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ABSTRACT This research work proposes an Improved Supervised Learning (ISL)-based Deep Neural
Network (DNN) for accurately forecasting the load demand of Electric Vehicles (EVs). This work incorpo-
rates Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM), Recurrent Neural Network (RNN),
Fully Connected (FC), and Convolutional Neural Network (CNN) architectures. The proposed ISL technique
enhances prediction performance by refining the training process with additional features and information.
Using a real-world EV charging dataset from Boulder City, USA, the simulations demonstrate consistent
improvements in the GRU, LSTM, RNN, FC, and CNN models with the proposed ISL technique. Further,
the proposed technique reduces the Normalised Root Mean Square Error (NRMSE) and Normalised Mean
Absolute Error (NMAE) values. The accurate load demand predictions facilitated by the proposed models
with ISL have significant implications for the planning and management of EV charging stations. This
enables stakeholders to optimize resource allocation, effectively plan infrastructure capacity, and ensure the
sustainable and reliable operation of grids in the face of increasing EV adoption. By leveraging deep learning
architectures and incorporating the ISL technique, this research contributes to advancing load forecasting
models for EVs, providing practical solutions for efficient management and planning in the evolving electric
mobility landscape.

INDEX TERMS Artificial neural network, deep learning, electric vehicles (EV), load forecasting, supervised
learning.

I. INTRODUCTION
Fossil fuels are hard to quit as the economy of the world
heavily relies on these due to their real-world applications
such as producing energy, electricity, and transportation. Oil
price increases have a great impact on society that is gen-
erally thought to increase inflation and reduce economic
growth [1]. EVs are fossil fuels free that are gaining popular-
ity by capturing themarket share. This replacement assists the
modern world in the reduction of carbon emissions and envi-
ronmental contamination due to the burning of fossil fuels.
Clean energy and improved performance due to technological
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advancements are driving vehicle owners to switch to EVs.
With the increase in the EVs infiltration, their charging is
anticipated to have a remarkable impact on the grid. Also,
the need for a steady supply of electricity is a critical fac-
tor to charge EVs [2]. With the increasing number of EVs
and the lack of public charging stations, the demand has
risen to enhance the number of charging stations with fast
charging [3].

Due to the uncertainty of EV charging loads, Electric Vehi-
cles Load Forecasting (EVLF) becomes vital for the operation
of charging stations. The EVLF has been extensively studied
in the literature. Traditionally the methods used for EVLF to
predict various scenarios are greyscale prediction methods,
time series methods, and regression analysis methods [4], [5].
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The input load data for these models normally vary in a small
range and depend on various environmental factors [6], [7].
Therefore, it is necessary to form a logical relationship
between input features and the target variable. This relation-
ship can be formulated through artificial intelligence mod-
els [8]. Owing to the availability of actual charging data, the
researchers paid attention to building forecasting models for
energy consumption [9] and state of charge [10]. In [10], a day
ahead charging load of the workplace is predicted through the
State of Charge (SOC). The demand of load for PHEVs is
predicted by mathematical consumption modeling presented
in [9]. The EV energy consumption has been forecasted by
Monte Carlo simulations in [11] and [12].
Despite many promising improvements, there are a few

challenges in promoting EVs among users. A long charging
time is one of them which causes inconvenience to the users.
In addition, EV owners have no sufficient capacity available
to charge their EVs at home and depend on public charging
stations. The requirement for high power to charge EVs
causes huge constraints on the grid. Therefore, the optimal
way is to manage the charging of EVs at charging stations
by proper scheduling. Thus, the researchers are investigating
the influence of charging behavior [13], [14] on EVs. For this
purpose, the need has risen to accurately forecast the charging
load of EVs. This will help the grid operators to properly
manage the electricity distribution and start appropriate mea-
sures. The grid operators and charging station owners can
also integrate renewable energy sources with power grids to
enhance the production of electricity [15].

This motivation impulses to introduce the novel EVLF
based on DL models. Deep Learning is an emerging tech-
nique, but firstly it was used in the 1940s [41]. There are
immense benefits of machine learning (ML) approaches in
the field of image processing, natural language processing,
and video and audio recognition. Presently, the focus has
shifted towards data driven approaches to solve the charging
framework problems, to charge a fleet of EVs simultane-
ously [16]. DL is a type of ML that utilizes larger datasets
for self learning based on algorithms [17]. There are differ-
ent types of DL approaches, some of which are, Multilayer
Perceptron (MLP) also called Fully Connected (FC) net-
work, RNN, LSTM, and GRU are presented in [18]. For
time series data in which output is dependent on time, RNN,
LSTM, and GRU are most suitable. RNN based models
consider the previous predictions and process short term
dependencies. To reflect long term dependencies, LSTM can
be used [19]. The hybrid DLmodels with Convolution LSTM
and Bi-Convolution LSTM are also introduced in the recent
literature, for energy demand forecasting of EVs [46]. As the
dataset for load prediction of EVs is time series data, the
RNN, LSTM, and GRU models have been considered in this
work. In addition to validating the results, CNN and FC have
also been used to predict the EV load with the ISL tech-
nique. These approaches were first used in 1997 for speech
recognition. Recently researchers are using these models for

time series prediction, sentiment analysis, and pattern recog-
nition [42]. If the dataset contains input and output variables,
such kind of ML approach is called Supervised Learning
(SL) [16]. A generic DL algorithm with Supervised Learning
was announced in 1965 by Iapa and Alexey Ivakhnenko [43].
Now, Supervised Learning is gaining popularity for the pre-
diction of energy and load [43], [45]. In the dataset of EVLF,
available inputs are the time of charging, session duration,
station ID and electricity consumption, etc. and the target
variable is EVs load. The ISL approach, in which dependency
of features on previous timesteps, is considered with DL
models in this work. This methodology has been used to
improve the prediction abilities of all DL models and reduce
prediction errors.

II. LOAD FORECASTING MODELS USING DEEP LEARNING
The DL models considered for LF are RNN, LSTM, GRU,
Convolutional Neural Network (CNN) and Fully Connected
(FC) Network. The applications and featured based methods
of DL models are critically reviewed in [20] and it shows
that RNN and CNN are the most powerful models for solving
problems related to time series and image processing, respec-
tively. RNN does not perform well when the long sequence
dataset is used as it cannot store the information of long
sequences. According to the RNN model, it only focuses on
current information, and this kind of problem is called vanish-
ing gradients [21]. To overcome this problem, the RNN can
be recreated as LSTM and GRU [18]. Further, FC networks
are widely used for their ability to learn complex relationships
between input features and target variables. They can handle
both temporal and spatial features by processing them in a
fully connected manner. FC networks are particularly useful
for load forecasting when the data does not have explicit
temporal or spatial dependencies but requires a more flexible
and adaptable modeling approach. Therefore all of these
models RNN, LSTM, GRU, CNN, and FC are used for load
prediction of EVs with the ISL approach.

1) RNN MODEL
In traditional ANN, it is assumed that input and output are
not dependent and RNN predicts the target variable based on
previous input features.

In traditional ANN, it is assumed that input and output are
not dependent and RNN predicts the target variable based on
previous input features.

ht = σh(XtUh + ht−1Wh + bh) (1)

ot = σh(Vhht + bh) (2)

yt = σ (ot ) (3)

The activation functions are tanh, σ which are used to
activate the nodes of the DL network, ot is the output and,
ht , ht−1 and ht+1 are the hidden units at t , t − 1 and t + 1
respectively in (1), (2) and (3). These hidden units act as a
memory of the network, depending on the current input and
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FIGURE 1. RNN model.

FIGURE 2. LSTM model.

previous time-steps hidden state). The internal connections
of the network are parameterized by weight matrices. The
weights of the network are denoted by Uh, Vh and Wh which
shows input to hidden connections, hidden to hidden connec-
tions, and hidden to output connections respectively [23].

2) LSTM MODEL
The LSTM model can learn long sequences with its gated
mechanism. The process of LSTM is complex as it introduces
a short term memory cell to store the previous state and long
term memory cell to store long term information as shown in
Figure 2.
It has three gates, an input gate it , forget gate ft and output

gate Ot to regulate the information in short term and long
term memory cells. In the first step, the forget gate ft decides
how much information to be stored or ignored that is given
by the output of the neural network. The input Gate it finds
the updated information on hidden layers. The output GateOt
selects the important information for prediction [24].

it = σ (Wi.[ht−1, xt ] + bi) (4)

ft = σ (Wf .[ht−1, xt ] + bf ) (5)

Ot = σ (Wo.[ht−1, xt ] + bo) (6)

C̃t = tanh(Wc[ht−1, xt ] + bc) (7)

Ct = σ (ft ∗ Ct−1 + it ∗ C̃t ) (8)

ht = tanh(Ct ) ∗ Ot (9)

FIGURE 3. GRU model.

Here ht−1 is the output at t − 1 and xt is input at the current
state. C̃t is the new value from the memory block at time t
and C̃t is the memory from the previous block. The weight
of nodes is given byW , bias is shown by b and the ∗ symbol
is used to show element wise multiplier and, σ and tanh are
activation functions as shown below in (10), (11).

σ (x) =
1

(1 + e−x)
(10)

tanh(x) =
(ex − e−x)
(ex + e−x)

(11)

3) GRU MODEL
The working of GRU is similar to RNN but it introduces two
gates, an update gate, and a reset gate as shown in Figure 3.
The update gate decides how much information from the
previous state needs to be passed to the next state and it can
copy all the previous information. In this way, the vanishing
gradient problem of RNN can be removed. The reset gate is
used to determine the amount of past information that needs
to be neglected [25]. The parameters of GRU are fewer than
LSTM and therefore it has a faster speed of training than
LSTM.

Rt = σ (Wr .[ht−1, xt ] + br ) (12)

Zt = σ (Wz.[ht−1, xt ] + bz) (13)

C̃t = tanh(Wh.[rt ∗ ht−1, xt ] + bz) (14)

Ct = (1 − zt ) ∗ ht−1 + zt ∗ C̃t (15)

It has reset gate Rt and update gate Zt . All other parameters
are same as described for LSTM network previously.

III. METHODOLOGY
For the applications of deep learning methods, the dataset of
EV charging sessions should be sufficient [26]. In this work,
the open dataset fromBoulder City USA has been used. There
is a total of 288 charging stations in Boulder City out of which
27% are free [27].

The estimated infrastructure for charging stations in Boul-
der City, USA is shown in Figure 4. This dataset of charging
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stations is easily available and deals with complete infor-
mation about historical charging sessions in all the charging
stations of Boulder City. The dataset is available for the
duration of 1st Jan 2018 to 19th Aug 2022 and is updated
monthly. The dataset used in this work is for the duration
from 1st Jan 2021 to 31st Dec 2021. The available fields in
the dataset are station ID, address of charging station, start
time, end time, charging time, gasoline saving, port type, and
utilized energy in kWh for charging. 95% of charging stations
are of level 2, 4% are of level 3 and 1% are of level 1 [27] as
shown in Figure. 4. The proposed methodology consists of
three different steps

• Data Pre-processing
• Improved Supervised Learning
• LF for EV with DL models

A. DATA PRE-PROCESSING
The data pre-processing is unavoidable due to interference
factors in the raw data [28]. There were no missing or null
values in the dataset. The data pre-processing is done in time
intervals and normalization.

1) TIME INTERVAL PRE-PROCESSING
The data analysis task in Python is carried out by Pandas
Library with Version 3.9.7. It is used to process large scale
datasets efficiently. In this article, the dataset is split into
24 points (1-hour intervals), 96 points (15-minute intervals),
and 1440 points (1-minute intervals) for each day. These
kinds of dataset splitting are used to check three scenarios as
given in [18], [29], and [30] to make an effective comparison
with ISL.

Among the available fields in the dataset, charging time
and date/time are used to predict the Energy (KWh) for
EV charging. Three different kinds of scenarios are used to
compare the proposed methodology with [18], [29], and [30].
In the first scenario, from date/time, weekdays, weekends,
and public holidays are extracted as new fields to make the
proposed methodology comparable with [29]. The charging
of EVs is highly dependent on driving behaviors. During
Public holidays, people are united at home so the charging
load will be low. People also prefer to charge EVs on week-
ends mostly. The effect of weekdays, weekends, and public
holidays is given in [29]. Therefore, the used fields as input
to DL models are,

1) The hourly mapping of data fields is done by using
24 points per day of Charging Load denoted as CL
sequence, which is taken from 1st January 2020 to 28th

November 2021.
2) The 24 points per day for Charging Time represented as

CT, is taken from 1st January 2020 to 28th November
2021.

3) The weekends and weekdays are considered as a sepa-
rate field which is shown by BH (Binary Holiday). The
weekday is given by ‘1’ and the weekend by ‘0’ in BH.

4) The Public Holidays are considered as PH. The normal
day is given by ‘0’ and the public holiday by ‘1’ in PH.

The above first two fields CL and CT are used in [18] for
comparison with an ISL model as a second scenario with
1-minute intervals data points. In [30] all the four fields as
above, CL, CT, BH, and PH are used for prediction through
LSTM as a third scenario for comparison with the proposed
scheme.

2) NORMALIZATION
In deep learning models, normalization is important to get
all features on the same scale [31]. For normalization, in this
work, min-max scaling is used which scaled the dataset in
the range of [0, 1]. The training process of the DL models is
accelerated by normalizing the dataset. After normalization,
the dataset is divided into a training set to train the model
and a testing set to predict the load of EVs. The formula for
normalizing the data for DL models is given as [32],

y =
(x − xmin)

(xmax − xmin)
(16)

B. IMPROVED SUPERVISED LEARNING (ISL)
In time series analysis, supervised learning can be used when
the dataset is dependent on time. Such a type of dataset is
called time series data. The dataset of EVs for LF is time
series data as the load is highly dependent on time [33].
Therefore it is proposed to reframe the dataset as an ISL
problem. An ISL finds the relationship between input and
output variables by observing the lag intervals at a previous
time [34]. In this way, the DL models will be able to predict
unseen data with high accuracy.

ISL can be applied by the feature engineering method.
In feature engineering, different important features of input
are extracted on which output is dependent [35]. In this
way, a new dataset is made based on important features. The
time series based features have four classes, Lag features
extraction, date-time features extraction, windows feature
extraction, and time until the next event/ time since the last
event extraction. Here in the proposed model the date-time
feature extraction and the lag feature extraction classes are
used. With date-time feature extraction, two new variables
called Binary Holiday (BH) and Public Holiday (PH) are
extracted. These variables are important as drivers normally
charge on weekends. People also travel a lot during Public
Holidays or stay at home. In both cases, the charging Load
is dependent on public holidays. With lag feature extraction,
the dependency of input features on previous timesteps is
extracted. In lag feature extraction, prior time-step values
are used to predict future values. The Charging Load on the
previous day is important for predicting the charging load on
the next day [33]. Therefore the past values known as lags are
considered for predicting the charging load. Figure 5 presents
the proposed structure of an ISL approach with DL models.
The dataset is divided into four input features: CL, CT, BH,
and PH. The CL and CT represent different time intervals
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FIGURE 4. Infrastructure for charging station.

FIGURE 5. An ISL approach for deep learning models.

TABLE 1. System parameters.

(hourly, 15 minutes, and 1 minute) obtained using a date-
time feature extraction technique. Additionally, BH and PH
variables indicate weekends/weekdays and public holidays,
respectively. Lag variables from the previous two time steps
are also included. All these input features are utilized by DL
models to generate improved predictions, as demonstrated in
the Simulation Results section.

According to [36], there is no prior rule to consider the
length of lag. In [37] it is mentioned that the number of
lags should be typically small. 1 or 2 lags can be consid-
ered to keep the degree of freedom in the dataset. Hence,
two lag features are considered in this work for prediction.

FIGURE 6. Block diagram of LF with improved supervised learning.

In Figure. 5, the dataset is divided into features CT, CL, BH,
and PH asmentioned earlier. Further, by applying ISL, the lag
variables are formed at t − 2, t − 1, and t . Then, the features
are fed to DLmodels. Finally, the charging load of EVs is pre-
dicted at time t . The proposed technique showcased enhanced
predictive capabilities of DL models, as demonstrated by the
Results and Discussion section, where reduction in NRMSE
and NMAE values is observed. This technique proves bene-
ficial for handling nonlinearities, incorporating multivariate
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FIGURE 7. 1 Hour ahead prediction of daily EVs load (a) Without ISL (b) With ISL.

TABLE 2. Comparison of ISL with [29].

inputs, and learning from big data. These advantages con-
tribute to more effective load forecasting, enabling efficient
planning, resource allocation, and management of electric
vehicle charging infrastructure.

The method of feature engineering for the ISL approach
depends on the dataset as well as ML algorithms. That’s
why the selected and created features have a great impact
on the performance of ML models. Features should be rel-
evant at hand and compatible with the model. Furthermore,
comprehensive data pre-processing is required for feature

engineering, which makes it complex to use. For the above
listed reasons, feature selection for ISL is very challenging
and time consuming.

C. LOAD FORECASTING OF EV WITH DL MODELS
The framework of EV for LF is shown in Figure 6. The deep
learning models used to predict load is RNN, LSTM, and
GRU as described earlier. The dataset used for training and
testing of models is charging load with 1-minute intervals,
1-hour intervals and 15-minute intervals for comparing the

VOLUME 11, 2023 91609



T. Rasheed et al.: Improving the Efficiency of Deep Learning Models

FIGURE 8. 1 Hour ahead prediction of weekly EVs load (a) Without ISL (b) With ISL.

TABLE 3. Comparison of NMAE and NRMSE with and without ISL for 1 hour data interval.

TABLE 4. Comparison of NMAE and NRMSE with and without ISL for 1 minute data interval.

models in [18], [29], and [30], respectively. After the time
interval pre-processing, ISL is applied and lag features are
extracted at (t − 2), (t − 1) to predict the load at time t . The
dataset was pre-processed as mentioned above and converted

into features, time steps, and output format. The features
used in the DL models (CT, CL, BH, and PH) with time
step considered as 1 [29]. Further, the pre-processed dataset
is fed to RNN, LSTM, and GRU models. In every block
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FIGURE 9. 1 Minute ahead prediction of daily EVs load (a) Without ISL (b) With ISL.

TABLE 5. Comparison of MAE and RMSE with and without ISL for 1 minute data interval.

of RNN, LSTM, and GRU, there is a block of the dense
layer at the end which maps the output to a single value.
After predicting the load from these DL models, the final

forecasted load is obtained by inverse normalization of pre-
dicted data from RNN, LSTM, and GRU blocks as shown
in Figure. 5.
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FIGURE 10. 1 Minute ahead prediction of weekly EVs load (a) Without ISL (b) With ISL.

TABLE 6. Comparison of NMAE and NRMSE with and without ISL for 15 minute data interval.

The adjustment of hyper-parameters is very important for
DL models which are dependent on repeated experimen-
tation [38]. For comparison of the proposed methodology

with [18], two hidden layers are considered with 16 nodes
in each. The batch size and epochs should be considered
according to the dataset size [39]. In this work, the batch

91612 VOLUME 11, 2023



T. Rasheed et al.: Improving the Efficiency of Deep Learning Models

FIGURE 11. 15 Minutes ahead prediction of daily EVs load (a) Without ISL (b) With ISL.

TABLE 7. Comparison of NMAE and NRMSE with and without ISL for 1 hour data interval with CNN, FC.

size and epochs considered are 512 and 30, respectively. For
comparison of results with [29], 2 hidden layers with 64 units
each, 100 epochs, and 64 batch sizes are considered. Fur-
thermore, the proposed scheme is modeled as [30] in which,
1 hidden layer with 128 units, 50 epochs, and 32 batch sizes
are considered for the comparison. All the used parameters
are given in Table 1

IV. RESULTS AND DISCUSSIONS
The pre-processing data has been fed into the three DL
models. The performance of all the models was evaluated

with and without ISL. To obtain the results, the simu-
lations have been carried out with Tensorflow in Python
version 3.9.7.

A. MODEL EVALUATION
The matrices used to evaluate the models are Normalized
Root Mean Square Error (NRMSE) and Normalized Mean
Absolute Error (NMAE). The fluctuations in the charg-
ing load are always high, therefore normalized indicators
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FIGURE 12. 15 Minutes ahead prediction of weekly EVs load (a) Without ISL (b) With ISL.

are used [29].

NRMSE =

√
(1/N6n

i=1(y
′ − y)2)

(ymax − ymin)
(17)

NMAE =
(1/N6n

i=1|y
′
− y|)

(ymax − ymin)
(18)

These matrices are very important to evaluate the DL
models. TheNRMSE is an absolute value with normalization,
which shows the difference between actual and predicted val-
ues. The NMAE is the normalized average variance between
actual and predicted values. The simulation results of the

proposed ISL scheme have shown lower error values for the
DL models as given in the Simulation Results section.

The Percentage Improvement in the NRMSE and NMAE
values of the Proposed Scheme (ISL) is given by the follow-
ing equation, (19).

Reductionin(Error)ISL =
(Error)ISL − (Error)ET

(Error)ET
(19)

Here (Error)ISL is the Errors (NRMSE and NMAE)
through ISL and, (Error)ET Errors through Existing Tech-
niques or Existing Literature. The improvement in the pro-
posed technique is given in Table 2, Table 3, Table 4,
Table 5, Table 6 and Table 7. All these values are calculated
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FIGURE 13. 1 Hour ahead prediction of daily EVs load (a) Without ISL (CNN, FC) (b) With ISL (CNN, FC).

through the equation, (19). These tables show the reduction in
NRMSE and NMAE values with the proposed ISL approach.

B. SIMULATION RESULTS
During the Process of Training, 70% of the dataset is used as a
Training set and 30% as Testing Set. The comparison between
the actual values and predicted values of threemodels without
ISL as in [29] is shown in Figure. 7 and with ISL is shown
in Figure 7b. The predicted values of LSTM and GRU are
close to actual values while that of RNN is not predicting well
without ISL. It is shown that there is no charging load at night
in the charging station. Consumers normally charge during

the daytime, so peak loads are around 12 pm and 8 pm. The
highest peak in the day is at 8 pm as most consumers charge
after working hours.

The predicting accuracy of deep learning models has been
enhanced with ISL as shown in Figure 7. The RNN, LSTM,
and GRU, all models are predicting the load very close to
actual values.

In Figure 8a GRU and LSTM are shown good predictive
capabilities than the RNN model without ISL. The high-
est peak of the load is shown on Sunday, 28th November
2021. The consumers fully charged the EVs on Sunday
for the next working day. The GRU has shown the highest

VOLUME 11, 2023 91615



T. Rasheed et al.: Improving the Efficiency of Deep Learning Models

FIGURE 14. 1 Hour ahead prediction of weekly EVs load (a) Without ISL (CNN, FC) (b) With ISL (CNN, FC).

predicting ability in Figure 8a. The predicting ability of
RNN is not good without ISL. The improved results with
the proposed technique for the whole week are shown in
Figure 8b and it is observed that the predicting capability of
RNN has increased the most. Table 2 shows the improvement
in NMAE and NRMSE of the proposed model than in [29].
It is clearly shown that the proposed model is more efficient
than the existing one in Figure 7 and Figure 8. The percentage
decrease in the error of the proposed model in terms of
NMAE is 77.79% for GRU, 81.33% for LSTM, and 81.42%
for RNN. In terms of NRMSE, it is 99% for GRU, 99.13%
for LSTM, and 98.72% for RNN. In Table 3, the reduction in
prediction error for DL models is shown, in terms of NMAE
and NRMSE. It is seen that the deep learning models perform

well with ISL. The percentage decrease in NMAE is 23%,
15%, and 57% with GRU, LSTM, and RNN, respectively.
The percentage reduction in NRMSE with GRU, LSTM, and
RNN is 36.36%, 30.95% and, 64.10% respectively.

The DL models perform well with ISL which is clearly
shown by the decrease in NMAE and NRMSE values in
Table 2 and Table 3. The decrease in NMAE and NRMSE
for LSTM is low as its predicting accuracy is good without
ISL as well, shown in Figure. 7 and Figure. 8.
To authenticate the results further, the input features for DL

models have changed as in [18] and the CT and CL have been
used with 1-minute time intervals. The LSTM has shown the
highest predicting ability without ISL as well in Figure 9a
for one day. The predicting accuracy of RNN has increased

91616 VOLUME 11, 2023



T. Rasheed et al.: Improving the Efficiency of Deep Learning Models

with ISL, which is shown in Figure 9b. The predictions of
GRU and LSTM models have also increased by applying the
proposed methodology as shown in Figure 9b. The predic-
tions of DL models for a whole week with 1-minute intervals
are shown in Figure 10. The GRU model has shown the
highest predicting accuracy without ISL in Figure 10a. Once
again the predictions of RNN are not good without ISL. The
increased prediction accuracy of all the models is shown in
Figure 10b with ISL which proves the authentication of the
proposed methodology. Some of the peaks are highlighted in
Figure 9 and Figure 10, to show the charging interval.
The proposed scheme is modeled as [18] and its compar-

ison with and without ISL is given in Table 4. It shows the
comparison of NMAE and NRMSE values with and without
ISL. The value of NMAE has been reduced by 10%, 60%,
and 13% for GRU, LSTM, and RNN models, respectively.
Similarly, the percentage decrease in NRMSE value is 40%
for GRU and LSTM and, 42% for RNNmodels. These values
show a percentage decrease in error values and an increase in
the predicting accuracy of the proposed model.

The evaluation matrices used in [18] are MAE and RMSE
values for RNN, GRU, and, LSTM models. For compara-
tive analysis of the proposed technique with [18], MAE and
RMSE values are considered in Table 5. The reduction in
MAE for GRU, LSTM, and RNN, is 96%, 90%, and 99%
respectively, when compared with MAE for GRU, LSTM,
and RNN in [18]. The RMSE values are reduced by 84%,
57%, and 90% for GRU, LSTM, and RNN models, respec-
tively, with the proposed technique as given in Table 5.

In Figure 11, the comparison of the forecasted loadwith the
actual load is shown with DL models considering 15-minute
data intervals as in [30]. The prediction accuracy of LSTM,
as well as GRU and RNN, has increased, as shown in
Figure 11b for one-day intervals with ISL. The predicting
capability of RNN is very low without ISL in Figure 11b.
It has increased along with the prediction of LSTM and GRU
with ISL as shown in Figure 12b.

The predictions of DL models with and without ISL for
a whole week with 15-minute data intervals are shown in
Figure 12. Consistent with the results presented in Figure 8b
and Figure 10b, which shows that the predictions of all the
models have increased with ISL during the whole week.

A comparison of NMAE and NRMSE errors for 15-minute
data intervals as in [30] is given in Table 6 with the proposed
scheme. The NMAE values are reduced by 26.6% for GRU,
6% for LSTM, and, 24% for RNN as given in Table 6. The
reduction in NRMSE values is 30% for GRU and LSTM and
42% in the case of RNN.

To further validate the results with more techniques, Con-
volutional Neural Network (CNN) and Fully Connected (FC)
Neural Networks have been implemented. These networks
have great importance as it allows for comprehensive valida-
tion and comparison of different DL techniques in the context
of EV load prediction.

The results show that by applying the ISL techniques,
predictions of CNN and FC models have also been increased

along with RNN, LSTM, and GRU models. Figure 13b and
Figure 14b show the weekly and daily improved load pre-
dictions of DL models with the ISL approach, respectively.
Similarly, the reduction in NRMSE and NMAE with CNN,
FC are given in Table 7.
This comparative analysis helps to identify the most effec-

tive models and provides valuable insights into the strengths
and limitations of each approach, contributing to the advance-
ment of accurate and robust load forecasting techniques
for EVs.

V. CONCLUSION AND FUTURE WORK
An Improved Supervised Learning Technique is proposed for
Deep Learning models to predict the EV’s Load for precisly
meeting the charging need. The proposed technique is applied
to different DL models namely, RNN, LSTM, and GRU. The
simulation results have shown the enhanced predicting capa-
bilities of these models by applying proposed ISL approach.
The results are also compared with existing literature which
shows the credibility of the proposed technique. The NRMSE
and, NMAE values are used for model evaluation. Based on
this evaluation, the prominent reduction for NRMSE is found
as 99%, 99.13%, and 98.72% for GRU, LSTM, and, RNN
respectively. In addition, the NMAE values are reduced for
GRU, LSTM, and, RNN by 77.79%, 81.33%, and 81.42%
respectively, with ISL as compared to these models without
ISL. Theminimum improvement in NRMSE value is 30% for
LSTM, 30% for GRU, and 42% for RNN. Finally, the resulted
reduction in NMAE values is 26%, 6%, and 24% for GRU,
LSTM, and RNN respectively. In every case, the remarkable
increase in predicting ability is shown by the RNN model.
The inclusion of fully connected (FC) and convolutional neu-
ral network (CNN) architectures in this work further validates
the results. The substantial reductions in the normalized root
mean square error (NRMSE) and normalized mean absolute
error (NMAE) values were found with the incorporation
of the ISL technique. Specifically, the NRMSE for the FC
model decreased by 34% and for the CNN model the error
was decreased to 33% when compared to their respective
baselines. Additionally, the NMAE values demonstrated a
reduction of 38% for the FC model and 37% for the CNN
model when ISL was applied. These improvements highlight
the efficacy of the ISL technique in enhancing the accuracy
and precision of load forecasting for electric vehicles using
FC and CNN architectures. The significant increase in pre-
dicting capability of the proposed model proves its capability
to predict load for EVs at charging stations.

In the future, researchers can focus on combining ISL
based Deep Learning models with optimization and control
algorithms to improve the prediction of Electric Vehicle load.
This integration will allow the development of smart charging
strategies that take into account factors like grid limitations,
pricing, and user preferences. By optimizing the charging
process, the efficient use of resources and better management
of electric vehicle charging infrastructure can be ensured.
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