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ABSTRACT This paper describes a method for sensor pose estimation, as well as creating large-scale 3D
maps, for construction cranes equipped with a sensor system consisting of a camera, 2D lidar, and IMU.
To tackle the challenges posed by the crane boom’s complex motion, we utilize an Extended Kalman filter
(EKF) to improve the accuracy and reliability of sensor pose estimation. By combining pose estimates
from Visual-Inertial Navigation System (VINS) with data from an additional IMU, we estimate the scale
value of a monocular camera. This scale value, obtained from the EKF, is then integrated into the VINS
algorithm to refine the previously estimated scale value. Slowly rotating 2D lidar is used to build a 3D
map. Since there is limited overlap between 2D lidar scans, we leverage the estimated pose to align and
construct a comprehensive 3Dmap. Additionally, we thoroughly evaluate the effectiveness of the latest VINS
techniques, as well as the EKF-enhancedVINS approach, in the specific context of crane operations. Through
comprehensive performance assessments conducted in both simulated and real environments, we compare
the EKF-added VINSmethod with state-of-the-art VINS techniques. The evaluation results demonstrate that
the EKF-added VINS method accurately estimates sensor poses, leading to the generation of high-quality,
large-scale 3D point cloud maps for construction cranes.

INDEX TERMS 3D mapping, 2D lidar, IMU, pose graph optimization, complementary filter, large crane.

I. INTRODUCTION
The creation of a three-dimensional (3D) map is crucial for
enabling the effective functioning of autonomous systems in
unfamiliar environments. The applications of 3D mapping
span a wide range of fields, including autonomous driving,
service robotics, agriculture, augmented reality, and construc-
tion [1], [2], [3]. With the increasing prevalence of robots
and autonomous systems, there is a growing demand for 3D
mapping.While extensive research has been conducted on 3D
mapping for ground vehicles [4], [5], [6], [7] and drones [8],
[9], [10], there is a noticeable gap in studies focusing on
3D mapping for construction cranes [11], [12]. Mapping
construction sites for cranes presents unique challenges that
need to be addressed. These challenges include the absence
of distinctive features in open-sky construction environments,
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the requirement to create comprehensive maps encompassing
both vertical and horizontal dimensions, the sensitivity of sen-
sors attached to the crane boom to significant vibrations, and
the substantial rotations and displacements experienced by
sensors mounted on the crane boom during crane operations.
Overcoming these formidable challenges poses difficulties in
adopting existing 3D mapping techniques.

The research conducted in [13] demonstrated that the inte-
gration of additional sensors using the Extended Kalman
Filter (EKF) improves the accuracy of odometry estimation
in robot systems. This paper also aims to compare the accu-
racy of pose estimation using two IMUs versus a single
IMU. However, during the experiment, it was observed that
the second IMU encountered a failure after approximately
45% of the trajectory, limiting the evaluation of its impact
on pose estimation accuracy. The authors of [14] proposed
fusion algorithms using multiple IMUs to enhance pedestrian
navigation performance. They found that the accuracy of
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FIGURE 1. Over all block diagram of proposed method.

pose estimation is directly related to the number of IMU
sensors used. In [15], an experimental comparison of various
Visual-Inertial Navigation System (VINS) algorithms in the
underwater domain was conducted. The study revealed that
while VINS-Mono [16] demonstrated excellent performance,
but its scale estimation was consistently inaccurate due to the
use ofmonocular vision. The limitation of VINS-MONO [16]
regarding scale estimation is that VINS-MONO depends on
an initial scale parameter estimated at the initialization step.
This means that any errors in the initial scale estimation could
propagate throughout the system. The results in [15] con-
firmed that incorporating IMU measurements significantly
improved performance compared to pure Visual Odometry,
extending the findings reported in [15]. The improved per-
formance of IMU integration was observed across diverse
underwater environments [15].

Generally, to estimate scalem, VINS based on a monocu-
lar camera uses the combined data from inertial and visual
sensors at initialization stage. If the visual information is
insufficient, ambiguous, or noisy, it may have an adverse
effect on the scale estimation’s accuracy, whichwill then have
a bad impact on the system’s overall performance and finally
on pose estimation.

In our proposed method, we employed an Extended
Kalman filter (EKF) to continuously update the scale value
and to enhance the accuracy and reliability of sensor pose
estimation in challenging crane boom trajectories. This
was achieved by integrating the pose estimates from VINS
with data from an additional IMU. The pose used in EKF
for fusion is estimated using VINS and we implement
the EKF-based approach on four different VINS methods:
VINS-MONO [16], VINS-Fusion [17], [18], [19], Multi-
state Constraint Kalman Filter (MSCKF) algorithm [20],

Robocentric visual-inertial odometry (R-VIO) [21]. Further-
more, we evaluate the effectiveness of these four cutting-edge
VINS techniques, as well as EKF added VINS techniques,
in the specific context of a crane system. We assess the
performance, suitability, and effectiveness of these meth-
ods, focusing specifically on their application in crane
operations.

The scale value obtained from the EKF is then incorporated
into the VINS algorithm to update the previously estimated
scale value. This approach effectively addresses one of the
limitations of VINS, which previously relied on an initial
scale parameter estimated during the initialization step for
a monocular camera. By integrating the EKF for continuous
scale estimation, the VINS algorithm becomes more robust
and accurate in its scale estimation process.

The main contributions of this study are as follows:
• EKF is used to continuously update the scale value,
thereby improving the accuracy and reliability of sensor
pose estimation in complex crane boom trajectories.

• Evaluate the effectiveness, suitability, and performance
of state-of-the-art VINS and EKF-added VINS, with a
specific focus on their applicability in crane operations.

• The proposed approach generates a more accurate 3D
map for a crane by utilizing a rotating 2D-Lidar mounted
on the crane boom, and the pose estimation obtained
from the VINS and EKF added VINS techniques. The
estimated pose is utilized to register the 2D lidar scan-
lines, enabling the construction of an accurate and
comprehensive 3D map.

II. OVERVIEW OF PROPOSED METHOD
The proposed method is based on the integration of VINS
based poses and additional IMU to estimate more accurate
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and robust pose. The estimated pose is used to create a
large-scale crane map. As shown in block diagram of pro-
posed method in Fig. 1, the proposed method consists on
two main modules: Pose estimation module, and mapping
module. In pose estimation module, 6 Dof pose is estimated
using EKF which is used to fuse the pose estimated by
VINS [16] and measurements from acceleromter, and gyro-
scope of IMU. The mapping module receives lidar poses
and 2D lidar scan and transforms 2D lidar measurements to
world frame to construct a 3D point cloud map. In following
sections we will explain each module in detail.

III. OVERVIEW OF VINS
In this section, we provide a concise overview of VINS
algorithms that were implemented on a crane to estimate the
trajectory of the sensor. For a more detailed understanding,
we recommend referring to the original papers. In this paper,
these algorithms were specifically evaluated for their applica-
tion on a crane. The objective of this comparison is to assess
the appropriateness of variousVIO algorithms for sensor pose
estimation and 3D map building in crane operations.

A. VINS-MONO
VINS-MONO [16], is a versatile monocular visual-inertial
state estimator. It utilizes a robust initialization procedure
and a nonlinear optimization-based approach that combines
IMU measurements and feature observations. This results
in accurate visual-inertial odometry. The integration of a
loop detection module enables efficient relocalization, and
a 4-DOF pose graph optimization ensures global consis-
tency. Overall, VINS-MONO offers a reliable and adaptable
solution for precise localization applications.

B. VINS-FUSION
VINS-Fusion [17], [18], [19], an optimization-based multi-
sensor state estimator, demonstrates precise self-localization
capabilities for various autonomous applications. Serving as
an extension of VINS-Mono, VINS-Fusion supports a range
of visual-inertial sensor combinations, including mono cam-
era with IMU, stereo cameras with IMU, and even stereo
cameras alone. Its key features encompass online spatial
calibration (transformation between the camera and IMU),
as well as online temporal calibration, which accounts for the
time offset between the camera and IMU.

C. MSCKF
The MSCKF algorithm [20], originally developed as the
Multi-state Constraint Kalman Filter, introduces a mea-
surement model that captures the geometric constraints
among camera poses observing a specific image feature.
Unlike traditional approaches that require estimating the
3D feature position, the MSCKF eliminates this need by
directly expressing the constraints. The extended Kalman
filter backend incorporates this formulation of the MSCKF
specifically for event-based camera inputs but has been mod-
ified to handle feature tracks from standard cameras as well.

FIGURE 2. The sensor setup and coordinate frame attaced to each sensor
is shown. Transformation between frames is represented by a rotation q
and a translation p. The transformation between IMU and camera frame
have fixed values, which is highlighted in red.

D. R-VIO
R-VIO [21] is a lightweight and efficient visual-inertial nav-
igation algorithm designed for 3D motion tracking by utiliz-
ing only a monocular camera and IMU. Unlike traditional
world-centric algorithms that estimate absolute motion with
respect to a fixed global frame, R-VIO focuses on estimat-
ing relative motion with higher accuracy with respect to a
local frame. The algorithm then incrementally updates the
global pose through a composition step, resulting in improved
performance and precision.

To perform a thorough evaluation, we assessed the algo-
rithms in various modes supported by VINS. This included
analyzing their performance with monocular + IMU, stereo
without IMU, and stereo + IMU configurations. By incorpo-
rating data from different sensors, we gained valuable insights
into the impact of sensor fusion on the performance of VINS
algorithms.

IV. ERROR-STATE EXTENDED KALMAN FILTER (ES-EKF)
The EKF formulation and algorithm are well known for
integrating diverse sensors in order to estimate the pose of
the sensor [13], [22], [23], [24], [25]. Here, we focus on
conveying important implementation details. Our objective is
to accurately estimate the scale value for amonocular camera,
the complete 3D pose (including all six degrees of freedom),
and the velocity of a sensor system attached to a crane boom
during crane operation.

Fig. 2 illustrates the configuration of the sensors setup
along with its associated coordinate frames. The inertial
sensor measures acceleration and rotational velocity along
three axes in IMU body frame. On the other hand, VINS
supplies the 3D position and attitude whih are referenced to a
visual frame established at the initialization. The Error-state
EKF is used to fuse inertial sensors measurements and
pose estimated by VINS. This fusion process enables the
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FIGURE 3. Block diagram of 3D mapping method using 2D lidar by laser
assembler.

determination of the scale value for monocular cameras
and improves the accuracy and robustness of the pose
estimation.

A. MODELING INERTIAL SENSOR
An inertial sensor commonly consists on accelerometer, gyro-
scope. Gyroscope measures the angular velocity w̃ at each
time instance t . However, its measurements are affected by
a slowly changing bias bw and noise nw over time. As a
result, the model representing the gyroscope measurements
is formulated as follows:

wt = w̃t − bwt − nwt (1)

At time instance t , the accelerometer measures the specific
force ãt . However, its measurements are influenced by both
bias ba and noise na as given below:

at = ãt − bat − nat (2)

It is common assumption that the acceleration and gyro-
scope measurements noise follows a Gaussian distribution.
The biases in acceleration and gyroscope are treated as ran-
dom walk processes, where the derivatives of these biases are
assumed to follow a Gaussian distribution as [16] and [26]:

ḃwt = nbw ḃat = nba (3)

The error state EKF offers several advantages over the
vanilla EKF. Firstly, it exhibits superior performance due
to the error state’s closer approximation to linearity during
evolution. Secondly, the error state formulation simplifies the
handling of special quantities like 3D rotations, facilitating
their integration within the EKF framework.The error state
formulation in the Extended Kalman Filter (EKF) approach
involves separating the state into a larger nominal state and a
smaller error state. Next, we will discuss both of these briefly.

B. NOMINAL STATE
The nominal state represents the predicted states based on the
motion model using IMU measurements. The nominal state
vector is composed of the following elements:

x25×1 = [piw viw Âqiw bw ba λÂ Âqci ]
T (4)

where
piw = [px , py, pz]T is position along x, y, and z axes
viw = [vx , vy, vz]T is velocity along x, y, and z axes
qiw = [qw, qx , qy, qz]T is orientation in quaternion form

along x, y, and z axes
bw = [bwx , bwy , bwz ]

T is bias along x, y, and z axes of
gyroscope
ba = [bax , bay , baz ]

T is bias along x, y, and z axes of
acceleromter
qci = [qciw , q

c
ix , q

c
iy , q

c
iz ]
T is the rotation between the IMU to

the camera frame
pci = [pcix , p

c
iy , p

c
iz ]
T is the distance from the IMU to camera

frame
λ is scale of monocular camera
The state is governed by the following set of differential

equations based on continuous motion model using IMU
measurements:

ṗwi = viw
v̇wi = CT

qiw
(̃a− ba − na)−g

q̇iw =
1
2
qiw ⊗ (ω̃ − bω − nω)

ḃω = nbω ḃa = nba λ̇ = 0 ṗic = 0 q̇ci = 0 (5)

here g is the gravity vector in the world frame and ⊗ is a
quaternion product operator. We make the assumption that
the scale factor drifts at a very slow rate, hence λ̇ = 0.
Since the IMU provides discrete measurements, Eq. 5 must
be discretized by considering the sampling time interval 1t .
As a result, the discrete-time motion model can be expressed
through the following equations. For the simplicity, the equa-
tions presented below do not utilize subscripts or superscripts
for coordinate frame notations.

pk = pk−1 + vk−1.1t + (CT
qk−1

.ak − g).1t2/2,

vk = vk−1 + (CT
qk−1

.ak − g).1t,

qk = qk−1 ⊗ q(ωk .1t) (6)

here, k and k − 1 represent the indices for the current and
previous time stamp.

C. ERROR STATE
The error state captures the accumulated modeling errors
and process noise. We estimate this small error in the error
state EKF andÂ use it as a correction to the nominal state [25].
The error state vector is stated as

δx = [δpiw δviw Âδθ iw δbw δba δλÂ δpci Âδθci ]
T

(7)

The error state kinematics model equation can be represented
as follows:

δ̇x = Fδx + Gn

Pk+1 = FPkFT + Q (8)

where F is kinematic model that propagates the errors
over time. n is noise vector and can be expressed as
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FIGURE 4. The Gazebo simulation environment was used to create a
crane model. The crane’s boom has two different types of rotations.

FIGURE 5. 3D map implemented in Gazebo simulation environment
(a) Complex construction environment. (b) 3D point cloud map of
complex construction environment. The varying colors in the map indicate
the elevation or height of each individual point.

n =
[
nTa , nTba, n

T
ω, nTbω

]
. Q is system or process noise

covariance matrix and can be represented as a Q =

diag(σ 2
na , σ

2
nba , σ

2
nω

, σ 2
nbω ). P is state covariance matrix. The

detailed explanation and derivation of F , G and Q can be
found in [22] and [27]. ForF ,G andQ, we use same approach
as given in [22].

D. MEASUREMENT MODEL
The measurement model for the camera pose measure-
ment, obtained from the VINS can be expressed as

FIGURE 6. Analysis of a 3D map in a simulation environment. The
Point-to-Point Distances for the map generated by VINS-MONO are
shown in (a), and the map generated by VINS-MONO+EKF is shown in (c).
Color represents an error (cloud-to-cloud distance between ground truth
and point cloud). The distribution fitting of point-to-point distances for
the map generated by VINS-MONO is shown in (b) and the map generated
by VINS-MONO+EKF is shown in (d).

follows [22], [23]

z =

[
pcw
qcw

]
=

[
(piw + CT

(qiw)
pci )λ + np

qci ⊗ qiw

]
(9)
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FIGURE 7. The experiment showcases the crane model along with its
accompanying sensor system. The sensor system is connected to the
boom of the crane.

FIGURE 8. Motion capture system attached to crane environment.

The equation can be linearized as z = Hδx + n as given
in [22] and [23], where H represents the Jacobian matrix of
the VINS pose measurement with respect to the error state.
we update and correct our estimates using Extended Kalman
Filter based procedure as:
Compute the residual

δz = z− ẑ (10)

Estimate the Kalman gain

K = PHT (HPHT
+ R)−1 (11)

Calculate the correction

δ̂x = Kδz (12)

Update the state covariance

P = (I − KH )P(I − KH )T + KRKT (13)

V. MAPPING MODULE
To construct a dense 3D point cloudmap, we havemade some
modifications to our previous approach proposed in [28].
The previous approach involved building the 3D map using
structural information of the crane and rotation estimates
from an IMU. However, in this modified approach, we utilize
the pose estimates provided by VINS+EKF for building the
3D map. Our approach involves utilizing a 2D lidar sensor
that is mounted on a rotating base, which, in turn, is attached
to a crane boom. This configuration allows us to capture
comprehensive spatial information and generate a detailed
representation of large environment both horizontally and
vertically.

During crane operations, the lidar faces motions which
arise from two sources: the rotation of the rotating-base and
the motion of the crane boom (see Fig. 2). Since the lidar
is continuously in motion, the successive 2D lidar scan lines
do not overlap with one another. Consequently, in order to
register the lidar scans and construct a comprehensive 3D
map, it becomes essential to accurately track the lidar pose.
By continuously monitoring the lidar’s position and orienta-
tion in space, we can align and integrate the individual scans
into a coherent 3D representation. We track the lidar pose as:
The rotational angle of the rotating-base is measured using
its encoder. This transformation, denoted as T lidarrotating_base,
represents the lidar frame’s rotation relative to the rotating
base frame. The motion of the crane boom frame relative
to the fixed world frame (T rotating_baseworld ) is measured using
VINS+EKF. To calculate the transformation from the lidar
frame to the fixed world frame (T lidarworld ), we establish a chain
of transformations between the respective coordinate frames,
as shown in the following equation.

T lidarworld = T lidarrotating_baseT
rotating_base
world (14)

The tf2 broadcaster [29], a package of the Robot Operating
System (ROS) is used in broadcasting the transformations of
all coordinate systems. Whenever an update occurs regarding
a specific transform of any frame, coordinate transformation
messages are broadcasted by the tf2 broadcaster. This mecha-
nism enables us to keep track of the motion of the lidar frame
as it moves.

Once transformation of lidar frame to fixed world T lidarworld
is obtained, it is used in the laser-assembler [30], [31] to
construct a 3D map during the lidar’s motion, which com-
bines individual laser scan lines obtained from a 2D lidar and
creates a composite 3D point cloud. The mapping process
is shown in Fig. 3 using a block diagram. For 3D mapping,
the projector block converts the polar coordinate lidar scans
measurements into Cartesian coordinates (XYZ), which we
refer to as the lidar frame. Since the lidar frame is subject
to motion, our next step involves transforming the moving
lidar frame into a fixed world frame, enabling us to obtain
a three-dimensional representation of the environment. This
coordinate transformation is shown by transformer block,
which by using transformation information (translation and
rotation) of lidar frame obtained from VINS+EKF and rotat-
ing base converts the lidar measurements from the lidar frame
to the fixed world frame. Subsequently, the transformed lidar
measurements are stored in a rolling buffer for a predeter-
mined duration. Whenever a request for a 3D point cloud
is received, the rolling buffer retrieves and delivers large
assembled transferred laser scans in the Point Cloud format.

VI. IMPLEMENTATION OF VINS
For implementation of VINS we needs IMU parameters such
as noise and random walk, camera intrinsic parameters and
Extrinsic parameter between IMU and Camera. To calibrate
the IMU and estimate the noise and random walk, the ROS
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FIGURE 9. Trajectory evaluation for case 1. (Crane boom started moving
with a jerk).

package tool imu_utils and allan_variance_ros [32], [33]
was utilized. Data collection was performed over a dura-
tion of two hours while the IMU was kept stationary. VINS
requires camera calibration parameters such as image width
and height, camera distortion model, Intrinsic camera matrix
and projection matrix which consists on focal lengths and
principal point. VINS supports the pinhole model and the
MEI model. A OpenCV camera calibration package based
ros tool [34], [35] is used to provide these camera calibration

FIGURE 10. Trajectory evaluation for case 2. (Crane boom moves in
arbitrary motion).

parameters to VINS. Kalibr calibration toolbox [36], [37] is
used for imu-camera joint calibration to estimate the Spatial
and temporal calibration paramters between IMU and Cam-
era. To achieve precise camera calibration, we used an 8 × 6
checkerboard with 108mm squares and moved the checker-
board within the camera frame to different positions: left,
right, top, and bottom of the field of view. Additionally, adjust
the position of the checkerboard by moving it towards or
away from the camera while tilting it. The parameters of each
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FIGURE 11. Trajectory evaluation for case 3. (Crane boom is subjected to
large rotational changes).

package were manually adjusted, starting from their default
values and fine-tuning them for improved performance. Any
recommendations provided by the authors were taken into
consideration during this parameter adjustment process.

VII. SIMULATION RESULTS
We first conducted an evaluation of proposed mapping
method using VINS and VINS+EKF in a simulated
environment using the Gazebo simulator [38] and ROS

environments. In the Gazebo simulation, we designed a
robotic model of a crane as shown in Fig. 4. The crane’s
boom has two rotational axes: one for vertical movement
and the other for horizontal movement. To control these
rotations, we utilized ROS joint trajectory control. The sen-
sor system, consisting of a monocular camera, 2D lidar,
a rotating base, and two IMU, was attached to the crane’s
boom. We performed evaluations of our proposed method in
a simulated environment that represents an open-sky complex
construction site area as shown in Fig. 5(a). Fig. 5(b) shows
the 3D map built by the proposed mapping method using
VINS-MONO+EKF. We can see the proposed method cre-
ated accurate and precise 3D mapping while the crane boom
is moving in different directions.

In order to assess the accuracy of VINS and VINS+EKF,
we compared the 3D map generated by using VINS and
VINS+EKF with the ground truth obtained from a sim-
ulation model. The point-to-point distances between the
two point cloud maps were calculated using cloud com-
pare [39]. Fig. 6 presents the results of this compari-
son for the 3D maps created using VINS-MONO and
VINS-MONO+EKF, visualized with a color scale map.
Blue indicates smaller distances, while red represents larger
distances. In Fig. 6(a) and Fig. 6(c), we can observe the
maps generated by VINS-MONO and VINS-MONO+EKF,
respectively. The VINS-MONO map has a higher number of
points represented in green, while the VINS-MONO+EKF
map predominantly contains points in blue. This discrepancy
indicates that the VINS-MONO map has more errors com-
pared to the VINS-MONO+EKFmap. Fig. 6(b) and Fig. 6(d)
display the distribution fitting graphs of the point-to-point
distances for the VINS-MONO and VINS-MONO+EKF
maps, respectively. Approximately 91.6% of the points
in the VINS-MONO map and VINS-MONO+EKF map
have distances below 0.199 m and 0.357 m, respec-
tively. These findings demonstrate the effectiveness of the
VINS-MONO+EKF approach in reducing errors. Moreover,
the point cloud map generated using the VINS-MONO+EKF
method closely resembles the ground truth.

VIII. EXPERIMENTAL RESULTS
The effectiveness of our proposed method was further eval-
uated through real-world experiments conducted on a crane
model, as illustrated in Fig. 7. The crane model was situated
in an indoor environment spanning a 20 m by 10 m area and
motion capture system is installed in environment as shown
in Fig. 8 to get ground truth of sensor’s trajectory. To conduct
the experiments, we utilized a sensor system comprising a
realsense T265, Hokuyo UST-20LX 2D lidar, an Orion Giken
RHST-PA1L rotating base, and an XSENS MTI-630 IMU
mounted on the crane’s boom. This sensor setup enabled us
to capture extensive data for mapping the crane environment.

A. TRAJECTORY EVALUATION
In order to analyze the accuracy and robustness of different
VINS and VINS+EKF approaches, we conducted a series
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TABLE 1. Comparison of VINS methods in terms of Absolute Pose Error (APE). APE represents the error between the ground truth and the estimated pose,
which is computed at each timestep and subsequently averaged.

TABLE 2. Comparison of VINS methods in terms of Relative Pose Error with trajectory segments of lengths 2 and 4 meters.

FIGURE 12. Trajectory evaluation using MSCKF and
Vins-fusion-stereo-no-imu.

FIGURE 13. 3D map for crane environment.

of experiments under different scenarios. These scenarios
included varying crane boom rotation speeds as well as chal-
lenging crane boom trajectories. The objective was to assess
the performance of the different approaches in these diverse
scenarios and gain insights into their effectiveness.

To do quantitative evaluation we compared the estimated
trajectory with ground truth obtained from a motion capture
system. We utilized the sim3 trajectory alignment method
described in [40] and [41] to align the estimated trajectory
with the ground truth. We then calculated the Root Mean
Square Error (RMSE), Relative Pose Error (RPE) and Abso-
lute Pose Error (APE) using [40], [41] to quantify the position
and orientation errors of the estimated trajectory over the

FIGURE 14. Analysis of 3D map for model crane environment.
(a) Point-to-Point Distances. Color represents error (cloud-to-cloud
distance between ground truth and point cloud). (b) Distribution Fitting of
Point-to-Point Distances. Color represents error in distribution fitting.

aligned trajectory. Due to space limitations, we present three
crane boom trajectories under three distinct scenarios. For
each trajectory, three graphs are provided. The first graph
illustrates the estimated trajectories of the different VINS
and VINS+EKF methods in comparison to the ground truth.
The second graph displays the RMSE at each timestep of
the trajectory, offering insights into periods where estimation
performance may be compromised. The third graph presents
the RPE, which is computed for segments of the dataset and
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enables an examination of how localization solutions drift as
the trajectory lengthens.

In the first case, the crane’s abrupt movement (with a jerk)
was studied. Fig. 9(a), Fig. 9(b) and Fig. 9(c) display the
trajectory, RMSE, and RPE, respectively.We can observe that
the trajectories of VINS-MONO and VINS-Fusion-Mono are
significantly affected by jerk, resulting in higher errors. How-
ever, incorporating an additional IMU using EKF mitigated
the impact of a jerk on the trajectory.

In the second case, the crane boom moves in an arbi-
trary motion. Fig. 10(a) shows the trajectory estimated using
VINS and VINS+EKF methods. Fig. 10(b) and Fig. 10(c)
present the RMSE and RPE, respectively. We observed that
VINS-Fusion-Mono+EKF had the lowest RMSE, while
VINS-Fusion-Mono had the highest.

In the third case, the crane boom undergoes sig-
nificant rotational changes. Fig. 11(a), Fig. 11(b), and
Fig. 11(c) display the trajectory, RMSE, and RPE, respec-
tively. VINS-Fusion-Mono and VINS-MONO faced inaccu-
rate scaling, leading to larger pose errors. The EKF approach
accurately addresses the scaling issue in both methods.

Table 1 and Table 2 present the APE and RPE values,
respectively, for the trajectory estimated using VIO algo-
rithms across all three cases. The algorithm with the highest
performance is emphasized in bold, and the algorithms with
the next best performance are indicated with underlines.
Based on these results, VINS-Fusion-Stero+EKF, VINS-
Fusion-Mono+EKF and VINS-MONO+EKF approaches
demonstrated precise and consistent performance, making it
a robust choice for crane state estimation.

B. 3D MAPPING EVALUATION
In order to create a 3Dmap, we configured the rotating base of
the 2D lidar to rotate at a constant speed of 6 degrees per sec-
ond. Fig 13 illustrates the resulting 3D point cloud map when
the crane’s boom is in motion. Each point color represents its
corresponding height. Notably, the figure demonstrates that
even when the sensor system is continuously moving, we are
able to generate a precise and accurate point cloud map.

We compared the 3D map generated using our proposed
approach with a ground truth map to assess the accuracy of
our method. The ground truth map was constructed by the
trajectory obtained from a motion capture system. Fig. 14(a)
depicts the point-to-point distance between the two 3D
maps using a color scale that represents distances ranging
from 0 to 2.83 meters. The majority of points in the point
cloudmap are shown as blue, with some green points and only
a few red points. This indicates a low overall error, suggesting
that our proposed technique is capable of producing an accu-
rate 3D map. Additionally, Fig. 14(b) presents a distribution
fitting plot of the point-to-point distances between the two
point clouds. Approximately 71.6% of points have a distance
of less than 0.4 meters. Consequently, the point cloud map
obtained using our method closely aligns with the ground
truth, exhibiting minimal point-to-point distances between
them.

IX. CONCLUSION
In this paper a method for estimating sensor poses and gener-
ating extensive 3D maps for construction cranes is described.
The study focuses on construction cranes equipped with a
sensor system comprising a camera, 2D lidar, and IMU.
To address the complexities arising from the crane boom’s
motion, an Extended Kalman filter (EKF) is employed to
enhance the accuracy and reliability of sensor pose estima-
tion. The proposed method involves combining pose esti-
mates from the Visual-Inertial Navigation System (VINS)
with data from an additional IMU to estimate the scale value
of a monocular camera. This scale value, obtained from the
EKF, is then integrated into the VINS algorithm to refine the
previously estimated scale value. The construction of a 3D
map is facilitated by employing a slowly rotating 2D lidar.
Given the limited overlap between 2D lidar scans, the esti-
mated pose is utilized to align and construct a comprehensive
3D map. The study also includes a comprehensive evalua-
tion of the efficacy of the latest VINS techniques, as well
as the EKF-enhanced VINS approach, within the context
of crane operations. Extensive performance assessments are
conducted in simulated and real environments, comparing the
EKF-added VINSmethod against state-of-the-art VINS tech-
niques. The evaluation results affirm the accurate estimation
of sensor poses by the EKF-added VINS method, thereby
enabling the generation of high-quality, large-scale 3D point
cloud maps for construction cranes.

Our future work includes, firstly, further evaluation of
the MSCKF and R-VIO methods in the current approach.
These methods failed in our testing, but we plan to use
precise IMU calibration parameters and camera intrinsic
and extrinsic parameters to again evaluate these methods.
Currently, the IMU calibration parameter is obtained using
6-hour static IMU data. However, using more static IMU
data can provide more accurate calibration parameters. These
methods will undergo further testing by adjusting the various
parameters and initialization values. Secondly, in the current
mapping method, the 2D lidar scan registration relies solely
on estimated pose values. However, this approach leads to the
accumulation of errors over time. In future work, these errors
can be eliminated by performing scan matching between two
point clouds generated by consecutive complete rotations of
the lidar sensor.
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