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ABSTRACT Pastures are a vital source of dairy products and cattle nutrition, and as such, play a significant
role in New Zealand’s agricultural economy. However, weeds can be a major problem for pastures, making it
a challenge for dairy farmers to monitor and control them. Currently, most of the tasks for weed management
are done manually, and farmers lack persistent technology for weed control. This motivated us to design,
implement, and evaluate a Decision Support System (DSS) to detect weeds in pastures and provide decisions
for the cleanup of weeds. Our proposed system uses two primary inputs: weeds and bare patches. We created
a synthetic dataset to train a weed detection model and designed a fuzzy inference system to assess a pasture.
We also used a neuro-fuzzy system in our DSS to evaluate our fuzzy model and tune its parameters for better
functioning and accuracy. Our work aims to assist dairy farmers in better weed monitoring, as well as to
provide 2D maps of weed density and yield score, which can be of significant value when no digital and
meaningful images of pastures exist. The system can also support farmers in scheduling, recommending
prohibitive tasks, and storing historical data for pasture analysis, collaborated by stakeholders.

INDEX TERMS Fuzzy systems, object detection, pasture management, decision making, decision support

systems, fuzzy neural networks.

I. INTRODUCTION

Pastures provide the main source of nutrition for livestock,
with grass as the primary food source. Production of grass
for cattle significantly impacts several primary industries,
including dairy and meat production, and the milk industry.
According to New Zealand treasury [24], dairy is contribut-
ing up to 18.6 billion dollars to New Zealand economy in
2021 with a 5.3 % GDP and 23 % of total export values.
Any dairy farming methodology aims to increase pasture
production, considering the many existing problems limiting
this goal.

One of the most significant and long-lasting problems in
pastures is weeds. They limit grass’s space, nutrients, and
resources, leading to a loss of revenue and negative impact
on dairy production. Although dairy farmers do many tasks
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to maintain pastures free of weeds, they need a digital tool or
software application to monitor, control, and evaluate their
pastures. They currently do most weed management tasks
manually, using no online and historical information on pas-
tures, and no images, pastoral data, and automatic prohibitive
actions assisting them with weed management.

We have discussed in the section II that the existing
research on weed management mainly focuses on detecting
weeds in crops and not in pastures. Additionally, the majority
of these studies only focus on detection and do not pro-
vide further data processing or discussion on how to apply
them in weed management, which is crucial for a practical
application.

In the following, we have cited the studies which could be
categorised into two sections:

1) the studies which have extended their data processing

after weed detection to produce more informative and
practical outputs for farmers
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2) the studies which have integrated their models into
other devices or hardware platforms to provide farmers
with more functional help in their fields

Our proposed system also considers the variable of bare-
ness of a pasture, as patches of bare spots where neither grass
nor weeds are growing can shrink pasture productivity. Sow-
ing grass seeds in these locations will contribute to increasing
productivity. We provide both the density of weeds and the
bareness to DSS for enhanced productivity of pastures.

It is important to note that while these studies may have
promising results, they may not be directly applicable to the
specific case of detecting weeds in pastures, as the conditions
and variables may be different. Further research and testing
would be needed to determine the effectiveness of these
methods in the specific context of pasture weed detection.

We can summarise the contributions of our work as
follows:

1) Introduction of quantification into the pastoral environ-
ment such as weed densities, bare patches, and yield
score for weed management and assessment

2) Use of fuzzy sets as an explainable and transparent
model in our DSS

3) Assessment and evaluation of our DSS

The paper is organised with a literature review in Section I,
methodology in Section III, results in Section IV, limitation
in Sections V and conclusion and future work in Section VI.

Il. RELATED WORK

A. DECISION SUPPORT SYSTEMS (DSS) FOR

PASTURE MANAGEMENT

The advent of sensor technology within the agricultural sector
has fostered the development and execution of a multitude of
applications. Yet, the specific usage of these sensors within
pasture management is an aspect that warrants further inves-
tigative research and development.

We have classified our literature review into two cate-
gories: in-crop and in-pasture weed detection models. The
studies presented below showcase examples of deep learn-
ing models used for weed identification in agricultural crop
fields.

Nguyen et al. [1] designed an agriprecision application
with realistic weed images that were trained by a deep-
learning model. The study shows the experiments in three
crop environments, and they have explored the prospect of
integrating a robot with a camera sensor to enable the detec-
tion of weeds. In order to evaluate the efficacy of the proposed
system, the authors have presented a set of performance
metrics.

Jogi et al. [40] studied in-crop weed identification with a
deep learning algorithm. The study focuses on the real-time
operations of weed detection to improve latency. They used
a spot-wise method to overcome latency issues arising from
uniform spraying. Kulkarni et al. [26] studied in-crop weed
detection using a Convolutional Neural Network (CNN) to
classify weeds in a crop environment. After detection, the
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final task is sending detection images to farmers’ cell phones.
Lépez-Granados et al.

Reference [36] examined features of weeds with an
object detection algorithm in an in-crop environment. Their
algorithm used a small airplane or drone for image col-
lection and specified weed densities as output results.
Lottes et al. [37] studied another in-crop environment with a
weed detection model trained by a dataset of real images. The
research shows training a model on detecting weeds’ joint
stems instead of weed’s leaves or the entire weed. Once they
used the model on a spraying robot, they could detect joint
stems for better pasture monitoring. Irias Tejeda et al. [38]
showed another in-crop study of object detection. Although
they noted using their model in an agriprecision application,
it is not discussed how and where it can be applied in a system
to help farmers.

The following studies demonstrate the weed detec-
tion models in in-pasture environments. Chegini et al.
Zhang et al. [25] compared the accuracy of machine learning
and deep learning algorithms in an in-pasture environment
where similar visual characteristics exist between grass and
weeds. Reference [42] used the MaskRCNN model to detect
California thistle in New Zealand pastures and achieved high
accuracy with a synthetic dataset. Elakkiya et al.

The selected studies employed various techniques includ-
ing object detection algorithms, convolutional neural net-
works, and joint stem detection models to accurately identify
and classify weeds in different environments. The primary
objective of these investigations was to develop effective
systems that could aid farmers in monitoring and managing
weed populations more efficiently. Some studies explored
the transmission of detection images to farmers’ mobile
devices, while others proposed the use of spraying robots
equipped with joint stem detection capabilities to enhance
pasture monitoring. However, it is important to note that not
all studies extensively discussed the practical implementa-
tion and impact of these models and systems in assisting
farmers.

Jin et al. [2] proposed an innovative approach by combin-
ing an object detection model with a genetic algorithm for
segmenting images based on color. Their research primarily
concentrated on crop fields and employed two distinct mod-
els: one for detecting easily identifiable weeds and another for
detecting unclear and blurry weed instances. This integration
of techniques resulted in improved detection accuracy. How-
ever, it is important to note that further discussion is required
regarding the integration of the entire model into a practical
automated system for real-world applications.

Yu et al. [39] conducted research on a deep learning
algorithm trained specifically for three types of weeds. The
study demonstrated high performance of their model in
detecting and classifying these weeds. However, there is a
gap in the discussion regarding the integration and practical
utilisation of this algorithm as a component within a com-
prehensive weed management system. Further exploration is
necessary to explore the potential integration of their model
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TABLE 1. Key findings of peer-reviewed works on weed detection.

Paper Model Discussion on automated system Environment
[1] Deep learning In a robotic system for spraying Crop
[40] Deep learning Not discussed Crop
[26] Deep learning Producing notification for farmers Crop
[2] Deep learning and optimisation algorithm Not discussed Crop
[37] Deep learning In a robotic system for spraying Crop
[39] Deep learning Not discussed Crop
[38] Deep learning In an automated system but not explicitly discussed Crop
[36] Deep learning Weed densities Desert
[25] Machine learning and deep learning Not discussed Pasture
[41] Deep learning Fuzzy inference system Pasture
Our study | Deep learning and fuzzy inference system DSS for weed management Pasture

into real-world applications for effective weed detection and
management.

Chegini et al. [41] presented a system that utilizes weed
density and bare patches as input to calculate a yield score
for pasture areas. The researchers extracted two fuzzy vari-
ables from visual data of pastures and integrated them into a
Decision Support System (DSS) model.

Table 1 presents a summary of the reviewed papers, catego-
rizing them based on the environmental study they focus on,
the employed method or algorithm, and whether they discuss
the automation aspect of the system.

Despite the existence of automated Decision Support Sys-
tems (DSS) software for various agricultural contexts, such as
soil monitoring and animal behaviour, there is still a need for
more research and attention in the field of pastures. Accord-
ing to literature on precision agriculture, there is a strong
need for software implementation that can effectively process
pastoral environments with a high degree of automation. Such
software could aid dairy farmers in monitoring and imple-
menting preventative actions, as well as assisting with weed
management and destruction.

The DSSs have been designed based on farmers’ behaviour
and actions. Macé et al. [10] depict a simple behavioural DSS
for weed control in three stages:

1) pasture observation

2) choosing proper actions such as spraying or mowing

3) evaluating the pasture

Additionally, incorporating a stage of re-evaluation into
the process can make it iterative, continuous, and consistent.
The aforementioned stages can serve as key considerations
when designing and implementing any DSS model for weed
management.

Sgnderskov et al. [31] present a DSS that utilises a
behavioural model from [10] to recommend the appropriate
dose of sprays based on the duration of observation. The
model utilises data from the crop environment, but there is
no explanation on the specific model used in the DSS. Addi-
tionally, the study does not address the practical application
of the system in pastures.

Colas et al. [32] conducted a survey among farmers to
gain insights on how to design and implement a DSS for
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weed control. The study focuses on the creation of a decision
tree model to present survey data. The survey results indicate
that farmers desire a synthetic tool with rule-based decisions
for a DSS. The study is considered as a prototype for a DSS,
emphasising the need for a practical and functional system
among farmers. However, the study only focuses on the crop
environment and does not provide any modelling or insight
for pastures.

Kanatas et al. [33] evaluated a weed DSS for its accuracy
and effectiveness. According to the study, a DSS should
provide useful information on fields to aid in management.
The DSS should also be designed to be interactive, allowing
for validation and improvement of experiments. The paper
highlights the use of advanced technology and AI models in
DSS to assist farmers in estimating weed growth, assessing
yield, and recommending preventative actions. The paper also
suggests that a DSS should be able to quantify the level of
weeds and evaluate the yield. These suggestions and recom-
mendations from the paper have been applied in practical use
in our current study.

Vishwajith et al. [34] developed a DSS that utilises a single
computer-aided platform on crop environment to assist farm-
ers in acquiring basic information on soil, water, and weed
conditions. However, the study lacks clarity on the specific
model used in their DSS, as well as the methods and data
processing techniques employed. Additionally, the study only
focuses on crops and does not address pasture environments.
While the study provides insight on DSS for crop manage-
ment, we employed a unique methodology for our study in
pastures using a coded model that can be validated and tested
using pastoral images.

Masin et al. [35] investigated the positive effects of moni-
toring and recording weed densities in crops. They proposed
that incorporating weed densities as useful crop data can
enhance the reliability, precision, and accuracy of a DSS.
Their DSS model aims to estimate the impact of environmen-
tal factors such as temperature, rainfall, and soil temperature
on weed growth. However, the study solely focuses on crops
and does not mention pastures. Similarly to other studies,
we employed an in-pasture analysis of weed densities in
our DSS.
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When it comes to DSS, it is important for farmers and
dairy farmers to have easy-to-use and transparent systems.
One reason why dairy farmers may not be inclined to use
software platforms and technologies for weed management
is that they can be complex and lack transparency in their
internal operations for data processing. This motivated us to
use a fuzzy inference system for data processing.

Fuzzy sets and fuzzy inference systems are useful models
for handling real systems and environments. They follow
human linguistics and provide transparency in data process-
ing and internal operations, in contrast to Neural Networks
(NN). Some studies have employed fuzzy systems and fuzzy
sets in their DSS.

S. Sivamani et al. [16] utilised a fuzzy system for animal
control. The system takes two inputs of age and weight, and
provides four outputs of change-diet, change-diet schedule,
need health check-up, and be-ready-for-a-sale. The fuzzy
inference system suggests actions for the farmers based on
two fuzzy membership functions. For example, the output of
change-diet would indicate that the farmers should change the
animals’ diets.

Nguyen-Anh and Le-Trung [17] address the problem
of adaptive programming in an IoT environment, using a
fuzzy inference system for controlling complex contexts.
Khanum et al. [18] applied a fuzzy system for understanding
the conditions of leaves and detecting fungal diseases, using
five inputs.

Pandey et al. [19] designed a fuzzy system for agricultural
data processing, using crop input data for disease detection to
aid decision-making on sprays. They used two inputs, wind
and temperature. These examples demonstrate the various
ways fuzzy systems can be employed for different agricul-
tural problems to aid farmers in improving the accuracy and
timing of routine crop, stock and pasture management tasks.
Few studies on modelling agricultural environments with
fuzzy systems motivated us to use fuzzy inference systems
in our DSS.

Table 2 summarises the studies on fuzzy inference systems
in agriculture. The papers presented in this section demon-
strate how fuzzy systems can be used for agricultural analysis.
As they are efficient in data processing, we employed fuzzy
systems in our DSS for processing pastoral images. These
studies typically produce outputs that can aid farmers in
decision-making, whether through classifying tasks or rec-
ommending the best course of action.

Table 3 summarises the key findings and directions from
our literature review. We found that a DSS that produces weed
density and yield scores is highly desired by dairy farmers.
We also incorporated a fuzzy inference system and added a
quantification module to convert visual data into variables of
weed density and bare patch, which was recommended by
our review of DSS papers. Our study context is pasture, which
has not been extensively studied in the reviewed papers. After
the design and implementation of our DSS, we also applied
an Adaptive Neuro-Fuzzy Inference System to evaluate and
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adjust the internal parameters of the DSS, resulting in a more
accurate and functional system.

B. WEED DETECTION MODELS FOR PASTURE
MONITORING

Our DSS and fuzzy inference system work with visual data
produced by our object detection model. We have used the
Mask Region Convolutional Neural Network (MaskRCNN)
to process pastoral images and detect weeds. MaskRCNN
is a state-of-the-art model in object detection. There are
studies that have used object detection models in agricultural
applications.

Thanh V. Leetal.[1] employed a FasterRCNN model
trained with realistic weed images for improved latency
in testing mode. Jin et al. [2] used Mobile net, VGG, and
a CNN model with 15000 training images for feature
extraction of weeds and detecting 10 weed types in crops.
Abdulsalam et al. [4] used You Only Look Once (YOLO) and
aResNet model for classifying four types of weeds. However,
these studies focus on weed detection in crop environments
and do not discuss their application in pastures.

Weed Fuzzy
detection inference

model system
’Trained-baset’

fuzzy inference
system for
pasture
assessment

ANFIS

FIGURE 1. Three main components of our literature review in our system
design and implementation.

Figure 1 illustrates the three main components of the litera-
ture that we studied for designing and implementing our DSS.
These are fuzzy inference systems, weed detection models,
and Adaptive Neuro-Fuzzy Inference Systems (ANFIS). The
combination of these research components influenced our
concept of having a fuzzy inference system that can be trained
and enhanced by image output.

Ill. THE PROPOSED DSS WEED MANAGEMENT SYSTEM
This section describes the design and implementation of our
DSS weed management system and its components. Our DSS
consists of three main components:
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TABLE 2. Examples of fuzzy inference systems on agricultural applications.

Paper Input Output) Purpose
[16] Two inputs | Four outputs Animals’ checkup and schedule based on their age and weight
[18] Five inputs | Leaves fungi Processing leaves conditions for a disease classification
[19] Two inputs | Spray scheduling | Recommending a spray time based on processing wind and temperature
Our study | Two inputs | Yield score Processing weed density and bareness and recommending the best time for prohibitive actions against weeds

TABLE 3. Key findings of reviewed papers on DSS.

Paper Findings Recommendations (Research gaps)

[10] A response and reaction approach for DSS in agriculture Defining systems and models based on observe and react approach

[31] A study based on observe and react No pasture

[32] A prototype of DSS A functional and practical DSS desired by farmers

[33] Appreciation of accuracy and assessment in weed management DSS | Quantification, yield scoring, advanced technologies and Al

[34] A multi-task application for farming No details on models

[35] Weed growth and distribution based on environmental variables Use of weed density in a DSS, no discussion on pasture environment
[16],[17],[18]1,[19] | Different fuzzy inference systems in agriculture Not an application of applied fuzzy system in pastures

[1] Improving weed detection No pasture

2] Detection of 10 weeds No synthetic dataset

[4] Weed classification No pasture

1) MaskRCNN model capable of receiving pastoral
dataset images and training for weed detection

2) Fuzzy inference system for processing weed density
and bareness

3) A Neuro-Fuzzy system called ANFIS for evaluating
the DSS

We considered the importance of weed information
obtained from images in decision-making. As our survey
study revealed that seeding can help control weed invasion
and growth, we defined a second model based on empty areas
of a pasture to identify bareness in pastures.

We utilised a fuzzy inference system to process the output
of the MaskRCNN model. Figure 2 illustrates our DSS design
and implementation flowchart. The weed detection com-
ponent includes the stages of image preparation, synthetic
dataset creation, and model training. The next component,
below the weed detection model, is a fuzzy system, which
includes a fuzzy inference system for 2D map creation and
yield score calculation. An Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) is a component that improves the
system.

For the first component, we created two synthetic datasets
for weed and bare patch detection. We then developed a
weed detection model and trained it with these datasets. The
accuracy of the model was enhanced by fine-tuning its hyper-
parameters. We then stored the masks and image outputs in
an array. The quantification component converts the weed
output masks into clear ratios and links the weed detection
software to a fuzzy inference system. The fuzzy inference
system receives the weed and bareness values and evaluates
the pasture.

A. MASKRCNN

To detect weeds from images captured in the field, our system
employs MaskRCNN. As an enhancement of FasterRCNN,
which was used for object detection such as weeds, MaskR-
CNN generates masks of detected objects. These masks are
used to calculate the density of weeds.
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The model processes pastoral images as input and detects
the weeds and bare spaces. A synthetic dataset was used to
train the models. The steps for creating a synthetic dataset
are as follows:

1) object extraction from pastoral images

2) background creation by erasing weeds from the images

3) setting up the maximum number of weeds in every

image

4) setting up the image resolution

5) defining the required weed orientation such as transfor-

mation, rotation, and scale

6) setting up many images

7) attaching weed objects to the background

After creating the synthetic dataset, the object detection
model can be trained. Figure 4 illustrates a schematic process
of creating our synthetic dataset. We extracted weed and
bare patch objects from the images in the first step. Then,
we transformed and placed them in the background images.
We repeated this process for the number of images required
for our synthetic dataset.

A few examples of the MaskRCNN model are shown in
Figure 3. The images were collected in the field under various
conditions for different types of weeds. Despite the variety
of weed types and growth patterns, the model was able to
accurately and reliably detect the density of weeds.

Figure 5 displays the detected weeds and empty spaces by
our model. The top image shows two weeds in the middle and
several scattered empty spots. The bottom images depict the
detected weeds and empty spots in colorful masks.

Once the model was trained, we proceeded to carefully
select the critical hyperparameters that would significantly
influence the accuracy of the model. In this experiment,
we fine-tuned a dependable range for each hyperparameter
and trained the model multiple times, considering various
values within those ranges. The following hyperparameters
were specifically chosen for this section:

1) learning rate

2) Rol
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Pasture ‘ Photo Taking ‘ Synthetic Image ‘M?rf';ﬁ?r',\'g'\" Mask Output

Creation

Yield
Score

. |

Quantification

Fuzzy System l

€= 2D Map Creation {m Fuzzy Inference

|

Fuzzy Evaluation

ANFIS

FIGURE 2. Flowchart of our DSS: weed detection, quantification, fuzzy inference, and fuzzy evaluation.

TABLE 4. Precision, Recall, and F1 score values for weed and empty
models.

Model | Training Images | Epochs mAP | Precision | Recall | F1Score
Thistle 500 200*100 | 0.856 0.72 0.52 0.61
Empty 500 200*100 | 0.75 0.7 0.6 0.64
Thistle 2500 200%100 | 0.93 0.78 0.61 0.7
Empty 2500 200*%100 | 0.84 0.74 0.62 0.7

3) Maximum instance

4) RESNET backbone

Epochs and image resolutions were two main training
parameters studied in-depth. The study revealed that the scale
of 640 X 480 had the best accuracy. Table 4 presents the
final results of our experiments on the number of images and
epochs in the training set. Precision, recall, and F1-score are
the evaluation metrics in our study.

B. QUANTIFICATION

This section describes the module that we have designed and
coded to calculate the ratio of weeds and bareness in an image
based on the number of detected weeds and bare patches.
We calculate the ratio by using the number of output masks
and their areas. For example, an array with the shape of (480,
640, 7) represents the detection of seven weeds. The output
masks of weeds have a value of 1.

#weeds
Tyeeds = if z r[640, 480,i] > 0 (1
i=1
#empty
Thareness = Iif Z r[640, 480,i] > 0 2)
i=1
Total d pixel
Weed ratio = ot .wee P l?ce i ZTWffdf 3)
Total image pixels 640 x 480
Total bare pixels — 2-Ture pac
Bare patch ratio = OT DATEPIFER _ L Tbureput 4)

Total image pixels ~ 640 x 480
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We have two approaches for the quantification process:

« Calculating from bounding box
o Calculating from mask

Equations 1-4 depict the quantification stages for cal-
culating the weed-to-grass ratio and the bareness-to-grass
ratio. Equation 1 calculates the area of detected weeds, and
equation 2 calculates the area of detected bareness. Equation
3 calculates the weed-to-grass ratio, and equation 4 calculates
the bareness-to-grass ratio. The results are two scalars, which
are used as crisp input for the fuzzy inference system.

C. FUZZY INFERENCE SYSTEM

This section illustrates the design and implementation of our
fuzzy inference system. Fuzzy systems are particularly useful
for measuring the complexity and uncertainty of a process
by defining linguistic variables and fuzzy rules, as discussed
in [11] and [12]. The following reasons summarise why a
fuzzy inference system is powerful for modelling complex
and uncertain processes:

1) Fuzzy systems are best to manage uncertainties in an

environment.

2) Fuzzy systems are explainable.

3) Fuzzy rules are flexible and can be adjusted according

to process changes.

4) Fuzzy systems are one of the best models for decision

making.

We constructed our fuzzy logic model with two variables:
weed density and bareness. We then defined our fuzzy rules
based on different combinations of variable conditions. The
following are the three stages of a fuzzy inference system:

1) Fuzzification: converting crisp values of weed density

and bareness into fuzzy membership functions

2) Fuzzy rules’ excitement: execution of fuzzy rules to

drive a fuzzy output
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FIGURE 3. The MaskRCNN output on several images.

3) Defuzzification: Converting fuzzy output into crisp
values

1) FUZZY VARIABLES
A fuzzy variable, also known as a linguistic variable, is a func-
tion that represents the membership of a variable to a certain

92666

(c) Several weeds in a fuzzy field

phenomenon. It ranges from O to 1, with O indicating min-
imal membership and 1 indicating maximum membership.
Before using any fuzzy system, the input must be converted
into a fuzzy variable. For example, a fuzzy variable might
describe a car’s speed with measurements such as fast, slow,
and medium, instead of using exact numerical values (km/h).

VOLUME 11, 2023
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FIGURE 5. MaskRCNN model’s output on detecting weeds (left-bottom)
and detecting empty spaces (right-bottom).

Therefore, in the first stage, we need to convert crisp data into
linguistic variables that can be understood by a fuzzy system.

In a fuzzy system, several types of fuzzy membership
functions or fuzzy linguistic variables can be defined and
designed for a particular problem. The triangular function is
the most common type used. Other types include trapezoidal,
gaussian, pending, linear, and bell.

For our decision support system (DSS), we designed
and coded two fuzzy variables: weed density and bareness.
We categorised each with three fuzzy functions: low density,
medium density, and high density for weed density, and three
fuzzy functions for bare patches.

For the fuzzy output variable, we defined a variable to show
pasture productivity with a qualifying degree, named the yield
score, and categorised it into five conditions, each represented
by a fuzzy triangular function: excellent yield, good yield,
average yield, poor yield, and very poor yield.

VOLUME 11, 2023
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FIGURE 6. Five fuzzy membership functions for pasture productivity.

2) FUZZY RULES AND SURVEY DATA

Fuzzy rules are the core of a fuzzy inference system and
are used for reasoning. They process the fuzzy inputs and
produce the output as fuzzy membership functions. They are
written in the form of “if-then” statements. The rules can also
be more complex, such as “if inputl and input2 then.”

There are two types of fuzzy output systems: Mamdani and
Takagi, Sugeno, and Kang (TSK) [13]. The Mamdani fuzzy
system uses a fuzzy membership function for its output, while
the TSK fuzzy system uses a linear proposition to represent
the fuzzy output. In our study, we used the Mamdani type for
our fuzzy inference system.

Equation 5 shows the fundamental Mamdani formula in a
fuzzy inference system. Equation 6 shows the same formula
for adjusting the fuzzy membership and rule numbers. The
dividend of the equation has an outer sigma, which sums up
the output of the nine rules we have defined in our fuzzy
inference system. Each proposition in the sigma contains
a y and internal production of two inputs. The production
calculates the membership functions p, of weed density and
bareness of each rule. x is a quantised value of weed density
and bareness. In each proposition, the membership function
of x is multiplied by y inverse, which results from the output
of each rule. In the divisor, there is no y inverse, and the final
yield score is achieved after the dividing operation.

We needed 3 x 3=9 rules to define all the conditions based
on our fuzzy rules, as we had two input variables (weed
density and bareness) each with three conditions.

Table 5 shows the fuzzy rules of our decision support
system (DSS). Each rule checks a condition of weed density
and bareness, leading to an Adaptive Network-based Fuzzy
Inference System (ANFIS) calculation to determine the yield
score. If more conditions and situations of the pasture need
to be considered, for example by adding more inputs, they
should be included in the fuzzy rules.

Figure 6 displays the five membership functions represent-
ing different quality states of a typical pasture, ranging from
“very poor” to “excellent.”

#Rl — #Inputs
(O 1 s )

Yield score = (®)]
#
S
-1
Yield score = ZI 1Y H =1 K () 6)
21=1 i=1 Ni(xi)
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We can extend the fuzzy rules by adding more inputs,
such as wind, humidity, and temperature. Following is an
example of a rule that includes the new inputs and their
conditions:

iftweed growth is high) and if(temperature is low) and

iftiwind is becoming high) and if(bareness is low) and
if(weed density is high) and if{tiny weeds are above 35%)
then (very low score) and (need a high amount of spray)

3) FUZZY OUTPUT

Fuzzy outputs are the third and final part of a fuzzy inference
system. They represent the result of data processing and rule
handling in a fuzzy inference system. In our case, as we had
used the Mamdani system, we chose a triangular membership
function for our fuzzy output.

Figure 7 illustrates the network diagram of our fuzzy
system, which assesses a pasture. It showcases the flow of
data from the fuzzy inputs to the nine fuzzy rules and their
integration to generate the fuzzy output.

Weed H
Density

Action

FIGURE 7. Our fuzzy network for yield scoring based on weed density
and pastoral bareness.

IV. WEED KNOWLEDGE: PASTURE ASSESSMENT

This section explains how we implemented the fuzzy infer-
ence system to produce the desired output. We used the
python packages of skfuzzy and skfuzzy control for cod-
ing and implementation. After designing and implementing
the system, we then used Adaptive Network-based Fuzzy
Inference System (ANFIS) to process the fuzzy output and
membership functions for system enhancement and evalua-
tion. We also proposed a Graphical User Interface (GUI) to
display the fundamental parameters and results. A subsection
is included to discuss how the system could be used for
predicting the yield scores. Figure 8 shows the five pastoral
images used for our experiments. Table 6 shows the results
of scoring on each image, which is presented in Figure 8.
Figure 9 shows a simulation of a land, with the colorful maps
showing the density of membership functions and the output
of the yield score. The produced score for the studied land
is 84.27.
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A. FUZZY INFERENCE SYSTEM ENHANCEMENT
This section presents the experiments on our fuzzy inference
system to evaluate its accuracy in predicting yield scores.
We set up our fuzzy structure in the Matrix Laboratory
(MATLAB) software and designed and implemented an
Adaptive Network-based Fuzzy Inference System (ANFIS)
to train our pastoral data for yield score predictions.

ANFIS is a combination of a neural network model and
a fuzzy system. The neural components are used to train
the membership functions of the fuzzy system to reach the
desired level of accuracy. It has been used in various control
systems. By training our fuzzy inference system, we can
obtain metrics for evaluating the accuracy of yield score
assessment. In this case, we used paired pastoral data points
as training data, consisting of weed density and bareness as
inputs and yield scores as output. Therefore, our training
dataset for ANFIS had two inputs and one output, a total of
three columns. The training process allows us to evaluate our
fuzzy inference system and improve its accuracy by making
adjustments.

Data

RMSE = | =— goj@«xl-) — yo(xi)) )

We have used the Root Mean Squared Error (RMSE) as our
metric to evaluate these experiments. (Equation 7). y is the
yield score, and “yg” is the ANFIS output. Data represents
the number of yield Scores collected over time as fuzzy score
outputs.

We examine two cases of our system: static and dynamic
fuzzy systems. In the static fuzzy system, the parameters of
the membership functions (such as means and deviations) are
fixed and cannot be trained. In contrast, the dynamic fuzzy
system has the capability to train and adjust these parameters
based on the input data. We have used 100 data points as the
training dataset and set up 100 epochs for training. Figure 10
shows the errors of static and dynamic fuzzy systems while
trained with 100 epochs. The DSS without training and with
no parameter enhancement has an error of 0.25 as the red dot
in Figure 10.

In the next stage, we performed hyperparameter tuning to
improve the accuracy of our Adaptive Network-based Fuzzy
Inference System (ANFIS). The number of membership func-
tions and the type of membership functions are two main
parameters that are crucial for the fuzzy model’s accuracy
and performance. To find the best value of fuzzy member-
ship functions, we changed the configuration of our ANFIS
model, trained it and observed the accuracy. To experiment
with the shape or type of membership functions, we con-
sidered four main types of membership functions. After
configuring the ANFIS with each type, we trained our model
and recorded the accuracy.

Figure 11 shows the changes in RMSE metric based on
increasing numbers of the two mentioned parameters. The
best values of accuracy are in the centre of the radar plot.
As values close to the centre of the most internal circle
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TABLE 5. Fuzzy rules of our weed system framework.

Rule No.

Rule

1 IF (weed density (WD) is low) and (barrenness (BR) is low) THEN Yield is excellent

IF (WD is moderate) and (BR is low) THEN Yield is excellent

IF (WD is high) and (BR is low) THEN Yield is good

IF (WD is low) and (BR is moderate) THEN Yield is good

IF (WD is moderate) and (BR is moderate) THEN Yield is average

IF (WD is high) and (BR is moderate) THEN Yield is poor

IF (WD is low) and (BR is high) THEN Yield is poor

IF (WD is moderate) and (BR is high) THEN Yield is very poor

O 00| | O\ | | W

IF (WD is high) and (BR is high) THEN Yield is very poor

FIGURE 8. Five sample images of our examined pasture with their fuzzy output.

represent the best experimentation, the bell-shape of the
membership function and ten membership functions would
have the best accuracy. In other words, using ten membership
functions with a bell shape will result in the best accuracy of
our ANFIS model.

Algorithm 1 shows the sequence of pastoral image pro-
cessing. The first step is to train a weed detection model
using several pastoral images. Next, we quantify the images
by producing crisp numbers representing weed density and
bareness. These crisp numbers are the input data for the
fuzzy inference system. The rules and defuzzification compo-
nents then produce the yield score. We then use an Adaptive
Network-based Fuzzy Inference System (ANFIS) model to
train fuzzy membership parameters. We conduct our train-
ing and record the Root Mean Squared Error (RMSE), our
evaluation metric, according to different parameters and con-
figurations.

In this section we tried to illustrate a prototype for the
proposed DSS model for pasture forecasting. The fuzzy infer-
ence system can produce yield scores on a specific date and
time. Collecting yield scores at different time intervals can
lead to a time series of yield scores. Having historical data on
a pasture in the form of a time series can help dairy farmers
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predict their pasture yield. This way, they can have a better
insight into the productivity of their pastures and organize
their tasks in a proactive manner rather than a reactive one.

Figure 12 illustrates the process of sequencing the three
variables: weed density, bareness, and yield score. Each vari-
able can represent a recording point of a time series, suitable
for any predictive forecasting model. Incorporating the fore-
casting values into the yield score of the fuzzy inference
system can enhance the decision support system (DSS) for
better and more accurate services for dairy farmers.

B. A COMPARISON TO SEGMENT ANYTHING
MODEL (SAM)
When it comes to the functionalities of MaskRCNN and
SAM, both operate on pixel-wise images and generate masks
for the objects they can recognize within an image. However,
there is a significant distinction between the two. MaskRCNN
is trained by targeting a specific object within an image,
whereas SAM can detect any object present in an image.
Another key difference is the size of their trained mod-
els. MaskRCNN’s model size is 200MB, while SAM’s is
approximately 2.5GB, which could potentially cause latency
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FIGURE 9. The produced 2D maps of our weed system framework. (a) shows a pasture divided into
100 individual images. (b) shows the 2D map of weed density. (c) shows the bareness 2D map, and
(d) shows the 2D map of the yield score. For this studied pasture, the yield score is 84.27.

03

Error of the static fuzzy system with no
enhancement

02

0.15

RMSE

TABLE 6. Fuzzy rules of our weed system framework.

Figure 8 imag Weed density | bare patch density | Yield score
1 0.3432 0.0635 76.83
2 0.2273 0.0747 73.89
3 0.0947 0.1238 73.50
4 0.3496 0.0224 84.40
5 0.1227 0.1548 71.16

Errors of the dynamic fuzzy system with
training

0.1

FIGURE 10. The errors of our static fuzzy system with no training (upper
section) and with training (lower section).

issues during model transfer and deployment in real-world
applications.

The training time of MaskrRCNN is much lower than
SAM. This is also true about the inference time. For high
resolution images a RAM crash message may be received.

92670

For inference time, images were scaled to different resolu-
tions all in 3:4 ratio and the inference time was recorded.
Figure 13 shows a snapshot of the image scales in various
resolutions.

Figure 14 shows the inference time of the same image
with different resolutions and scales. The analysis shows how
costly it is to detect objects on a high-resolution image with
more than 4 minutes as compared to a small resolution image
which takes less than a minute. With this experiment, for
a practical application the resolution analysis is a crucial
stage which should determine the best image scale in the
inference time.

For the SAM analysis we demonstrate the impact of Union
over Intersection (Uol) on the number of detected masks.
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RMSE Study of number and type of
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FIGURE 11. RMSE error of the number and type of membership functions.
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FIGURE 12. The time-series creation of fuzzy inference system.

Figure 15 shows that increasing the prediction ratio of
Uol leads to a more conservative model, resulting in fewer
detected masks. On the contrary, a lower prediction ratio will
lead to more masks being detected, as the model becomes less
strict in its criteria.

Figure 16 illustrates this trend, the two images dis-
play the model’s output for different Uol prediction ratios.
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Algorithm 1 The Algorithm of Calculating a Yield
Score for a Pasture and the Fuzzy System Evaluation

Input: N: Number of images for a pasture
Image processing section

for / to N do
Calculate the weed density of image(i)

Calculate the bareness of image(i)
end
Quantification section
For each image produce the crisp numbers of weed
density and bareness
Fuzzy inference section
Fuzzify the weed density and bareness values
Incite the rules
Calculate the fuzzy score for each image
Defuzzify
Average the scores of all images of pasture
Result: Scoring section
ANFIS: The Neuro Fuzzy evaluation section
Prepare the yield score data as paired data for training
set
Configure the fuzzy structure
for 1 to Epochs do
Train the weights(j) of neurons of ANFIS
Apply the changes to weights

Record the RMSE
end

Output: The last RMSE

By setting a low Uol prediction ratio of 0.74, the model
detects around 500 masks. In contrast, setting a higher predic-
tion ratio of 0.92 results in the detection of only 100 masks.
This highlights the importance of studying and properly
setting parameters such as Uol in determining the model’s
behaviour.

C. A PREDEFINED DASHBOARD FOR DAIRY FARMERS
This section presents a recommended Graphical User Inter-
face (GUI) for dairy farmers, which can be used for data
upload and model training as services for pasture manage-
ment. Figure 17 shows a predefined dashboard that can
be used during data entry and model training for pasture
management. To avoid complexity, the GUI includes simple
controlling components for image upload and model type.
The user can also define the parameters of a fuzzy inference
system, such as input type and the number of fuzzy rules. The
trained models and resulting 2D maps can be downloaded
and used.

D. A COLLABORATIVE FRAMEWORK FOR DAIRY FARMERS
The power of our fuzzy inference system is not limited
to assessing pastures and recommending actions for weed
monitoring, but also in generating pasture data as histori-
cal knowledge. Other potential contributions of our system
could be:
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FIGURE 13. The snapshot of image scales.
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FIGURE 14. The inference time analysis of SAM.
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FIGURE 15. The mask analysis of SAM.

1) A pasture dataset that comes from pasture monitoring
of weed density, bareness and yield score

2) A federated model that comes from aggregation of local
models of dairy farmers

A pasture dataset can be created when the system is pro-
ducing yield scores according to weed density and bareness.
Each time of monitoring can result in a new row of a dataset
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FIGURE 16. The mask output of two images by SAM.

= New Model
« Transfer Model

Model trained! «

Save Model

Upload Image

Download model

Input type =
No. Rules

Output type
2D map of pasture

FIGURE 17. The Dashboard of DSS model for pasture management.

and by adding more data we can have a more sophisticated
knowledge of a particular pasture. We can even include envi-
ronmental variables such as temperature, wind, humidity,
moisture, rain, pressure, etc in the dataset and calculate cross
correlations among them to gain new knowledge. If any weed
action is conducted, the monitoring tasks can provide the
impact of the action, which can be used in the dataset for more
accurate knowledge.

In federated learning, a number of local models (any type
of object detection) are aggregated in a server for a more
accurate model. In this method, each local model is labelled
and saved. It is then transferred to an enterprise storage server
to be processed and aggregated. The global model from the
aggregated models can then be sent back to the local users,
improving their weed detection and pasture assessment.

With these two concepts we can define an innovative archi-
tecture for a collaborative weed management system that
helps farmers to use the service of monitoring weeds but
in the meanwhile collaborating to the knowledge of weed
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FIGURE 18. A weed management architecture based on weed dataset and federated mdoels.

management at the same time. Figure 18 shows the proposed
system architecture.

V. LIMITATION

For this study, we faced limitations in accessing a pasture
to take photos and collect images. We initially planned to
conduct our experimentation on a real pasture using tiling
images, but due to COVID-19 restrictions, we experimented
with a simulation map. Additionally, Python does not have
a package or library for coding Adaptive Network-based
Fuzzy Inference System (ANFIS) and training the fuzzy
model, so we performed our training experimentation using
the ANFIS model in MATLAB.

VI. CONCLUSION AND FUTURE WORK

This research integrates several Artificial Intelligence (AI)
models and topics: an object detection model, a fuzzy infer-
ence system, Adaptive Network-based Fuzzy Inference Sys-
tem (ANFIS), and a time-series analysis. Our work has
contributed to scoring and recommending actions for dairy
farmers, which has not been previously conducted. As dairy
farmers in New Zealand lack technological tools for man-
aging their pastures, the proposed system can help them
understand their pastures and manage them systematically.
Processing two random variables of weed density and the
bareness of a pasture can provide sufficient knowledge for
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dairy farmers, helping them to have much better pasture
monitoring.

As future work, one can study the influences of other
variables such as temperature, humidity, and wind on pasture
productivity. A longitudinal study on the improved produc-
tivity of using the Decision Support System (DSS) would
provide insight into how weed invasion starts, spreads, and is
controlled, and how effectively seeding covers bare patches.
Satellite images can be another useful source for weed con-
trolling and covering bare patches of pastures. Adopting more
advanced object detection algorithms for measuring weed
density will also improve pasture productivity.
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