is Service Level Agreements (SLAs). SLAs are not
enough to provide an adequate adaptation of the underly-
ing infrastructure. In mobile environments, where there are
frequent IP changes handled by mobility solutions such as
Mobile IPv6 (MIPv6) [49]. Network Function Virtualization
(NFV) today provides the ability to integrate mobility man-
agement into orchestrators [50], thus bringing the ability
to better adapt the overall orchestration of the system, tak-
ing into account computational and networking resources.
Considering an approach similar to the one of MIPv6, it is
possible, for instance, to handle changes of IP subnets across
an old Pod and a new Pod.

3) APPLICATION TRIGGERS
Current orchestrators rely on application functional require-
ments to best model the scaling or load balancing of the
system. However, support for time-sensitive applications is
limited, as explained in Section II, where we have described
the related literature that proposes changes to the K8 sched-
uler to better meet the needs of time-sensitive applications.
In the context of industrial IoT, for example, critical applica-
tions often require a minimum and a bounded latency within
one microsecond. Tight time synchronization among devices
serving a specific application is often a challenge, due to
time-aware queuing disciplines that support the exchange
of critical traffic. These are examples of QoS parameters.
Current orchestrators require a finer-grained support for QoS
to cope with new challenges. Adding to this, nonfunctional
requirements, such as a sensitiveness level of an application

or even certification or compliance aspects, may prevent an
application to run under specific conditions on a node.

Other requirements, such as application usage, roaming
and location preferences, or even desired time to completion
of a service, can be provided via a semantic abstraction of the
application during setup.

4) DATA OBSERVABILITY TRIGGERS
Events to re-orchestrate application processing can also be
triggered by a solution such as Pathfinder based on data-
related changes. The most basic event of this type could be
created on the basis of a new or updated data set. These
datasets could be tagged in the EDM by the application or
pipeline that creates them, or a Pathfinder enricher could
create triggers automatically based on predefined conditions.
Many different characteristics of the data set could be con-
sidered. For example, if a dataset is not updated within a
specified time, or if a dataset grows to exceed a specified size,
a trigger to be generated to schedule application to handle the
condition.

Triggers can also be created based on data compliance
issues. Regulations, such as the European ),7 and company
policies can constrain, for example, where data can be pro-
cessed and the purpose of that processing, and are therefore
an important factor to be considered as part of orchestrating
data processing.

In many cases, data protection issues should be evaluated
when initial orchestration decisions are made, before data is
transferred and processed. This is the onlyway to ensure com-
pliance. In distributed Edge-Cloud environments, it will not
always be possible to control all compliance issues a priori.
For instance, data may be copied by a procFor example, data
may be copied by a process that is not controlled (e.g., if that
process is not documented) from an Edge to the Cloud for
processing. To cover such cases, it is important to implement
compliance monitoring to complement real-time controls.

7https://gdpr-info.eu/

VOLUME 11, 2023 93143



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

This can be implemented using a data observability system
like Pathfinder, which monitors the data and processing in
each domain and uses enrichers to evaluate the compliance
status. In some cases, a compliance violation could result
in an orchestration trigger to move processing so that it is
compliant. In other cases evaluation of a particular policymay
not be possible (for example, if the purpose of processing
by an application has not been documented), in which case
a report should be generated to trigger manual processes to
ensure that compliance is maintained or restored.

5) USER BEHAVIOR TRIGGERS
The generalized application of pervasive technologies, such
as IoT, IIoT, andMCS, gave rise to the possibility of exploring
user behavior across different domains, to improve system
and networking behavior. A common indicator of user behav-
ior is the location of the user, which is widely applied to
improve the support of pervasive applications or the overall
behavior of the system [51]. However, new technologies
allow to explore and to integrate other facets of user and
human behavior, in an attempt to benefit the overall orches-
tration of resources, in particular across mobile heteroge-
neous Edge-Cloud environments. An example of how user
behavior can be applied to improve overall interconnection
between users has been developed in the context of the H2020
UMOBILE project,8 where a context-aware agent has been
developed to capture and model user mobility to assist overall
network operation and, in particular, to support social-aware
opportunistic routing.9

Other forms of user behavior, including user preferences,
have been considered, e.g., social interaction, group forma-
tion, and social/physical proximity [52] to improve overall
system performance and to provide better support for task
offloading across the Edge [53]. User mobility has also been
applied in the context of improving energy consumption [54].
User behavior and preferences are therefore relevant to

be considered in the context of improving container orches-
tration, in particular for mobile environments, as has been
briefly explained in Section IV.

While there are a few starting points to model user behav-
ior, it is relevant to understand which particular features can
be considered, and how such context can be passed to the
orchestrator scheduler, to improve the overall use of resources
across Edge-Cloud.

6) SUMMARY, BASIC SET OF OFFLOADING TRIGGERS
In summary, a precise offloading decision depends on a set of
operations and parameters that are required to be performed
in an automated and dynamic way. These parameters are cur-
rently contingent on the triggers from the orchestrator system,
the networking features, and the application requirements.
However, it is feasible to further improve this by integrating

8https://umobile-project.eu
9https://umobile-project.eu/phocadownload/papers/wp-

contextualmanager.pdf

both external and internal triggers to the orchestrator. For
instance, taking data protection issues into account and inte-
grating also human behavior into the orchestrator scheduler.

A proposed initial set of triggers based on the categories
discussed is provided in Table 3, where the first column
provides the type of trigger, system (S); application (A);
network (N); data observability (D); user behavior (U). The
second column identifies the parameter that shall be part of
the set of offloading triggers, while the third column provides
information on the current support in K8s. The fourth column
explains the purpose of the integration of the parameter;
the fifth explains units to consider, while the sixth column
provides a description on how the parameters can bemodeled.

The parameters taken into account by an orchestrator
should not be worked in isolation, as they often depend on
other different parameters that must be monitored by the
orchestrator. For example, perceived QoS levels depend on
other aspects, such as mobility or user location. By providing
a multi-objective integration of the proposed parameters, it is
our belief that the overall orchestration will become more
fluid, and provide a better response to the needs of applica-
tions and the user.

B. CONTEXT ACQUISITION AND MODELING
The context acquisition integrates two subcomponents, illus-
trated in Figure 7.
First, it senses and gathers parameters, context-aware

offloading triggers, that are described in Subsection VII-A.
These parameters are generated based on changes in state
of the system, network, and application, taking into con-
sideration data observability as well as user behavior. The
parameters are sensed or discovered (e.g., via a tool such
as Pathfinder) as has been described. The parameters can
be statically configured as happens today. The acquisition
component collects and stores the different parameters in
different multivariate time series. It may also perform local
data aggregation per category, to reduce the resulting dataset.

The multivariate time-series datasets are then passed to
the normalization and standardization component. Here, the
datasets are first normalized (and, if required, standardized).
This is required since each triggering type has a special unit,
as described in Table 3.
Accordingly, context normalization avoids these problems

by creating new values that maintain the general distribution
and ratios in the dataset, while keeping values within a scale
applied across all numeric columns used in the model.

The result is then passed on to the performance measure-
ment component.

C. CONTEXT-AWARE PERFORMANCE PROFILING
The normalized context datasets are passed to the context-
sensitive performance profiling block, illustrated in Figure 8.

This block performs a combination of the received data
sets based of pre-configured heuristics that aim at provid-
ing a measure of performance, for a specific performance
efficiency profile. For instance, assuming a user wants to

93144 VOLUME 11, 2023



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

TABLE 3. Initial proposed set of context-aware offloading triggers, and how they can be modelled to be integrated in K8s, as an example of an
orchestrator.

FIGURE 7. High-level representation of the context acquisition and modelling.

optimize the system for greeness, this block would select and
combine weighted context datasets (e.g., hop count, energy
consumption) in accordance with a specific function (e.g.,
product of hop count and energy consumption).

The combination of parameters is weighted, that is, the dif-
ferent categories of context parameters are weighted accord-
ing to data preferences, or even according to learning over
time, provided via feedback provided by the ML-based
offloading decision engine.

Moreover, the combination of parameters takes into
account feedback obtained from the ML-based offloading
engine.

D. ML-BASED OFFLOADING ENGINE
The third component of the framework is the ML-based
offloading engine, where different mathematical methods
are applied to train and classify the optimized performance
metrics’ dataset, to assist the K8s in a decision to perform
offloading.

In this block, ML is employed to provide behavior infer-
ence and also to perform prediction that can assist in under-
standing the impact that the proposed optimization may bring
to the system.

10https://hubblo-org.github.io/scaphandre-documentation/tutorials/
kubernetes.html

VOLUME 11, 2023 93145



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

FIGURE 8. High-level representation of the context-aware performance profiling block.

This engine is therefore composed by a predictor com-
ponent, and also by an offloading decision component. The
predictor helps to estimate the impact that the combined
context-aware optimization metric proposal may have on the
system. The ML offloading decision engine learns about the
change in demands derived from contextual information and
proposes offloading configuration recommendations to the
K8s scheduler.

E. CROSS-LAYER AND CONTEXT-AWARE ORCHESTRATION
CHALLENGES
The capability to inject metadata and additional data into an
orchestrator brings in the possibility to select an infrastructure
that best adapts to the user expectations (QoE) and appli-
cation requirements (QoS). In this context, there are a few
challenges to be tackled, described in this subsection.

1) MOBILITY
Across a dynamic Edge-Cloud continuum, the overall infras-
tructure (data-network-computation) is dynamic. The net-
work of computing nodes and connected devices is dynamic,
and its state varies. Usually, a network overlay is estab-
lished between pods, relying on the existing Internet routing.
Hence, a first challenge concerns supporting mobility, and
performing a placement that can provide lower latency and
energy consumption. This implies offloading ‘‘closer’’ to
the user/data sources. For this, context-awareness needs to
consider aspects that derive from social proximity, and social
mobility.

The first way to tackle this challenge is to move applica-
tions as close to the end-user location as possible. However,
assuming that the end user has frequent movement, this will
result in additional overhead in terms of signaling and also
in terms of energy consumption [33]. Possible integration
of mobility estimation as context awareness [56], to assist
the scheduler in making a decision on whether or not to
reschedule applications across the Edge-Cloud continuum.
Mobile-Kube [33] proposes to consider as additional met-
rics energy consumption, resulting in an optimization of the
overall infrastructure based on mobility and energy. Similar
approaches, articulating the placement ‘‘closer’’ to the data

source/end-user can be worked by considering additional
context-aware metrics.

2) CONTEXT-AWARENESS INTEGRATION
One of the key challenges in container orchestrators such as
Kubernetes is to be able to provide a cross-layer orchestra-
tion, thus allowing placement decisions to occur based on
real-time resource demands that relate with the application
and computational nodes; with the network; and also with
the data. The current available schedulers provide partial
support to these aspects, as has been explained in Section
VII. When considering constrained devices and also intermit-
tent connectivity/variable quality network links, this problem
becomes more complex. A first challenge in this context
is the definition of a subset of parameters that can pro-
vide a meaningful definition of a node, covering not just
computational resources but also networking resources (e.g.,
egress and ingress bandwidth; centrality value), data fresh-
ness/compliance and energy consumption based not just on
the energy consumed due to computational processes, but also
due to networking processes. For examples in parameters,
we refer the reader to the work under development by Sofia et
al. in the context of the Horizon Europe CODECO project.11

Specific parameters that provide an initial starting point are
publicly available in the CODECO report D9, Annex I [57].

VIII. APPLICABILITY EXAMPLE: THE MoveK8s PROOF OF
CONCEPT
To better illustrate how such a dynamic orchestration frame-
work would work in practice, this section describes a proof-
of-concept, MoveK8s,12 which has been implemented in
a Raspberry PI testbed in the fortiss Industrial IoT Lab,
for a Manufacturing use-case. Movek8s has a Technology
Readiness Level of 3 (TRL3), so it concerns ‘‘Research that
Proves the Feasibility of the Concept’’. The proof-of-concept
aimed at understanding in practice how context-awareness
in a simple form could be integrated into K8s and how

11https://he-codeco.eu
12https://git.fortiss.org/iiot_external/movek8s

93146 VOLUME 11, 2023



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

FIGURE 9. Movek8s topology and K8s architecture.

workload migration (and not replication) could be deployed.
Aspects such as scalability, performance impact in the sense
of resource utilization, and impact of several external (and
internal) factors in the overall system are out of the scope of
this perspective paper and expected to be addressed in a near
future.

The underlying scenario for the proof of concept is repre-
sented in Figure 9, where three different nodes have been set
in a single K3 cluster. Each node corresponded to a Raspberry
Pi 4 Model B. The nodes have been labeled as Edge1, Edge2,
Cloud. Then an Edge-based IIoT application for environmen-
tal monitoring in manufacturing environments, TSMatch,13

has been set on the 2 Edge nodes. The initial location of
the user is Edge 1 (IP: 10.0.33.34). The selected application
integratesmultiplemicro-services, each running on a separate
Docker container: (i) graph database, (ii) TSMatch Broker,
and (iii) TSMatch Engine.Moreover, the end-user relies on an
application that interacts with the TSMatch engine located on
the Edge device, performing IoT service requests (e.g., mon-
itor temperature on a room and send alert when temperature
reaches a threshold).

From a K8s perspective, this deployment corresponds to
a simple cluster, where each Edge node has been set as a
worker node, and the Cloud has been set to run the K8smaster
node. Movek8s has been developed as a third-party Web-
based application (Flask) co-located to the main node.

Movek8s performs a request to K8s to perform a change of
workload based on location. For this, on this first proof-of-
concept, the user relies on a QR code on each location. When
the user moves from Edge 1 to Edge 2, there is currently
a manual activation of the new location (via a QR code).
The active location information is then sent to MoveK8s.
A more efficient approach could be to predict the mobility
of the user based on the pattern of visits to the new location,

13https://git.fortiss.org/iiot_external/tsmatch

and to pass that information to the future Movek8s decision
handling engine represented in Figure 5. Moreover, in the
current proof-of-concept, Movek8s is placed in the main
node. However, in future versions, we envision that Movek8s
(or micro-services thereof) will also have to be installed on
worker nodes as well. For example, the context acquisition
and modeling functional block represented in Figure 5 should
interface with each worker node.

Once the active location is received, Movek8s creates the
application workload on the selected location and deletes the
workload on the prior location (if it exists).

K3s handles, as usual, the interconnection of nodes within
the cluster. Each worker node knows the IP address of the
main node and the API port K3s and its K3s token. Movek8s
gathers the user location provided and interacts with K3s
to activate the TSMatch replica that is closest to the user-
provided location. For the selected TSMatch Edge-based
application, the Movek8s offloading process is as follows:

1) The three TSMatch containers belong to the same Pod,
on Edge 1.

2) When a new location reaches Movek8s, it triggers the
offloading of TSMatch to Edge 2.

3) The previous pod (Edge 1) is deleted, thus terminating
the active TSMatch containers.

4) Movek8s then schedules the creation of a new pod
containing the TSMatch containers, on Edge 2.

Policies defined to implement data security and privacy pro-
tection can restrict the orchestration process. In the previous
example, if cameras are used in the warehouse to moni-
tor and control a process, the images may include pictures
of the people working there. The company may therefore
define a policy that these images may only be processed in
the local edge domain. Before implementing the offloading
described above, the orchestrator should evaluate the appli-
cable policies, and in this case decide to leave the processes

VOLUME 11, 2023 93147



R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

running on the warehouse if the workload is processing these
images. The information required to recognize this condition
is provided by the observability of the data. In this example,
we assume that the privacy-protection policy has priority over
the location trigger.

IX. SUMMARY AND FUTURE WORK
Next-generation IoT applications are expected to be deployed
in a highly dynamic Edge-Cloud environment, involving dif-
ferent types of wireless and cellular infrastructure, mobile and
limited nodes, and large-scale deployments. At present, the
spread of different functions across IoT devices, Edge nodes,
and the Cloud is achieved via virtualization. Containerized
applications require flexible management, today provided
by solutions such as K8s. However, such tools have some
limitations in the context of decentralized environments.
They handle the management of applications across Edge-
Cloud in a static approach based on human intervention.
This paper proposes an architecture for dynamic container
orchestration based on ML and context awareness, integrat-
ing parameters that relate to application requirements, data
requirements, system requirements, network requirements,
and user behavior to support a more elastic orchestration of
containerized applications. The components of the proposed
framework have been explained, showing the relevance of
context-awareness integration, the different types of its corre-
sponding relevant parameters, and how they can be modeled
and integrated into the orchestrator, enabling devised con-
tainer orchestrators with enough elasticity, adaptation, and
learning capability. The relevant role of data observability
and trends towards decentralization have been advocated.
Finally, the application of context-aware based orchestration
has been developed in a testbed as a proof-of-concept to
understand operational limitations derived from the integra-
tion of context. The presented work is the starting point for
context-awareness integration in the context of the Horizon
Europe CODECO project. The proposed categories of param-
eters are being used to further refine a cross-layer notion of
context awareness that can be modeled and integrated into
K8s as a representative example of a container orchestrator.

Future research should address the integration of context-
awareness into the orchestrator scheduler(s), by considering
approaches beyond the K8s filter and score (e.g., graph uti-
lization maximization) that can meet application and user
needs taking into consideration different layers of orchestra-
tion (network, computational, data, users, etc.).

REFERENCES
[1] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,

J. Kong, and J. P. Jue, ‘‘All one needs to know about fog computing and
related edge computing paradigms: A complete survey,’’ J. Syst. Archit.,
vol. 98, pp. 289–330, Sep. 2019.

[2] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
‘‘A survey on the edge computing for the Internet of Things,’’ IEEE Access,
vol. 6, pp. 6900–6919, 2018.

[3] A. Brogi, S. Forti, and A. Ibrahim, Predictive Analysis to Support
Fog Application Deployment. Hoboken, NJ, USA: Wiley, 2019, ch. 9,
pp. 191–221. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/9781119525080.ch9

[4] J. Pan and J. McElhannon, ‘‘Future edge cloud and edge computing for
Internet of Things applications,’’ IEEE Internet Things J., vol. 5, no. 1,
pp. 439–449, Feb. 2018.

[5] A. S. Thyagaturu, P. Shantharama, A. Nasrallah, and M. Reisslein,
‘‘Operating systems and hypervisors for network functions: A survey
of enabling technologies and research studies,’’ IEEE Access, vol. 10,
pp. 79825–79873, 2022.

[6] K.M.M. Fathima and N. Santhiyakumari, ‘‘A survey on evolution of cloud
technology and virtualization,’’ in Proc. 3rd Int. Conf. Intell. Commun.
Technol. Virtual Mobile Netw. (ICICV), Feb. 2021, pp. 428–433.

[7] A. Randal, ‘‘The ideal versus the real: Revisiting the history of virtual
machines and containers,’’ ACM Comput. Surv., vol. 53, no. 1, pp. 1–31,
Feb. 2020, doi: 10.1145/3365199.

[8] A. M. Potdar, S. Kengond, and M. M. Mulla, ‘‘Performance evaluation
of Docker container and virtual machine,’’ Proc. Comput. Sci., vol. 171,
pp. 1419–1428, Jan. 2020. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877050920311315

[9] E. Casalicchio, ‘‘Container orchestration: A survey,’’ in Systems Model-
ing: Methodologies and Tools (Springer Innovations in Communication
and Computing), A. Puliafito and K. Trivedi, Eds. Cham, Switzerland:
Springer, 2019, doi: 10.1007/978-3-319-92378-9_14.

[10] S. Wang, J. Xu, N. Zhang, and Y. Liu, ‘‘A survey on service migration in
mobile edge computing,’’ IEEE Access, vol. 6, pp. 23511–23528, 2018.

[11] B. Wang, C. Wang, W. Huang, Y. Song, and X. Qin, ‘‘A survey and
taxonomy on task offloading for edge-cloud computing,’’ IEEE Access,
vol. 8, pp. 186080–186101, 2020.

[12] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, ‘‘A survey on edge
computing systems and tools,’’Proc. IEEE, vol. 107, no. 8, pp. 1537–1562,
Aug. 2019.

[13] S. Dubey and J. Meena, ‘‘Computation offloading techniques in mobile
edge computing environment: A review,’’ in Proc. Int. Conf. Commun.
Signal Process. (ICCSP), Jul. 2020, pp. 1217–1223.

[14] A. Malviya and R. K. Dwivedi, ‘‘A comparative analysis of container
orchestration tools in cloud computing,’’ in Proc. 9th Int. Conf. Comput.
Sustain. Global Develop. (INDIACom), Mar. 2022, pp. 698–703.

[15] R. C. Sofia, Ed., ‘‘A vision on smart, decentralised edge comput-
ing research directions,’’ NGIoT, Europe, White Paper, 2001, doi:
10.5281/zenodo.5837299.

[16] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles,
‘‘Towards a better understanding of context and context-awareness,’’ in
Proc. Int. Symp. HandheldUbiquitous Comput.Berlin, Germany: Springer,
1999, pp. 304–307.

[17] W. Liu, X. Li, and D. Huang, ‘‘A survey on context awareness,’’ in Proc.
Int. Conf. Comput. Sci. Service Syst. (CSSS), Jun. 2011, pp. 144–147.

[18] L. Bulej, T. Bureš, P. Hnetynka, and D. Khalyeyev, ‘‘Self-adaptive K8S
cloud controller for time-sensitive applications,’’ in Proc. 47th Euromicro
Conf. Softw. Eng. Adv. Appl. (SEAA), Sep. 2021, pp. 166–169.

[19] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, ‘‘Geo-distributed
efficient deployment of containers with kubernetes,’’ Comput.
Commun., vol. 159, pp. 161–174, Jun. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366419317931

[20] S. Zhang, T. Wu, M. Pan, C. Zhang, and Y. Yu, ‘‘A-SARSA: A predictive
container auto-scaling algorithm based on reinforcement learning,’’ in
Proc. IEEE Int. Conf. Web Services (ICWS), Oct. 2020, pp. 489–497.

[21] M. C. Ogbuachi, C. Gore, A. Reale, P. Suskovics, and B. Kovács, ‘‘Context-
aware K8S scheduler for real time distributed 5G edge computing applica-
tions,’’ in Proc. Int. Conf. Softw., Telecommun. Comput. Netw. (SoftCOM),
Sep. 2019, pp. 1–6.

[22] K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman,
‘‘KEIDS: Kubernetes-based energy and interference driven scheduler for
industrial IoT in edge-cloud ecosystem,’’ IEEE Internet Things J., vol. 7,
no. 5, pp. 4228–4237, May 2020.

[23] D. M. A. D. Silva and R. C. Sofia, ‘‘A discussion on context-awareness
to better support the IoT cloud/edge continuum,’’ IEEE Access, vol. 8,
pp. 193686–193694, 2020.

[24] S. Böhm and G. Wirtz, ‘‘Cloud-edge orchestration for smart
cities: A review of kubernetes-based orchestration architectures,’’
EAI Endorsed Trans. Smart Cities, vol. 6, no. 18, p. e2, May 2022.

[25] C. Carrión, ‘‘Kubernetes scheduling: Taxonomy, ongoing issues and chal-
lenges,’’ ACM Comput. Surv., vol. 55, no. 7, pp. 1–37, Dec. 2022, doi:
10.1145/3539606.

[26] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu, and R. Buyya, ‘‘Machine
learning-based orchestration of containers: A taxonomy and future direc-
tions,’’ ACM Comput. Surv., vol. 54, no. 10s, pp. 1–35, Sep. 2022, doi:
10.1145/3510415.

93148 VOLUME 11, 2023

http://dx.doi.org/10.1145/3365199
http://dx.doi.org/10.1007/978-3-319-92378-9_14
http://dx.doi.org/10.5281/zenodo.5837299
http://dx.doi.org/10.1145/3539606
http://dx.doi.org/10.1145/3510415


R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

[27] D. Ongaro and J. Ousterhout, ‘‘In search of an understandable consensus
algorithm,’’ in Proc. USENIX Conf. USENIX Annu. Tech. Conf., 2014,
pp. 305–320.

[28] J. Nickoloff. (2016). Evaluating Container Platforms at Scale.
[Online]. Available: https://medium.com/on-docker/evaluating-container-
platforms-at-scale-5e7b44d93f2c

[29] Y. Pan, I. Chen, F. Brasileiro, G. Jayaputera, and R. Sinnott, ‘‘A perfor-
mance comparison of cloud-based container orchestration tools,’’ in Proc.
IEEE Int. Conf. Big Knowl. (ICBK), Nov. 2019, pp. 191–198.

[30] A. M. Beltre, P. Saha, M. Govindaraju, A. Younge, and R. E. Grant,
‘‘Enabling HPC workloads on cloud infrastructure using kubernetes con-
tainer orchestration mechanisms,’’ in Proc. IEEE/ACM Int. Workshop
Containers New Orchestration Paradigms Isolated Environments HPC
(CANOPIE-HPC), Nov. 2019, pp. 11–20.

[31] N. Naydenov and S. Ruseva, ‘‘Combining container orchestration and
machine learning in the cloud: A systematic mapping study,’’ in Proc. 21st
Int. Symp. INFOTEH-JAHORINA (INFOTEH), Mar. 2022, pp. 1–6.

[32] S. V. Gogouvitis, H. Mueller, S. Premnadh, A. Seitz, and B. Bruegge,
‘‘Seamless computing in industrial systems using container
orchestration,’’ Future Gener. Comput. Syst., vol. 109, pp. 678–688,
Aug. 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X17330236

[33] S. Ghafouri, A. Karami, D. B. Bakhtiarvan, A. S. Bigdeli, S. S. Gill,
and J. Doyle, ‘‘Mobile-kube: Mobility-aware and energy-efficient service
orchestration on kubernetes edge servers,’’ in Proc. IEEE/ACM 15th Int.
Conf. Utility Cloud Comput. (UCC), Dec. 2022, pp. 82–91.

[34] P. Gonzalez-Gil, A. Robles-Enciso, J. A. Martínez, and A. F. Skarmeta,
‘‘Architecture for orchestrating dynamic DNN-powered image processing
tasks in edge and cloud devices,’’ IEEEAccess, vol. 9, pp. 107137–107148,
2021.

[35] W. Sun, J. Liu, and Y. Yue, ‘‘AI-enhanced offloading in edge computing:
When machine learning meets industrial IoT,’’ IEEE Netw., vol. 33, no. 5,
pp. 68–74, Sep. 2019.

[36] Z. Rejiba and J. Chamanara, ‘‘Custom scheduling in kubernetes: A survey
on common problems and solution approaches,’’ ACM Comput. Surv.,
vol. 55, no. 7, pp. 1–37, Dec. 2022, doi: 10.1145/3544788.

[37] S. Abdulrahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and
M. Guizani, ‘‘A survey on federated learning: The journey from centralized
to distributed on-site learning and beyond,’’ IEEE Internet Things J., vol. 8,
no. 7, pp. 5476–5497, Apr. 2021.

[38] M. M. John, H. H. Olsson, and J. Bosch, ‘‘AI on the edge: Architec-
tural alternatives,’’ in Proc. 46th Euromicro Conf. Softw. Eng. Adv. Appl.
(SEAA), Aug. 2020, pp. 21–28.

[39] Z. Zou, Y. Jin, P. Nevalainen, Y. Huan, J. Heikkonen, and T. Westerlund,
‘‘Edge and fog computing enabledAI for IoT–An overview,’’ inProc. IEEE
Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Mar. 2019, pp. 51–56.

[40] S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan,
S. Mukherjee, V. Garg, R. Sarveswara, K. Händler, P. Pickkers, N. A. Aziz,
and S. Ktena, ‘‘Swarm learning for decentralized and confidential clinical
machine learning,’’ Nature, vol. 594, no. 7862, pp. 265–270, 2021.

[41] Y. Liu, J. Nie, X. Li, S. H. Ahmed, W. Y. B. Lim, and C. Miao, ‘‘Federated
learning in the sky: Aerial-ground air quality sensing framework with
UAV swarms,’’ IEEE Internet Things J., vol. 8, no. 12, pp. 9827–9837,
Jun. 2021.

[42] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and
H. V. Poor, ‘‘Distributed learning in wireless networks: Recent progress
and future challenges,’’ IEEE J. Sel. Areas Commun., vol. 39, no. 12,
pp. 3579–3605, Dec. 2021.

[43] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, andM. Guizani, ‘‘Reliable
federated learning for mobile networks,’’ IEEEWireless Commun., vol. 27,
no. 2, pp. 72–80, Apr. 2020.

[44] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, ‘‘A survey on
federated learning for resource-constrained IoT devices,’’ IEEE Internet
Things J., vol. 9, no. 1, pp. 1–24, Jan. 2022.

[45] S. Rooney, L. Garcés-Erice, D. Bauer, and P. Urbanetz, ‘‘Pathfinder:
Building the enterprise data map,’’ in Proc. IEEE Int. Conf. Big Data (Big
Data), Dec. 2021, pp. 1909–1919.

[46] D. Bauer, C. Giblin, L. Garcés-Erice, N. Pardon, S. Rooney, E. Toniato, and
P. Urbanetz, ‘‘Revisiting data lakes: The metadata lake,’’ in Proc. 23rd Int.
Middleware Conf. Ind. Track, in Middleware Industrial Track. New York,
NY, USA: Association for Computing Machinery, Nov. 2022, pp. 8–14,
doi: 10.1145/3564695.3564773.

[47] (2020). NIST SP 800-53 Rev. 5, Security and Privacy Controls
for Information Systems and Organizations. [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final

[48] Q.-M. Nguyen, L.-A. Phan, and T. Kim, ‘‘Load-balancing of kubernetes-
based edge computing infrastructure using resource adaptive proxy,’’
Sensors, vol. 22, no. 8, p. 2869, Apr. 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/8/2869

[49] C. E. Perkins, J. Arkko, and D. B. Johnson, Mobility Support in IPv6,
document RFC 3775, Jun. 2004. [Online]. Available: https://www.rfc-
editor.org/info/rfc3775

[50] Á. Leiter, D. Huszti, N. Galambosi, E. Lami, M. S. Salah, P. Kulics, and
L. Bokor, ‘‘Cloud-native IP-based mobility management: A MIPv6 home
agent standalone microservice design,’’ in Proc. 13th Int. Symp. Commun.
Syst., Netw. Digit. Signal Process. (CSNDSP), Jul. 2022, pp. 252–257.

[51] C. Harris and V. Cahill, ‘‘Exploiting user behaviour for context-aware
power management,’’ in Proc. IEEE Int. Conf. Wireless Mobile Comput.,
Netw. Commun., vol. 4, Aug. 2005, pp. 122–130.

[52] R. C. Sofia, L. Carvalho, and F. M. Pereira, The Role of Smart Data in
Inference of Human Behavior and Interaction. London, U.K.: Chapman &
Hall, 2019, pp. 191–214.

[53] F. Saeik, J. Violos, A. Leivadeas, M. Avgeris, D. Spatharakis, and
D. Dechouniotis, ‘‘User association and behavioral characterization during
task offloading at the edge,’’ in Proc. IEEE Int. Medit. Conf. Commun.
Netw. (MeditCom), Sep. 2021, pp. 70–75.

[54] A. Przybylowski, S. Stelmak, and M. Suchanek, ‘‘Mobility behaviour in
view of the impact of the COVID-19 pandemic—Public transport users
in gdansk case study,’’ Sustainability, vol. 13, no. 1, p. 364, Jan. 2021.
[Online]. Available: https://www.mdpi.com/2071-1050/13/1/364

[55] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,
An Architecture for Differentiated Service, document RFC 2475, USA,
1998.

[56] O. Aponte and R. C. Sofia, ‘‘Mobility management optimization via infer-
ence of roaming behavior,’’ in Proc. Int. Conf. Wireless Mobile Comput.,
Netw. Commun. (WiMob), Oct. 2019, pp. 71–76.

[57] R. C. Sofia, Ed., H. Mueller, J. Solomon, R. Touma, L. G. Erice,
L. C. Murillo, D. Remon, A. Espinosa, J. Soldatos, N. Psaromanolakis,
L. Mamathas, I. Kapetanidou, V. Tsaoussidis, J. Martrat, I. P. Mariscal,
P. Urbanetz, D. Dykemann, V. Theodorou, S. Ferlin-Reiter,
E. Paraskevoulakou, and P. Karamolegkos, ‘‘CODECO D9-technological
guidelines, reference architecture, and initial open-source ecosystem
design v1.0,’’ Partners have Contributed to the Deliverable, Jul. 2023, doi:
10.5281/zenodo.8143860.

RUTE C. SOFIA (Senior Member, IEEE) is cur-
rently the Head of the Department of Indus-
trial IoT, fortiss GmbH, Research Institute of
the Free State of Bavaria. She is also an
Invited Associate Professor with University Lusó-
fona de Humanidades e Tecnologias and an
Associate Researcher with the ISTAR, Insti-
tuto Universitório de Lisboa. She was the Co-
Founder of the Portuguese COPELABS Research
Unit and the COPELABS Scientific Director,

from 2013 to 2017, where she was a Senior Researcher, from 2010 to 2019.
She was also the Co-Founder of the COPELABS spin-off Senception Lda,
from 2013 to 2019. Her research background has been developed in industry,
such as Grupo Forum, Lisbon; Siemens AG, Nokia Networks, Munich;
and academia, such as FCCN, Lisbon; INESC TEC, Porto; ULHT, Lisbon;
Bundeswehr Universitót, Munich. She holds more than 80 peer-reviewed
publications in the fields of research interests and nine patents. Her current
research interests include network architectures and protocols, the IoT, edge
computing, edge AI, in-network computing, and 6G. She is an ACM Europe
Councilor and an ACM Senior Member.

She was an IEEE ComSoc N2Women Awards Co-Chair, from 2020 to
2021. She is the IEEE ComSoc WICE Industry Liaison Deputy. She leads
the 6G CONASENSE Platform. She is an Associate Editor among several
venues, such as IEEE ACCESS and IEEE Network.

VOLUME 11, 2023 93149

http://dx.doi.org/10.1145/3544788
http://dx.doi.org/10.1145/3564695.3564773
http://dx.doi.org/10.5281/zenodo.8143860


R. C. Sofia et al.: Dynamic, Context-Aware Cross-Layer Orchestration of Containerized Applications

DOUG DYKEMAN received the Ph.D. degree in
computer science from the University ofWaterloo,
Canada.

He manages the AI for Data Integra-
tion Research Group, IBM Research, Zürich,
Switzerland. In the career, he has focused on
a range of networking and system management
topics, spanning the telco (initially at Northern
Telecom) and enterprise (at IBM) worlds. His
personal focus has covered research, product

development, and standardization in this space. His current team is focused
on using artificial intelligence (AI) and other technologies to simplify data
management in large organizations. The IBM Pathfinder data observability
project is focused on using metadata to build a complete map of data in
an organization. He investigating how to use this enterprise data map to
support a range of applications, including continuous compliance, data and
AI workflow maintenance, and achieving agility in managing the use of
cryptography.

PETER URBANETZ is currently a member of
the AI for Data Integration Team, IBM Research,
Zürich, Switzerland. His recent projects have
focused on data management in large organiza-
tions. The team created the Cognitive Enterprise
Data Platform (CEDP) for IBM’s Chief Data
Office to provide a state-of-the-art platform for
analyzing Hadoop-based data. From the CEDP
experience, the team recognized the constraints
associated with copying data to a common data

analytics platform, and therefore developed the idea of managing data based
on decentralized data stores–the data remains with the organization that
manages it–with centralized metadata to make it possible to simplify the
job of managing and analyzing data while removing any practical scalability
limits.

AKRAM GALAL (Member, IEEE) was a
Researcher with the IIoT Research Department,
fortiss, Munich, from August 2022 to January
2023. During the Ph.D. studies, he was a Visiting
Researcher with theNational Institute of Standards
and Technology (NIST), USA, in 2019, and a Vis-
iting Researcher with the Interuniversity Micro-
electronics Center (IMEC), Ghent University,
Belgium, in 2020. He served as a Solution Design
Consultant with Tawasul Telecom, a regional

provider of information and communication technology solutions in Kuwait,
from 2014 to 2017. He also served as an Enterprise Networks Engineer
with Telecom Egypt, the dominant Internet service provider in Egypt,
from 2011 to 2014. He has participated in several national/international
research projects in collaboration with multiple partners from academia and
industry and has been funded either by the EU, such as 5GROUTES and
MARSAL, or by the Spanish Government, such as TRUE5G and 5GCity.
His research interests include the IoT, the Internet of Nano-Things, edge
computing, software-defined networking, network function virtualization,
and AI/ML for data communication.

DUSHYANT ANIRUDHDHABHAI DAVE rece-
ived the M.Sc. degree in informatics from the
Technical University of Munich. From 2021 to
2022, he was a Student Assistant with the Depart-
ment of IIoT Research, fortiss, where he was
responsible for the development of the Movek8s
demonstrator development and installation. He has
industrial experience, having developed, during
the master’s studies, an internship with the TUM-
IBM OpenPower Project, from 2020 to 2021. His

research interests include software engineering, ML-driven communications
and orchestration, and edge computing.

93150 VOLUME 11, 2023


