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ABSTRACT The inefficacy of 2-Dimensional techniques in visualizing all perspectives of an organ may
lead to inaccurate diagnosis of a disease or deformity. This raises a need for adopting 3-Dimensional medical
images. But, the high expense, exposure to a high volume of harmful radiations, and limited availability of
machinery for capturing images are limiting factors in implementing 3-Dimensional medical imaging for
the whole populace. Thus, the conversion of 2-Dimensional images to 3-Dimensional images gained high
popularity in the field of medical imaging. However, numerous research works offer the potential for the
reconstruction of 3-Dimensional images. But, none of these provides the visualization of all angles of view
from 0° to 360° for a 2-Dimensional input image such as X-ray and dual-energy X-ray absorptiometry. Also,
these techniques fail to handle noisy and deformed input images. The purpose of this research is to propose a
tailored Conditional Adversarial Network Model for the translation of 2-Dimensional images of bones into
their corresponding 3-Dimensional view. The model is preceded by pre-processing techniques for dataset
cleaning, noise removal, and converting the dataset to a uniform format. Further, the efficacy of the model
is improved by determining the optimal values of model parameters, employing the customized activation
function, and optimizers. Additionally, the visual quality of the generated 3-Dimensional images is evaluated
to showcase the degree of quality degradation while translating. The experimental results obtained on the
real-life datasets collected from hospitals across India prove the efficacy of the proposed model in generating
3-Dimensional images. The generated images are similar in quality to the input image and also effective in
retaining the information available in an input image.

INDEX TERMS Conditional generative adversarial network, deep learning, X-ray, 3-dimensional view, 2-
dimensional imaging.

I. INTRODUCTION

Early and correct diagnosis of a disease or deformity is an
important step before the treatment of patients. An inaccurate
diagnosis can lead to the wrong treatment of disease and
may increase the death rate [1]. The introduction of medical
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imaging techniques such as Computerized Tomography scan
(CT scan), Magnetic Resonance Imaging (MRI), Ultrasound
rays, and Dual-energy X-ray Absorptiometry (DXA), etc.
have improved the visualization of the anatomy of organs
and tissues. Therefore, these have become important for the
accurate diagnosis of an infection or deformity in one or more
body parts. The medical imaging techniques are broadly cate-
gorized into 2-Dimensional (2-D) imaging such as X-ray and
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FIGURE 1. Work flow of the proposed system.

DXA and 3-Dimensional (3-D) imaging such as CT scan and
MRI [2]. The 2-D imaging techniques display a 3-D structure
into a 2-D form. So, the horizontal and vertical displacement
of the structure is based on its distance from the film [2].
2-D imaging also causes the superimposition of the left and
right-hand sides of the structure. Thus, 2-D images give low
precision in locating the deformities in organs. Also, these
techniques fail to mark the well-defined boundaries of organs
and the depth of infection or deformity. The 2-D images also
fail to display the precise anatomical structure of an organ [3].
On the other hand, 3-D imaging techniques display the 3-D
structure of an organ. Thus, these techniques overcome the
above-stated drawbacks and provide better visualization of
an organ. The CT scan imaging produces multiple slices of
an image. For the correct diagnosis of a disease or deformity,
the system applies a reconstruction technique and produces
a complete image of an organ [2]. The lesion far from the
cross-section captured in the CT scan may be ignored [4].
Also, the cost of CT scan imaging is high. Due to the high
cost of machinery, CT scan imaging is not available in each
health center. Another popularly used modality for 3-D imag-
ing is MRI scanning. It is also successful in overcoming
the drawbacks of 2-D imaging techniques. But, it is more
time-consuming than X-rays and CT-scan. It also requires
sedation in children [5]. Further, MRI scanning is not feasible
for patients with implanted organs. The cost of MRI imaging
is even higher than CT scan imaging [6].

The discussion in [7] and [8] shows that 3-D images
provide better visualization than 2-D images for a fractured
or damaged part. But, the high cost and low availability of
3-D imaging techniques raise the need for low-cost techno-
logical alternatives of presenting the 3-D view of an organ.
In this manuscript, the authors propose a tailored Conditional
Adversarial Network (CGAN) Model for the translation of
2-D images of bones into their corresponding 3-D view.
They apply pre-processing techniques on input images for
noise removal, conversion to a uniform format, resizing, and
normalization etc. They pass the pre-processed 2-D X-rays
images to the CGAN model for conversion into their corre-
sponding 3-D view. The workflow of the proposed system is
shown in Figure 1.

The major objectives of this manuscript are as follows:

1) To apply pre-processing techniques to X-ray images

collected from different sources.

2) To develop a system for the conversion of X-ray images

into their equivalent 3-D images.

3) To develop a system for displaying the desired angle

view from 0° to 360° for the converted image.

4) To provide a low-cost alternative to 3-D imaging

techniques.

96284

Develop modified Training and fest-
CGAN model ing of the model
model

Performance
evaluation of the

5) To ensure the good visual quality and information
preservation of the generated 3-D images.

Il. RELATED WORKS

The importance of converting 2-D images to 3-D images
attracted researchers to develop new techniques and improve
the existing techniques of conversion. The researchers
applied Direct Linear Transformation (DLT) [9], Free
From Deformation (FFD) [10], Statistical Shape Model
(SSM) [11], Non-Stereo Corresponding Points (NSCP)
algorithm [12], Deep Convolutional Neural Network
(DCNN) [13], Laplacian Surface Deformation (LSD) [14],
Iterative Closest Point (ICP) algorithm [15], and Partial Least
Square Regression (PLSR) [16] for the conversion of 2-D to
3-D images.

Wei et al. presented the comparison of CT scans and X-ray
images in the work proposed in [17]. Based on the com-
parison, they claimed that X-ray imaging is preferred over
CT scan due to its low cost and less exposure to harmful
radiations [17]. But, the visualization of disease in CT scan is
better than in X-ray images. So, they proposed the 3-D recre-
ation system for femoral shaft shape. To serve this purpose,
they used the numerical morphology strategy for boundary
detection. They identified the central point of the femur shaft
edge and computed its three coordinates using a stamp point
in the two headings of the X-ray image.

Similarly, Le Bras et al. in [ 18] applied 3-D CT scan remak-
ing and 3-D stereo radiographic reconstruction methods for
the reconstruction of the proximal femur. They considered
the parameters such as image procurement, determination
of volume, and scout view for the recreation. The authors
used the Slice Omatic software to obtain the 3-D view of a
femur. They used the Non-Stereorediography Corresponding
Countur (NSCC ) algorithm for developing the 3-D shape
of a femur. The performance evaluation of these methods on
25 proximal femur images shows that the stereo radiographic
reconstruction method reports the mean P2S error lower
than 2.0 mm. To reduce the P2S error, Akkoul et al. proposed
amodel for 3-D proximal femur surface recreation [19]. They
used the pseudo-stereo matching procedure. They used three
cadaveric proximal femora scanned with CT scan and X-ray
imaging. The model completes the recreation into seven
steps. In the first step, the model uses the projection display
to identify the angle between two X-ray images of a femur.
In the second step, it uses active contours for determining
the boundary of the femur. At the next step, it finds the
coordinating points between 2-D shapes. The authors applied
the city-obstruct, the chess-board, and euclidian 2-D spatial
separation for finding the coordinating points. They claimed
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that euclidian separation gives the best accuracy. The authors
employed Thales hypothesis to locate three points on the
surface of an image. They used these points to calculate the
right angle. Finally, they referred to these angles to produce
3-D point clouds. At the next step, the model uses the Itera-
tive Closed Point (ICP) for 3-D rigid registration. ICP does
not require local feature extraction. It can be generalized to
N-Dimensional space and is suitable for parallel architec-
tures. However, ICP is robust and stable but, it is based on
the initial assumptions that may degrade its performance.
Also, ICP needs pre-processing techniques for triangulation,
mesh simplification, and generating 3-D trees. This technique
requires high computation time for finding the closest point
pairs.

Baka etal. [11] applied the Statistical Shape Model (SSM)
for posture estimation and construction of a 3-D bone surface
from X-ray images. In this approach, the authors used the
concept of edge determination. This approach has the poten-
tial of capturing the global shape of the object of interest
rather than reducing it to a set of fixed geometric measure-
ments such as lengths and angles. But, it is challenging to
determine the landmark correspondence over a set of bone
shapes in the training dataset. Further, the number of iden-
tifiable landmarks in long bones is insufficient to represent
the bone shape. Gamage etal. [20] proposed a technique for
the conversion of 2-D radiographs into a patient-specific 3-
D bone model. In the first step, the technique extracts the
edge points from 2-D X-ray images. These edge points detect
the boundary of the femur. Now, the non-rigid registration is
done between the edges recognized in the X-ray images and
contour points projected. At the next step, the technique uses
the translational field to distinguish the anterior and lateral
viewpoints of the 3-D anatomy. At the last step, it constructs
the 3-D translational field through a Thin Plate Spline (TSP)
based insertion and the 3-D generic anatomical data.

Lee etal. [21] proposed the model for constructing the
3-D shape of the femoral bone from its X-ray images. The
model uses the 3-D referential approach to join the anatom-
ical parameters viz. neck length, femoral length, head offset
length, the anatomical axis, and sagittal radius. The authors
applied nonlinear regression for calculating the inner posi-
tion and range of the femoral head. They used elliptical
regression for calculating the center point of the anatomical
axis. Laporte et al. [22] applied the Direct Linear Transfor-
mation (DLT) and Non-Stereorediography Corresponding
Points algorithm (NSCP) for the 3-D reconstruction of bones.
But, these algorithms are effective for the ceaseless shape
such as knee joint. The DLT technique does not require mul-
tiple images to calculate the distortion boundaries. Therefore,
it has low computational complexity. However, its compu-
tation time is low but still, its use is limited due to the
identification of the small number of corresponding anatomi-
cal landmarks on the radiographs. Moreover, DLT encounters
real-time challenges such as it requires a large calibration
frame to include the space of motion. The small frame may
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lead to extrapolation and, hence inaccurate computation of
coordinates. Also, post-calibration alteration in settings may
lead to inaccurate results. The NSCP technique employed
in [22], reports more accurate results due to consideration of
more number of control points. But, this technique lacks in
marking the specific anatomical landmark points. This makes
the technique unsuitable for bony structures with continu-
ous shapes. Moreover, manual identification of landmarks is
time-consuming and complex. Thus, it becomes unacceptable
for clinical purposes.

Kolta et al. [23] proposed the technique for remaking the
3-D form of human bone from X-ray and DXA images. They
considered 20 samples of proximal femur of human males
and 5 samples of females. The samples were collected from
the age range of 83 to 103 years. The authors used the contour
detection method for generating 3-D shapes from 2-D images.
They applied the NSCC algorithm for the initial matching and
then applied the nonlinear deformation to minimize the gap
between the 2-D projections DXA image. They achieved the
mean error of 0.8 mm which is lower than the 2.1 mm error
rate reported in [23].

Goli et al. [24] proposed an automated system for a vehicle.
They experimented with the heuristic approach as well as
with the whale optimization algorithm (WOA). The authors
claimed that their model’s efficiency and accuracy is better
than particle swarm optimization and ant colony optimization
algorithm. Even though, out of the heuristic approach and
WOA, WOA methods give the best solution for a given
automation problem.

Karade and Ravi proposed the LSD technique for 3-D
femur reconstruction from bi-planer X-ray images [14]. This
deformation technique is fast, robust, and easy to con-
trol. Thus, it is useful for creating interactive applications.
But, this technique requires the explicit setting of smooth-
ing to create a satisfactory base mesh. The meshes with
complex details may require multiple levels of multiresolu-
tion hierarchy to correctly handle the details. Han proposed
the DCNN [13] approach for classification and 3-D model
design. The deep learning architecture proposed for the anal-
ysis of 2-D images can be easily adapted to 3-D models by
merely replacing the 2-D up-convolutions in the decoder with
3-D up-convolutions. But, this approach is computationally
expensive due to the cubical increase in the number of con-
volutions on the 3-D space.

The extensive study of the works proposed in the liter-
ature shows that the researchers majorly applied DLT [9],
FFD [10], SSM [11], NSCP algorithm [12], DCNN [13],
LSD [14], ICP algorithm [15], and PLSR [16] for the conver-
sion of 2-D to 3-D images. Each technique has its advantages
and limitations.

The comparative analysis of these techniques is shown
in Table 1. The first column includes the year, the second
column presents the names of researchers, the third column
gives the name of techniques, the fourth column presents the
application(s) of the technique, the fifth column highlights
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TABLE 1. Comparative analysis of techniques proposed in literature for conversion of 2-D to 3-D.

Year Authors technique Application(s) Advantage(s) Disadvantage(s)
used
2010 Zhang, B., Sun, Direct Lin- 3-D recreation of the For distortion of boundaries, DLT DLT requires uniform distribution
S., Sun, J., Chi, ear Trans- femur bone requires less number of images. of more control points for improving
Z., formation Thus, it has low computational com-  accuracy. Also, it requires two cam-
plexity. eras for capturing different views of
an image which adds to the cost of
conversion. Moreover, it is difficult
to sync the two cameras.
2011 Koh, K., Kim, Y. Free From To procure the patient- It has the potential to calculate the It is difficult to apply the FFD tech-
H., Kim, K., Park,  Deforma- specific deformation control points of a shape at a low  nique to the complex anatomy of the
W.M tion cost. body. Also, it is found ineffective in
handling the deformed input images.
2011 Baka, N.,  Statistical Posture estimation and It requires a limited number of pa-  Determining the landmark corre-
Kaptein, B.  Shape shape reconstruction  rameters for the identification of the  spondence point of a bone is a time-
L., de Bruijne, Model of a 3-D bone surface.  shape of an object. consuming task.
M., van Walsum,
T., Giphart, J. E.,
Niessen, W. J.,
Lelieveldt, B. P
2013 Zheng, G Partial 3-D reconstruction of It can easily handle the multi- PLSR technique needs a large num-
Least volumetric intensity collinearity between the indepen-  ber of data for training.
Square dent points at the time of 3-D recon-
Regression struction.
2015 Mitulescu, A., Non- To reproduce the 3-D It reports high accuracy due to the Its accuracy becomes low for Joint
Semaan, 1., De  Stereo shape from the bipla- usage of more number of control bones such as knee and elbow
Guise, J. A., Corre- nar radiographs points. Joints, etc.
Leborgne, P, sponding
Adamsbaum, C., Points
Skalli, W
2015 Karade, V., Ravi, Laplacian 3-D femur reconstruc- It requires low computation time It requires smoothing for generating
B Surface tion from bi-planer X-  due to less number of parameters. a satisfactory mesh shape.
Deforma- ray images, and shape
tion correspondence calcu-
lation for deformation
2019 Han, X.,Laga, H., Deep Con- Classification, and 3D  DCNN is fault-tolerant. Therefore, Fine-tuning of hyper-parameters is
Bennamoun, M volutional model Design one corrupted neuron does not affect  non-trivial. Requires a large dataset
Neural the performance of other neurons. for training. Also, this technique is
Network ineffective for spatially invariant to

the input data.

the advantages of the technique and the last column uncovers
the drawbacks of the technique.

lIl. MATERIALS AND METHODS

In this section, the authors explain the dataset used and the
methodology adopted for the conversion of 2-D images into
3-D images.

Dataset: For conducting the experiments, the authors col-
lected the dataset from RG Stone Urology Laparoscopy
Hospital. They collected 63140 X-rays and CT slice images
from different branches of RG hospitals across India. The
dataset contains 20410 images of knee bones, 22190 images
of elbow bones, and 20540 images of bones of the lower limb.
The authors divided the dataset into training, validation, and
testing datasets. The training set contains 75% images of the
total dataset. It contains 15307, 16642, and 15405 images
from knee, elbow, and lower limb respectively. To avoid the
class imbalance issue, it is important to use an equal number
of images in each class. A system trained on such a dataset
becomes equally efficient in recognizing images of each
class. The testing dataset contains 25% of the total dataset
size. This dataset contains 5102 knee bones, 5547 images of
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elbow bones, and 5135 images of bones of the lower limb. The
validation dataset includes 20% images of each category.

The authors experienced the following challenges in the
collected dataset:

1) Digital Imaging and Communications in Medicine
(DICOM) images of the same bone may vary in quality,
size, and resolution. The variation is dependent on the
exposure of the radiations directed through the subject.

2) The dimensions such as height, width, and depth of
DICOM images are different for various patients.

3) The DICOM images contain noise such as air, fat, soft
tissues, etc. The noisy data may lead to the problem of
over-fitting and under-fitting during the training of the
model.

A. PRE-PROCESSING

A CT scan image is a collection of X-ray images captured
at different angles. Each X-ray image stored in the DICOM
format displays only a part of the bone rather than the
complete bone. But, the deep learning model requires the
image of a complete bone as an input. Therefore, multiple
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FIGURE 2. Pre-processing of the collected dataset.

DICOM images of CT slices of a bone are collected in the
DICOM files. These images are merged to get the image of
a complete bone. The merging of images may cause noise
due to variations in shapes, sizes, and resolutions. Therefore,
the authors loaded all DICOM files from the folder into
a list. They applied the pre-processing operations such as
noise removal, resampling, rescaling, and normalization as
shown in Figure 2. These operations address the challenges
identified in the raw data collected from the hospital.

1) NOISE REMOVAL

The collected DICOM images contain noise such as air, soft
tissues, fat, etc. In this research, the authors need to apply the
deep learning model only on the bone or its part. Therefore,
it becomes essential to remove noise from the DICOM images
and locate the bone. There is a measurable difference in
the values of Hounsfield units (HU) for different types of
information recorded in an image. Exemplified as the value
for air is 1000 HU, for fatis —120 to —90 HU, for soft tissues
it varies from +100 to +300, and for bone the values lie
in the range from 4700 to +3000 HU [25]. The difference
in HU values of noise and bone is useful to recognize and
locate a bone in the DICOM image. Therefore, the authors
converted the voxel values of the DICOM images into HU as
defined in equation 1. They used the rescale slope and rescale
intercept stored in the DICOM header to perform the linear
transformation.

HU = (Gray_Value x Slope) + Intercept €))]

2) RESAMPLING

The DICOM files collected from the hospital differ in
width, height, and depth. This information is available in
the DICOM headers. The authors applied resampling on the
available information and converted all the DICOM images
into the ratio of 1 x 1 x 1 mm. Now, all the CT scan slices are
uniform in height, width, and depth. This is useful in bringing
uniformity to the dataset collected from various sources.

3) RESCALING

The resampled images are uniform in height, width, and depth
but still, there may be variations in the number of pixels in
each dimension. Merging the DICOM images of different
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dimensions may create white spaces in between two or more
images. This white space acts as a noise and may degrade
the performance of the model. Therefore, the authors rescaled
each image to the uniform dimensions of 128 x 128 x 128
before giving them as inputs to the deep learning model.

4) NORMALIZATION

The pixel values of input images may vary and can disrupt
the learning process of a Neural network. Also, the higher
pixel values increase the computation cost and slow down
the learning process. Thus, the authors divided the value of
each pixel with the largest pixel value to normalize them
between 0 and 1. The pixel normalization is applied across
all channels regardless of the actual range of pixel values of
an image.

5) AUGMENTATION

Deep learning neural networks require a huge dataset for
training. But, labeling the medical data needs a substantial
amount of time and effort from health experts and radiolo-
gists. So, it is challenging to get labelled dataset of medical
images. Data augmentation techniques are useful in generat-
ing more images from the available samples. Hence, these are
used to increase the size of the dataset. In this research, the
authors applied data augmentation techniques such as angle
rotation, and axis rotation. Also, to convert a 2-D medical
image such as an X-ray into its corresponding 3-D view, it is
mandatory to include images of each angle from 0° to 360° in
the training dataset. But, the authors did not receive the image
for each angle in the dataset collected from the hospital.
Therefore, they applied the angle and axis rotation operations
on the normalized images of bones. This increased the dataset
size as well as fulfilled the requirement of training the model
at images of each possible angle.

B. ARCHITECTURE OF CGAN

For generating the 3-D view from the 2-D view of a medical
image, the authors used Conditional Generative Adversarial
Network (CGAN) [26]. The CGAN is a deep-learning model
comprising a generator and a discriminator. The generator
and discriminator are contenders of each other. The generator
generates a random image corresponding to the input image
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FIGURE 3. Architecture of proposed CGAN model.

given to it. The discriminator compares the output image of
the generator with the input image and detects whether the
generated image is real or fake. The generator tries to mis-
lead the discriminator by generating the fake image whereas
the discriminator drives the generator to generate an image
similar to the input image.

The basic architecture of GAN does not require output
labels at the discriminator end. Therefore, it adopts the unsu-
pervised learning approach. But, in this research, the authors
need to present each view from 0° to 360° corresponding to
a specific angle view, say 0°. Thus, they added the output
labels viz. real images and fake images at the discriminator
end. They also assigned the condition to the generator for
generating the images of all views from 0° to 360° or the
desired view at any angle. This changed the unsupervised
learning approach to supervised learning.

In this research, the authors tailored the architecture of
Generative Adversarial Network (GAN) to design the CGAN
architecture according to the dataset available and the output
required. The architecture is similar to the Unet [27] network
and comprises three paths viz. contracting path, bottleneck,
and expanding path. In this architecture, the authors used
the kernel size as 4 x 4 and a stride of 2 at each layer.
They employed the LeakyReL.U activation function for non-
linear transformation. This function enhances the learning
of the network by considering negative values [28]. So, the
network becomes efficient in performing complex tasks. The
authors used the skip connections [29] to connect the stages
of the contracting and expanding paths. The network uses
different channels for extracting the features from the input
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image. In this architecture, the authors used Conv3d to get
the 3-D image as discussed below. The proposed architecture
of CGAN is shown in Figure 3.

1) CONTRACTING PATH

At this path, the network performs convolutions for
down-sampling of the input image from the dimensions
128 x 128 to 4 x 4 x 4. Initially, a 2-D image of size
128 x 128 is given as input to the network. At the first
layer, the network contains 28 channels to extract the features.
It gives the feature map of dimensions 64 x 64 x 64. At the
second layer, it uses 256 channels each of dimension 32 x
32 x 32. At the next layer, it uses 512 channels each of
dimensions 16 x 16 x 16. Now, the number of channels
remains 512 for the next two layers but, the dimensions of
feature maps are reduced to half at each layer. Thus, in the
next layer, the dimensions become 8 x 8 x 8 that are reduced
to 4 x 4 x 4 at the last layer of the contracting path. During
this step, the model converts the 2-D view (128 x 128) to
the 3-D view (4 x 4 x 4) of an input image and extracts the
important features.

2) BOTTLENECK PATH

At this stage, the network uses 512 channels each of dimen-
sion 2 x 2 x 2 to reduce the computational cost of the whole
network. The layer at the bottleneck path acts as a connecting
link between contracting and expanding paths. It receives the
input from the contracting path and passes it to the expanding
path.

VOLUME 11, 2023
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3) EXPENDING PATH

The information retrieved in the form of features extracted
at the contracting phase is useful in generating a 3-D view
from the 2-D view of an image. The expanding path uses
this information and generates the 3-D view of an image.
It doubles the dimensions at each layer until the achieves the
dimensions of the input image (128 x 128 x 128). At the first
layer, the network uses 512 feature maps each of dimensions
4 x 4 x 4. At the next layer, the dimensions of each feature
map double and become 8 x 8 x 8. At the third layer,
the network increases the dimensions to 16 x 16 x 16 for
512 feature maps. At the fourth layer, the number of channels
is reduced to 256 but, the dimensions of each channel are fur-
ther increased to 32 x 32 x 32. At the last layer, the network
uses 128 feature maps each of dimensions 64 x 64 x 64 and
gives a 3-D image of size 128 x 128 x 128 as shown in
Figure 3.

C. TRAINING PARAMETERS

The performance of deep learning models is directly related
to their training. The training of these architectures is depen-
dent on the size of the dataset, quality of the dataset, values of
model parameters and hyper-parameters for the network, acti-
vation functions employed, and the number of output classes.
In this section, the authors discuss the model parameters
and hyper-parameters used to fine-tune the modified GAN
architecture.

1) MODEL PARAMETERS
a: LOSS FUNCTION
The loss function is used to calculate the error of the model.
The error calculated at each iteration is back-propagated to
alter the weights of neurons. The model learns from the
updated weights and tries to minimize the value of the loss
function. The lower value of the loss function indicates better
training of the network. The authors employed the following
loss functions in network architecture.

L1 LOSS

It is the pixel-to-pixel difference between the image gen-
erated by the generator and the target image. Its definition is
given in equation 2. In this equation, y; is an instance of the
target image, x;j is the input pixel and w;j is the weight of a
neuron. L1 loss is the least absolute deviation that is used to
decide which function should be minimized during learning
from the dataset. The L1 loss gives higher gradients to the
small values of loss and updates the weights and biases of
different layers for the training of the network.

N M
L1Loss = > (i = D> _(xywy))’ @
i=0 J=0

Binary Cross Entropy Loss

Binary Cross-Entropy (BCE) loss is the negative of the log-
arithmic function as defined in equation 3, In this equation, y;
is the actual label (0 or 1). P is the predicted probability for the
class and N is the total number of samples. The discriminator
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uses this loss function to distinguish the image generated by
the generator and its corresponding input image.

BCELass =~ > (vilog(p) + (1~ wlog(1 p)  ©)

i=1

b: OPTIMIZERS

The continuous update in the weights of neurons is required
for training the network. Therefore, the networks employ the
optimizers such as Stochastic Gradient Descent (SGD) [30],
Root Mean Square Propagation (RMSProp [31]), Adaptive
Moment Estimation (Adam) [31], Adaptive Gradient (Ada-
Grad) [31] and Adadelta [30]. A brief description of these
optimizers is given below.

The SGD optimizer chooses one random sample rather
than a batch of the dataset. It requires low memory as it
computes only 1 point at a time. But, this optimizer needs
more time to complete 1 epoch of training due to random
samples. The RMSProp optimizer is an adaptive learning rate
method. It automatically adjusts the learning rate and sets the
different learning rates for each parameter. The adagrad opti-
mizer performs higher updates for the infrequent parameters
and smaller updates for the frequent parameters. Therefore,
it deals with sparse datasets [31]. Also, it has a continuous
decaying learning rate throughout the training. The learning
rate automatically becomes infinitesimally small after a set of
iterations. Thus, it does not require manual fine-tuning of the
learning rate. The optimizer adadelta overcomes the problem
of monotonic and continuous decreases in the learning rate
observed in AdaGrad.

In this manuscript, the authors employed an Adam opti-
mizer that adopts the features of both the RMSProp and
AdaGrad optimizers. Similar to the RMSProp, it uses squared
gradients to scale the learning rate. Further, it takes advantage
of momentum by using the moving average of the gradient
instead of the gradient itself. To calculate the value of the
current gradient it uses the values of the past gradient. For
calculating the momentum, it adds a fraction of the previous
gradient to the current gradient. Adam optimizer calculates
the mean and variance of the moment. It uses an exponentially
decaying average of past gradients (mt) and past squared
gradients (vt) as defined in equations 4 and 5 respectively.

my = Bimi—1 + (1 — B1) & “4)
vi=PBwi1+ (=B g Q)

In equations 4 and 5, g; shows the value of the loss at the i
iteration. The term S and B, are the forgetting factors for the
mean and non-centered variance of the gradient respectively.
The values of B; and B, are set to 0.5 and 0.999 based on
the set of experiments conducted and the research works
presented in [31].

c: ACTIVATION FUNCTION

Activation functions calculate the weighted sum of neurons
and add bias to it. Based on the calculated value, it identi-
fies the neurons to be activated. It introduces the non-linear
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TABLE 2. Impact of hyper-parameter.

a=0.0001 and n=100

a=0.0003 and n=100

Epoch Loss of Discriminator Loss of Generator Loss of Discriminator Loss of Generator
15 0.003261359 1.923183461 1.399525284 1.773968554
30 0.015893746 0.912701669 1.325775861 1.531654061
45 0.005482937 1.615594452 1.345080018 1.629260665
60 0.004738476 1.574684221 1.71176064 1.840917689
75 0.025739576 1.565683832 1.445257663 1.722736474
90 0.003689274 1.621834521 1.46692287 1.618364288
105 0.004278347 1.776031188 1.46692287 1.768832596
120 0.005719283 1.672490924 1.486529231 1.871892124
135 0.014857625 1.021035152 1.49918746 1.912135252
150 0.006283746 1.476518832 1.52298784 1.614006907

transformation to the input. Hence, it is useful in enhancing
the learning of the network and improving its efficacy for
performing complex tasks. In the proposed architecture, the
authors used three activation functions viz. Tangent Hyper-
bolic function (tanh), LeakyReLU, and sigmoid [28]. The
tanh is a nonlinear activation function used in the architecture
of the generator to introduce the non-linearity in the generated
image. Its value lies in the range from —1 to +1. Due to zero
centroid functionality, the tanh activation function makes the
optimization easier. The gradient of this activation function is
stronger than other activation functions as its derivatives are
steeper.

LeakyReLU activation function is used in the architectures
of both the generator as well as the discriminator. It gives the
solution to the problem of dying ReLU [28]. In this problem,
the network considers both the negative as well as positive
values of the gradient. Thus, the resultant value of the gradient
becomes zero. The sigmoid activation function is used in the
architecture of discriminators for binary classification. The
discriminator detects whether the generated image is real or
fake. Its ‘0’ value indicates the fake image and ‘1’ indicates
the real image.

d: WEIGHT INITIALIZATION

At the initial step, random weights are assigned to the neurons
of the deep learning model. The random and non-uniform
initialization of weights to different neurons may lead to
incorrect training. For example, if the model automatically
selects the pixel values of an image as the initial weights of
its neurons, then the pixel values corresponding to the bones
will be higher than its neighboring pixels in the image. Thus,
a part of the image that contains one or more bones will
contribute higher weights to the neuron than the remaining
part(s). This can lead to wrong and imbalanced training of
the network for different components captured in an image.
Therefore, it becomes important to normalize the weights of
the neuron. The authors normalized the weight of each neuron
between 0 and 1. Also, they initialized convolutional layers
with a normal distribution of mean as 0.0 and a standard
deviation of 0.02. The authors used normal distribution with
a mean value of 1.0 and a standard deviation of 0.02 for
batch norm layers. They initialized the Bias as ‘0’ to avoid
the asymmetry that may be caused by random numbers.
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Now, the weights are continuously updated by using the
concept of back-propagation. The normalization reduces the
computation time of the model and is also responsible for its
fast convergence [32].

To update the weights of the neurons in the network, the
concept of back-propagation plays an important role. Here,
the current weight of a particular neuron depends on the previ-
ous weights. Therefore, the authors initialized convolutional
layers with a normal distribution of mean as 0.0 and the
standard deviation as 0.02. Similarly, for batch norm layers,
the authors used normal distribution with a mean value of 1.0
and a standard deviation of 0.02. Bias is initialized ‘0’ to
avoid the asymmetry that may be caused by random numbers.

2) HYPER PARAMETERS

Hyper-parameters are the adjustable parameters such as
the regularization parameter («) and learning rate (1) of
the neural network model. Their values are not estimated
from the dataset. These parameters are fine-tuned and pre-
set before the actual training of the model. It is important to
optimize the performance of the model.

a: REGULARIZATION PARAMETER («)

The regularization parameter adds a penalty term to the loss
function to fine-tune it according to the size of the dataset.
Its low value causes the problem of over-fitting whereas its
high value leads to the under-fitting of the model. The optimal
value of this parameter resolves the problem of over-fitting
and under-fitting. In this research, the authors conducted a
set of experiments and set the value of o as 100 for achieving
the optimum performance of the proposed model. The impact
of the regularization parameter on the convergence and per-
formance of the model is shown in Table 2 and Table 3.

b: LEARNING RATE ()

The learning rate is the change in the value of weights
during each epoch of training. It determines the response
of the model to the error computed. The model updates its
weights after each iteration of error computation. Its low
value indicates that neurons take a long time for reaching the
optimum solution. Thus, the model has high computational
complexity. The high value of the learning rate leads to the
instability of the model. Therefore, it is important to find
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TABLE 3. Impact of hyper-parameter.

a=0.0001 and n=95

a=0.0005 and n=105

Epoch Loss of Discriminator Loss of Generator Loss of Discriminator Loss of Generator
15 0.018273691 1.712217223 0.002749374 0.951103746
30 0.004192229 1.517771087 0.052716354 1.647412506
45 0.00829912 1721967102 0.003102839 1.528650848
60 0.008362715 1.818164916 0.000411877 1.837485488
75 0.004292922 1.823518371 0.007188976 1.728184738
90 0.189237452 1.712540239 0.009912912 1.683780975
105 0.047183726 1.593438713 0.291002933 1.481736907
120 0.007238461 1.611489771 1.021938235 1.912913513
135 0.004343782 1.743519985 0.005728374 1.885609008
150 1.284736491 1.911729362 0.008819723 1.728563415

the optimal value of the learning rate. The research works
presented in [31] recommend the values of learning rate
between 0.0 to 1.0. Based on the values recommended in [31]
and a set of experiments conducted, the authors observed that
the model proposed in this manuscript achieved its optimum
performance at 0.0002 value of the learning rate. Beyond this
value, there is a quick drop in the value of the loss function.
The impact of the learning rate on the convergence of the
model is shown in Table 2 and Table 3.

D. TRAINING OF CGAN MODEL

In this section, the authors explain the training mechanism
of the proposed model. The authors give 3-D input images
for training the model. The corresponding generated image is
evaluated against the 3-D input image by calculating the loss
function. The sample input image is shown in figure 3. Once
the model is trained, its performance is evaluated using the
dataset comprising 2-D images. It is evident from the results
shown in figures 4, 5, and 6 that the model is effective in
the conversion of 2-D image to its corresponding 3-D image.
The sequence of steps involved in the training is shown in
Algorithm 1.

Algorithm 1 Training Procedure of the Model

1) D (x @)’real) — P{0,1} =1

2) G(x) —> Yfake

3) D (x B ypke) = P{0,1} =0

4) Lcean(G, D) = Ex,ym,l [10g D(X, yrea)] +
Ex,yfake [log(1 — D(x, G(x)))]

5) L (G) = EX,yrea/ = [|yrear — G(X)|]

6) Total Loss = argmingmaxp Lcgan(G,D) + A
L (G)

7) Back propagate total loss and calculate the gradients.

8) Adam optimizer updates the weights and bias of the
network.

9) Repeat steps 1 to 8 until total loss becomes minimum.

At the first step, a 2-D input image 'x’ and the target
image y.q are given as input to the discriminator of the
model. Both images are similar, so the discriminator gives
the probability approximate to 1. This indicates the image
is real. In the second step, the input image is given to the
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generator (G). Initially, it generates a fake image for the given
input image. Now, the input image and the generated fake
image are forwarded to the discriminator (D). The discrimina-
tor compares the generated image with the target image. Both,
the inputs of the discriminator are fake counterparts of each
other. So, the discriminator gives the value of probability (P)
approximately 0. In the fourth step, the model calculates the
values of its loss (L) functions. It calculates the values of
BCE loss for the generator as well as discriminator using the
equation shown in step 4 of algorithm 1. Based on the value
of BCE loss the discriminator distinguishes the generated
image and its corresponding real image. At the next step, the
model calculates the value of L1 Loss for the generator using
the equation given in step 5 of algorithm 1. Now, the model
calculates the value of the total loss as given in step 6 of
algorithm 1. In the next step, the model back propagates the
value of the total loss for calculating the gradients of the
model. In the last step, the Adam optimizer with an adaptable
learning rate updates the parameters viz. weight and bias of
the network. The above-discussed procedure is iterated until
the value of the loss function becomes minimum. The mini-
mum value of the loss function approximates to ‘0’ indicating
that the model is trained effectively to generate the 3-D view
of the 2-D input image.

IV. RESULTS

In this research, the authors conducted experiments on RTX
2080 Graphics Processing Unit (GPU) with 64 GB RAM
and a 2 TB hard disk. The GPU runs with the Ubuntu 18.04
operating system.

The model is trained for 150 epochs. At each epoch,
the variation in the value of the loss function is observed
for the generator and discriminator. The experiments were
conducted using different values of hyperparameters. The
values of loss functions obtained at different values of hyper-
parameters are shown in Table 2, and Table 3. Table 2,
shows the impact of o« without changing the value of 5.
It is evident from the values of loss function obtained at
a as 0.0001 that the discriminator and generator reach the
minimum of values of loss functions as 0.003261359 and
0.912701669 respectively. Whereas, Table 3 shows the col-
laborative impact of & as 0.0001 and 7 as 95. On these values,
the discriminator and generator report the lowest values of the
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45" Degree

0° Degree
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FIGURE 4. 3-D view of knee bone at different angles.

45° Degree

o Degree

225° Degree

FIGURE 5. 3-D view of elbow bone at different angles.

loss function as 0.004192229 and 1.517771087 respectively.
Similarly, it is apparent from Table 3 that both the generator
and discriminator report the lowest values of loss function
as 0.0014094849 and 0.9195939898 respectively. The values
of the loss function obtained at 100 and 0.0002 values of
a and 7 respectively, are lower than the values obtained at
other values of hyperparameters. The values of loss functions
reported at these optimal values through different epochs are
shown in Table 3. The first column of the table contains
the epoch number, the second column shows the values of
the loss function calculated by the discriminator, and the last
column presents the values of the loss function reported by
the generator.

The values given in table 3 demonstrate that the generator
gives the minimum value of loss function when the model
is trained at 135 epochs. Whereas, the discriminator reports
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the minimum value of loss function on training the model
at 30 epochs. To identify the optimum number of epochs
for the conversion of a 2-D image into the 3-D view, the
authors observed the values of the loss function as well as
the 3-D view at different epochs. They observed that training
the model for 135 epochs gives the complete and the most
accurate 3-D view of a 2-D image. The model generates all
the views from 0° to 360°. In Figures 4,5 and 6, the authors
present the sample outputs at 0°, 45°,90°,135°, 180°, 225°,
270°,315°, and 360° for the knee bone, elbow bone, and bone
of lower limb respectively.

V. EVALUATION OF IMAGE QUALITY

The evaluation of merely the 3-D view and the loss func-
tions is not sufficient to prove the efficacy of the proposed
model. The visual quality of the generated images is equally
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FIGURE 6. 3-D view of bones of the lower limb at different angles.

TABLE 4. Trends of loss function reported by CGAN during different
epochs of training.

Epoch Num-  Loss of Discriminator Loss of Generator
ber

15 0.0022553926 1.4292654991
30 0.0030624993 0.9195939898
45 0.0026638618 1.2375315428
60 0.0016441641 1.5464997292
75 0.0014240577 1.4429641962
90 0.001654461 1.5576143265
105 0.0016032617 1.5418564081
120 0.0014812108 1.4896333218
135 0.0014094849 1.5114090443
150 0.0019811528 1.4078457355

important for adopting the proposed model in clinical appli-
cations. Further, the generated images must be potent in
preserving the information available in the input image.
Therefore, the authors evaluated the visual quality of the
generated images by calculating the Entropy, and Peak Signal
to Noise Ratio (PSNR), Mean Square Error (MSE), and
Structural Similarity Index Method (SSIM).

A. ENTROPY
This is the measure of the variation recorded in an image [33]
as defined in equation 6. In this equation E represents the
entropy, P(Xx) is the value of probability distribution, and
L is the total number of different intensity values present in
an image.
L-1
E (Xg) = Z P (Xk) * logaP (X ) bits/pixel ~ (6)
K=0
The entropy works on the concept of probability. For
example, in a black and white image, the value ‘0’ rep-
resents the black pixel, and ‘1’ represents the white pixel.
While scanning an image from left to right and from top to
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bottom, the changes in values from O to 1 and 1 to O are the
measure of the entropy of the image. The low value of entropy
ensures a small variation between the original image and the
generated image.

In this research, the values of entropy for the input images
of the knee, elbow, and lower limb bones are reported as 3.55,
3.53, and 3.65 respectively. The authors also calculated the
values of entropy for the generated images at different angles
of view as shown in column 3 of Table 5. It is clear from
table 5, that the values of entropy of the generated images
at different angles of view are nearly the same as values of
entropy of the input images. There is a negligible difference
of 0.026 in the entropy reported for the knee bone, 0.01 for the
elbow bone, and 0.0 for the lower limb bone at 360° views of
the generated image and its corresponding input image. These
values prove the efficacy of the proposed model in generating
images that are similar to the input images in quality. Also, the
generated images are effective in preserving the information.

B. MEAN SQUARE ERROR

MSE is used to measure the number of squared errors
between the original image and the image generated by the
generator [34]. Its definition is given in equation 7. In this
equation, f (x,y) is the original image, and f(x,y) is the
generated image. Here, M and N are the heights and widths of
the original and generated images respectively. In equation 7,
x and y are the values of pixels of the images. The minimum
value of MSE indicates that the generated image resembles
the original image.

S
=

1
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X

MSE = Fen-ran) o
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TABLE 5. Evaluation of the quality of the generated image.

Bone Category  Angles of View R _En G_En MSE PSNR SSIM  Contrast

Knee 45° 3.55 3.08 58.48  30.46 0.71 41.55
90° 3.55 3.66 5497  30.73 0.78 41.51

135° 3.55 3.39 59.47  30.39 0.82 41.59

180° 3.55 349 4723 31.39 0.74 41.55

225° 3.55 3.12 5893 3043 0.72 41.58

270° 3.55 3.62 5728  30.55 0.79 41.55

315° 3.55 3.36 52.59  30.92 0.75 41.58

360° 3.55 354 4529  31.57 0.89 41.48

Elbow 45° 3.53 324 5048  31.09 0.71 41.58
90° 3.53 349 4998 31.14 0.71 41.39

135° 3.53 3.31 50.62  31.08 0.74 41.43

180° 3.53 3.37 5227 3095 0.89 41.35

225° 3.53 3.15 5241 3093 0.72 41.49

270° 3.53 3.44 50.1 31.13 0.71 41.29

315° 3.53 3.35 4191 31091 0.77 41.49

360° 3.53 354 3811 3232 0.76 41.41

Lower Limb 45° 3.65 3.37 5692 30.58 0.75 41.61
90° 3.65 3.71 5399  30.81 0.74 41.17

135° 3.65 349  49.68 31.17 0.74 41.58

180° 3.65 3.76 56.12  30.64 0.71 41.38

225° 3.65 354  55.67 30.67 0.75 41.59

270° 3.65 3.75 5331  30.86 0.74 41.32

315° 3.65 3.67 57.52  30.53 0.72 41.56

360° 3.65 3.65 3276 32.85 0.75 41.31

The values of MSE calculated for the generated images are
given in column 5 of Table 5. The 360° views of the generated
images reported the minimum values of 31.57, 32.32, and
32.85 for the knee, elbow, and lower limb bones respectively.
These values show that there are marginal errors between
the input images and the generated images. This proves the
efficacy of the proposed model.

C. PEAK SIGNAL TO NOISE RATIO
PSNR is the measure of the quality of the reconstructed
image. It is the ratio between the signal and noise of an
image [35]. This matric is dependent upon the MSE as shown
in equation 8. Its higher value indicates the better quality of
the generated image.

@ -1’

PSNR =101 - 8
0810~ e (8

The value of PSNR calculated for the images generated
by the proposed model is shown in column 5 of Table 5.
The generated image reported the highest values of 59.47,
52.27, and 56.92 for the knee, elbow, and lower limb bones
respectively. These values clearly prove that the quality of the
reconstructed images is similar to the input images. There-
fore, the proposed model is reliable for generating 3-D images
and images at a different angle of view from the 2-D input
images.

D. STRUCTURAL SIMILARITY INDEX METHOD

MSE works on the individual pixels of an image whereas
SSIM works on the groups of pixels. It is the measure of the
similarity index between the original and generated image. Its
value lies in the range from —1 to 41 [34] where -1 indicates
that there is no matching between the input and generated
image. On the other hand, 41 indicates that the generated
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image is the same as the input image. The values of SSIM
calculated for the generated images for knee, elbow, and
lower limb bones are presented in column 6 of Table 5. The
values 0.89, 0.89, and 0.75 obtained for the knee, elbow,
and lower limb bones respectively indicate that the generated
images have a close match to the input images. Therefore,
the model is effective in maintaining the visual quality and
preserving the information available in the image.

E. CONTRAST

The contrast of an image is defined as a measurement of
average intensities and their deviation about a center pixel
as defined in equation 9. In this equation, r is the width and
c is the height of an image. /., is the intensity of a pixel at
position (7, j). The contrast of an image is measured in DB
for representing the large range of numbers by a convenient
and small number. Its definition is given in equation 10.
The contrast in DB is important for clearly visualizing the
changes.

1 r o c | r c 2
C. _ 2 L i 2 |1 I i
contrast e Z Z enh (l ]) re Z Z enh (l ])

i=1 j=1 i=1 j=1
©))

Cjontrast (10)

=1 Olog 10 Ccontrast

VI. DISCUSSION

The work proposed in this manuscript met the objec-
tive of converting a 2-D X-ray image to its correspond-
ing 3-D view. The proposed system receives a 2-D image
at 5°, 10°, 15°...360°. It assumes the missing informa-
tion such as views of an image at 1°, 2°, 3°, 4°, 11°, 12°
...359° for predicting the complete 360° view of an image.
The tailored architecture of the CGAN is found effective in
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generating a view of the 2-D images at any angle from 0° to
360°. Also, itis equally efficient in generating a complete 3-D
view of a 2-D image.

The works proposed in the literature for conversion of 2-
D to 3-D images left unaddressed challenges. For example,
the authors in [9] used two different cameras to capture
different views of an image. They employed Direct Linear
Transformation (DLT), for the conversion of a 2-D image to
3-D. The DLT technique is more expensive than the system
proposed in this manuscript. Also, it is challenging to syn-
chronize both cameras. Further, the authors in [12] employed
the Non-Stereo corresponding contour (NSCP) method for
the conversion of X-rays into 3-D form. The efficacy of this
technique is dependent on the expertise of the operator in
identifying exact points. Also, the technique requires about
2 to 4 hours for the reconstruction of an image. Thus, its’
implementation in real life is impractical. One more tech-
nique Statistical Shape Model (SSM) [11] was applied for
the conversion of 2-D to 3-D that requires one-to-one map-
ping for training the model. Thus, the model requires the
actual dimension of the dataset for training. This becomes
time-intensive when input images have large dimensions.
Also, a huge dataset is required to achieve high accuracy.
Similarly, the Deep Convolutional Neural Networks (DCNN)
based technique employed in reference [13] requires a huge
dataset for training. Also, this technique lacks in encoding the
position and orientation of an object. Therefore, it was found
ineffective for spatially invariant of input data. Moreover, the
techniques proposed so far fails to handle the noisy data. The
CGAN-based model proposed in this manuscript addressed
the aforementioned challenges. It does not require any camera
and reduces the cost of conversion of 2-D to 3-D form. Also,
the model is based on the concept of Artificial Intelligence.
Therefore, its’ efficacy is independent of the expertise of
the operator. Furthermore, the proposed model is efficient in
converting a 2-D image to 3-D in real time. Thus, it can be
easily adopted as a technical assistant for medical experts.

We also evaluated the visual quality of generated images
by calculating the entropy, MSE, PSNR, SSIM, and contrast
for the knee, elbow, and lower limb bones. It is evident from
the results shown in Table 5 that the generated 3-D images
have high values of entropy, PSNR, SSIM, and the low value
of MSE. The value of the contrast of generated images is
approximately equal to the contrast of the input images.
These results prove that the model retains the quality of the
generated images and preserves the information available in
an input image.

The proposed model can be integrated with web applica-
tions as well as mobile applications for making it a handy
diagnostic and training tool. The users can upload the X-ray
image as input and receive a 3-D view of the image. Con-
verting 2-D bone X-ray images to 3-D can provide additional
depth information. This assists radiologists and orthopedic
specialists to visualize a more comprehensive view of the
bone structure. This enhanced visualization helps in accurate
diagnosis. Additionally, generating 3-D views from X-ray
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FIGURE 7. Sample of noisy image.

images may be a boon in telemedicine. Access to a web app or
mobile app can be shared remotely for expert consultations.
The 3-D view facilitates more accurate diagnoses. Also, the
tool may prove a game-changer in surgical planning. The 3-D
view of a bone can assist surgeons to evaluate different surgi-
cal approaches and implant sizes. This may improve surgical
outcomes. Moreover, the tool can be used by medical students
for a better understanding of complex bone structures and
pathology. This facilitates interactive learning and training.

VIi. CONCLUSION

The authors in this manuscript proposed the CGAN based
model and extended its application for the conversion of a
2-D X-ray image into a 3-D view of bones. They applied the
pre-processing techniques to deal with the noisy and sparse
dataset. The model provides an option to rotate the obtained
3-D view at different angles from 0° to 360°. The 3-D view
gives a clear vision of the joints and bones at all angles. There-
fore, it is useful in the diagnosis of a fracture or deformity in
bones at a low cost. It is evident from the results shown in
Table 5 that the model is effective in maintaining the visual
quality of generated images and preserving the information
available in the input images. Also, it is clear from the results
shown in figures 4, 5, 6 and 7, that it is efficient for the
noisy as well as a non-noisy dataset. Moreover, it has the
potential to convert a 2-D image to 3-D in real time. Thus, the
model provides a low-cost and quick technological solution
to visualize the 3-D view of a bone. As the model can generate
a 3-D view similar to a CT scan and MRI corresponding to
a 2-D X-ray image. Therefore, it helps in minimizing the
exposure of carcinogenic radiation directed to the patients
during a CT scan and also provides a 3-D view of an organ
for patients having implantation where MRI imaging is not
feasible. Thus, it may prove useful in developing the assisting
tool for doctors in visualizing the different views of the bone
from an X-ray image. The clear view of a bone at all possible
angles from 0° to 360° gives an option to find the severity of
the disease or disorder [36]. The model can be associated with
a web or mobile application where a health expert can upload
the X-ray image of a patient and visualize the 3-D view of the
bone. The web application can be deployed on a cloud server
and accessed across the globe. Even, the patient can log in,
upload the X-ray image and view the 3-D image of a bone.
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Future Scope: The work proposed in this research can
be extended to obtain 3-D views of different parts of the
body such as lungs, throat, and kidneys which in turn will
be useful for the diagnosis of the disease and visualization of
the infected region.
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