
Received 15 June 2023, accepted 8 August 2023, date of publication 21 August 2023, date of current version 25 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3307133

Priest: Adversarial Attack Detection Techniques
for Signal Injection Attacks
JAEHWAN PARK AND CHANGHEE HAHN
Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea

Corresponding author: Changhee Hahn (chahn@seoultech.ac.kr)

This work was supported by the Research Program funded by the Seoul National University of Science and Technology (SeoulTech).

ABSTRACT Machine learning is widely used for autonomous driving because it can recognize surrounding
circumstances feasibly from sensor and determine appropriate actions. Most of these sensors are based on
micro-electro-mechanical systems (MEMS), which enable autonomous vehicles to judge objects in conjunc-
tion with object-detection algorithms. However, recent studies have shown that MEMS are vulnerable to
signal-injection attacks, in which the input images are manipulated to force the object detection algorithms
to misclassify the results. These attacks can be critical in the wild because they deteriorate state-of-the-
art detection techniques, dropping their detection rates until the objects would no longer be detected at
all. In this paper, we propose Priest, a novel detection method against prior signal-injection attacks. Priest
uses the similarity of pixel values between two consecutive images. Using only two images ensures a low
computational cost. According to our performance analysis, Priest detects state-of-the-art signal-injection
attacks in real-time with 99% accuracy on average, achieving practical autonomous driving security.

INDEX TERMS Autonomous vehicle, adversarial attack detection.

I. INTRODUCTION
Autonomous driving is a promising technology based on
machine learning (ML), which recognizes surrounding cir-
cumstances from sensor and determines appropriate actions.
In these settings, the quality of the images captured from the
sensors affects the overall object detection accuracy. Inertial
sensors based onmicro-electro-mechanical systems (MEMS)
are widely used to reduce undesirable blur in the images.
Specifically, MEMS enhance the values measured by the sen-
sors, thus deriving clean images [14]. In the real world, image
stabilization techniques integrated with MEMS based inertial
sensors are frequently used in autonomous vehicles, assisting
the vehicles as auxiliary sensors. However, sensors based on
MEMS are vulnerable to resonant acoustic-injection attacks,
significantly degrading object detection mechanisms. More-
over, adversarial attacks that disrupt correct operations are
continually reported [6], [34]. These attacks can be disastrous
in the wild because they can cause car accidents.

The associate editor coordinating the review of this manuscript and

approving it for publication was Amjad Mehmood .

Recently, Ji et al. [14] introduced AMple (injecting
physics into adversarial machine learning) attacks, a new
class of system-level vulnerability that exploits the weak-
nesses in the physics of hardware using adversarial attacks
in ML. Moreover, they proposed the Poltergeist attacks (PG
attacks), the first kind of AMple attacks, which exploits the
vulnerability of image stabilizers using adversarial images
derived from acoustic manipulation to degrade the object
detection algorithms. As a result, they generated blurry
images that disrupted the detection algorithms. The resulting
three types of PG attacks are hiding attacks (HA), creating
attacks (CA), and altering attacks (AA). An HA is an attack
in which the adversary disturbs an object detection algorithm,
resulting in detection failures. A CA is a method that iden-
tifies non-existing objects as if they were present. An AA
is a technique that induces misclassification in detection
algorithms. These attacks are launched either internally or
externally. Launching them in an internal manner requires
installing an acoustic generator within a few tens of centime-
ters inside the target. Fortunately, this internal attacks would
not be difficult for the passengers to identify. By contrast,
external attacks do not require on-site access to the target,

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

89409

https://orcid.org/0009-0002-4124-2164
https://orcid.org/0000-0003-4334-0411
https://orcid.org/0000-0003-3941-4617

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

thereby being difficult to be caught and prevented. Therefore,
based on the existing attack methodology, we aim to defend
against external attacks especially when the vehicles are
stationary or standing. Specifically, among these attacks,
an HA is highly devastating because it can severely affect the
performance of object detection algorithms, decreasing the
state-of-the-art detection mechanism’s detection rate until the
objects would no longer be detected at all. Moreover, many
detection or defense studies [12], [17], [19], [20], [21], [22],
[27], [41], [42] have used only a single image and measured
their performance based on static datasets (such as MNIST
or CIFAR-10), which are unsuitable for real-world driving
conditions. Ren et al. [29] recently proposed a de-blurring
method as a defense mechanism. This approach uses one-
dimensional (1D) and two-dimensional (2D) recurrent neural
networks (RNNs) to obtain denser propagation. However,
this method is limited by the detection run-time, making
it practically unusable in real-world autonomous driving
systems. Likewise, the acoustic detection methods may be
used as a countermeasure [4], [25], [32], but they have the
limitations in terms of computational costs and real-world
deployment of specific hardwares (see Section VI for details).
Therefore, it is urgent to implement detection or defensive
algorithms that are resilient to HA.

In this paper, we propose Priest, a novel detection scheme
for autonomous vehicles. Priest uses the similarity of adjacent
sequential images in dynamic real-time driving data because
when vehicles are stationary and standing, the pixel values of
sufficient portions of the image are almost invariant relative
to fixed buildings, fixed traffic lights, and other stationary
objects. If this similarity is less than a particular value, Priest
determines that an attack has occurred. We use the sum of
the differences of the pixel values in the same positions of
two adjacent images as the metric because the change in
pixel values itself indicates similarity. Furthermore, Priest
ensures extremely fast run-time detection. To evaluate Priest,
we extract data from standard driving image libraries (such as
the KITTI and BDD100K datasets), over which we launch an
HA. Priest guarantees an average of 99% detection accuracy
with a run-time of 0.00563s.

A. CONTRIBUTION
In this paper, we make the following contributions:
• We propose Priest, the first detection mechanism against
HA, validated on a real-world driving scenario dataset
with sufficient detection rates. Therefore, Priest can be
immediately applied to practical autonomous driving
systems.

• Unlike most prior methods [1], [13], [19], [27], [42] that
rely on only a single static image, Priest uses sequen-
tial dynamic images. Because driving in the real world
involves not only static but also dynamic images, Priest
is much more practical than prior methods.

• By using only two adjacent images for detection,
we dramatically reduce the computational cost. Accord-
ing to our experiments with real-world datasets, Priest

achieves approximately 99% detection accuracy in a
run-time of only 0.00563s. Therefore, our method is
appropriate for detecting real-world attacks.

B. ORGANIZATION
The remainder of the paper is organized as follows.
In Section II, we explain the background. We then intro-
duce the threat model, called PG attacks, in Section III.
In Section IV, we describe the overall structure of our detec-
tion model, Priest, in detail, followed by the detection rate
and run-time results in Section V. We provide related work
in Section VI. Finally, we conclude this paper and propose
supplementary work for our model in Section VII.

II. BACKGROUND
This section introduces object detection, adversarial attacks,
image stabilization, and MEMS inertial sensors.

A. OBJECT DETECTION
An autonomous vehicle detects the surrounding environ-
ment based on an object detection algorithm. The detec-
tion algorithm process is as follows: First, the light
reflected by the object is converted by sensors, such
as charge-coupled devices or complementary metal-oxide-
semiconductor (CMOS), into the digital image. Second,
ML classifies the objects based on the digital images from
the sensors. Finally, the detection algorithm assesses a con-
fidence score, which is a probability value indicating that
objects exist within a specific bounding box. If the confidence
score increases, it is more likely that the detection succeeds.
Typical object detection algorithms are YOLO V3/V4/V5.
Among these, YOLO V5 performs best in detection accuracy
and run-time.

B. ADVERSARIAL ATTACKS
An adversarial attack reduces the accuracy of the model by
inserting a particular noise or perturbation. The adversary
manipulates a clean image into an adversarial example, which
leads the object detection algorithm to misclassify it. Three
popular adversarial methods are the fast gradient sign method
(FGSM), Carlini and Wagner (C&W) attacks, and projected
gradient descent (PGD).

In [12] and [36], they proposed the adversarial attack
method FGSM using the following equation.

X = X + ϵ sign(∇L(2, Ic, l)),

This method uses the sine value of the gradient of the
loss of an image, where ϵ controls the size of the noise
or perturbation. As a result, modern deep neural networks
that use linear behavior to reduce computational gains are
vulnerable to the FGSM [1].
Carlini et al. [6] introduced a compelling attack method

for each of L0,L2, and L∞. This method has a better attack
performance and a smaller perturbation size than previous
attacks. Importantly, they also showed that the defensive

89410 VOLUME 11, 2023

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

distillation method used as a powerful defense method could
not resist this attack method.

Madry et al. [20] proposed the PGD method using the
saddle point (min-max) function. They found the minimum
loss in the adversarial example that causes the maximum
loss in the model. Thus, they allowed a powerful adversarial
example to be classified as the correct class.

C. IMAGE STABILIZATION
Because the real world is dynamic, many objects move and
change. Thus, when the camera captures images, motion
within the exposure period causes blur. If the motion
increases, the degree of blur also increases. Many modern
cameras apply image stabilization techniques to reduce this
motion blur. Some common image stabilization techniques
are as follows:
• Mechanical image stabilization: This technique uses an
external stabilizer to compensate for camera motion.
By rigidly observing in one direction, the external
device assists the main sensor in acquiring high quality
images [2].

• Optical image stabilization: This system reduces the blur
by physically shifting the camera lens or sensors. Specif-
ically, gyroscopes (angular sensors) detect the vertical
and horizontal movement of the camera body, and then
the lensmoves in the opposite direction based on the data
from the angular sensors [5].

• Digital or electronic image stabilization: This reduces
blur using image processing software [8], [23].

These techniques combined withMEMS inertial sensors to
compensate for blurry images.

D. MEMS INERTIAL SENSOR
A MEMS inertial sensor detects inertial stimuli and gener-
ates a signal to transmit the information using mechanical
structures. The MEMS inertial sensor consists of a gyroscope
and an accelerometer. A gyroscope operates based on the
Corio-lis force or Coriolis effect [33] and has three DOFs
(degrees-of-freedom): roll, pitch, and yaw. An accelerometer
detects linear acceleration by a mass spring structure [39].
The accelerometer also has three DOFs: the x-, y-, and z-axes.
The performance and cost of inertial sensors have been con-
tinually enhanced. However, despite this improvement, many
studies [14], [33], [38], [39], [40] have shown that MEMS
inertial sensors are vulnerable to resonant acoustic injection
attacks because the sensing mass is sensitive to an acoustic
signal similar to the frequency of the mechanical system. As a
result, an adversary can manipulate the outputs from inertial
sensors, thus disrupting the operation of a drone or causing
misclassification in autonomous vehicles.

Specifically, Ji et al. [14] proposed PG attacks, which
cause misclassification in object detection algorithms by
injecting manipulated acoustic signals into the MEMS
inertial sensors. They introduced false camera motion
(FCM) caused by false sensor outputs, denoted by M⃗f =

{a⃗x , a⃗y, a⃗z, w⃗r , w⃗p, w⃗y}. Then, they expressed compensatory

camera motion (CCM) equal in size to the FCM but in
the opposite direction of the attack compensatory method,
denoted by M⃗c = {−a⃗x ,−a⃗y,−a⃗z,−w⃗r ,−w⃗p,−w⃗y}. The
pitch and yaw DOFs are not used in this attack model
because they require additional pixel information, making
them unsuitable for an attack in the real world [14]. Therefore,
PG attacks use four DOFs: the x-axis, y-axis, z-axis, and roll.

Each DOF causes various motion blur effects. The x- and
y-axes cause linear motion blur, the z-axis causes radial
motion blur, and roll causes rotational motion blur. These
motion blurs can be generated simultaneously, creating a
heterogeneous motion blur [14].

III. THREAT MODEL
Both sensors and object detection algorithms are essential
in autonomous vehicles. The sensors consist of main and
auxiliary sensors. Auxiliary sensors use compensation tech-
niques to improve the quality of the image from the main
sensor. Most of these auxiliary sensors are based on MEMS
inertial sensors. However, as previously mentioned, MEMS
inertial sensors are vulnerable to signal injection attacks.
In addition, adversarial attacks on object algorithms have
been continually reported.

Ji et al. [14] introduced AMple attacks, a new class of
system level attacks resulting from the combination of mali-
ciously crafted signal injection and adversarial attacks. Addi-
tionally, they proposed the first type of AMple attacks, the
PG attacks, which controls the outputs of the auxiliary sensor.
A PG attacks creates blurry images that cause malfunctions
in object detection algorithms. Three types of PG attacks are
HA, CA, and AA.
• HA: Although objects are detected accurately before an
attack, the detection algorithm fails to detect identical
objects after the attack.

• CA: After an attack, the object detection algorithm
begins to recognize nonexistent objects as if they
existed.

• AA: An AA causes an object to be miscategorized as
another object. (For example, a fire hydrant might be
detected as a person after the attack.)

Among these, an HA is significantly more disastrous than
the other attacks because its attack success rate reaches 100%
in many cases. Therefore, we propose a detection model
against HA attacks. We introduce HA in Figure 1. Before HA
is launched, the detection algorithm identifies the object (i.e.,
the car in the figure) with 92% of confidence score. However,
the confidence score decreases drastically such that the car is
not detected (i.e., the bounding box disappears), after HA is
launched.

Ji et al. [14] proposed three assumptions to implement
their attacks. First, they used black-box attacks because,
in the real-world, network parameters and frameworks are
not always available. However, they could know the confi-
dence scores and classification results. Second, they assumed
an adversary could obtain cameras and sensor awareness
from the same models used in autonomous vehicles. Third,

VOLUME 11, 2023 89411

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

FIGURE 1. HA attacks.

they assumed the adversary had an acoustic attack capa-
bility. Thus, they introduced three acoustic signal injection
scenarios: (1) installing signal generators along the side of
the road, (2) attaching the signal generator to the surface of
the target, and (3) controlling the damaged part of an on-
board speaker. Furthermore, they experimented by installing
a signal generator directly in front of the sensor in the car.

Gradient-free attack parameter optimization is used for PG
attacks. Because we are focusing on HA attacks, we intro-
duce HA optimization. A PG attacks is a black box attack
because the adversary cannot obtain the network parameters
and frameworks. Therefore, they denoted Y = f (X), where
X is the image as an input, Y is a prediction space, and f is a
black-box object detection algorithm. Each prediction in Y is
denoted as Yi ∈ Y . Yi is expressed as follows:

Yi = (Bi, SBi ,Ci, SCi),

where Bi is a bounding box, and Ci is a class of the prediction.
SiB and SiC are the confidence scores corresponding to Bi
and Ci. B is a blurred image affected by {a⃗x , a⃗y, a⃗z, w⃗r }, B =
X +△. The△ is the degree of blur, so it can be considered an
attack cost. They used objective functions to optimize each
attack. The HA objective function is:

w1SBi S
C
i + w2∥△∥p,

|a⃗x + a⃗y + a⃗z| < ξ1,

|w⃗r | < ξ2,

where w1 and w2 are the weights that determine the lever-
age between the attack success rate and cost. ξ1 and ξ2 are
the attack capability limitations of the accelerometer and
gyroscope, respectively.

IV. METHODOLOGY AND DESIGN
In this section, we introduce the target environment that Priest
aims to protect and the overall structure of our model.
Assumption on the Target Environment: In [14], [33], [38],

[39], and [40], the attacks occurred within tens of centimeters
or by attaching a signal generator to the target. The PG attacks
also used an acoustic generator in front of the sensor. These
attack methods are impractical because users or passengers
could easily recognize the attacks. Therefore, to achieve more
generality, we assume an external attack from outside the car.

However, existing attack methods are very difficult to
exploit using an external attack in normal driving situations.

Therefore, to use existing methods, we assume the external
attacks occur when cars stop or slow down.
Priest Construction: Priest uses the similarity of pixel val-

ues between two adjacent images with a one frame difference.
In Figure 2, we introduce three consecutive images to show
the similarity of adjacent images. In the figure, t0 and t
indicate the current time and the inverse of sampling rate per
image, respectively. Other than the car, which is located in the
center of the images, buildings, traffic lights, sky, and other
stop objects exist in almost the same positions in the images.
Thus, significant portions of the images have nearly identical
pixel values.
In Figure 3, we show the overall structure of Priest, which

consists of six stages: Resize, Split, Sub, Pseudorandom,
Add, and Judgment. The Resize function optionally shrinks
the image size to decrease the computational cost. The Split
function divides the resized image into three units, blue,
green, and red, to implement a compelling detection model.
The Sub function finds the different values on each pixel
through the absolute value of subtracting the Split function
image from the previous image. The Pseudorandom function
optionally selects limited rows and columns to use in the Add
function to reduce the run time. The Add function adds all or
selected values of the Sub function to calculate the degree of
similarity. The lower the output value is, the higher the simi-
larity between the two images. Finally, the Judgment function
determines whether an attack has occurred by identifying
whether the degree of similarity is over the threshold value.
In what follows, we describe the detailed specification of each
algorithm.
Resize(image, div). Resize takes an image and div parame-

ter as inputs and returns re_image, resize.row, and resize.col
as outputs. The image is a current input image, and div is
the parameter that determines the degree of shrinkage of
the input image. The re_image is an image reduced by div,
and resize.row and resize.col are the values of each row and
column in the resized image. We use the resize function from
OpenCV for generality. Priest has two techniques to reduce
the computational effort. The first is the Resize function and
the other is the Pseudorandom function. For example, if the
user wants to reduce the cost by resizing the image, they
pass a div value greater than one. Otherwise, if they do not
want to use the Resize function, they set div to one and then
use the Pseudorandom function later. We show the detection
accuracy and run-time for the Resize function in Section V.
The Resize function is outlined in Algorithm 1.

Split(image). Split takes an image from the Resize func-
tion as its input and returns split_img_B, split_img_G, and
split_img_R, which are the image decomposed into blue,
green, and red components, respectively, because our model
detects attacks on each. That is, we use three criteria for
detection. This function is outlined in Algorithm 2.

Sub(image, image.before). Sub takes an image and
image.before as inputs and returns sub.image. The image and
image.before are the current input image and the image one
frame prior, respectively. The sub.image is the absolute value

89412 VOLUME 11, 2023

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

FIGURE 2. Similarity of sequential images.

FIGURE 3. Overall structure of priest.

Algorithm 1 Resize Function
Input: image, div
Output: re_image, resize.row, resize.col
resize.row← int(image.row/div)
resize.col ← int(image.col/div)
re_image← resize(image, dsize

= (resize.col, resize.row))
return re_image, resize.row, resize.col

Algorithm 2 Split Function
Input: image
Output: split_img_B, split_img_G, split_img_R
split_img_B← image[0] split_img_G← image[1]
split_img_R← image[2]
return split_img_B, split_img_G, split_img_R

of the subtraction of the image and image.before. In the Sub
function, the subtraction of pixels corresponding to the same
position in each input image is used. We use absolute values
because if the signs were preserved, the values would be
offset by the Add function, which adds all the values from
the Sub function, and we could not obtain the exact similarity
value. We show the Sub function in Algorithm 3.

Pseudorandom(N , image.row, image.col). This function
takes N , image.row, and image.col as inputs and returns
select.row and select.col. The N parameter determines the
number of the pixel used in the detection model. The
image.row and image.col parameters are the row and column

Algorithm 3 Sub Function
Input: image, image.before
Output: sub.image
sub.image← abs|image.before− image|
return sub.image

sizes of the input image, respectively. The select.row and
select.col parameters are randomly selectedN values of rows
and columns in the input image, regardless of order. As we
previously mentioned, it is optional to use several random
numbers (N) set by the user to reduce the computational
effort. For example, the user can select values of 100, 120,
240, 720, and so forth. These randomly selected values are
used to select pixels that correspond to particular rows and
columns in the Add stage. The random rows and columns
from the Pseudorandom function are generated at each given
period (for example, every midnight or other specific time
set by the user). Furthermore, the Pseudorandom function
can defend against future optimization attacks because the
adversary cannot know which pixels are chosen. Importantly,
by using the Pseudorandom function, we can benefit from a
reduced computational cost while maintaining the detection
rate. We will discuss this advantage through experiments in
Section V. We show this function in Algorithm 4.

Add(sub.image, select , image.row, image.col). Add takes
sub. image, select , image.row, and image.col as inputs and
returns add . value. The select parameter indicates whether
the Add function uses the Pseudorandom function. If select
is True, the Add function uses the limited pixels from

VOLUME 11, 2023 89413

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

Algorithm 4 Pseudorandom Function
Input: N , image.row, image.col
Output: select.row, select.col
select.row← random.select(image.row,N)
select.col ← random.select(image.col,N)
return select.row, select.col

Pseudorandom; otherwise, it uses all the pixels in the image
of the Sub function’s input. The image.row and image.col
parameters are the rows and columns of the input images in
the Sub functions or randomly selected rows and columns
from the Pseudorandom function. The add .value is the sum
of all the pixel values of the sub.image in the range of a
given row and column. It indicates how different the pixel
values of the two images are. We outline the Add function in
Algorithm 5.

Algorithm 5 Add Function
Input: sub.image, select, image.row, image.col
Output: add .value
add .value←⊥
if select == True then

for x, y← image.row, image.col do
add .value← sub.image[x][y]+ add .value

end
else

for x ← image.row do
for y← image.col do

add .value
← sub.image[x][y]+ add .value

end
end

end
return add .value

Judgment(add .value.B, add .value.G, add .value.R).
Judgment takes add .value.B, add .value.G, and add .value.R
as inputs and returns detect.value. The add .value.B,
add .value.G, and add .value.R parameters are the values from
the Add function for attack detection in the blue, green,
and red components, respectively. The detect.value indicates
whether an attack has occurred. Only when all values are
above the threshold value do we judge that the detection
is successful because we want to implement a highly reli-
able detection model. For example, even if add .value.B and
add .value.R exceed the set threshold value, if add .value.G
does not exceed the threshold value, the model determines
that no attack has been detected. We will propose the optimal
threshold values by means of Algorithm 8 in Section V-D.
We outline the Judgment function in Algorithm 6.

Furthermore, we propose the algorithm for overall usage in
Algorithm 7. The algorithm takes the current image and select
as inputs and returns detect.value, which indicates whether
an attack has occurred. In the middle of the algorithm, if the

Algorithm 6 Judgment Function
Input: add .value.B, add .value.G, add .value.R
Output: detect.value
if add .value.B ≥ threshold &
add .value.G ≥ threshold &
add .value.R ≥ threshold then
detect.value← True

else
detect.value← False

end
return detect.value

user wants to use the Pseudorandom function, they must enter
True in select , or the function cannot be used.

V. EVALUATION
In this section, we evaluate our detection model. We used a
12th Gen Intel(R) Core(TM) i7-12700K CPU on a desktop.
Object Detection Algorithm: We validated our detection

model using a pre-trained YOLO V4/V5 [3], [15] detection
algorithm in the experiment. We considered six classes of
interest: car, bus, person, truck, traffic light, and stop sign.
Dataset: We used the BDD100K [43] and KITTI [9]

datasets to evaluate our model. BDD100K is the largest
dataset with themost widely varying driving images. KITTI is
a widely used dataset that offersmany static and dynamic traf-
fic scenarios.We selected images appropriate for our assump-
tions from the KITTI and BDD100K datasets. We used
approximately 6300 images consisting of 100 images from
each of 53 videos from BDD100K and approximately
100 images in each of 10 scenarios from KITTI. To the
best of our understanding, KITTI contains significantly fewer
data suitable for our assumptions than BDD100K, which is
why there was a significant difference in the number of data
elements taken from each dataset. We also address this matter
in Section V-A using data based evidence.
Attack Simulation: We use the HA introduced in

Section III. The images are divided into before and after the
attack based on a randomly selected specific point in time.
For example, we used 100 images per case, so we randomly
selected from 2 to 99 images, excluding the first and last,
because if we chose the first or last as an attack point, there
would be no previous and next images. Then, based on the
fixed value, it was assumed that there was no attack before the
selected point and that the attack was continuously performed
after the point. We show the process that divides the images
into two sets based on the HA simulation attack point in
Figure 4.
Selection Algorithm:
To set the optimal threshold values during the detection,

we modified the Judgment algorithm, which was introduced
in Algorithm 6. Because the add .value can exceed the thresh-
old value not only at the point where the attack occurred but
also at a point where it did not occur, we add a correction.

89414 VOLUME 11, 2023

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

Algorithm 7 Overall Detection Algorithm
Input: image, select
Output: detect.value re_image, reszie.row, resize.col
← Resize(image)
split_img_B, split_img_G, split_img_R
← Split(re_image)
sub.image_B
← Sub(split_img_B, split_img_B.before)
sub.image_G
← Sub(split_img_G, split_img_G.before)
sub.image_R
← Sub(split_img_R, split_img_R.before)
select.row, select.col
← Pseudorandom(N , image.row, image.col)
if select == True then

add .value_B←
Add(sub.image_B, select, select.row, select.col)
add .value_G←
Add(sub.image_G, select, select.row, select.col)
add .value_R←
Add(sub.image_R, select, select.row, select.col)

else
add .value_B←
Add(sub.image_B, select, resize.row, resize.col)
add .value_G←
Add(sub.image_G, select, resize.row, resize.col)
add .value_R←
Add(sub.image_R, select, resize.row, resize.col)

end
detect.value←
Judgment(add .value_B, add .value_G, add .value_R)
return detect.value

FIGURE 4. Attack point in threat model.

The value correction is used to eliminate the false positive
value. The correction increases every time add .value exceeds
the threshold value. However, if we only use the correction
without considering other conditions, then it may not work
as a remover accurately. To address this concern, we assume
that, after the simulations of detection, the detection was
successful when the threshold value meets two conditions
below. Given this assumption, the correction number is set
to one when a detection.point exceeding the threshold value
is equal to a randomly determined attack point. As a result,
we only use a true positive value as a detection rate in the rest
of this section.

Algorithm 8 Selection Function
Input: add .value.B, add .value.G, add .value.R
Output: detect.value
correction←⊥
detection.point ←⊥
for i← 1, 2, . . . , n do

if add .value.B ≥ threshold &
add .value.G ≥ threshold &
add .value.R ≥ threshold then
detect.value← True
correction← correction+ 1
detection.point ← i

else
detect.value← False

end
end
if detection.point == attack.point &
correction == 1 then
detect.value← True

else
detect.value← False

end
return detect.value

Natural Difference Value of the Pixel:To analyze the exper-
iments correctly, we should know the difference between
pixel values without the attacks. We also consider mov-
ing objects such as birds, pedestrians, cars and bicycles,
etc. Therefore, we performed the experiments by using
1280 × 720 BDD100K images on 53 videos. As a result, the
average values are approximately 1,935,596.3, 1,820,963.7,
and 1,914,817.6 in B, G, and R units, respectively.

In the remainder of this section, we show our experimental
results by (1) the detection rate by image size, (2) the detec-
tion rate using the Pseudorandom function, (3) the run-time
of each stage and the total for all stages in the first and second
situations, and (4) experiments performed in normal driving
scenarios.

A. DETECTION RATE BY IMAGE SIZE
When the images are input, we set three folds dividing the
image’s rows and columns by 16, 4, and 1 (that is, we set div
to 16, 4, and 1, respectively). When the value is 1, we use the
original image. For example, the BDD100K dataset provides
1280 × 720 images, so we used 80 × 45, 320 × 180, and
1280× 720 as the input image sizes.

Figure 5 shows the detection rate results according to the
image size. The y-axis is the detection rate, and the x-axis
is the threshold value. For YOLO V4, the highest detection
rates were 100% and 90% for the BDD100K and KITTI
datasets, respectively. For YOLO V5, the highest detection
rates were 100% and 80% for the BDD100K and KITTI
images, respectively.

The shape of the graph is similar to the normal distribution.
The reason is as follows: (1) the threshold value, which is the

VOLUME 11, 2023 89415

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

FIGURE 5. Detection rate for image size.

x-axis value, is affected by the Add stage, (2) the output value
of the Add function is large or small according to whether
the difference in the value of each pixel is large or small,
respectively, in the Sub stage, and (3) the difference in the
pixel value is affected by the degree of blur in the image.
Therefore, the x-axis is not only the number of image pixels
but also the degree of the blur. If the threshold value is larger
than the attack degree, the attack is not detected. Otherwise,
if the threshold value is smaller than the attack degree, the
attack and the small degree of blur of a general situation
cannot be distinguished.

It is a natural question whether our model depends on
the dataset and object detection algorithm because the detec-
tion accuracy is different. It does not for two reasons. First,
these two datasets provide images at different frame rates.
BDD100K provides 30 frames per seconds (FPS), whereas
KITTI provides 20 FPS. When the FPS value is higher, more
images are taken each second, resulting in greater similar-
ity between adjacent images. Second, YOLO V5 is more

vulnerable to PG attacks thanYOLOV4. Ji et al. [14] showed
that the attack success rate against YOLOV5was higher than
against YOLO V4 in CA and AA. The HA was excepted
because the success accuracy of the HA was 100% against
all detection algorithms. In fact, when we conducted our own
experiment, we succeeded in attacking YOLO V5 even when
the degree of attack was smaller than that of YOLO V4.
Therefore, on BDD100K, the latter part of the graph is dif-
ferent because the necessary attack degree in YOLO V5 is
smaller than in YOLO V4. On the KITTI dataset, the highest
detection rates were different because not only are different
degrees of attack needed but the frame rate is only 20 FPS,
making it more difficult to distinguish between attacks and
natural situations. In addition, in KITTI, all attacks are
detected by our model, but the best detection rates were 90%
and 80% for YOLO V4 and YOLO V5, respectively, because
there was one case where the threshold value ranges did not
overlap for each detection case. For example, when a second
scenario was detected in the range from 37,000 to 40,000,
a fifth scenario was detected in the range from 41,000 to
42,000. Therefore, if we advance Priest, this limitation must
be eliminated. Furthermore, because most modern cameras
provide more than 30 FPS, the detection results on BDD100K
are more appropriate to the real world than KITTI.

One may wonder, if the detection rate is the true positive,
why the lowest value of the threshold value does not have
the highest detection rate. The first reason is that values close
to the lowest one is also close to the difference between
pixel values, so such values do not meet the condition, i.e.,
Correction = 1 in Algorithm 8. Secondly, because we uti-
lized all B,G, and R units during the detection, there are some
cases where two units meet the condition at the same time but
one of them does not exceed threshold value.

Moreover, we provide evidence that the number of images
in the KITTI dataset is sufficient to evaluate our detection
model. KITTI has a frame rate of 1.5 times BDD100K.
In Figure 5(b), the threshold range corresponding to a 100%
detection rate in the 80×45 size of BDD100K for YOLO V4
is from 24,000 to 31,000. In Figures 5(b) and 5(c), the ranges
are from 400,000 to 500,000 and from 5,200,000 to 7,350,000
for the 320× 180 and 1280× 720 sizes, respectively. Using
KITTI, the ranges for the highest detection rate are [37,000,
42,000], [650,000, 675,000], and [9,850,000, 10,100,000] for
image sizes of 80 × 45, 320 × 180, and 1280 × 720 in
Figures 5(a), 5(b), and 5(c), respectively. The difference in the
threshold’s range corresponding to each image size is almost
1.5 times the difference; therefore, the number of data sam-
ples is sufficiently reliable. Furthermore, Ji et al. [14] used
200 images each from the BDD100K and KITTI datasets for
experiments. Therefore, the size of our dataset is sufficiently
reliable to verify our detection model.

B. DETECTION RATE USING THE PSEUDORANDOM
FUNCTION
In this experiment, we used four values of N: 100, 120, 240,
and 720. In Figure 6, for BDD100K, when the value of N is

89416 VOLUME 11, 2023

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

FIGURE 6. Detection rate for N with the pseudorandom function.

FIGURE 7. Detection rate in normal driving conditions.

over 240, the highest detection accuracy is equal to the results
in Section V-A for YOLO V4 and V5. For KITTI, when the
value of N is 720, the highest detection accuracy is equal to
or higher than the results in Section V-A for YOLO V4 and
V5. When the value of N increases, the performance of our
model also increases on both datasets.

For YOLO V5, when the value of N is 100, the results
are better than for YOLO V4 for BDD100K and KITTI. For
YOLO V5, when the value of N is 120, the detection rate is
higher than YOLO V4 for KITTI. These results differ from
those in Section V-A in that the results for YOLO V4 are
better than for YOLOV5. Furthermore, for KITTI, when N is
720, the highest detection rate is 100% for YOLO V4. These
are the advantages of using the Pseudorandom function. If we
use all pixels for detection, we must use pixels that have only

slight variations. For example, in Figure 8, if we use all the
pixels, we must use Case 1, where the pixel values before
and after the attack are similar. As these values accumulate,
it is difficult to distinguish an attack from a normal situation.
Otherwise, like in Case 2, when we use the Pseudorandom
function, we can select mostly pixels with more significant
differences, making it easy to detect the attack.

In Figures 6(a), 6(b), and 6(c), the detection accuracy for
KITTI in the latter part of the graphs is higher than the
adjacent previous part, even though the threshold value is
larger. This is because the sample size is too small to produce
sufficiently reliable results.

In the experiments where N is less than 720, the perfor-
mance difference between BDD100K and KITTI is because
frame rates differ. A lower frame rate reduces the similarity,

VOLUME 11, 2023 89417

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

TABLE 1. Computational cost by the size of the image.

TABLE 2. Computational cost by the number of pixels (N).

FIGURE 8. Difference in variation by selected pixel value.

making it difficult to detect attacks with a small number of
pixels.

C. RUN-TIME
In this section, we introduce the computational cost of our
detection model. We ran each experiment 100,000 times and
calculated the average value. Table 1 shows the computational
cost by the size of the image, and Table 2 shows the cost with
the Pseudorandom function.

The KITTI dataset provides various image sizes, such as
1238 × 374, 1242 × 375, and 1224 × 370. In contrast,
BDD100K provides consistently sized images, 1280 × 720.
We used the 1280 × 720 size in this section, because we
wanted to obtain consistent results and the 1280×720 size is
larger than the other image sizes in the KITTI dataset.

Tables 1 and 2 show that the Add stage consumed most
of the total time. The run-time of the Add stage is also
proportional to the number of pixels: the Add stage run-time
at the 1280 × 720 size was approximately 16 times greater
than at the 320 × 180 size and 256 times greater than at the
80 × 45 size. Moreover, the run-time of the Add stage with
Pseudorandom (N=720) is approximately three and six times
greater than at N = 240 and 120, respectively.

As previously mentioned, the BDD100K dataset pro-
vides 30 FPS, and the KITTI dataset provides 20 FPS. If we
convert FPS into time units, 30 FPS equals approximately
0.0333s, and 20 FPS equals 0.05s. Therefore, the results of
the 80 × 45 size and all results using the Pseudorandom
stage do not exceed the time criteria. Then, considering

the performance, it is reasonable to use an image size of
80× 45 and Pseudorandom (N=720). In addition, in both
cases, it can be used at 60 FPS, ensuring a more accurate
detection rate.

D. DETERMINE THE OPTIMAL THRESHOLD VALUE
In this section, we propose the optimal threshold values.
There are three conditions to consider. Firstly, candidates are
values which have the highest detection rate in each exper-
iment. Secondly, among such candidates, only the biggest
value pass the first criterion. Lastly, the computational cost
of candidate should be with in each FPS (for example,
0.0333 seconds). Because if the performance exceeds the
fps, it is not applicable to actual driving conditions. Accord-
ing to our experiment as shown in Figure 5(a), 29,000 is
the optimal threshold value by above three conditions for
BDD100K/YOLOV5.

E. NORMAL DRIVING SITUATIONS
We also performed experiments in normal driving situations,
where the normal driving refers to a circumstance in which
we do not focus on vehicles that are standing or stationary.
We used (1) image sizes of 80× 45 with the Resize function
and (2) image sizes of 1280 × 720 with the Pseudorandom
function (N=720) for YOLO V4 because the two cases
are the best scenarios in both detection performance and
computational cost. In this experiment, we used a total of
2300 images, 100 from each of 23 videos, on the BDD100K
dataset because 30 FPS is closer to data from camera sensors
used in the real world. Figure 7 shows that our detection
model had a 70.37% detection rate in Cases (1) and (2).
Furthermore, in this experiment, the detection model suc-
cessfully detected all attacks, but the success rate was only
70% because there were some parts where the range and
value of the threshold value that succeeded in detecting the
attack did not overlap. Therefore, we predict that the detection
model will perform better under any driving conditions as the
detection technology continues to improve.

F. BENCHMARK TEST
We propose a benchmark test of Priest, the squeezing
method [41] and the state-of-the-art de-blurring method [29].
Firstly, we compare our method to the de-blurring method.

89418 VOLUME 11, 2023

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

As we said earlier, the de-blurring method needs 1.4s for
1280× 720 image size. This is not suitable in the real-world
driving situations. Because the FPS of sensors, such as
30FPS (≈ 0.033s) is typically more higher than 1FPS
(≈ 1s). By contrast, our method requires approximately
178FPS(≈ 0.0056s). Secondly, we perform the benchmark
test for feature squeezing method [41]. In [41], they showed
an outstanding detection accuracy. Specifically, the accuracy
reaches 98.8% and 87.5% in MNIST and CIFAR-10, respec-
tively. However, this method is highly dependent to datasets.
Furthermore, it is hard to adapt this in the driving conditions
because the result of model under CIFAR-10, which may
reflect the real world more, is significantly lower than that
under MNIST. Conversely, in Priest, we only used the real
world driving condition dataset for evaluations and preserve
high accuracy.

VI. RELATED WORK
In this section, we introduce previous studies on (1) attack
models for MEMS inertial sensors, (2) defense methods
for MEMS inertial sensors, (3) defense models against
adversarial attacks, and (4) detection models for adversarial
attacks.

A. ATTACK METHODS FOR MEMS INERTIAL SENSORS
Extensive control systems depend on feedback from MEMS
sensors for critical decisions. MEMS gyroscopes and
accelerometers detect changes in mass to measure inertial
stimuli. However, sensing mass is affected by frequencies
close to the natural frequency of the hardware. That is,MEMS
inertial sensors are known to be vulnerable to error signal
injection attacks. Specifically, recent studies have shown that
injecting a resonant acoustic signal into MEMS sensors can
cause incorrect operation [33], [38], [39], [40].
Son et al. [33] analyzed resonant frequencies of MEMS

gyroscope sensors. They then injected signals into drones
that had the same resonant frequencies as the previously
analyzed sensors. As a result, the drones could not oper-
ate normally. Trippel et al. [38] introduced an output control
attack method that exploited modulated signals. Specifically,
they showed that it was possible to control the output of
the MEMS accelerometer precisely. Wang et al. [40] further
showed how to affect virtual reality devices, drones, and
other device. Finally, Tu et al. [39] proposed a side-switching
attack that could manipulate the output of MEMS gyroscopes
and accelerometers.

B. DEFENSE METHODS FOR MEMS INERTIAL SENSORS
1) BEST SAMPLING
To detect signal-injection attacks, Shoukry et al. [32] intro-
duced PyCRA (physical challenge response authentication),
which exploits two types of signals: challenge and response.
First, a challenge signal is randomly selected and transmitted
to measure the physical response of a measurable entity.
After transmission, PyCRA authenticates the response signal.

FIGURE 9. Structure of defensive distillation.

Specifically, if a challenge signal is transmitted without a spe-
cific range when an attack does not occur, the specific range
of the response signal must also be empty. However, if an
attack occurs, the specific range of the response signal is not
empty. This process can detect attacks without degrading the
sensor performance [10]. However, Shin et al. [31] showed
that PyCRA actually requires extensive computational effort,
preventing its use in practice. Therefore, we introduce a
detection model that has a negligible cost.

2) SENSOR FUSION
One detection method is sensor fusion. Sensor fusion
uses sensors of various types or multiple identical sen-
sors. Because an adversary must corrupt all sensors,
it makes injection attacks harder [4], [31], [39]. However,
Nashimoto et al. [25] proposed that the fusion method using
Kalman filters could be circumvented. To rectify the prob-
lem, Tharayil et al. [37] presented an enhanced algorithm
that uses a mathematical relationship between a gyroscope
and a magnetometer. However, a vulnerability remains [10].
Moreover, the sensor fusion method is costly because many
sensors are required [10]. Therefore, designing a secure and
cost-effective detection scheme is highly desirable.

C. DEFENSE MODELS AGAINST ADVERSARIAL ATTACKS
In this section, we introduce defense methods against adver-
sarial attacks. Furthermore, we introduce the de-blurring
methods proposed as a countermeasure by Ji et al. [14].

1) DEFENSIVE DISTILLATION
Defensive distillation [13], [27] was originally introduced as
a method to deliver knowledge of a complicated model to
a simpler model. Parpernot et al. [27] proposed a defensive
distillation algorithm that applies previous knowledge distil-
lation algorithms for the model’s robustness to adversarial
attacks. As shown in Figure 9, they first trained the model
in the teacher network. The teacher network then output
probability vectors using the follow equation.

F(X) =
ezi(x)/T∑N−1
i=0 ezi(x)/T

(1)

Above equation looks similar to softmax but has Distilla-
tion Temperature T. If the value of T increases, a uniform
probability distribution can be obtained. Conversely, as the
value of T decreases, the result of Equation 1 becomes like
a discrete probability distribution. This output is used as a
label in the student network. By using probability vectors

VOLUME 11, 2023 89419

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

as labels, one can prevent overfitting, thus deriving a robust
network by means of better generalization. The defensive
distillation algorithm increased defense success rates from
1.55% to 13.79% and from 0.39% to 2.56% on the MNIST
and the CIFAR-10 datasets, respectively. However, it has a
problem in that the defense success rate of the CIFAR-10
dataset, which is more relevant to the real world, is lower
than the results on the MNIST dataset. Because a probability
vector includes information about the relationship between
data, the MNIST dataset, which has simpler data, produces
a higher performance than the CIFAR-10 dataset, which has
more complex data. For example, MNIST contains data about
numbers. Numbers 1 and 7 have something in common with
stick. That is, these features help defensive distillation’s per-
formance on the MNIST dataset. Conversely, the CIFAR-10
dataset has more complex data, such as vehicle, cat, dog,
and others; thus, these data have fewer similar properties
than MNIST, so they perform poorly. Therefore, defensive
distillation is not suitable for use in actual driving situations.

2) ADVERSARIAL TRAINING
This process uses adversarial images other than the original
images to train ML models. Because adversarial training
requires an increased training dataset size, a brute-force strat-
egy is needed [1]. This strategy increases the robustness
of the machine learning model to adversarial attacks [12],
[30]. Miyao et al. [21] proposed virtual adversarial training,
which smoothes the output distributions of the network.
Zheng et al. [44] proposed a stability training method that
improves the robustness to minor distortions. Furthermore,
Madry et al. [20] presented a powerful adversarial training
method, a first-order method called PGD training. This
method can defend against white-box attacks on the MNIST
and CIFAR-10 datasets with probabilities of 85% and 46%,
respectively, and against black-box attacks with probabilities
of 95% and 64%, respectively. This method is robust to adver-
sarial attacks because the defense accuracy with black-box
attacks performs well relative to white-box attacks. However,
the accuracy against both white-box and black-box attacks
using MNIST is much higher than using CIFAR-10. This
can be seen as a dependence on the dataset, because the
CIFAR-10 dataset is more similar to the real world than the
MNIST dataset. Therefore, we propose a detection model
validated using data from real-world driving conditions.

3) DATA-DRIVEN METHODS
We also introduce the de-blurring method proposed as a
countermeasure in [14]. Several studies have used deep learn-
ing de-blurring methods [11], [24], [29], [35]. Sun et al. [35]
measured the probability of specific blur kernels based
on convolutional neural networks (CNNs). Gong et al. [11]
introduced a deeper-CNN. This deeper-CNN method evalu-
ates the motion flowwith no post-processing. However, it has
a drawback in an application domain because it is designed
for linear kernels.

Furthermore, several methods have been based on end-
to-end training [24], [26]. Noroozi et al. [26] used skip
connections to generate residual images of blurred images
without the characteristics of blur kernels. Nah et al. [24]
presented a model with 40 convolutional layers that can be
applied at every scale. Moreover, it has 120 layers to recover
clean images. Nonetheless, it incurs a high computational
cost because the method uses a multi-scale strategy to obtain
a sharp image.

4) SPATIALLY VARYING NETWORKS
De-blurring methods have been developed based on spatially
varying networks [18], [28]. Ren et al. [28] proposed a Shep-
ard interpolation layer that performs recovery and creates
super-resolution. A predefined mask determines whether a
pixel is used for interpolation in the spatially varying scene.
Liu et al. [18] developed a spatially varying RNN trained by a
CNN to come close to low-level filters. This method reduces
the number of kernels and channels of models because long
distance propagation by the RNN is used for image informa-
tion delivery. Then, this method is followed in [7] by expand-
ing 1D linear propagation to 2D spatial diffusion in an end-to-
end manner. Ren et al. [29] used both 1D and 2D RNNs for
de-blurring. They noted that 1D RNNs are underutilized in
relationships between neighboring pixels because 1D RNNs
connect pixels only from the previous row or column. Specif-
ically, they used 2D RNNs to obtain a large receptive field
and learn the denser propagation. As a result, this method
reduces computational costs and increases performance over
previous studies. When using 1280 × 720 images, the peak
signal-to-noise ratio and structural similarity index maps
are 31.7603 and 0.9241, respectively, and the run-time is
1.4s. Despite these enhancements, the run-time is too long
to be used for autonomous driving. Because the BDD100K
dataset supports 30FPS videos, the run-time is only suitable
if it is within appropriately 0.0333s per image. Therefore,
we propose a verifiable technique with a run-time of less than
approximately 0.0333s.

D. DETECTION MODELS FOR ADVERSARIAL ATTACKS
1) SafetyNet
Lu et al. [19] hypothesized that patterns of rectified linear unit
(ReLU) activations in the last stages of networks are differ-
ent between clean and adversarial images. They appended a
radial basis function support vector machine (SVM) classifier
to the target model. This SVM network uses a discrete code
computed in the last ReLU of the network. By comparing the
discrete codes computed by the test and training sets, they
could detect adversarial attacks [22].

2) FEATURE SQUEEZING
Xu et al. [42] introduced the squeezing method, which
adds two external models to detect adversarial attacks.
These reduced the color bit depth of each pixel and car-
ried out spatial smoothing on the image. An original and a

89420 VOLUME 11, 2023

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

squeezed image are used for prediction in the target model.
If the predicted values of the original and squeezed images
are significantly different, an attack has occurred. Finally,
Xu et al. [41] showed that the feature squeezing method is
also effective against C&W attacks [16].

These aforementioned detection methods seem signifi-
cantly safe from adversarial attacks. However, these meth-
ods [19], [22], [41], [42] are detection techniques that focus
on static perturbation images that are not even identified by
the human eye. The real world is dynamic. When a person or
thing moves, the image automatically has more blur than the
perturbations considered in the above methods. Furthermore,
the blur naturally generated when things move can induce
malfunctions in the object detection algorithm. Therefore,
it is difficult to use in the dynamic real world.

However, that does not mean a defense model that uses
sequential data does not exist. Lin et al. [17] introduced a
detection model for adversarial attacks that uses the dis-
tribution of sequential data in the game and allows us to
perform normal tasks by predicting the next behavior, even
while under attack. However, it requires 180 frames for
detection and foresight. Because the BDD100K dataset pro-
vides 30 FPS and the KITTI dataset provides 20 FPS, it must
be assumed that no attack occurs within at least six seconds
when using the above detection model. The assumption that
there have been no attacks during six seconds is too strong.
Therefore, we introduce a detection model that uses only two
consecutive images.

VII. CONCLUSION
HA has a 100% attack success rate. It is a very effective
attack, and a solution is urgently needed. Therefore, in this
paper, we introduce a detection model called Priest. This
model uses the similarity between pixels in consecutive
images, and it guarantees, on average, a 99% detection rate
with a run-time of 0.00563s on the BDD100K dataset, which
is close to real-world conditions. As a result, we propose that
if we use (1) an image size of 80 × 45 or (2) a 1280 × 720
image with the Pseudorandom function (N=720), the model
ensures a significant detection accuracy and can be applied
at 30 FPS or even 60 FPS. Therefore, our detection model
can be fully used in the real world.

REFERENCES
[1] N. Akhtar and A. Mian, ‘‘Threat of adversarial attacks on deep learning in

computer vision: A survey,’’ IEEE Access, vol. 6, pp. 14410–14430, 2018.
[2] D. Bereska, K. Daniec, S. Fras, K. Jedrasiak, M. Malinowski, and

A. Nawrat, ‘‘System for multi-axial mechanical stabilization of digital
camera,’’ in Vision Based Systemsfor UAV Applications. Cham, Switzer-
land: Springer, 2013, p. 177.

[3] A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[4] C. Bolton, S. Rampazzi, C. Li, A. Kwong, W. Xu, and K. Fu, ‘‘Blue note:
How intentional acoustic interference damages availability and integrity
in hard disk drives and operating systems,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2018, pp. 1048–1062.

[5] B. Cardani, ‘‘Optical image stabilization for digital cameras,’’ IEEE Con-
trol Syst. Mag., vol. 26, no. 2, pp. 21–22, Apr. 2006.

[6] N. Carlini and D. Wagner, ‘‘Towards evaluating the robustness of neural
networks,’’ inProc. IEEE Symp. Secur. Privacy (SP),May 2017, pp. 39–57.

[7] X. Cheng, P. Wang, and R. Yang, ‘‘Learning depth with convolutional
spatial propagation network,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 42, no. 10, pp. 2361–2379, Oct. 2020.

[8] S. Erturk, ‘‘Digital image stabilization with sub-image phase correlation
based global motion estimation,’’ IEEE Trans. Consum. Electron., vol. 49,
no. 4, pp. 1320–1325, Nov. 2003.

[9] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, ‘‘Vision meets robotics:
The KITTI dataset,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1231–1237,
Sep. 2013.

[10] I. Giechaskiel and K. Rasmussen, ‘‘Taxonomy and challenges of out-of-
band signal injection attacks and defenses,’’ IEEE Commun. Surveys Tuts.,
vol. 22, no. 1, pp. 645–670, 1st Quart., 2020.

[11] D. Gong, J. Yang, L. Liu, Y. Zhang, I. Reid, C. Shen, A. Van Den Hengel,
and Q. Shi, ‘‘From motion blur to motion flow: A deep learning solution
for removing heterogeneous motion blur,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3806–3815.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harnessing
adversarial examples,’’ 2014, arXiv:1412.6572.

[13] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[14] X. Ji, Y. Cheng, Y. Zhang, K.Wang, C. Yan,W.Xu, andK. Fu, ‘‘Poltergeist:
Acoustic adversarial machine learning against cameras and computer
vision,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2021, pp. 160–175.

[15] G. Jocher. (Oct. 2020). Ultralytics/YOLOV5: V3.1—Bug Fixes
and Performance Improvements Version v3.1. [Online]. Available:
https://doi.org/10.5281/zenodo.4154370

[16] A. Kurakin, I. J. Goodfellow, and S. Bengio, ‘‘Adversarial examples in the
physical world,’’ in Artificial Intelligence Safety and Security. Boca Raton,
FL, USA: Chapman & Hall/CRC, 2018, pp. 99–112.

[17] Y.-C. Lin, M.-Y. Liu, M. Sun, and J.-B. Huang, ‘‘Detecting adver-
sarial attacks on neural network policies with visual foresight,’’ 2017,
arXiv:1710.00814.

[18] S. Liu, J. Pan, and M.-H. Yang, ‘‘Learning recursive filters for low-level
vision via a hybrid neural network,’’ in Proc. Eur. Conf. Comput. Vis.
Cham, Switzerland: Springer, 2016, pp. 560–576.

[19] J. Lu, T. Issaranon, and D. Forsyth, ‘‘SafetyNet: Detecting and rejecting
adversarial examples robustly,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 446–454.

[20] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
‘‘Towards deep learning models resistant to adversarial attacks,’’ 2017,
arXiv:1706.06083.

[21] T. Miyato, A. M. Dai, and I. Goodfellow, ‘‘Adversarial training methods
for semi-supervised text classification,’’ 2016, arXiv:1605.07725.

[22] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, ‘‘DeepFool: A simple
and accurate method to fool deep neural networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2574–2582.

[23] C. Morimoto and R. Chellappa, ‘‘Fast electronic digital image stabiliza-
tion,’’ in Proc. 13th Int. Conf. Pattern Recognit., 1996, pp. 284–288.

[24] S. Nah, T. H. Kim, and K. M. Lee, ‘‘Deep multi-scale convolutional neural
network for dynamic scene deblurring,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 257–265.

[25] S. Nashimoto, D. Suzuki, T. Sugawara, and K. Sakiyama, ‘‘Sensor CON-
fusion: Defeating Kalman filter in signal injection attack,’’ in Proc. Asia
Conf. Comput. Commun. Secur., May 2018, pp. 511–524.

[26] M. Noroozi, P. Chandramouli, and P. Favaro, ‘‘Motion deblurring in
the wild,’’ in Proc. German Conf. Pattern Recognit. Cham, Switzerland:
Springer, 2017, pp. 65–77.

[27] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, ‘‘Distillation as
a defense to adversarial perturbations against deep neural networks,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 582–597.

[28] J. S. Ren, L. Xu, Q. Yan, and W. Sun, ‘‘Shepard convolutional neural
networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 901–909.

[29] W. Ren, J. Zhang, J. Pan, S. Liu, J. S. Ren, J. Du, X. Cao, and
M.-H. Yang, ‘‘Deblurring dynamic scenes via spatially varying recurrent
neural networks,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 8,
pp. 3974–3987, Aug. 2022.

[30] S. Sankaranarayanan, A. Jain, R. Chellappa, and S. N. Lim, ‘‘Regularizing
deep networks using efficient layerwise adversarial training,’’ in Proc.
AAAI Conf. Artif. Intell., vol. 32, no. 1, 2018, pp. 4008–4015.

[31] H. Shin, Y. Son, Y. Park, Y. Kwon, and Y. Kim, ‘‘Sampling race: Bypassing
timing-based analog active sensor spoofing detection on analog-digital
systems,’’ in Proc. 10th USENIX Workshop Offensive Technol. (WOOT),
2016, pp. 1–11.

VOLUME 11, 2023 89421

J. Park, C. Hahn: Priest: Adversarial Attack Detection Techniques for Signal Injection Attacks

[32] Y. Shoukry, P. Martin, Y. Yona, S. Diggavi, and M. Srivastava, ‘‘PyCRA:
Physical challenge-response authentication for active sensors under spoof-
ing attacks,’’ in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2015, pp. 1004–1015.

[33] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
‘‘Rocking drones with intentional sound noise on gyroscopic sensors,’’ in
Proc. 24th USENIX Secur. Symp. (USENIX Security), 2015, pp. 881–896.

[34] J. Su, D. V. Vargas, and K. Sakurai, ‘‘One pixel attack for fooling deep
neural networks,’’ IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 828–841,
Oct. 2019.

[35] J. Sun, W. Cao, Z. Xu, and J. Ponce, ‘‘Learning a convolutional neural
network for non-uniform motion blur removal,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 769–777.

[36] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, ‘‘Intriguing properties of neural networks,’’ 2013,
arXiv:1312.6199.

[37] K. S. Tharayil, B. Farshteindiker, S. Eyal, N. Hasidim, R. Hershkovitz,
S. Houri, I. Yoffe, M. Oren, and Y. Oren, ‘‘Sensor defense in-software
(SDI): Practical software based detection of spoofing attacks on position
sensors,’’ Eng. Appl. Artif. Intell., vol. 95, Oct. 2020, Art. no. 103904.

[38] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, ‘‘WALNUT:
Waging doubt on the integrity of MEMS accelerometers with acoustic
injection attacks,’’ in Proc. IEEE Eur. Symp. Secur. Privacy (EuroSP),
Apr. 2017, pp. 3–18.

[39] Y. Tu, Z. Lin, I. Lee, and X. Hei, ‘‘Injected and delivered: Fabricat-
ing implicit control over actuation systems by spoofing inertial sen-
sors,’’ in Proc. 27th USENIX Secur. Symp. (USENIX Security), 2018,
pp. 1545–1562.

[40] Z.Wang, K.Wang, B. Yang, S. Li, andA. Pan, ‘‘Sonic gun to smart devices:
Your devices lose control under ultrasound/sound,’’ in Proc. Black Hat
USA, 2017, pp. 1–50.

[41] W. Xu, D. Evans, and Y. Qi, ‘‘Feature squeezing mitigates and detects
Carlini/Wagner adversarial examples,’’ 2017, arXiv:1705.10686.

[42] W. Xu, D. Evans, and Y. Qi, ‘‘Feature squeezing: Detecting adversarial
examples in deep neural networks,’’ 2017, arXiv:1704.01155.

[43] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and
T. Darrell, ‘‘BDD100K: A diverse driving dataset for heterogeneous mul-
titask learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 2633–2642.

[44] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, ‘‘Improving the robust-
ness of deep neural networks via stability training,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 4480–4488.

JAEHWAN PARK is currently pursuing the bach-
elor’s degree with the Department of Electri-
cal and Information Engineering, Seoul National
University of Science and Technology, Seoul,
South Korea. His research interests include
information security and applied cryptography.

CHANGHEE HAHN received the B.S. and M.S.
degrees in computer science from Chung-Ang
University, Seoul, South Korea, in 2014 and
2016, respectively, and the Ph.D. degree from
the Department of Computer Science and Engi-
neering, College of Informatics, Korea Uni-
versity, South Korea, in 2020. He was with
Korea University as a Postdoctoral Researcher,
from 2020 to 2021. He is currently an Assistant
Professor with the Department of Electrical and

Information Engineering, Seoul National University of Science and Tech-
nology, Seoul. His research interests include information security and cloud
computing security.

89422 VOLUME 11, 2023

