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ABSTRACT In order to improve the efficiency of gearshift controller parameter optimization and obtain
a good gearshift controller control effect, this article proposes an optimization method for electric vehicle
transmission gearshift controller, and selects dual clutch transmission as the research object that establishes
an 11-degree-of-freedom gearshift dynamicsmodel and a feedforward-feedback gearshift control model. The
feedforward control is chosen from the target trajectory given by the Legendre pseudo-spectral approach, and
the feedback controller is a Gaussian kernel radial basis function neural network controller. The feedback
controller performs parameter optimization by the Probabilistic Inference for Learning Control (PILCO)
reinforcement learning algorithm to obtain a control strategy that matches the actual gearshift conditions.
By comparing how well the main/secondary moving disk can follow the target trajectory during various
optimization iterations, it is verified that the algorithm requires only a few experiments to complete the
optimization, and the optimized Radial Basis Function Neural Network (RBFNN) control has a better control
effect by comparing the results of different iterations. Applying the learned controller to various slope and
load circumstances yields data that demonstrate that all can have an obvious optimization effect with good
robustness. Additionally, the reinforcement learning technique suggested in this research can be used for
various gearshift controller parameter optimization to assist engineers and technicians in increasing the
effectiveness of their Research and Development.

INDEX TERMS Electric vehicle, dual clutch transmission, gearshift control, reinforcement learning.

I. INTRODUCTION
Electric vehicles have the advantages of zero emissions
and minimal noise while in operation, and market demand
is rising continuously. The transmission control strategy’s
optimization has a significant impact on how well electric
vehicles perform. The transmission is usually controlled by
a feedforward controller and a feedback controller. The feed-
back controller [1], for instance, can adjust the torque signal
online depending on the disturbance in the process of shifting
so that the whole vehicle operation status remains relatively
stable and plays a vital role.

The associate editor coordinating the review of this manuscript and

approving it for publication was Amin Mahmoudi .

Usually, the optimization of an automotive transmission
controller’s parameters requires real physical experiments
conducted on an experimental bench. In traditional controller
parameter optimization, some researchers use the Design-
of-Experiments (DOE) method [2], while others propose
online adaptation or calibrate the automatic transmission
using a powertrain test bench (PTTB) [3], [4], [5] or iterative
learning control (ILC) using a hybrid system [6]. However,
these methods require engineers to collect experiment data
for determining the optimal controller parameters, resulting
in high time costs. Therefore, more efficient optimization
techniques are needed to reduce the number of experiments
required and improve optimization results, warranting further
investigation.
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In addition to the optimization algorithm, a suitable con-
troller is also needed to control the gearbox. There are
various options for the design of feedback controllers, which
have been studied more extensively by domestic and foreign
scholars. In [7], dynamic programming method is used to
formulate the gearshift operation as a multi-stage decision
process, but dynamic programming is often computationally
intensive and difficult to apply in real time. In [8], a robust
transmission tracking control algorithm is proposed, and a
robust feedforward feedback controller is designed. Model
errors in the model used by the controller can affect the
performance and robustness of the controller. In [9] and [10],
a finite time linear quadratic regulator is proposed, but this
will lead to high computational complexity. In addition, two
independent PID controllers are used in [11]. But the param-
eter adjustment of PID controller often takes a lot of time.
In [12], a backstepping controller based on optimal control
input is designed to provide a stable feedback method. The
controller has high requirements on the system model and
is sensitive to initial conditions. In [13], the controller use
a robust multivariable control scheme with H-infinite cyclic
shaping, which is difficult to adjust parameters and requires
an accurate system model. In [14], a gearshift controller is
designed by using the backstepping method, and H∞ robust
control is introduced to further improve the adaptive effect
of the controller, but there is still a problem that the model
uncertainty is difficult to deal with. In [15], the coarse-id
control framework is used to solve the dynamic unknown
LQR problem, but this still requires a large amount of data
and the robustness needs to be improved.

Therefore, it can be seen that the existing research mainly
faces problems such as long training time, the need for accu-
rate models, low control accuracy and poor robustness. The
development of neural networks and reinforcement learning
in recent years has provided additional options for designing
feedback controllers [16]. Many researchers have explored
the use of these techniques for various aspects of car shift-
ing, such as those in references [17], [18], [19]. Reinforce-
ment learning algorithms can be divided into model-based
and model-free categories depending on whether they use a
model. Model-based algorithms utilize data obtained through
environment interaction to learn an environmental model,
which tends to be more efficient than model-free algorithms.
Thus, this article considers combining model-based rein-
forcement learning with neural networks to achieve gearshift
control optimization.

To achieve this, this article propose using a Radial Basis
Function Neural Network (RBFNN) based on Gaussian func-
tion as a feedback controller and a Probabilistic Inference for
Learning Control (PILCO) reinforcement learning algorithm
to optimize the parameters of the RBFNN controller [20].
The feedback controller part of this article uses the RBFNN,
RBFNN is better than the BP neural network in terms of clas-
sification ability and learning speed because the parameter
initialization has a certain method, not random initialization,
and so on, and has a simple structure, simple training, fast

learning convergence speed, and can approximate any nonlin-
ear function and overcome the problem of local minima [21],
so applied to gearshift control can achieve better torque
control. The PILCO algorithm learns a probabilistic transfer
model based on the gearshift dynamics model, incorporating
model errors, environmental perturbations, and other uncer-
tainties into the modeling process. This approach enables
precise and efficient control optimization with only a few
experiments [22], [23]. Previous studies have applied PILCO
to different engineering disciplines, including an autopilot
underwater vehicle control problem [24], [25], constant force
control of a robot surface [26], autonomous optimization of
PID parameters in the control of a flight attitude simula-
tor [27], and experiments on a planetary gear transmission
shift console frame [28]. These studies have shown that
PILCO can obtain the ideal controller strategy for the gearbox
with a relatively small number of experiments.

This research aims to improve the accuracy and robustness
of electric vehicle transmission shift, enhancing shift quality
and driving comfort while reducing the cost and time associ-
ated with parameter optimization. To achieve this, innovative
work has been conducted, including proposing the RBFNN
controller as the DCT shift feedback controller and introduc-
ing a new method using the PILCO algorithm for optimizing
its performance. Comparative experiments and analysis have
demonstrated the effectiveness and efficiency of the PilCO-
based RBFNN controller, making it a promising alternative
to traditional control methods. Overall, this research provides
valuable guidance for future research and implementation of
improved control strategies in various industrial applications.

This article is structured into five parts. Part I provides
an introduction to the development status of electric vehicle
gearshift control optimization and analyzes the applications
of RBFNN and PILCO algorithms. In Part II, the Dual
Clutch Transmission (DCT) is modeled, including both the
dynamics model and the gearshift control model. In Part
III, the working principle of the selected RBFNN feedback
controller is analyzed and the PILCO algorithm is explained
in detail, including the algorithm principle and the updating
process of the RBFNN controller parameters. In Part IV,
the experimental conditions are elucidated, and the PILCO
algorithm is verified to be efficient in optimizing the RBFNN
through a comparison with a PID controller. Additionally, the
robustness of the algorithm is verified by applying the learned
controller to different operating conditions. Finally, Part V
concludes with key takeaways from this article.

II. GEARSHIFT CONTROL ANALYSIS AND MODELING
A. WORKING PRINCIPLE OF GEAR SHIFTING
The structure sketch is shown in Fig. 1, which mainly con-
sists of clutch 1, clutch 2, first gear pair, second gear pair,
input shaft, and output shaft. The process of upshifting goes
through two phases, the torque phase, and the inertia phase,
and the change of speed and torque in this process is shown
in Fig. 2. When the transmission is in first gear, clutch 1 is
engaged, and in the process of shifting from first to second
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FIGURE 1. Two-speed DCT structure diagram.

FIGURE 2. Diagram of speed and torque trajectory of upshift.

gear, the transmission torque of clutch 1 gradually decreases
until it reaches zero and separates, and the transmission
torque of clutch 2 gradually rises and at the end of the inertia
phase, the primary and secondary rotational speeds of clutch
2 are synchronized, at which time clutch 2 locks and the
gearshift ends.

B. 11-DEGREE-OF-FREEDOM DYNAMICS MODEL
To improve the accuracy of the model, the stiffness and
damping of the key components of the driveline, such as the
motor, clutch, half-shaft, and wheels, are taken into account
according to the electric vehicle driveline configuration, and
a more detailed model of the entire vehicle driveline can be

obtained, as shown in Fig. 3. The resulting 11-degree-of-
freedom dynamics model for gearshift control optimization
can be obtained as follows:

Jmθ̈m

= Tm − k1 (θm − θclu) − c1
(
θ̇m − θ̇clu

)
, (1)

Jcluθ̈clu
= k1 (θm − θclu) + c1

(
θ̇m − θ̇clu

)
− Tcl1 − Tcl2, (2)

J1θ̈1
= Tcl1 − k2

(
θ1 − θg1A

)
− c2

(
θ̇1 − θ̇g1A

)
, (3)

J2θ̈2
= Tcl2 − k3

(
θ2 − θg2A

)
− c3

(
θ̇2 − θ̇g2A

)
, (4)(

i21Jg1A + Jg1B
)

θ̈g1B

= i1k2
(
θ1 − θg1A

)
+ i1c2

(
θ̇1 − θ̇g1A

)
− k4

(
θg1B − θfA

)
− c4

(
θ̇g1B − θ̇fA

)
, (5)(

i22Jg2A + Jg2B
)

θ̈g2B

= i2k3
(
θ2 − θg2A

)
+ i1c3

(
θ̇2 − θ̇g2A

)
− k4

(
θg2B − θfA

)
− c4

(
θ̇g2B − θ̇fA

)
, (6)(

JfB + i20JfA
)

θ̈fB

= i0k4
(
θg1B − θfA

)
+ i0c4

(
θ̇g1B − θ̇fA

)
+ i0k4

(
θg2B − θfA

)
+ i0c4

(
θ̇g2B − θ̇fA

)
− k5

(
θfB − θw

)
− c5

(
θ̇fB − θ̇w

)
− k7

(
θfB − θw

)
−c7

(
θ̇fB − θ̇w

)
, (7)

Jwl θ̈wl
=
[
k6
(
θfB − θwl

)
+ c6

(
θ̇fB − θ̇wl

)]
−
[
k7 (θwl − θvl) + c7

(
θ̇wl − θ̇vl

)]
, (8)

Jwθ̈wr

=
[
k8
(
θfB − θwr

)
+ c8

(
θ̇fB − θ̇wr

)]
−
[
k9 (θwr − θvr ) + c9

(
θ̇wr − θ̇vr

)]
, (9)

Jvl
2

θ̈vl

= k7 (θwl − θvl) + c7
(
θ̇wl − θ̇vl

)
−
Tvl
2

, (10)

Jvr
2

θ̈vr

= k9 (θwr − θvr ) + c9
(
θ̇wr − θ̇vr

)
−
Tvr
2

. (11)
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FIGURE 3. Structure diagram of 11-DOF system of vehicle.

The whole vehicle driving resistance torque is

Tv =

(
mg sinα + µmg cosα +

1
2
ρCDA

(
θ̇wrw

)2) rw,

(12)

where ki and ci (i=1,2,3,. . . . . . ) denote the stiffness and
damping of each rotating shaft, θm, θclu, θ1, θ2, θg1A, θg1B,
θg2A, θg2B, θfA, θfB, θwand θv, denote the motor rotation
angle, the clutch main disc angle, clutch 1 driven disc angle,
clutch 2 driven disc angle, first gear main gear angle, second
gear main gear angle, first gear-driven gear angle, second
gear-driven gear angle, main reducer main gear angle, main
reducer driven gear angle, wheel angle and half car steering
angle; θ , θ̇ and θ̈ indicate the angular displacement of the
corresponding rotating parts, rotational speed, and angular
acceleration; m is the vehicle mass, g is the gravitational
acceleration, α is the slope angle, µ is the rolling resistance
coefficient, ρ is the air density, CD is aerodynamic drag
coefficient and A is the windward area.

C. GEARSHIFT CONTROL MODEL
Automotive gearshift control relies on an effective control
model and control strategy. The gearshift control model usu-
ally selects the gearshift trajectory that meets the conditions
from the gearshift strategy according to the vehicle driving
conditions and driver’s demand and completes the shifting
process by adjusting the motor and clutch torque. However,
since the gearshift trajectory is obtained from the simplified
dynamics model and there are disturbances in the vehicle
driving environment, it is difficult to obtain ideal gearshift
control results by using the gearshift optimization strategy
alone, so the controller in this article chooses to use the
feedforward-feedback composite controller, which not only
can accurately adjust the torque signal but also can reduce the
workload of the feedback controller under the condition that
the model accuracy of the feedforward controller is appro-
priately reduced, thus improving the gearshift quality [29].

The gearshift control model designed in this article is shown
in Fig 4. The strategy module provides the reference con-
trol trajectory and reference state trajectory to the controller
module according to the vehicle speed and throttle opening
degree. The feedforward controller sends out control signal
U1 according to the reference control trajectory, and the
feedback controller outputs feedback control signal U2 by
comparing the real-time state and the reference state and then
outputs the actual control signal U to other systems of the
vehicle after combiningwithU1. Themore important strategy
module as well as the controller module in the gearshift
control model will be introduced below.

1) STRATEGY MODULE
The gearshift strategy module stores the gearshift optimiza-
tion strategy based on Legendre pseudo-spectrum method.
In the process of gearshift strategy optimization, Legendre
pseudo-spectrum method iterative operations are performed
according to different accelerator pedal openings and vehicle
speeds, and the optimization results contain gearshift opti-
mization strategies for different driving conditions and driver
requirements, and the resulting gearshift strategy solution set
can meet the performance requirements of different driving
conditions. In this article, the economic Jerk-pattern gearshift
optimization trajectory will be selected. The gearshift point
is determined according to the current vehicle speed and
accelerator pedal position, and the trajectory signal that meets
the gearshift conditions is sent to the controller module by
analyzing the gearshift point and gearshift pattern.

2) CONTROLLER MODULE
The controller module consists of feedforward controller and
feedback controller. The feedforward controller is based on
the output torque signal of the strategy module obtained by
offline optimization, without considering the real-time envi-
ronmental noise, so the design of the feedback controller is
extremely important. In this article, RBFNN is selected as the
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FIGURE 4. Schematic diagram of the gearshift control model, consisting of a controller module
and a strategy module.

feedback controller. The real-time performance of RBFNN
is good, and the control signal can be generated only by
forward propagation in the inference stage, which makes
the calculation speed faster. The structure is simple, and the
number of parameters that need to be stored is usually small,
so the storage requirements are relatively low. The parameters
that need to be trained in this article are limited, so a large
amount of training time is not required. Therefore, from the
point of view of experiment and calculation, the application
of RBFNN controller to DCT shift is feasible. Its design and
principle are described in detail in Part III.

3) GEARSHIFT CONTROL MODELING
From the above analysis, it can be seen that the motor torque
includes the feedforward torque T̄m and the feedback torque
T ′
m, the transfer torque of clutch 1 is only the feedforward

torque T̄c1, and the transfer torque of clutch 2 includes the
feedforward torque T̄c2 and the feedback torque T ′

c2, where
the feedback torque of the motor and clutch 2 are the control
variables. The state variable x is expressed as follows:

x =
[
θ̇m, θ̇clu, θ̇1, θ̇2, θ̇g1B, θ̇g2B, θ̇fB, θ̇wl, θ̇wr , θ̇vl, θ̇vr

]
.

The feedforward control variable u and the feedback con-
trol variable u′ are denoted as follows:

u =
[
Tm,T c1,T c2

]⊤
,

u′
=
[
T ′
m, 0,T ′

c2
]⊤

.

Then the control variable u is denoted as:

u =
(
u⊕ u′

)⊤
.

The state space equations of the shift dynamics model
can be obtained by reorganizing the variables of the above

equation:

ẋ = (A⊕ B)x+ C
(
u+ u′

)
+ D, (13)

where A,B,C,D are the matrices with damping, stiffness,
control variables, and driving torque parameters, respectively.

The optimization target of the gearshift control is to adjust
the feedback torque of the motor and clutch 2 so that the
actual speed difference trajectory of the main and secondary
discs of clutch 2 follows the reference trajectory, ensuring
that the actual speed difference at the end of the shifting
process tends to zero. Therefore, the actual state variable
to be controlled is

(
ẋ[2] − ẋ[4]

)
and the control objective is(

ẋ[2] − ẋ[4]
)
−
(
θ̇m − i0i2θ̇v

)
.

III. CONTROLLER DESIGN AND PARAMETERS
OPTIMIZATION
A. RBFNN FEEDBACK CONTROLLER DESIGN
In 1985, Powell proposed the radial basis function method
for multivariate interpolation [30]. The radial basis function
is a real-valued function that depends only on the distance
from the origin, that is, ϕ(x) = ϕ(∥x∥), or can also be the
distance to any point c, c is called the center point, that is,
ϕ(x, c) = ϕ(∥x − c∥). Any function ϕ that satisfies the
characteristic ϕ(x) = ϕ(∥x∥) is called a radial basis function,
and the common Gaussian kernel function chosen in this
article is of the following form

k(∥x − c∥) = exp
(

−
∥x − c∥2

(2 ∗ σ )2

)
, (14)

where c is the center of the kernel function; σ is the width
parameter of the function, which controls the radial range of
action of the function.
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FIGURE 5. Radial basis function neural networks.

Fig. 5 visualizes the structure of a radial basis function neu-
ral network, which is a three-layer neural network consisting
of an input layer, a linear output layer, and a hidden layer with
a specific nonlinear RBF activation function. In this article,
the input layer is an 11-dimensional vector

[
µx
[1], · · · , µx

[11]

]
,

i.e., the state distribution. The hidden layer uses multiple
Gaussian functions [ϕ1, · · · , ϕN ] as the neurons of the acti-
vation function, whose role is to map the low-dimensional
nonlinearly differentiable input to a high-dimensional lin-
early differentiable space. This results in the output value of
the implicit function layer as:

ϕn = exp
(

−
1
2

(
µx

− cn
)⊤ W

(
µx

− cn
))

, (15)

where ϕn is the Gaussian kernel function; cn is the centroid
of the function, the initial centroid is sampled from the initial
state distribution and can be obtained by training samples to
meet the specific values required, and the Gaussian kernel
function responds locally to the input, when the input is
close to the centroid of the basis function, the hidden layer
nodes will produce a larger output; when it is far from the
centroid, the output will be exponentially decayed; µx is the
mean value of the state variables;W is the covariance matrix,
the magnitude of its value determines the magnitude of the
influence of different input values on the neuron, and the
influence of a state variable on the corresponding neuron can
be eliminated by setting the corresponding value inW to zero.
The control strategy π∗ (x) of the output layer output is

a weighted sum of the output values of each neuron in the
hidden function layer

π∗(x) =

N∑
n=1

ϕnwn, (16)

where wn is the weight coefficient, which, like cn, can be
obtained from training samples to meet the specific value
required.

In addition, due to physical factors, both the motor output
torque and the transfer torque of clutch 2 are limited, i.e., u ∈

[−umax,umax], so the final feedback controller outputs the

FIGURE 6. PILCO reinforcement learning algorithm process.

control strategy π (x) as:

π (x) = umaxρπ∗(x), (17)

where ρ is the sinusoidal compression function that can con-
trol π (x) within the restriction range [−umax,umax]; π∗ (x)
is the non-compression control strategy.

B. PILCO OPTIMIZATION ALGORITHM
In order for the RBFNN to achieve the desired control effect,
the values of the function’s centroid cn, the covariance matrix
W , and the weight coefficients wn need to be optimized.
For this purpose, it is crucial to obtain sufficient training
samples and to select the appropriate algorithm for controller
parameter optimization.

Reinforcement learning algorithms have demonstrated
their effectiveness in training neural networks [31], and rein-
forcement learning is usually divided into two categories,
model-based methods, and model-free methods. In the for-
mer, the agent gradually builds an internal model of the
environment(learning) and then uses that model to design a
control policy (planning). In the latter, the agent learns the
control policy directly from the interaction with the environ-
ment. Model-free approaches often require more interaction
with the environment, i.e., extensive experiments in the real
world.To improve the efficiency of the gearshift controller
parameter optimization, the model-based PILCO algorithm
is chosen to perform this work in this article.

The main flow of PILCO algorithm is shown in Fig. 6.
After initializing the program, a random data set is first gen-
erated and a Gaussian procedure (GP) is performed using that
data set. The uncertainty factors such as model error and envi-
ronmental disturbance are included in the modeling process,
and the nonlinear probabilistic dynamics model of the vehicle
satisfying the Gaussian distribution is learned. Approximate
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TABLE 1. PILCO algorithm pseudo-code.

inference for policy evaluation to get the expected long term
cost. The gradient descent method is used to minimize the
value function, and the optimal strategy under the current GP
model is found. And update the control policy by updating
the controller parameters. Applying the optimized control
strategy to the shift control results in a new data set D. After
that, the PILCO algorithm completes the first iteration and
performs the next iteration using the new data set D. The
results of the shift control optimization are recorded in the
results of each iteration.

Table 1 shows the pseudo-code of this algorithm,m denotes
the number of custom iterations and n denotes the number
of searches for the control strategy. The PILCO algorithm is
characterized by high learning efficiency and good robustness
so that the controller parameter matrix satisfying the practical
requirements is usually obtained after a few iterations. In this
article, m is taken to be 10, and n is taken to be 150 in the
gearshift control optimization study.

Fig. 7 shows the schematic diagram of the gearshift con-
trol model optimized based on the PILCO algorithm. The
feedback part uses a radial basis function neural network
controller with offline learning and online control functions.
The gearshift strategy module stores the Legendre pseudo-
spectral optimization strategy, and the state estimation mod-
ule collects the sensor signals and transmits the data set D
required for feedback regulation to the radial basis function
neural network controller. The feedback torque signal is out-
put from the radial basis function neural network controller,
summed with the feedforward torque signal and transmitted
to the torque actuator module and finally transformed into the
torque actuation signal to achieve gearshift control.

The computing process of the PILCO algorithm is divided
into model learning, strategy evaluation, and controller
parameter updating.

1) MODEL LEARNING
Learning the probabilistic dynamics model using a GP is an
important part of the bottom layer of the PILCO algorithm.
the GP uses a scalar output approximation function from
which the uncertainty model fd (x,u) is learned and the

corresponding probability distribution is obtained. the GP
actually learns the difference between the reference dynamics
model and the actual dynamics model, and the process is
stochastic. The gearshift dynamics model can be expressed
as follows:

x[t] = f
(
x[t−1],u[t−1]

)
, (18)

where the state variable x[t] of the current step is jointly
determined by the state variable x[t−1] of the previous step
and the control quantity u[t−1].
To model the probabilistic dynamics, the PILCO algorithm

introduces the difference variable

1[t] = (x [t] − x[t−1]
)
+ α, (19)

where α ∼ N (0, 6α), 6α = diag
([

σα1 , . . . , σαN

]
, and σ

is the variance.
To obtain the gearshift probability dynamics model,

PILCO learns the fitted relationship between the input x[t]
and the output 1[t]. Define the training data set as:

D :=

{
x :=

[
x[1], · · · , x[n]

]⊤
,Y :=

[
1[1], · · · , 1[n]

]⊤}
.

(20)

Assuming z =
[
x⊤,u⊤

]⊤, the GP is characterized by the

state variable mean m (z) and the kernel function k
(
z, z

′
)
,

and m (z) = 0 is chosen, then k
(
z, z

′
)
is denoted as

k
(
z, z

′
)

= σ 2
f exp

(
−
1
2

(
z− z

′
)⊤

3−1
(
z− z

′
))

, (21)

where σ 2
f is the signal variance. 3 is a diagonal matrix

composed of feature lengths, which are hyper-parameters of
GP, where the last hyper-parameter value denotes the noise
variance σ 2

ϵ . Since the controller parameter matrix δ′ is ran-
domly generated when running PILCO for the first time, the
GP needs to learn the entire gearshift dynamics model with
data set D.

For the test point z∗, the output value 1 (z∗) will be Gaus-
sian distributed with the mean and variance

µd (z∗) = Kz∗z
(
Kzz + σ 2

ϵ I
)−1

yd , (22)

6d (z∗) = k (z∗, z∗) − Kz∗z
(
Kzz + σ 2

ϵ I
)−1

K⊤
z∗z, (23)

where Kzz =

k
(
z[1], z[1]

)
· · · k

(
z[1], z[n]

)
...

. . .
...

k
(
z[n], z[1]

)
· · · k

(
z[n], z[n]

)
,

Kz∗z =
[
k
(
z∗, z[1]

)
. . . k

(
z∗, z[n]

)]
.

At this point, the learning of the probabilistic gearshift
dynamics model is completed.
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FIGURE 7. Schematic diagram of gearshift control model based on PILCO algorithm.

2) STRATEGY EVALUATION
With the PILCO bottom operation, the GP learns a probabilis-
tic dynamics model satisfying a Gaussian distribution with
the following expression:

ẋ[t] = (Ad ⊕ Bd ) x[t−1] + C
(
u[t−1] + u′

[t−1]
)

+ f
(
x[t−1],u[t−1]

)
+ D, (24)

u[t−1] = ū[t−1] + π
(
x[t−1]

)
. (25)

The system model contains the nominal dynamics model(
Adu[t−1] + C

)
and the uncertainty model f

(
x[t−1],u[t−1]

)
learned through the underlying. u[t−1] is the control variable,
including the feedforward control variable u[t−1] and the
feedback control variable π

(
x[t−1]

)
. From the expression,

it is clear that the system model needs to be run step-by-step.
In the middle layer, the PILCO algorithm uses the initial

state x[0] and time t=0 as the simulation starting point, and the
target state x[t] and time t =T as the simulation end point, and
uses the system model to compute the value function L

(
x[0]

)
to evaluate the system model for the policy. the expression of
L
(
x[0]

)
is as follows:

L
(
x[0]

)
=

T∑
i=0

∫ [
c
(
x[t]
)
p
(
x[t]
)]
dx[t], (26)

c
(
x[t]
)

= 1 − exp
(

−
1
2

(
x[t] −

−
x[t])⊤W

(
x[t] −

−
x[t]
))

,

(27)

where c
(
x[t]
)
is the artificially set reward function, x[0] is the

initial state,x[t] ∼ N
(
µx
[t], 6

x
[t]

)
, µx

[t] and 6x
[t] denote the

mean and variance of the state distribution at the current step,
respectively. The matrixW is the weight matrix, which is an

TABLE 2. Iterative calculation process.

irreversible matrix with a dimension equal to the number of
state variables.

According to the above equation, the value function
L
(
x[0]

)
of the initial state can be solved only by computing

the probability distribution p
(
x[t]
)
of the state x[t] for all

steps. The Probability distribution for each step is given by
(28), as shown at the bottom of the next page.

It follows that p
(
x[t]
)
needs to be obtained before calculat-

ing p
(
x[t] | x[t−1],u[t−1]

)
, p
(
u[t−1] | x[t−1]

)
and p

(
x[t−1]

)
.

The process can be divided into 4 steps, as shown in Table 2.
The state distribution p

(
x[1]

)
, . . . , p

(
x[T ]

)
for all steps can

be solved by repeating the above four steps, and the value
function L

(
x[0]

)
of the initial state can be calculated by using

the resulting state distribution and performing the integration
operation according to equation (28), as shown at the bottom
of the next page.

3) CONTROLLER PARAMETER UPDATE
The feedback torque optimization objective of the RBFNN
controller is to minimize the value function L

(
x[0] | πδ

)
under the condition of simulation time T and having the
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number of steps dt . The method for updating the controller
parameter matrix is to use pytorch’s auto-gradient function to
implement a gradient descent-based policy search by search-
ing for the optimal parameter δ∗ such that the control policy
π satisfies the following equation:

δ∗
∈ arg min

π∈5
L
(
x[0]

∣∣πδ

)
. (29)

The expression for the gradient of L
(
x[0]

∣∣πδ

)
with respect to

δ is as follows:

dL
(
x[0]

)
dδ

=

T∑
t=0

d
dδ

Ex[t]
[
c
(
x[t]
)∣∣πδ

]
, (30)

where the state quantity x[t] at each moment satisfies the
Gaussian distribution and the controller parameters δ are
in the mean and covariance. The feasible methods to cal-
culate the gradient formula include analytic differentiation
and automatic differentiation, and in this article, the analytic
method is chosen to calculate the gradient formula, and the
corresponding gradient formula is the extended formula using
the chain rule is given by (31), as shown at the bottom of the
page.

where the mean and variance derivatives of the state dis-
tribution associated with the controller parameters δ can be
further expanded as the following expressions:

dµx
[t]

dδ
=

∂µx
[t]

∂µx
[x−1]

dµx
[t−1]

dδ
+

∂µx
[t]

∂6x
[t−1]

d6x
[t−1]

dδ
+

∂µx
[t]

∂δ
,

(32)
d6x

[t]

dδ
=

∂6x
[t]

∂µx
[t−1]

dµx
[t−1]

dδ
+

∂6x
[t]

∂6x
[t−1]

d6x
[t−1]

dδ
+

∂6x
[t]

∂δ
.

(33)

The sum of the gradients of all steps is the gradient of the
value function to δ. The controller parameter matrix control
is updated using the gradient descent method to obtain a new
control strategy. The parameter matrix of the controller Phyp
is as follows:

Phyp =

[
δ1,1 δ1,2 . . . δ1,12 δ1,13 δ1,s δ1,n
δ2,1 δ2,2 . . . δ2,12 δ2,13 δ2,s δ2,n

]
(34)

where Phyp (1 : 13, 1 : 2) is the state parameter matrix,
Phyp (14, 1 : 2) denotes the signal variance, and Phyp
(15, 1 : 2) denotes the noise variance.

FIGURE 8. Feedforward control value.

IV. SIMULATION EXPERIMENTS AND ANALYSIS
It should be noted that the whole vehicle driveline used in
this article is a simplified 11-degree-of-freedom system and
does not fully reflect the vehicle’s transmission. It is assumed
that the whole vehicle is under steady state conditions at the
beginning of the experiment and that the constant operating
conditions are maintained throughout the experiment. And
there is no power loss during the whole gear shift process.

A. SIMULATION CONDITIONS
To verify the optimization efficiency and effect of the
RBFNN gearshift controller using the PILCO algorithm, the
Jerk-pattern gearshift optimization results obtained through
the pseudo-spectrum method, as shown in Fig. 8, are used
as feedforward control variables. Subsequently, simulation
experiments are conducted under 0 slope conditions, no load,
and a 40% accelerator pedal opening. The vehicle parame-
ters for the simulation process are set according to Table 3.
To illustrate the optimization effect, the PID controller is
selected as a comparison in this article, which usually takes
a lot of time to adjust parameters. To compare the efficiency
of the PILCO algorithm laterally, a group of parameters with
better control effects in 20 adjustments are selected as sim-
ulation parameters in this article, and P, I and D parameters
were set at 0.1, 3.0 and 0.01, respectively.

B. SIMULATION RESULTS AND ANALYSIS
The simulation results of shift control based on initial random
controller parameters are shown in Fig. 9, and the results of
four iterations of training are shown in Fig. 10 to Fig. 13,
in which (a) (b) record the motor and clutch 2 torque trajec-
tories and clutch 2 main and secondary moving disc speed
difference trajectory difference during the simulation, respec-

p
(
x[t]
)

=

∫∫ [
p
(
x[t] | x[t−1],u[t−1]

)
p
(
u[t−1] | x[t−1]

)
p
(
x[t−1]

)]
dx[t−1]du[t−1]. (28)

d
dδ

Ex[t]
[
c
(
x[t]
)

| πδ

]
=

(
∂

∂µx
[t]
Ex[t]

[
c
(
x[t]
)

| πδ

]) dµx
[t]

dδ
+

(
∂

∂6x
[t]

Ex[t]
[
c
(
x[t]
)

| πδ

]) d6x
[t]

dδ
. (31)

VOLUME 11, 2023 92815



Y. Liu et al.: Optimization of RBFNN Gearshift Controller Parameters for Electric Vehicles

TABLE 3. System parameters for powertrain model.

tively. Under the initial random strategy simulation condi-
tions, the speed difference between the main and secondary
discs of clutch 2 is significantly higher than the reference
speed trajectory throughout the shifting process, and the
actual motor torque is significantly smaller than its feedfor-
ward torque as shown by the torque trajectory, indicating that
the motor output torque is reduced, which also cannot make
the actual speed difference trajectory follow the reference
trajectory. Therefore, in the first iteration, the transfer torque
of the clutch rises sharply in the inertial phase, as shown in
Fig. 10, but then the transfer torque is too large, resulting
in the speed difference following the target trajectory only
in the middle moments, while in the end moments, it is diffi-
cult to reduce rapidly, and finally, the actual speed difference
is smaller than the estimated speed difference instead.

Based on the data recorded in the first iteration, the second
iteration was started, as shown in Fig. 11. In this iteration,
both the instances when the motor output torque was lower
than the feedforward torque and when the clutch transfer
torque exceeded the feedforward torque were advanced com-
pared to the previous iteration. This adjustment was made to
avoid the situationwhere the speed difference at the end of the
last iteration became too small. The final speed difference is
slightly greater than 0 at the end of the gearshift. However,
at the beginning moment, the actual speed difference is still
larger than the ideal speed difference, and this problem will
be solved in the next iteration.

As can be seen in Fig. 12, in the third iteration, the motor
output torque decreases significantly in the torque phase, and
the actual speed difference can track the reference trajectory
better, while the clutch transfer torque is also reduced,making
the subsequent speed difference unaffected. According to the
results of this iteration, it can be seen that the trajectory fit of
the actual speed difference and the reference speed difference

is better, and the actual speed difference of the clutch tends to
be 0 at the end of the gearshift. according to the comparison of
Fig. 12 and Fig. 13, it can be seen that the results of the fourth
iteration are similar to those of the third iteration, except that
iteration 3 is further optimized and the trajectory of the actual
speed difference between the main and secondary discs of
clutch 2 is closer to the reference trajectory, and the speed
reaches 0 at the end of the gearshift.

Considering the existence of stiffness and damping in
the driveline, the speed of each link in the shifting process
has obvious fluctuations, so when calculating the trajectory
error, the actual trajectory and the reference trajectory are
discretized separately and split into 1000 segments with a step
length of only 0.00106s, which can reflect the speed fluctua-
tion more accurately. The following equations are then used
to calculate themean square error (MSE),mean absolute error
(MAE), and root mean square error (RMSE), respectively:

MSE =
1
N

N∑
i=1

(
yactu − yref

)2
, (35)

MAE =
1
N

N∑
i=1

∣∣yactu − yref
∣∣ , (36)

RMSE =

√√√√ 1
N

N∑
i=1

(
yactu − yref

)2
. (37)

where N is the number of time segments of the shifting
process, yactu is the actual value of the speed difference in
each segment, and yref is the reference value of the speed
difference in each segment.

The trajectory errors of the four iterations are shown in
Table 4. Fig. 14 visualizes the trend of trajectory error.
When the PILCO algorithm is used to optimize the RBFNN
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FIGURE 9. Gearshift control based on initial random controller parameters.

FIGURE 10. The first iteration of gearshift control.

FIGURE 11. The second iteration of gearshift control.

FIGURE 12. The third iteration of gearshift control.

controller, with the increase of iteration times, the average
trajectory error after the first iteration decreases by 52.83%

compared with no feedback, and the optimization effect is
obvious. After the second optimization iteration, it dropped
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FIGURE 13. The fourth iteration of gearshift control.

TABLE 4. Trajectory error between actual speed difference and the
reference speed difference. The average decline from the no feedback
mode is displayed in the last column of the table.

to 84.36%, which is still a significant improvement compared
with the first optimization. The third time is slightly opti-
mized to 88.63%, and the actual velocity difference trajectory
gradually conforms to the reference trajectory. After the
fourth optimization, the average trajectory error is reduced
to 93.12%, which is not obvious compared with the third
optimization. This shows that when the RBFNN controller is
optimizedwith the PILCO algorithm, only a few iterations are
needed to complete the optimization of the RBFNN controller
parameters, and the optimized controller is able to make the
actual speed difference trajectory completely close to the ref-
erence trajectory. This proves the effectiveness and efficiency
of the PILCO algorithm for optimizing the RBFNN controller
parameters.

C. ANALYSIS OF DIFFERENT SLOPES AND LOADINGS
To further demonstrate the effectiveness and robustness of
the PILCO algorithm for controller optimization. This section
continues to use the Jerk-pattern optimization strategy with
40% accelerator pedal opening as the feedforward control
signal, and the RBFNN controller obtained by the PILCO
algorithm in the previous section is used as the feedback
controller for the shifting simulation at +3.0% slope operating
condition, full load operating condition and +3.0% slope full
load operating condition, respectively.

Fig. 15, Fig. 16 and Fig. 17 show the optimized gearshift
control results for+3.0% slope no load and 0% slope full load
and +3.0% slope full load conditions, respectively. Compared
with the no-ramp working condition, as the increase of load

FIGURE 14. Trajectory error values for the four iterations of PILCO.

or uphill will increase the longitudinal resistance torque of
the whole vehicle, the tendency of the clutch secondary to
decelerate is more obvious, so the average clutch transmis-
sion torque increases further when the load increases or uphill
shifting, and the motor output torque decreases further so that
the active disc speed decreases more quickly to ensure the
speed difference tends to 0 at the end of the gearshift. It can
be observed that in the final moment, the speed difference
between the three operating conditions tends to zero, and the
performance is better than the PID control scheme. In order
to visually demonstrate the optimization effect of PILCO on
the controller, an analysis of the result data will be conducted.

Since the ideal trajectory of the main and secondary discs
in the shifting process is not the same under different load and
slope conditions, the shifting evaluation indexes are chosen
here to measure the control effects of the RBFNN controller
and PID controller. The gearshift quality of the car is an
important indicator to characterize the performance of the
vehicle, after careful consideration, the impact degree and slip
work are chosen as the evaluation indexes of gearshift quality:

g1 =

∫ t2

t1
j2dt, (38)
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FIGURE 15. Shift control based on no-load, +3% ramp conditions.

FIGURE 16. Shift control based on full load, 0% ramp conditions.

FIGURE 17. Shift control based on full load, +3% ramp conditions.

j =
dȧ
dt

, (39)

ȧ =
dωv

dt
r, (40)

g2 =

∫ t2

t1
[|Tc1 (ωclu − ω1)| + |Tc2 (ωclu − ω2)|] dt, (41)

where, g1 is the sum of the square of the shock degree during
the gearshift, j is the shock, a is the acceleration, ωv is the
wheel angular velocity, r is the wheel radius, t1 and t2 is the
start and end of the gearshift; g2 is the sum of the slipping
work during the gearshift.

To comprehensively consider the impact of shock and slip
work on the gearshift quality, max (g1) and g2 are selected

as the final comparison indexes. Table 5 shows the values of
each index when the PID controller and RBFNN controller
are used as feedback controllers under three different operat-
ing conditions, respectively. From the table, it can be seen that
the RBFNN controller optimized by the PILCO algorithm
reduces max (g1) by 91.212%, 41.395% and 91.798%, and
g2 by 4.250%, 8.891% and 4.500% under three different
working conditions of slope and load. From Fig. 18, it can be
seen more intuitively that under different working conditions,
the jerk has been significantly reduced, the slipping work
has been well optimized, and the gearshift quality has been
significantly improved to meet the gearshift requirements,
which proves that the RBFNN controller has a good control
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TABLE 5. Trajectory error between actual speed difference and the reference speed difference.

FIGURE 18. Trajectory error values for different operating conditions and
control modes.

effect as well as the effectiveness and robustness of PILCO
algorithm.

In addition, if the optimized trajectories of the above three
cases are compared with their respective ideal trajectories,
it is not difficult to think of the same analytical results, i.e.,
there is an obvious optimization than PID, which is limited
to space and will not be expanded here. In the experiment,
it is also found that the longitudinal drag torque increases sig-
nificantly when the vehicle is going uphill, and the increase
of the load at this time will further increase the longitudinal
drag torque, resulting in the speed difference trajectory error
increasing with the increase of the longitudinal drag torque.
Since the controller parameters are derived from no-load,
no-gradient shift simulation iterations, the same controller
parameters have limited applicability. In the case of certain
controller parameters, the longitudinal drag torque of the
whole vehicle is too large to affect the performance of the
controller.

V. CONCLUSION
A deep reinforcement learning method for shift control of
dual clutch transmissions in electric vehicles is proposed in

this work. The method uses RBFNN as the feedback con-
troller and PILCO as the optimization algorithm. By conduct-
ing experiments to analyze the training iteration process of the
optimization algorithm on the RBFNN controller, it is evident
that the algorithm can complete the optimization learning of
the RBFNN controller with only a few experiments, and the
learned controller meets the gearshift requirements and per-
forms well. Furthermore, the RBFNN controller optimized
by the reinforcement learning algorithm is applied to differ-
ent ramps and loads to compare its control effect with the
PID feedback controller. The results show that the RBFNN
feedback controller has good robustness under complex and
variable driving conditions.

It is worth mentioning that in the high noise environment,
such as potholes, slippery and other extreme road condi-
tions and data transmission delays, the uncertainty estimation
of the model or the occasional local suboptimal solution
may affect the control effect. In addition, the research can
be extended to different transmissions, providing efficient
shift control strategies for electric vehicles. Incorporating
other learning and planning techniques like safe reinforce-
ment learning and hybrid reinforcement learning can further
enhance the algorithm’s performance and applicability.
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