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ABSTRACT In the elderly population, falls are one of the leading causes of fatal and non-fatal injuries. Fall
detection and early alarms play an important role in mitigating the negative effects of falls, especially given
the growing proportion of the elderly population. Due to their non-intrusive nature, data availability, and
low deployment costs, RGB videos have been used in many previous studies to detect falls. The RGB data,
however, can be affected by background environment changes, resulting in non-recognition. To overcome
these challenges, many researchers propose extracting skeleton data from RGB videos and using it for fall
detection. Although there have been multiple surveys on fall detection, most of them focus on assessing
fall detection systems using different kinds of sensors, and a comprehensive evaluation of skeleton-based fall
detection in RGB videos is lacking. In this paper, we examine the most recent advances in skeleton-based
fall detection in RGB videos, from handcrafted feature-based methods to advanced deep learning algorithms.
Further, we present several skeleton-based fall detection techniques and their performance results on various
benchmark datasets, along with challenges and future directions in this field.

INDEX TERMS Deep Learning, fall detection, pose estimation, RGB video, skeleton sequence, skeleton-
based fall detection.

I. INTRODUCTION
Globally, the population is aging rapidly. Approximately
one-sixth of the world’s population will be elderly (60 years
or older) by 2030, and the population of this age group will
reach 2.1 billion by that time [1]. As a result, it is becoming
increasingly necessary to develop intelligent systems to sup-
port the elderly healthcare system. The Centers for Disease
Control and Prevention of the United States report that falls
are the predominant cause of both fatal and non-fatal injuries
within the older population [2].
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approving it for publication was Prakasam Periasamy .

Fall detection and early alarm play a crucial role in reduc-
ing the negative consequences of falls, particularly for the
elderly. Thus, many fall detection systems have been devel-
oped [3], [4], [5]. According to [6], fall detection consists
of three types of sensors as: 1) wearable devices, 2) ambient
devices, and 3) cameras.

However, wearable devices may not be remembered to be
worn (especially for the elderly) or may cause discomfort to
users who must wear them all day, despite their effective-
ness in detecting falls [7], [8], [9]. Ambient device-based
approaches such as utilizing pressure sensors, infrared sen-
sors, etc., can be relatively expensive [10], or may work
only in a limited area (often indoor environment) [11], [12],
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or may require complex set-up [13]. Due to their non-
intrusive nature, data availability, and low deployment costs,
cameras are also promising sources of fall detection informa-
tion [14], [15], [16].

There are two types of cameras used for camera-based fall
detection: 1) depth cameras (e.g., Microsoft Kinect [17], Intel
RealSense [18]) and 2) RGB cameras. The RGB cameras
are more popular than depth cameras due to their lower
cost and easier deployment, resulting in a large amount of
data. It is important to note that using only RGB video data
can result in inaccurate action recognition due to the effects
of context and background information [19], [20]. The fall
recognition process can, therefore, be simplified by omitting
the background information from RGB videos and extracting
only the skeleton data (joints) of the human body.

The machine learning (ML) field has witnessed a shift
from handcrafted features to deep learning (DL) approaches
in recent years [21]. DL-based approaches can learn features
directly from data instead of requiring domain knowledge,
feature engineering skills, and time-consuming trial-and-
error processes. Many vision tasks have been addressed by
DL, including but not limited to image classification [22],
face recognition [23], object detection [24], and action recog-
nition [25]. To extract human skeleton data from RGB
video for downstream tasks, including fall detection, several
DL-based methods have been proposed [26], [27], [28].
Most fall detection studies examine methods that use var-

ious types of input sensors without focusing on a specific
type of sensor data, as in [29], or focusing on a particu-
lar type of technique, as in [30]. Based on RGB videos as
the input data, this survey provides a comprehensive review
of both handcrafted-based and DL-based approaches for
skeleton-based fall detection. This is the first comprehensive
review of state-of-the-art skeleton-based fall detection meth-
ods in RGB videos of which we are aware.

Overall, the main contributions of this survey can be sum-
marized as follows:

• Reviewing state-of-the-art handcrafted-based and
DL-based approaches for skeleton-based fall detection
in RGB videos.

• Presenting extensive performance comparisons of the
reviewed methods across several popular benchmark
datasets with brief summaries and insightful discus-
sions.

• Highlighting the potential requirements, and challenges
in skeleton-based fall detection in RGB videos.

• Outlining several future research directions.
The rest of this paper is organized as follows. Section II

reviews the related surveys on fall detection. In Section III,
we introduce the fundamental traditional ML algorithms and
DL networks that are used in the works reviewed in this
paper. In Section IV, we present the overall pipeline and
conduct a thorough review and comparison of the state-of-
the-art methods of skeleton-based fall detection using RGB
videos. In Section V, we discuss requirements, challenges,

and future research directions for this research area. Finally,
Section VI draws the conclusions.

II. RELATED SURVEY ARTICLES
Fall detection has been the subject of several publications.
The authors in [31] classified fall detection into three dis-
tinct categories based on the sensor type, including wearable
sensors, ambient sensors, and camera sensors. The authors
presented typical components of a fall detection system and
discussed the disadvantages of each type of sensor. Addi-
tionally, the work also discussed the design of personalized
fall detection models by training classifiers with both user
and non-user data. In this study, handcrafted features and
traditional machine algorithms were only used to detect falls
and DL approaches were not investigated.

In [32], the authors investigated the use of radio frequency
and the combination of multiple sensors for fall detection.
Keypoints were also discussed for fall detection, but they
were extracted from depth videos rather than RGB videos.
In [30], the authors reviewed various DL methods for fall
detection. Only a few works related to skeleton-based fall
detection were presented, since the work focused on various
types of sensors. In [29], the authors examined the devel-
opment of fall detection systems from both hardware and
software perspectives. There were also some DL methods
presented for fall detection, but they were not relevant to
skeleton data.

By defining vision data into global, local, and depth
descriptors, the authors in [33] provide an overview of
vision-based fall detection systems. Despite the introduc-
tion of skeleton-based fall detection methods, this study did
not investigate the latest state-of-the-art methods regarding
modern DL architectures such as Graph Neural Networks
(GNN) [35]. A literature reviewwas conducted by the authors
of [6] on vision-based fall detection systems using six types
of techniques: inactivity/body shape change, posture, 3D
head motion, spatial-temporal approaches, gait, and skeleton
tracking. There were only a few skeleton-based fall detection
methods investigated, and the period of the reviewed papers
was only limited to 2019.

A recent study [34] reviewed the state-of-the-art DL meth-
ods for vision-based fall detection, including skeleton data.
However, the system pipeline for skeleton-based fall detec-
tion in RGB videos using both hand-crafted features and DL
approaches is not fully described. Additionally, only a limited
number of works related to skeleton-based fall detection in
RGB videos were reviewed.

For easy comparison, we provide a list of all the survey
papers related to fall detection in Table 1. In this work, we aim
to comprehensively cover all the aspects of skeleton-based
fall detection in RGB videos, including the detailed system
pipeline and the latest state-of-the-art methods that utilize
advanced DL architectures. Furthermore, we also discuss
challenges in building practical systems and outline some
future research directions.
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TABLE 1. Summary of existing surveys on fall detection. Sensor Type: W = Wearable, A = Ambient, C = Camera, Dep. = Depth.

III. MACHINE LEARNING METHODS AND DEEP
NETWORKS FOR SKELETON-BASED FALL DETECTION IN
RGB VIDEOS
The skeleton-based fall detection pipelines typically employ
traditional ML methods for classification, while DL methods
are used for feature extraction and representation learning.
This section provides a brief overview of both traditional ML
methods and DL techniques applied to skeleton-based fall
detection in the reviewed papers.

A. DECISION TREE (DT)
There are several popular non-parametric supervised algo-
rithms for classification called Decision Trees (DTs) [36].
They create a tree-like structure from the root to the leaf
node. Every node represents a test applied to an attribute,
each branch represents an answer to the test of the node with
a particular attribute value, and the leaf nodes represent the
class labels (classification output). In DTs, data samples are
classified by following different paths from the root of the tree
to the leaf node. Each traversal path represents a classification
rule. There are various algorithms used for constructing deci-
sion trees such as ID3 [37], CART [38], etc. In the reviewed
paper [39], the authors used DT in the classification phase.

B. K-NEAREST NEIGHBORS (KNN)
K-Nearest Neighbors (KNN) [40] is a straightforward, non-
parametric supervised learning technique that can be used for

both classification and regression. A KNN classifier works
by finding the K nearest neighbors of a new example and
assigning it to the class with the highest number of votes.
By calculating the distance between the new example and
all the training examples, the K nearest neighbors is identi-
fied. Distance metrics include Euclidean distance, Manhattan
distance, etc. As a classification technique, KNN has been
employed in several reviewed studies [39], [41], [42], [43].

C. RANDOM FOREST (RF)
Both classification and regression applications use Random
Forest (RF) [44]. This ensemble learning method constructs
an uncorrelated forest of decision trees, with each decision
tree being built on a random subset of training data (using
bagging technique [45]) and a random subset of features
(using the random subspace method [44]), ensuring low
correlation among the trees in the forest. RF’s final class
prediction is determined by the majority vote of all trees
in the forest. Several reviewed studies have used RF for
classification [39], [41], [42], [46], [47].

D. SUPPORT VECTOR MACHINE (SVM)
Support Vector Machines [48] (SVMs) are well-known
supervised learningmodels used for classification and regres-
sion. SVM’s primary objective in classification is to iden-
tify a hyperplane within an N-dimensional space, where
N represents the number of features, that can effectively
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distinguish data points into distinct categories. The main
objective in SVM training is to maximize the distances,
commonly known as margins, between the hyperplane and
the nearest data points on each side. The SVM can be
extended to the kernelized SVM in the case of non-linear
data, which uses the kernel function to shift the original data
into a higher-dimensional space where the data can be lin-
early separated. There have been numerous reviewed studies
using SVM for classification in skeleton-based fall detection
systems [39], [41], [42], [43], [46].

E. BOOSTING
Boosting is an ensemble learning algorithm that involves
sequentially training a set of weak learners. In the training
of the next weak learner, data points misclassified by the
previous weak learner are given more weight. By combining
the predictions of all the trained weak learners, the final pre-
diction is made. Boosting algorithms include AdaBoost [49],
XGBoost [50], etc. In the reviewed work [43], AdaBoost and
XGBoost were applied during the classification phase.

F. NEURAL NETWORK (NN)
Neural Network (NN) [51] simulates the structure of the
human brain. There are several layers in a conventional NN:
an input layer, an output layer, and one or more hidden
layers. Each layer consists of artificial neuronswith their own
weights and bias. The neurons perform a linear transforma-
tion on the input from the previous layer, apply a non-linear
activation function, and produce an output. Activation func-
tions such as Tanh, Sigmoid, and ReLU (Rectified Linear
Unit) [52] play an important role in introducing non-linear
transformations to the model.

In an NN, input data enters the input layer and then passes
through the hidden layers before reaching the output layer.
By using the backpropagation algorithm [53], weights and
biases are updated to minimize the loss function. In binary
classification tasks like fall detection (Fall or No Fall), the
loss function is typically the Binary Cross-Entropy (BCE).
To compute the probability of each class in an NN, the
Softmax activation function is commonly used [54].
A feedforward neural network (FNN) is a simple type of

NN in which the data goes through one direction without any
circle or loop in the network. Multilayer Perceptron (MLP)
consists of at least three layers, specifically an input, an out-
put layer, and one or more hidden layers. In classification
and regression problems, MLP is widely used. A number
of reviewed papers have used MLP for classification pur-
poses [41], [46], [47], [55], [56], [57]. Several reviewed
studies have employed the Softmax layer as a classification
output layer [58], [59], [60], [61], [62], [63], [64], [65], [66],
[67], [68].

G. AUTOENCODER (AE)
Autoencoder (AE) [69] are NNs specifically designed to
reconstruct the input signal. There are two major components

in this network: an encoder and a decoder [69]. In an encoder,
input signals are converted into their corresponding repre-
sentations in a lower-dimensional latent space. Conversely,
a decoder reconstructs the latent values back into the original
space to reproduce the original data. Autoencoder exhibits a
wide range of applications, notably in dimensionality reduc-
tion [70], anomaly detection [71], and other related areas.
An AE-based approach to skeleton-based fall detection was
proposed by the authors of [72].

H. CONVOLUTIONAL NEURAL NETWORK (CNN)
Conventional NNs use multiple fully connected (FC) layers
with complete connectivity between neurons. However, this
approach has drawbacks: a large number of parameters, high
computational costs, and a failure to use local information in
the input data. A convolutional neural network (CNN) [73]
uses weight sharing and local connectivity mechanisms to
take advantage of local structure in the input data.

CNNs have three major layer types: convolutional layer,
pooling layer, and FC layer. A convolutional layer produces
feature maps by moving a set of learnable filters or ker-
nels across the input data. To introduce non-linearity into
the model, these feature maps are typically applied with
a non-linear activation function, such as ReLU [52]. The
convolutional layer can be 1D, 2D, or 3D depending on the
dimensionality of the input data. Pooling layers, also known
as downsampling layers, are used to reduce dimensionality.
In the network, they reduce the number of parameters and
computational costs. By moving weightless filters across the
input data, pooling layers perform aggregation functions.
Maximum pooling and average pooling are the two main
types of pooling layers. Pooling layers such as Global Aver-
age Pooling (GAP) and Global Max Pooling (GMP) can
generate a feature vector for classification [74]. FC layers,
which typically locate at the end of the network, take features
from the previous layers, and produce the final output, typi-
cally for classification tasks.

There have beenmany CNN architectures proposed for dif-
ferent tasks, including Resnet [22] with residual connections
for image classification, YOLO [75] for object detection, etc.
CNN was incorporated into the NN architectures in several
reviewed studies [62], [63], [64], [65], [67], [76].

I. RECURRENT NEURAL NETWORK (RNN) AND ITS
VARIANTS
Recurrent Neural Network (RNN) can be used to capture the
temporal information in sequential data [77]. As opposed to
FNN, RNN forms a cycle/loop that allows information to be
passed from time step t to time step t + 1.

In general, RNNs are NN with a hidden state h processing
the input sequence x(x1, x2, . . . , xT ), where the sequence
length T can vary. At each time step t , the hidden state ht
and the output yt are updated as follows:

ht = f (ht−1, xt ) (1)

yt = g(ht ) (2)
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where f and g are non-linear activation functions. The back-
propagation through time (BPTT) algorithm is commonly
employed to train RNNs [78]. It is possible to form stacked
RNNs by stacking multiple RNN layers, where the hidden
state output of one layer is used as the input of the next layer.

To mitigate the gradient vanishing and exploding prob-
lems when training RNNs, Long Short-Term Memory
(LSTM) [79] and Gated Recurrent Unit (GRU) [80] are intro-
duced. LSTM and GRU use gating mechanisms to regulate
the information flow. Unlike LSTM with three gates (input
gate, forget gate, and output gate), GRU only has two gates
(update gate and reset gate), making it less computationally
expensive than LSTM. Empirical studies have not been able
to determine which is better, LSTM or GRU [81].
RNN models, such as the one presented in [59], can be

used to detect falls from sequences of frames in input videos.
Several reviewed studies have also used LSTM networks for
this purpose [56], [57], [58], [59], [60], [61], [62], [63], [82].
Similarly, GRU networks can also be used to capture and
learn the temporal dependencies required for accurate fall
prediction, as demonstrated in [59], [63], [65].

J. ATTENTION MECHANISM AND TRANSFORMER
1) ATTENTION MECHANISM
Attention mechanisms [83] were originally introduced to
enhance Encoder-Decoder architectures [84] in machine
translation tasks by overcoming the limitations of using
fixed-length context vectors [85], [86]. A typical attention
mechanism does not use a static context vector derived
from the encoder as in the conventional approach. Decoding
involves the decoder considering the encoder’s hidden states
and assigning weights to them for generating the context vec-
tor, which is then used to generate output at each time step. As
a result, the decoder concentrates on the important elements
of the input sequence. Multiple reviewed works have inte-
grated attention mechanisms into their network architectures
[57], [63], [87].

2) TRANSFORMER
As a result of the sequential nature of Encoder-Decoder mod-
els with RNNs, LSTM, and GRU, the Transformer architec-
ture [88] provides a solution to the parallelization limitation.
By using self-attention mechanisms, it can process the whole
input sequence at once while still incorporating the benefits
of attention mechanisms. Transformer uses encoder-decoder
architecture that has multiple layers of self-attention and
feed-forward. Transformer’s self-attention module is its most
vital component.

The input sequence is first transformed into a set of vec-
tor embeddings, where each vector represents an element
in the sequence. After being injected position information,
the embeddings are used to generate three types of vectors:
Query (Q), Key (K), and Value (V) vectors. Q, K vectors
are subsequently employed to compute the attention weights,
which indicate the degree of relevance of each element with

respect to the other elements in the sequence. Finally, the
attention weights are combined with theV vectors to produce
output vectors, which are rich representations that capture the
dependencies between the elements in the sequence.

Transformer architectures have been applied to various
domains, including natural language processing with models
such as BERT (Bidirectional Encoder Representations from
Transformers) [89] and GPT-3 [90], as well as in computer
vision with models like ViT [91] and Swin Transformer [92].
BERT [89], as a specific example, represents a list of stacked
encoders within the Transformer architecture [88]. To acquire
bidirectional representations, the model is pre-trained on
extensive unlabeled text data. BERT is offered in two ver-
sions: BERTBASE and BERTLARGE , each differing in terms of
layer count, hidden size, attention heads, and parameters.

A Transformer-based architecture was devised by
researchers in [56] for skeleton-based fall detection. Addi-
tionally, in [68], the authors employed BERTBASE [89] to
extract features from skeleton sequences, enabling activity
recognition, including the detection of falls.

K. GRAPH NEURAL NETWORK (GNN)
The human skeleton can be naturally represented as a
graph, where nodes represent joints and edges represent
the bones that connect these joints. Graph Neural Networks
(GNNs) [35] are a type of NN that can be used to pro-
cess graph data. Formally, a graph G can be represented as
follows:

G = (A,X,E), (3)

where the adjacency matrix A captures the connections
between nodes, while node embeddings X and edge embed-
dings E represent the feature vectors of nodes and edges,
respectively.

A common type of GNN is Convolutional GNNs
(ConvGNNs)). In ConvGNNs, each node is updated by aggre-
gating information from its neighbors. A k th layer H of
ConvGNNs can be represented as follows:

Hk = f(Hk−1,A, θk ), (4)

where function f with parameters θk takes the node embed-
dingsHk−1 of the previous layer, aggregate information from
each node’s neighbors using node relationship information
from adjacent matrix A, and outputs the node embeddings
Hk of the current layer. ConvGNNs can capture the impor-
tant structural information of the graph data by exchanging
information between each node and its neighbors. There are
many variants of ConvGNNs including Graph Convolutional
Network (GCN) [93]. It is possible to learn both spatial and
temporal patterns in graph data, such as changes over time in
a human skeleton. The Spatial-Temporal Graph Convolution
Network (ST-GCN) [94] is a typical method.
Among the reviewed studies, the authors in [66] imple-

mented a GCN-based architecture, while the authors in [87]
proposed a GCN-based architecture with self-attention. ST-
GCN [94] was used in both systems [67] and [72]. In [67],
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ST-GCN served as a key component of the multimodal sys-
tem, while in [72], skeletal features were extracted using a
pre-trained ST-GCN model for an AE-based fall detection
system, employing reconstruction error analysis.

IV. SKELETON-BASED FALL DETECTION IN RGB VIDEOS
In this section, we examine all the fundamental steps of
skeleton-based fall detection system in RGB videos, includ-
ing data collection, keypoints extraction, feature extraction,
fall recognition, and performance evaluation. Fig. 1 shows the
general pipeline for skeleton-based fall detection.

First, RGB videos related to fall/non-fall events are col-
lected and processed using pose estimation frameworks to
extract skeleton data, which undergo data preprocessing
to obtain processed skeleton samples. Handcrafted features
can be extracted from these samples for recognition using
rule-based or ML-based methods. Alternatively, a deep NN
can be trained on these samples to perform deep feature
extraction, followed by a recognition process using FC layers
with Softmax activation function at the output layer. Finally,
performance evaluation is done by splitting the skeleton sam-
ples into sets (e.g., train or test) and using the designed
metrics (see Section IV-F).
Table 4 summarizes all the skeleton-based fall detection

methods reviewed in this work with details for each pipeline
step. Unless otherwise stated, the methods in this table utilize
2D keypoints by default.

A. DATA COLLECTION
The first step in building a fall detection system is data
collection. Since the scope of this work is to review the
skeleton-based fall detection methods for RGB videos,
we discuss only this type of videos generated by conventional
cameras, leaving out depth videos recorded by depth cameras
such as Microsoft Kinect [17]. In Table 2, we summarize the
most popular fall datasets.

• Multiple cameras Fall Dataset (MultiCam) was
generated using eight Internet Protocol (IP) cameras
mounted on the ceiling to record 24 scenarios, 22 of
which contain a fall along with other distracting events,
while the last two contain only distracting events [95].
This dataset consists of a range of activities of daily
living (ADL), including walking in various directions,
performing actions like falling (e.g., sitting down, stand-
ing up, crouching down), while simulated falls include
those that occur forward, backward, while seated incor-
rectly, or when a person loses balance.

• Le2i Fall Detection Dataset (Le2i) aims to produce
realistic video sequences with different environmen-
tal conditions including four types of simulated loca-
tions (Home, Office, Coffee Room, and Lecture Room)
with varied illumination and occlusions [96]. There are
143 fall sequences and 48 sequences of ADL.

• UR Fall Detection Dataset (URFD) was constructed
using two Microsoft Kinect cameras, one parallel to
the door and one on the ceiling, to record 70 video

sequences, consisting of 30 falls and 40 ADLs [97].
Additionally, the corresponding accelerometer data was
also collected.

• UP-Fall Detection Dataset (UP-Fall) was collected
using multiple types of sensors, including brain sensors,
accelerometers, and two Microsoft LifeCam Cinema
Cameras with two viewpoints (CAM1-lateral/side view,
and CAM2-frontal view) [98]. It includes 17 individu-
als between the ages of 18 and 24 who attempt three
times at each of 11 activities, including falls. There
are five different types of falls: falling forward with
hands, falling forward with knees, falling backwards,
falling sideward, falling while sitting in an empty chair.
Standing, jumping, sitting, laying, walking, and picking
up objects are types of ADLs.

As falls are rare events, the number of fall videos is
smaller than that of ADL videos. To overcome this challenge,
researchers have generated synthetic fall videos and com-
bined them with existing RGB videos to train fall detection
models [56]. Furthermore, the current datasets face limita-
tions in terms of both quantity and quality, as discussed in
Section V-A.

B. KEYPOINT EXTRACTION
1) POSE ESTIMATION FRAMEWORKS
Human Pose Estimation (HPE) is the task of identifying the
location of human body joints [106], [107], [108]. HPE can
be categorized into two types: 2D and 3D pose estimation. 2D
pose estimation involves finding the 2D coordinates (x, y) of
the body joints, while 3D pose estimation determines their 3D
positions (x, y, z) in the image. The output of pose estimation
models typically contains a set of joints, also known as key-
points, represented by their 2D or 3D coordinates, along the
confidence scores conf _score representing the likelihood that
these keypoints are predicted correctly.

The classification of HPE can be extended based on the
number of individuals appearing in the image, leading to
single-person and multi-person pose estimation. In the case
of multi-person pose estimation from a monocular camera,
two major approaches are utilized including top-down and
bottom-up. These approaches have been thoroughly reviewed
in comprehensive studies [106], [107], [108]. In general, top-
down methods begin by identifying the bounding boxes for
each individual and then performing single-person pose esti-
mation on each of them. Bottom-up approaches, in contrast,
start with the prediction of the body joints of all individ-
uals in the image, and subsequently group the joints that
correspond to each person. In terms of performance, top-
down approaches generally surpass bottom-up approaches,
as indicated in [108]. However, they tend to be computa-
tionally expensive due to the linear increase in detection
time with the number of individuals in the scene. On the
other hand, bottom-up approaches are more computation-
ally efficient because their runtime remains almost unaf-
fected by the number of individuals present [26]. Moreover,
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FIGURE 1. General pipeline of skeleton-based fall detection systems. Rec. = Recognition, Feat. = Feature, ML = Machine Learning, Pose Framework =

Pose Estimation Framework.

TABLE 2. An overview of popular fall datasets with RGB video data. Cam. = Camera, IP = Internet Protocol, No. = Number, Viewp. = Viewpoint, Res. =

Resolution, fps = Frame per second, Cond. = Data collection condition, Sim. = Simulated, Loc. = Location, Occ. = Occlusion, Act. = Activity, ADL = Activity
of Daily Living.

bottom-up approaches exhibit better performance in crowded
scenes with occlusion and complex poses, as highlighted
in [109], [110].

For fall detection, most works use pretrained or open-
source frameworks, as listed in Table 3, to extract 2D/3D
keypoints in RGB videos. Fig. 2 shows the output of Open-
Pose [26] with 25 human keypoints.

• OpenPose is a real-time multi-person 2D HPE
framework that follows the bottom-up approach [26].
OpenPose offers multiple pretrained models, each
trained on different datasets, which generate either 15,
18, or 25 2D keypoints for each person in the image
[112], and it can be run on various operating systems

including Windows, macOS, and Linux. OpenPose can
be executed using either CPU orGPU for optimal perfor-
mance. Besides, OpenPose incorporates a supplemen-
tary module for 3D pose estimation. Nonetheless, this
module has limitations as it is restricted to single-person
scenarios, requires multiple stereo cameras, involves a
complex calibration process, and lacks active support
or maintenance [113]. Many works in this survey use
OpenPose to extract 2D keypoints from the RGB videos
due to its real-time performance. To make it even faster
to be able to run on edge computing devices (e.g., the
NVIDIA Jetson TX2), the MobileNetV2 architecture
was used to replace the VGG model [114] to produce
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FIGURE 2. Detected keypoints/joints with their 25 corresponding body
parts by OpenPose [26], [111].

TABLE 3. Pose estimation frameworks for keypoint extraction in RGB
videos. Kp. Out. = Keypoint Output; Appr. = Approach, TD = Top-down,
BU = Bottom-up.

a lightweight version of OpenPose in some works [60],
[61]. In addition, the authors in [60] attempted to
enhance the performance ofOpenPose by training it with
a new augmented dataset, utilizing data augmentation
methods such as flipping, clipping, and random scaling,
to address the issue of missing fall motion samples.

• AlphaPose is another multi-person 2D pose estimation
framework that utilizes the top-down approach based on
the RMPE algorithm [99], [115]. AlphaPose can detect
17 keypoints in COCO format [116] or 16 keypoints in
MPII format [117] for each person in the image. It can
also be run on a CPU or GPU, but it only supports
Windows and Linux. A recent update to AlphaPose
in 2022 presented a fresh capability for estimating 3D
poses. Nevertheless, the associated documentation and
inference code necessary to utilize this feature remain
inaccessible at present [118].

• OpenPifpaf is a novel bottom-up framework that first
attempts to solve 2D pose estimation and pose tracking
simultaneously [104].

• MoveNet is a highly precise pose estimation model
that can detect 17 2D keypoints at above the real-time
speed (30+ FPS) on the majority of modern laptops and
PCs [102].

• PoseNet is a real-time human pose estimationmodel that
can run in a web browser [105]. It can detect multiple
poses, and each pose contains 17 2D keypoints.

• MediaPipe Pose is a lightweight CNN-based mod-
ule of Google MediaPipe [119] that is optimized for
single-person body pose detection and tracking [101].
It offers real-time performance on mobile phones, desk-
tops, laptops, and web browsers, and can detect 33 key-
points [120] in 2D (using BlazePose [121]) and 3D
(using BlazePose GHUM [122]).

• DCPose is a multi-person 2D human pose estimation
framework that utilizes the previous frames and the next
frames to improve the accuracy of the pose estimation in
the current frame [100].

• MSPN is a top-down, multi-stage 2D pose estima-
tion network consisting of two single-stage modules
[103]. Through a cross-stage feature aggregation strat-
egy, information loss during upsampling and down-
sampling is minimized. A coarse-to-fine supervision
strategy is also implemented, which generates different
ground-truth heat maps for different stages to improve
localization accuracy.

2) DISCUSSION
Various frameworks support extracting 2D keypoints as
shown in Table 3. According to Table 4, OpenPose is the
most used framework for 2D keypoint extraction in the lit-
erature, likely due to its real-time performance. However,
a recent study [56] evaluated the performance of various
pose estimation frameworks, including OpenPose, Alpha-
Pose, OpenPifpaf, MoveNet, and DCPose. The authors found
that AlphaPose demonstrated the highest level of accu-
racy among human pose estimators in surveillance settings
and yielded the best performance for skeleton-based fall
detection.

For 3D keypoint extraction, MediaPipe Pose [101]
is a widely employed framework in the literature,
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TABLE 4. Summary of representative methods for skeleton-based fall detection in RGB videos.
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TABLE 4. (Continued.) Summary of representative methods for skeleton-based fall detection in RGB videos.

VOLUME 11, 2023 92331



V.-H. Hoang et al.: Advances in Skeleton-Based Fall Detection in RGB Videos

TABLE 4. (Continued.) Summary of representative methods for skeleton-based fall detection in RGB videos.
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as demonstrated in the works [63], [64]. This preference
arises from the difficulty in using other 3D-pose-supported
frameworks like OpenPose [26] and AlphaPose [99], as men-
tioned earlier. Notably, the authors in [63] utilizedMediaPipe
Pose to extract not only 3D keypoints but also 2D keypoints.
Alternatively, another approach to obtain 3D keypoints
involves converting 2D keypoints to 3D. In an example study
[76], the authors employed the Lightweight Pose Network
(LPN) [123] for 2D keypoints extraction and subsequently
followed the conventional pose lifting pipeline [124] to
acquire 3D keypoints.

Choosing an appropriate pose estimation framework in a
skeleton-based fall detection system is important because it
affects the performance and usefulness of the system. When
selecting a framework, two key factors to consider are pose
quality and inference speed, along with additional factors
such as source code availability, ease of use and integration,
and hardware specifications. In general, better pose quality
leads to better action detection performance [125]. Con-
sequently, the framework offering the highest pose quality
should be chosen among the candidate options. Inference
speed is also important because the system needs to process
input data in real-time, and the pose estimation step is typ-
ically the most time-consuming step in the entire pipeline,
as discussed in Section IV-G2b.
Therefore, the choice of the pose estimation framework

should be based on the specific application requirements,
with the goal of striking a balance between pose quality and
inference speed. For example, in home environments with
few people and a GPU-equipped system, AlphaPose [99] can
be utilized due to its high pose quality and ability to run at
approximately 20 FPS on a GPU [118]. In contrast, in public
environments with numerous individuals and a resource-
constrained device, MediaPipe Pose [101] can be employed
since it offers acceptable pose quality while maintaining
real-time inference speed, achieving a processing speed of
approximately 18 FPS with the full model on the CPU of a
Pixel 3 phone [126].

C. DATA PREPROCESSING
1) DATA CLEANING
After the keypoint extraction step, the data are refined to
improve the efficiency of subsequent processing. Data clean-
ing involves two main steps: removing invalid or unnecessary
data and handling missing data. Skeleton data is considered
invalid if it belongs to a person who is not involved in the
fall event [41], [62], [46], or if it lacks specific keypoints
such as the neck, hip keypoints [61], [63], or if it contains
wrong keypoint data such as the detection of other objects,
such as a chair, as a human body [66]. Some keypoints that
do not contribute to fall detection can be removed from the
whole detected keypoint sets, as argued by the authors in
[43], [58], [59], [67]. For example, the authors in [58] used
only 8 keypoints (R.Knee, L.Knee, R.Hip, Mid.Hip, L.Hip,
R.Shoulder, L.Shoulder, Neck - see Fig. 2) and removed other

keypoints. Some works only use the location information of
the keypoints and discard all conf _score values [39], [57],
[59], [65]. To handle missing data, linear interpolation is
typically employed [42], [82].

2) DATA NORMALIZATION
Subsequently, the data are normalized to ensure a uniform
scale for improving the convergence speed when training a
model. Formally, the normalization process for a keypoint can
be defined as follows:

Ppart_norm = N (Ppart_det ), (5)

where Ppart_det is the detected keypoint of a particular body
part (see Fig. 2) by a pose estimation framework, Ppart_norm
is the corresponding normalized keypoint, and N is the nor-
malization process.

There are several methods to normalize keypoints.
Detected keypoints can be normalized by the location of
a reference joint or by the video resolution. In [58], each
keypoint is normalized by the hip joint as follows:

Ppart_norm = Ppart_det − Pmidhip_det , (6)

where Pmidhip_det is the detected keypoint of the Mid.Hip.
In contrast, the authors in [82], [87] proposed to normalize
each keypoint by the video resolution as follows:

Ppart_norm = (Pxpart_det/W ,Pypart_det/H ), (7)

where Pxpart_det , P
y
part_det are x, y coordinate values of

detected keypoint;W ,H are thewidth, and height of the video
frame, respectively.

Rescaling the skeleton data to the range of [0, 1] was
achieved in some studies [56], [59] through by using
Min-MaxNormalization (Min-MaxNorm.). This method can
be defined as follows:

vnorm =
v− vmin

vmax − vmin
, (8)

where v is the original value, vmin and vmax are the minimum
and maximum values of the original data, respectively.

Additionally, the authors in [59] also proposed a new
normalization method named Relative Position Normaliza-
tion (RP-Norm) to normalize the keypoints data. In this
RP-Norm method, each original keypoint Ppart_det (x f , yf )
in a particular frame f is set to a new relative coor-
dinate position Ppart_norm(x

f
r , y

f
r ) by using the center

point of the frame C(x fc , y
f
c), the keypoint of Mid.Hip

Pmidhip_det (x
f
midhip, y

f
midhip) to calculate the displacement dis-

tance D(x fdis, y
f
dis) as described in the following equations:

Ppart_det = (x f , yf ) (9)

C(x fc , y
f
c) = (W/2,H/2) (10)

D(x fdis, y
f
dis) = (x fmidhip − x fc , y

f
midhip − yfc) (11)

Ppart_norm(x fr , y
f
r ) = (x f − x fdis, y

f
− yfdis) (12)
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FIGURE 3. Sliding windows with different labeling strategies.

whereW andH are the width and height of the video frame f ,
respectively. The authors in [66] proposed a method for
processing skeleton data in which the spine joints are first
moved to the origin to obtain consistent skeleton orientations,
followed by a normalization process to ensure zero mean and
unit variance.

3D keypoints can be normalized in several ways. The
authors in [76] normalized 3D keypoints by applying cen-
tering, scaling, and rotation operations. Specifically, the 3D
keypoints were centered, scaled, and rotated to achieve Bone
Parallel Normalization (BP-Norm.) by aligning the hip-spine
bone with the z-axis and the left-to-right shoulder bone
with the x-axis. In [63], the normalization of 3D keypoints
involved scaling them to fit within the range of [−1, 1] for
each dimension. Additionally, the hip joint served as the
origin (0, 0, 0). In [64], 3D keypoints were normalized by first
calculating the mid hip keypoint using (13), then performing
mid hip normalization as in (6). Finally, the normalized key-
points were scaled by dividing them by the pose size, which
was calculated by multiplying the shoulder-hip distance by a
certain factor.

3) SAMPLE SELECTION
After cleaning and normalizing the data, the next step is
to select the samples for feature extraction. There are two
types of sample formats: 1) frame-based samples and
2) sequence-based samples. A frame-based sample, as used
in [41], [43], [55], consists of keypoints from a single frame.
However, this format can lead to ambiguity in distinguishing
between falls and ADLs when the subject is in certain posi-
tions, such as lying on a bed. The label for a frame-based
sample is determined by manual frame-by-frame annotation.

Most works prefer sequence-based samples to extract
features. Sequence-based samples can be divided into two
categories:

• A whole-video sample is a sequence that contains the
keypoints of all frames in a video [39], [42]. The label

of a whole-video sample is marked as ‘‘fall’’ if there is
a fall at any time in the video.

• A window-based sample: is a sequence that contains
the keypoints of a particular number of frames or dura-
tion in a video [47], [56], [57], [58], [59], [60], [61],
[62], [65], [66], [82], [46], [63], [64], [76]. This type of
sample is generated using a sliding window technique
with a fixed window size (W ) and a fixed window stride
(S). The unit ofW and S is either number of frames or in
seconds. The values ofW and S vary among works. For
example, [82] uses W = 10 frames and S = 1 frame,
while [62] uses W = 64 frames and S = 48 frames.
Noticeably, the selection of values for variables W and
S lacks clear criteria or rules in the majority of reviewed
works. In their study [46], the authors employed an
exhaustive search method to determine optimal values
forW . Their objective was to identify the specific value
of W that maximizes system performance, particularly
in terms of recall rate. It is important to note that this
approach is limited to a specific dataset and may not be
generalizable. Different strategies are used to label the
window-based sample:
- - Most repeated label (MOST): the label of a

window-based sample is determined by the major-
ity label of the frames in the window [82]. For
example, if the number of frames with fall label is
greater than the number of frames with ADL label,
then the label of thewindow-based sample is ‘‘fall’’.

- - At least one (ALO): the label of a window-based
sample is determined as ‘‘fall’’ by the presence of
at least one frame with fall label in the window [58].

- - Others: Other labeling strategiesmay be employed,
such as last frame labeling in [57] where the label of
a window-based sample is determined by the label
of the last frame in the window.

The labeling strategies may not be described in the
reviewed works, such as [47], [65]. Fig. 3 shows
this window-based sampling process with two labeling
strategies: MOST and ALO.

4) DISCUSSIONS
a: ON DATA CLEANING
The existing literature commonly employed heuristic tech-
niques to eliminate invalid skeleton data for training. These
techniques operated on the assumption that the main actor
possesses the highest quality skeleton, allowing for the selec-
tion of valid skeleton data by identifying the skeleton with the
highest confidence score [41] or the largest standard devia-
tion over time [66] and discarding the rest. This assumption
generally holds true in controlled environments or simulated
datasets, where the camera focuses predominantly on the
main actor, resulting in better skeleton data compared to
other individuals in the scene. However, this approach may
not be appropriate for real-world datasets, particularly in
scenes with multiple people, because there is no guarantee
that the main actor will possess the highest quality skeleton.
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FIGURE 4. Categorization of handcrafted features in the reviewed works.

Consequently, utilizing these approaches in such cases may
result in the removal of valid skeleton data, thereby reducing
the available training data. Thus, alternative strategies for
obtaining valid skeleton data should be developed.

Furthermore, the inclusion or exclusion of keypoint
conf _score values during data cleaning lacks sufficient justi-
fication. For instance, the works [41], [62] chose to preserve
these scores, while the studies [39], [57], [59], [65] removed
them. However, none of these studies provided explicit rea-
sons for their respective decisions. Consequently, the effect of
including or excluding keypoint confidence scores on system
performance was not investigated.

b: ON NORMALIZATION
Data normalization generally improves classification per-
formance [129], [130], [131]. However, in skeleton-based
fall detection in RGB videos, there is a lack of description
regarding skeleton data normalization in many studies (see
Norm column in Table 4). While some studies provided
details on normalization techniques [64], [65], [82], [87],
they failed to analyze the impact of these techniques on
system performance. The issue of whether normalization
improves classification performance or establishes the supe-
riority of one method over others remains unresolved in the
current literature. For instance, in [59], RP-Norm improved
classification, whereas Min-Max Norm surprisingly led to
lower performance compared to unnormalized skeleton data.

However, this conclusion is dataset-specific and may vary
across different datasets.

Therefore, researchers are encouraged to explore various
normalization methods, including those discussed in this sur-
vey, alternative normalization techniques (e.g., described in
[131]), and those utilized in skeleton-based action recognition
(e.g., mentioned in [132], [133]), to determine the approach
that yields the best performance on their specific application
data.

c: ON SAMPLE SELECTION
The majority of the methods in Table 4 used a consistent
approach for sample selection during both training and test-
ing. However, an exception can be found in thework [58]. The
authors employed a window-based sampling technique for
training but adopted a different approach for testing. During
testing, they divided the video into window-based samples,
and if any of these clips were identified as a fall, the entire
video was considered to contain a fall event. The testing strat-
egy of using the entire video as test data can improve system
performance, but it is not suitable for real-time applications.

To ensure real-time feasibility, an appropriate sample
selection strategy must be chosen. Whole-video samples are
not suitable because they require the entire video to be
recorded before a decision can be made. Frame-based sam-
ples work in real-time but struggle to differentiate between
falls and ADLs in specific positions like lying on a bed,
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leading to false alarms. Window-based samples are highly
suitable for real-time applications. They require a limited
number of frames to make a decision and are less affected
by the ambiguity found in frame-based sampling. In real
systems, selecting an optimal window sizeW is crucial. Large
window sizes can cause detection delays due to the short
duration of falls (e.g., reported as 2 seconds in [134]) and the
requirement for the system to wait for the window to fill (e.g.,
W = 300 in [76]). Conversely, small window sizes may result
in false alarms due to insufficient information for decision-
making. Guidelines for window size selection can be found in
[135], although they are not specific to fall detection. Testing
the system’s performance and speed with different window
sizes is necessary to determine the optimal window size that
achieves the desired performancewhilemaintaining real-time
speed requirements, as in [47]. Furthermore, in the inference
step, the system can flexibly determine when to trigger an
alarm, rather than relying solely on the detection of a single
input sample. An example of this approach can be found
in [82]. The authors in this work assigned weights to the
predictions obtained from multiple window-based samples.
Based on the weighted sum of these results, a final decision
was made.

D. SKELETAL FEATURE EXTRACTION
Once samples have been obtained, the subsequent task is to
extract features from them. There are two primary methods
for feature extraction: 1) handcrafted features and 2) DL fea-
tures. It is worth noting that some studies have used skeleton
data directly as input features for training a classifier, without
any feature extraction process. For example, two studies [41],
[55] both used this approach. The authors in [46] also used
skeleton data directly, but they chose to use the data from
three particular frames (the first, middle, and last frame) in
a sample window, after performing an exhaustive search.

1) HAND-CRAFTED FEATURES
The handcrafted features typically utilize spatial and tem-
poral information of keypoints to compute various types
of features including coordinate features, distance features,
angle features, velocity features, acceleration features, ratio
features, and some other features. Fig. 4 presents all the
handcrafted features along with their categories used in the
reviewed studies. For the sake of brevity, the handcrafted
features described in this section were computed based on 2D
keypoints, unless otherwise stated.

In [39], the authors computed feature vectors for each
whole-video sample. Distance and angle features for each
keypoint are computed based on its coordinate at frame t and
frame t + 1. This process was applied to all 15 keypoints
over all frames of each video to obtain the feature vectors.
The authors then employed Principal Component Analysis
(PCA) [136] to ensure all feature vectors of varying length
video to have a uniform length, as depicted in Fig. 5.

FIGURE 5. Computing angle and distance features in [39]. Adapted from
[39] under the CC BY 4.0 license.

FIGURE 6. Dual channel integration in [47]. Adapted from [47] under the
CC BY 4.0 license.

Some studies, such as [82], [127] computed the middle
keypoint of a body part Pmid_part (see Fig. 2) by utilizing the
left keypoint Pleft_part and the right keypoint Pright_part of that
body part for further processing with the following formula:

Pmid_part = (Pleft_part + Pright_part )/2, (13)

For instance, if the detected keypoints do not include the
Mid.Hip keypoint due to the output format of the pose esti-
mation framework used, this keypoint can be computed as
Pmid_hip = (Pleft_hip + Pright_hip)/2.
In [82], the authors introduced the Human Center Line

Coordinate (HCLC) feature, consisting of four coordinates
representing the middle points of the shoulders, hips, knees,
and ankles, which can be calculated using (13). Additionally,
the authors calculated the Speed of HCLC (SHCLC) as an
additional feature by dividing the distance between the HCLC
coordinates at two timestamps by the time interval between
them.
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FIGURE 7. Some handcrafted features used in [43]. Adapted from [43]
under the CC BY 4.0 license.

For use in a rule-based fall detection system, the authors
developed three types of handcrafted features in [127]: speed
of descent at center of hip keypoints (SDCH), calculated
in the same way as SHCLC, angle between center line and
the ground (ACLG) calculated using the head keypoint and
the middle point of the ankle, and the width-to-height ratio
(WHR) for the bounding box of the human body.

In [47], the authors proposed two types of handcrafted
features including falling-state features and fallen-state fea-
tures, as shown in Fig. 6. The falling-state features consist
of the Centroid Drop Rate (CDR), which are calculated by
determining the average moving speed of the human body
centroid (the diagonal intersection of the bounding box of a
human body obtained using Yolo [75] and DeepSort [137]),
and Upper LimbVelocity (ULV) by averaging the value of the
movement velocity of six joints (L.Eye, R.Eye, Nose, Neck,
L.Shoulder, and R.Shoulder) in the x-axis direction between
two sampling frames. The fallen-state features consist of
direct keypoints and four parameters of the external ellipse
enclosing the human body (PEE) derived from keypoints,
providing a more accurate description of the human body
shape.

The authors in [42] applied the Kinematic Theory of Rapid
Human movement and its sigma-lognormal model [138]

to extract many features for fall detection. They computed
1120 features by calculating spatio-temporal features and
sigma-lognormal features for all 14 keypoints in each video.
The spatio-temporal features contain information of dis-
placement, velocity, acceleration, and tangent angle of each
keypoint in consecutive frames. On the other hand, the
sigma-lognormal features consist of Lognormal stroke num-
ber and five different parameters for all lognormal strokes.
After computing these features, the authors applied statistical
measures, including mean, median, standard deviation, 1 per-
centile, and 99 percentiles, to obtain a final set of handcrafted
features for fall detection.

In [43], the authors constructed several types of features
(see Fig. 7 for illustration) including ratio features (spine
ratio, which is the Neck-to-Mid.Hip distance divided by
the L.Hip-to-R.Hip distance, and the height-to-width ratio
(HWR) of the bounding box), distance features (neck-to-
feet distance and hip-to-feet distance), acceleration features
(acceleration of head, spine, and hip), and deflection features.
The deflection features consist of:

• Deflection angles: the angles between gravity vector
and six vectors formed by two keypoints including
Neck-Mid.Hip, L.Hip-R.Hip, R.Hip-R.Knee, R.Knee-
R.Ankle, L.Hip-L.Knee, and L.Knee-L.Ankle.

• Body tilt angle: the smallest angle among the angles
between the horizontal vector v parallel to the ground
and the vectors formed by two keypoints including
Neck-Mid.Hip, Neck-Mid.Knee, and Neck-Mid.Ankle.

Similarly, the authors in [128] calculated four feature
values from human skeleton data: the HWR of the human
bounding box, and three angle features including the angle of
human spine inclination θ1, the angle of right knee inclination
θ2, and the angle of left knee inclination θ3. These angles
θ1, θ2, θ3 are the angles between the vector v parallel to
the ground and the three vectors formed by two specific
keypoints (Neck-Mid.Hip, L.Knee-L.Ankle, and R.Knee-
R.Ankle), respectively.

In [87], the authors used skeleton data to derive hand-
crafted features, which were then utilized as two input
streams for a deep neural network to extract deep features.
They computed two distinct types of features: 1) 2D coordi-
nates over frames, and 2) the velocity of these coordinates.
The velocity values were obtained by subtracting the current
frame’s coordinates from the corresponding coordinates in
the previous frame.

3D keypoints were also used to extract handcrafted fea-
tures. In [63], 2D skeleton data were used to compute the
WHR feature, like [127]. Additionally, 26 values of (x, y)
representing 13 crucial 2D keypoints and gait speed were also
extracted. The gait speedwas calculated by dividing the walk-
ing distance, determined by the positional difference of the
mid feet keypoints, by the time per frame. The 3D keypoints
were used to compute the 3D trunk angle feature, which is
the angle between the body trunk and the vertical plane that
passes through the hip. The authors in [64] extracted three
types of features from 3D skeleton keypoints, which had been
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FIGURE 8. Deep features extracted using LSTM [58]. Adapted from
[58] - Copyright 2019 IEEE.

normalized as described in Section IV-C2: 1) the normalized
keypoints themselves, 2) 12 types of distance features, each
calculated by subtracting the coordinates of two particular
keypoints (e.g., shoulder-elbow), and 3) velocity features
calculated by subtracting 3D keypoints in two consecutive
frames.

2) DL FEATURES
The normalized skeleton data are typically fed into a NN
to extract deep features. Noticeably, some works [63], [82]
used handcrafted features as input to a deep neural network
to extract deep features.

Various types of NNs have been employed for DL feature
extraction, including popular ones such as CNNs and RNNs
(including LSTM [79] and (GRU) [80] variants), as well
as more modern architectures such as Transformer [88] and
GNN [35].
In [58], 2D skeleton data extracted using OpenPose [26]

were fed into a stacked 2-layer LSTM [79] with 40 LSTM
cells to generate deep temporal features before connecting
to the Softmax classifier as shown in Fig. 8. Additionally,
to reduce the internal covariate shift problem, the authors used
batch normalization (BatchNorm) [139] after the input layer
and the RNN layers. Similarly, the authors in [60], [61] feed
the processed skeleton data into LSTM to extract DL features
for later recognition step.

In the same way, the authors in [59] began by normaliz-
ing keypoints and then filled in any missing data by linear
interpolation. They then used RNN, LSTM [79], or GRU [80]
(with one hidden layer) to learn the temporal representation
of the skeleton data, obtaining the feature vector for classifi-
cation using the Softmax layer.

A stacked LSTM network with 256 neurons in each layer
was used by the authors in [82] to extract high-level features.
Unlike previous works, the authors in [62] utilized the

CNN+LSTM architecture to extract deep features for classi-
fication. Specifically, they extracted skeleton data consisting
of 51 values (17 keypoints× 3 values of x, y, and conf _score)
using AlphaPose [99]. These data were then fed into a CNN
module to obtain spatial features, which were subsequently
fed into an LSTM network to learn the temporal relationships
and generate high-level features. These high-level features

were transformed using a fully connected layer to capture
nonlinear relationships before being connected to a Softmax
layer for classification. Similarly, the author in [65] proposed
to use CNN and GRU [80] to learn the deep features. The
input data consists of keypoints from a sequence of 45 frames.
The keypoints in each frame are processed through two
blocks of 1D CNN, BatchNorm [139] and Max Pooling,
followed by one block of 1DCNN, BatchNorm andGAP [74]
before being fed into GRU [80]. The output of each GRU
cell is then connected to two FC layers to produce the final
features for classification.

1D-CNN networks have been employed for deep feature
extraction. The authors in [76] employed a 1-CNN-based
network to extract deep features from 3D skeleton data. They
began by concatenating 3D keypoints from each 300-frame
sample as input. These inputs were then passed through a
1D-CNN layer with a kernel size of 3, followed by four resid-
ual blocks. Each residual block consisted of two 1D-CNN
layers: one dilated 1D-CNN [140] with a dilation factor of
3k (where k ∈ {1, 2, 3, 4}, corresponding to the order of
the residual block) and one 1D-CNN with a kernel size
of 1. The dilated 1D-CNN was used to capture long-range
temporal relationships while keeping the computational cost
low. Finally, the output of the last residual block under-
went average pooling to generate the deep features before
classification process. In [64], the researchers utilized a
1D-CNN-based network to extract deep features from three
types of handcrafted features: 3D keypoints, distance fea-
tures, and velocity features. The network architecture con-
sisted of two 1D-CNN layers, one global average pooling
(GAP) layer, and two fully connected (FC) layers. The clas-
sification was performed using a Softmax layer. A dropout
layer [141] and a ReLU activation layer [52] were applied
after each 1D-CNN layer and the first FC layer to improve
performance and prevent overfitting.

Attention mechanisms can be employed for fall detection.
The authors in [57] proposed an adaptive keypoint attention
module to assign varying importance weights to different
keypoints for fall detection. Each input sample was con-
structed by extracting skeleton data from 30 frames. Each
frame contained 17 keypoints with the conf _score removed,
resulting in a sample with dimensions of (17 × 2 × 30).
After applying BatchNorm [139], the input sample was trans-
posed to (17× 30× 2) before entering the adaptive keypoint
attention module. This module utilized GAP and GMP lay-
ers to obtain Tavg and Tmax , respectively, which were then
concatenated and passed through another GAP to produce
fused features. Two FC layers were applied to these fused
features to produce attention weights for the keypoints. Next,
these attention weights were multiplied with the input data
to obtain weighted input data, which encodes the importance
of each keypoint in the fall events. These weighted input
data were then passed to a stacked 3-layer RLSTM to extract
deep features before passing through a MLP module with
four FC layers for classification. Note that RLSTM is a
variant of LSTM that utilizes residual connections [22] to
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FIGURE 9. Fall detection using (a) LSTM and (b) Transformer with
skeleton data obtained from various pose estimators in [56]. Adapted
from [56] under the CC BY 4.0 license.

address the issue of information loss, which may arise due
to the use of three hidden layers of LSTM in the proposed
architecture. In another study [63], the authors employed
pre-extracted handcrafted features, includingWHR, 3D trunk
angle, skeleton keypoints, and gait speed, as inputs for deep
neural network architectures to extract deep features. The
authors explored various network types, including 1D-CNN,
LSTM [79], GRU [80], and LSTM/GRUwith attentionmech-
anism, which was achieved by incorporating a customized
attention layer. Various fusion strategies were employed in
this study, including feature fusion, model stacking, and score
fusion. Feature fusion aimed to explore various combinations
of input features, while model stacking involved the stacking
of different sub-networks to create a larger network. Score
fusion utilized prediction results from different models for
majority voting. The results indicated that the best perfor-
mance was achieved by model stacking using GRU and GRU
with attention mechanism.

Transformer, a modern DL architecture [88], has also
been utilized for fall detection using skeleton data. In [56],
a Transformer-based model was developed to extract deep
features from skeleton data. The model involved linearly
projecting preprocessed keypoints onto a predefined Trans-
former encoder and combining them with class tokens
and positional encoding to create input embeddings. These

embeddings were then processed by the multi-head atten-
tion layers, followed by FC layers to extract deep features.
Finally, the deep features were connected to the MLP head
for action classification, including fall events. Noticeably,
this study also compared the performance of the Trans-
former and LSTM models (see Fig. 9) and found that the
Transformer-based model outperformed the LSTM-based
model in terms of accuracy. The authors in [68], proposed
another transformer-based model for activity recognition,
including falls. They employed the BERTBASE [89] model,
which has 12 layers, a hidden size of 768, 12 attention
heads, and 110Mparameters, to extract deep features from the
skeleton input. Each skeleton input vector was constructed by
concatenating the values of 17 keypoints from three particular
frames: the first, middle, and last frames in the corresponding
sample window. This concatenation process resulted in a
vector of 153 values. The core idea behind their approach
was to treat each skeleton input vector as if it were textual
data. To achieve this, each value within an input vector was
mapped to a corresponding token represented by an integer
value ranging from 0 to 30,000, aligning with the vocabulary
size of the BERTBASE model. These tokens were then fed into
the BERTBASE model to extract the deep features. Finally, the
extracted features were connected to a fully connected (FC)
layer for the classification task. In addition, the authors also
utilized TABGAN [142], a model derived from GAN (Gen-
erative Adversarial Networks) [143], to generate synthetic
data. This strategic approach aimed to address the challenge
of data imbalance within the UP-Fall dataset [98], ultimately
resulting in improved performance of the detection system.

Human skeleton data can be viewed as a graph, where
nodes represent joints and edges represent the bones connect-
ing these joints. Therefore, GNN algorithms can be utilized
for processing this data type for fall detection.

In [66], the authors proposed a GCN-based architecture (as
shown in Fig. 10) to extract deep features from skeleton data.
In more detail, joint and motion data in skeleton sequences
were first projected into a higher dimensional space using
an encoding layer, which included a BatchNorm [139] layer
and 1 × 1 convolution, and then combined into a compact
feature vector which can represent both joint and motion
information. Next, the compact feature vector was then pro-
cessed through two learning blocks, each consisting of a
Spatial Graph Convolutional Network (SGCN) and a Sepa-
rable Temporal Convolutional Network (Sep-TCN), to learn
the deep features for classification. SGCN learned the spatial
relationships in the compact feature vector by aggregating
information from neighboring nodes with the help of the
adjacency matrix, while Sep-TCN learned global temporal
relationships using depthwise separable convolution [144].
Both SGCN and Sep-TCN used residual connections [22] in
their design. Additionally, the authors proposed to use ran-
domized masking by random removing keypoints in a frame
(spatial masking) or random removing some frames in the
sequence (temporal masking) as a regularization technique
to improve the generalization of the model.
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FIGURE 10. SDFA architecture [66]. Adapted from [66] - Copyright
2023 IEEE.

The authors of [67] used a feature fusion strategy to extract
deep features by combining ST-GCN [94] and 1DCNN. They
computed two sets of spatio-temporal kinematic gait features.
The first feature set (F1) was generated using ST-GCN [94]
to capture both spatial and temporal relationships between
joints. To generate the second set (F2), the gait time series
were first calculated by extracting seven gait features on each
frame including:

• Gait speed: the distance between the L.Ankle and
R.Ankle joints divided by the time interval.

• Six angles: the angles of the L.Hip, L.Knee, L.Ankle and
the angles of R.Hip, R.Knee, R.Ankle.

Next, this gait time series was applied noise reduction
before being fed into a multichannel 1D-CNNmodule, which
consisted of series of convolutional layers and max pooling
layers. The purpose of this was to model the temporal rela-
tionships between the gait features and generate the second
feature set (F2). After being flattened to 1D, these two feature
sets (F1 and F2) were combined as a single input for the
second 1D-CNNmodule, which contained one convolutional
layer and one average pooling instead of max pooling. The
output of the second 1D-CNN was used as deep features for
classification.

In the context of fall detection systems, it is noteworthy
that a pretrained ST-GCN model [94] can be effectively uti-
lized as a feature extractor. In [72], the authors proposed a
fall detection framework based on anomaly detection using
reconstruction error analysis [71]. First, a pretrained ST-GCN
model [94] was employed to derive 256-dimensional vectors
from 2D skeleton data extracted from input videos through
OpenPose [26]. Then, these vectors were utilized as inputs to
train three different types of models: AE models based on a
neural network, models based on PCA [136], or models based
on SVD (singular value decomposition) [145]. These models
were exclusively trained onADLdata, which constituted 90%
of the total dataset. Mean Squared Error (MSE) served as
the loss function. The resulting output of the AE models
corresponded to the reconstruction error, which was then
compared to a predefined threshold to determine whether a
fall event had occurred.

The integration of attention mechanisms in GCN-based
models presents a feasible approach. In [87], hand-crafted
features (keypoints and velocities in sample frames) were
used as input streams. Each stream underwent a 1 × 1 con-
volutional layer to obtain the corresponding embeddings.
These embeddings were combined and augmented with spa-
tial embeddings, representing the keypoint types (e.g., hip or
knee). Notably, the spatial relationships between keypoints
were learned from data to produce a learnable adjacency
matrix, rather than being predefined as in [94]. The embed-
dings and the learnable adjacency matrix were then processed
by a GCN layer to produce immediate features. Subsequently,
the immediate features underwent a Spatial Self-Attention
module with multi-head attention, resembling the traditional
self-attention [88], but operating on keypoint embeddings
rather than words. This module captured interdependencies
among keypoints within a frame. The output of this module
was then combined with temporal embeddings, indicating
frame orders, and passed through a Temporal Self-Attention
module. This module utilized the self-attention mechanism
[88] to capture the dependencies between each keypoint
and its corresponding keypoint in other frames, enabling the
model to capture temporal changes in the skeleton. Finally,
the output of this module was fed into a Max pooling layer
for extracting deep features used for classification.

3) DISCUSSIONS
Several handcrafted features have been developed based on
information extracted from keypoints and their temporal
changes, including keypoint coordinates, distances, angles,
velocities, accelerations, ratios, and others. Surprisingly,
most of the reviewed studies [43], [47], [127], [128] did
not investigate the importance of each feature type in fall
detection. According to some studies [42], [82], velocity
and acceleration are considered more important than other
features for fall detection. Although this conclusion may
be influenced by the dataset and classifier, it is reasonable
because sudden changes in velocity and acceleration of key-
points occur during falls. It is recommended to develop a
list of handcrafted features, including velocity, acceleration,
angles, and WHR. Then perform feature selection [146] to
determine the optimal set of features for fall detection.

Handcrafted features, while generally explainable, require
significant skills and time to design effectively. In con-
trast, DL methods provide the ability to automatically learn
features from data. Deep features for skeleton-based fall
detection can be acquired by utilizing various type of NN
such as 1D CNN [64], [76], RNN/LSTM/GRU [56], [57],
[58], [59], [60], [61], GCN [66], [87], [147], some modern
networks (Transformer [56], BERT [68]) or combination of
these architectures [57], [62], [63], [67]. Due to the variability
of evaluation settings (discussed in Section IV-G1), it is chal-
lenging to determine the superior methods. However, some
insights can be derived from several of the reviewed studies.
The work [59] found that both LSTM and GRU outperformed
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RNN, but it remains unclear which of the two is better due
to mixed results. The study [63] demonstrated that GRU
performed better than 1D-CNN. Interestingly, the authors
in [57] discovered that increasing the number of stacked
LSTM layers does not guarantee better performance, as their
4-layer model performed worse than the 3-layer model. Two
studies [56], [68] showed that transformer-based methods
outperformed LSTM under similar evaluation settings, while
the work [66] presented that GCN-based architecture outper-
formed 1D-CNN architecture. Incorporating modern network
design mechanisms, such as residual connections [22], atten-
tion [83], or self-attention [88], has been demonstrated to
enhance model performance in various studies [57], [63],
[87]. Therefore, leveraging modern network architectures
and network design mechanisms such as attention is recom-
mended to improve model performance.

Furthermore, deep features suffer from limited inter-
pretability since they are derived from black-box deep neural
network architectures [148]. There has been no discussion
of the explanation of features learned by DL models or their
similarity to handcrafted features in the reviewed works. The
exploration of explainable AI is a promising direction for
future research, as the topic has emerged as a prominent topic
in AI research [149].

E. RECOGNITION
By using a set of rules or training a classifier, features
extracted from previous steps can be used to determine
whether a fall occurred.

1) RULE-BASED METHODS
Rule-basedmethods can use extracted features as input values
to determine if a fall has occurred. In [127], the authors
employed three extracted features as three decision condi-
tions in a decisive flowchart to recognize falls, as shown
in Fig. 11. Similarly, the authors in [128] performed the
experiments on URFD [97] and two self-collected datasets
to find out the best threshold for their handcrafted features,
which included three inclination angles (θ1, θ2, and θ3) as well
as the HWR of the bounding box, to recognize falls.

In their work [72], the authors utilized reconstruction error
analysis to detect fall events. They compared the reconstruc-
tion error, measured by MSE, obtained from their models
with predetermined thresholds. If the reconstruction error
exceeded the threshold, the input was classified as a fall event,
and vice versa. Threshold determination varied depending on
the type of employed model. For SVD/PCA-based models,
the maximumMSE served as the threshold, whereas for neu-
ral network-based AE models, the threshold was determined
by multiplying the mean MSE by a constant. Each threshold
value was determined by experimental analysis using valida-
tion data consisting solely of ADL data, which accounted for
5% of the total experimental dataset.

A rule-based approach can be used in conjunction with
an ML-based approach in an overall recognition process.

FIGURE 11. Ruse-based flowchart for skeleton-based fall detection
in [127]. Adapted from [127] under the CC BY 4.0 license.

For example, in [47], the authors used ML-based methods
to perform the state classification (falling state using MLP
and fallen state using RF), and then created a set of rules to
decide whether a person was falling or not based on the state
classification results as shown in Fig. 6. In [82], the final fall
detection result was computed based on inference results of
LSTM models.

2) ML-BASED METHODS
After extracting features, the next step is to use them to
train a fall recognition classifier. There are several types
of classifiers that can be used for this purpose. If the
input features are handcrafted, traditional classifiers such as
SVM [48], DT [36], RF [44], and KNN [40] can be uti-
lized, as in [39], [41], [43], [46]. In contrast, if the input
features are DL features, most methods use an MLP to map
the inputs to binary classification output (fall/not fall) by
using the Softmax activation function at the output layer,
as in [56], [59], [66].

It is worth noting that trained models can continuously
detect falls, but this is computationally expensive. To alleviate
this, the authors in [60] proposed a pre-filtering process based
on judgements of spine line (line between Mid.Shoulder
and Mid.Hip) deviation angle, distance, acceleration, and the
HWR of bounding box to filter out all non-fall events, reduc-
ing the computational cost of running the detection model.
The ML techniques used in each reviewed work can be found
in Table 4.
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3) DISCUSSIONS
In general, rule-basedmethods are simple, easy to implement,
explainable, and computationally efficient. There is, however,
a challenge in determining appropriate rules/thresholds due
to the diversity of falls and individual characteristics, which
can result in high false alarm rates. In contrast, ML-based
methods can automatically learn complex fall patterns from
data, but they are more difficult to explain and require a large
amount of data.

F. PERFORMANCE METRICS
Skeletal data of a frame or a sequence of frames are fed into
the skeleton-based fall detection system to predict whether
the fall has occurred or not, treating it as a binary classi-
fication problem. The performance of a skeleton-based fall
detection system is evaluated using the metrics proposed
in [154], like the evaluation process for typical fall detection
systems:

• Accuracy:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (14)

• Sensitivity, also known as Recall:

Sensitivity/Recall =
TP

TP+ FN
, (15)

• Specificity:

Specificity =
TN

TN + FP
, (16)

• F1 score:

F1 =
2

Recall−1 + Precision−1

=
2TP

2TP+ FP+ FN
, (17)

where TP stands for the number of true positives, i.e., where
a fall occurred and system recognized it, TN represents the
number of times the system correctly identified that no fall
has occurred (true negative), FP denotes the number of times
the system wrongly recognized a fall event when there was
none (false positive), FN is the number of times the sys-
tem failed to detect a fall event that actually occurred (false
negative), and Precision, which is calculated as Precision =

TP/(TP + FP), shows the percentage of correctly identified
falls among all events predicted as falls.

1) ASSESSING THE UTILITY OF ACCURACY, SENSITIVITY,
AND SPECIFICITY
Fall detection systems are often evaluated using accuracy,
sensitivity, and specificity metrics. Accuracy is the propor-
tion of correct predictions out of all predictions made on
all events, including falls and non-falls. However, evaluating
a fall detection system based solely on accuracy is insuf-
ficient due to the dataset’s imbalance caused by the rarity

of fall events. A system that consistently predicts no falls
can achieve high accuracy but fails to recognize any fall
event. Therefore, sensitivity/recall and specificity metrics are
employed in addition to accuracy to ensure a comprehensive
evaluation.

Sensitivity (recall) indicates the percentage of correctly
identified falls among all actual falls, while specificity indi-
cates the percentage of correctly detected non-falls among
all actual non-falls. As sensitivity increases, the system
becomes better at detecting true falls and reducing the number
of undetected falls (false negatives). Conversely, increasing
specificity can improve and enhance the system’s ability
to accurately classify non-fall events, thereby reducing the
occurrence of false positives (false alarms).

Typically, there is a trade-off between sensitivity and
specificity. In general, increasing sensitivity will decrease
specificity, and vice versa. Therefore, it is critical to find a
balance between the two metrics which is appropriate for
the application. When considering fall detection, assigning
greater importance to sensitivity over specificity is preferable
because the cost of not detecting true falls is generally much
higher than that of false alarms.

MathFβ =
(1 + β2) × Precision× Recall
(β2 × Precision) + Recall

, (18)

2) ASSESSING THE SUFFICIENCY OF THE F 1 SCORE
Many reviewed works utilized the F1 score for performance
evaluation. It combines precision and recall into a single
metric using the harmonic mean. However, one drawback
of the F1 score is its inability to adjust the proportional
importance of precision and recall. In certain contexts, such as
healthcare systems like fall detection, it is crucial to prioritize
recall over precision because the failure to detect real falls can
have severe consequences.

To overcome this limitation, we propose replacing the use
of the F1 score with the adoption of the Fβ score, repre-
sented by (18), as a more appropriate metric for fall detection
systems. The weighting of precision and recall is adjustable
using the beta parameter in the Fβ score. When β is set
to a value less than 1, precision is given more importance.
On the other hand, when β is set to a value greater than 1,
recall/sensitivity is treated as more significant, resulting in a
penalty for false negatives, which is suitable for fall detection
systems, as discussed previously. The choice of β can be
adjusted based on the specific requirements of the system.
For instance, in critical environments like hospitals, β can
be set to 2 or 3. Conversely, in non-critical environments
such as homes, a slightly lower β value, such as 1.5, may
be sufficient.

In conclusion, we recommend employing the F2 score
(Fβ score with β = 2) for evaluating fall detection systems
that prioritize minimizing false negative predictions. This
approach aligns with its usage in certain disease detection
systems [155], [156].
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G. PERFORMANCE RESULTS
Table 5 displays the performance of the reviewed methods
on the standard datasets. To ensure clarity, we present the
best performance achieved by each method for each metric,
as they were evaluated across various settings.

1) ISSUE OF DIFFERENT EVALUATION SETTINGS
To the best of our knowledge, despite the publication of
several studies and datasets in this research field, there is a
lack of standard evaluation protocols. The relevant worksmay
conduct experiments on different data and different evalua-
tion settings (data selection method, data splitting method),
which makes it difficult to compare the works.

Evaluation settings also varied among the different works
since the public datasets do not officially provide the
data splits for training/validation/testing. For example, both
works [58] and [66] used the same URFD dataset [97] for
evaluation, but they used window-based samples with differ-
ent window sizes and different data splits.

Some studies did not conduct testing on widely used public
datasets but instead utilized self-built, non-public datasets,
which poses challenges in terms of reproducibility. For exam-
ple, the authors in [56] merged AI Hub dataset collected by
Korean government and the Kist SynADL [152] datasets to
train/test their systems. Similarly, [43], [127] chose to use
their own dataset to evaluate their methods.

Furthermore, as mentioned in Section IV-G2.b, the report-
ing of speed performance is often overlooked and lacks
standardization.

2) PERFORMANCE COMPARISON
a: RECOGNITION PERFORMANCE ANALYSIS
Section IV-D3 provides separate discussions on the per-
formance of handcrafted and DL methods, without direct
comparison between these two approaches, which is the focus
of this section.

Our analysis shows that there is no clear answer to the
question of whether handcrafted or DL approaches are better
for skeleton-based fall detection. This is because the differ-
ent evaluation settings (Section IV-G1) make it difficult to
compare different methods. Additionally, all the reviewed
works used either handcrafted or DL methods, but not both.
To the best of our knowledge, there is a lack of comprehensive
research that directly compares handcrafted and DL methods
for fall detection using skeletal data, especially within the
same evaluation settings. This contrasts with other works
that have conducted similar comparisons for action recogni-
tion tasks using skeletal data [157]. Therefore, we strongly
recommend that future research conduct this comparison to
determine the more appropriate approach for skeleton-based
fall detection.

Interestingly, the study [157] revealed that handcrafted
features exhibited better performance on smaller datasets
compared to DL features, whereas DL methods yielded bet-
ter results on larger datasets in action recognition using

skeleton data. This finding suggests that DL approaches
have the potential to become prominent in the research field
of skeleton-based fall detection as the availability of data
increases.

b: SYSTEM SPEED ANALYSIS
There is a lack of speed consideration in many reviewed
works. They reported the recognition performance but did
not report system speed performance, which is an important
factor for real-time fall detection systems. In Table 5, the
inconsistency in reporting speed across studies, including
different speed measurement approaches (i.e., overall system
pipeline speed or just classification model inference speed)
and different hardware configurations, makes it challenging
to compare speed performance directly. The hardware used
for evaluation significantly influences the system’s speed. For
instance, the study [60] achieved 10 fps on an edge computing
device, while [65] reported 40 fps on a more powerful GPU.
To address this issue, we recommend that future studies
report system speed using standardized hardware for fair
comparisons.

Some specific works provide insight into the speed of
different stages within the system pipeline. For example, the
work [46] found that pose estimation accounted for about
90% of the system’s processing time, with the remaining
10% being allocated to other operations. The keypoint extrac-
tion stage took 68 times longer than the feature extraction
stage and 12 times longer than the classification stage in
[47]. Another paper [57] reported that pose estimation took
46.35 ms, while the other steps took only 2.24 ms. The speed
of classification models has been investigated and found to be
highly efficient. Specifically, two studies [56], [66] showed
that their DL models, utilizing Transformer and GCN archi-
tectures, respectively, achieved inference times of only about
1 millisecond.

These results indicate that the pose estimation stage is
the most time-consuming component in the system pipeline,
compared to other stages such as data preprocessing, fea-
ture extraction, and classification. The other stages generally
exhibit fast processing times mainly due to the small size
of the skeleton input sample. This characteristic of small
size results from the standard composition of the sample,
determined by multiplying the number of keypoints (usu-
ally ranging from 15 to 33 keypoints) by the dimension of
each keypoint (2 for 2D keypoints or 3 for 3D keypoints),
and the size of the sample window. Data preprocessing and
handcrafted feature extraction require only a small amount of
computation. Furthermore, the classification models, includ-
ing DL models, are generally designed to be moderately
complex, with a limited number of parameters, to mitigate the
risk of overfitting problems. Consequently, the classification
stage is also fast. These observations emphasize the impor-
tance of selecting an appropriate pose estimation method to
achieve real-time performance in skeleton-based fall detec-
tion systems.
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TABLE 5. Performance comparison of the existing skeleton-based fall detection methods in RGB videos. Recognition metrics: Acc = Accuracy, Sens =

Sensitivity, Spec = Specificity, F1 = F1 score, Other = Other Dataset (see Evaluation ▶ Dataset column in Table 4). Speed metrics: whole system pipeline
speed (fps = frames per second), classification model inference speed (ms/infer = milliseconds per inference). Hardware types provided in Speed
column: E = Edge computing devices, C = CPU, G = GPU, U = Unknown. Further hardware details are in the original papers.

3) SKELETON-BASED FALL DETECTION: RESOLVED OR
ONGOING?
The metrics recorded in Table 5 demonstrate consistently
high values, with numerous studies achieving accuracy, sen-
sitivity, and specificity exceeding 98%. The remarkable per-
formances of these works raise a crucial question: ‘‘Has the
problem of skeleton-based fall detection been truly solved?’’.
However, our evaluation reveals a negative answer to this
question. We argue that the high performance observed in
these studies is due to two main factors:

• The simplicity of the test dataset: The available datasets
are small and simple, typically assuming the presence

of only one person in the scene. Falls are simulated, and
the environment is controlled, which fails to capture the
complexity of real-world scenarios.

• The lack of a standardized and challenging evaluation
protocol: Most studies have the flexibility to determine
sample construction and data partitioning for training,
validation, and testing, resulting in varying levels of
difficulty during evaluation. For example, in [66], the
authors utilized the URFD dataset [97] and the UP-Fall
dataset [98] to evaluate their system, employing two
evaluation methods. The URFD dataset was evaluated
using a standard random split of 70% for training and
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30% for testing, whereas the UP-Fall dataset adopted a
cross-trial assessment approach, using the first two trials
for training and the remaining trial for testing. Notably,
there was a significant contrast in the results obtained
from these two datasets. Results on URFD achieved
perfect accuracy, sensitivity, and specificity of 100%,
while performance on UP-Fall achieved only 88.7%,
92.94%, and 85.15%, respectively. We argue that this
disparity can be attributed to variances in the dataset
complexity and the challenging nature of the evalua-
tion protocol. Obviously, the evaluation protocol on the
UP-Fall dataset is more challenging than the URFD
dataset.

Based on these observations, we conclude that the problem of
fall detection is still not fully solved, and there is much room
for improvement.

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS
A. SCARCITY OF DATASET
High-quality datasets are scarce despite extensive research in
the field of fall detection.

In terms of quality, the existing datasets are either simu-
lated or collected in laboratory environments. The simulated
dataset is not realistic enough to be used in real-life applica-
tions, e.g., the dataset collected in a lab environment does not
cover the fall events that happen in a crowded environment.
There have been limited efforts to enhance the authenticity of
fall datasets, such as the creation of a high-quality simulation
fall dataset [158] or the gathering of naturally occurring fall
videos from YouTube [159].
In terms of quantity, falls are relatively rare events, making

it challenging to collect a large amount of data. The exist-
ing fall datasets are much smaller compared to other action
recognition datasets, such as Kinetics [160] with 0.5 million
videos. The lack of large-scale datasets presents a major chal-
lenge for researchers in developing robust fall detection sys-
tems. The shortage of fall video data could be addressed by:

• Synthetic data generation: fall video data can be
synthesized by simulating the fall events in a virtual
environment [56], [161] or employing physical-based
stimulation [162].

• Data sharing promotion: Data sharing of fall video data
should be actively encouraged among research com-
munities and other stakeholders, including the elderly,
governments, and the healthcare industry, by providing
appropriate incentives [163], [164]. By implementing
effective strategies, data sharing can be the key in con-
structing large-scale, high-quality fall video datasets,
similar to the success of the COUGHVID medical
dataset [165].

B. 3D KEYPOINT UTILIZATION AND POSE QUALITY
ENHANCEMENT
1) STRENGTHENING THE USE OF 3D KEYPOINTS
Most studies listed in Table 4 primarily used 2D skeleton
data, while only a subset of studies employed 3D skeleton

FIGURE 12. Poor pose estimation when the person is falling/fallen.
Example from URFD dataset [97].

data. However, it has been observed that 2D skeleton data
yield higher error rates in action recognition, particularly for
some action categories such as falls, during action recognition
[132]. These higher error rates can be attributed to limitations
such as the absence of depth information and sensitivity to
size and orientation [132]. Therefore, it is crucial to explore
the potential of utilizing 3D skeleton data in skeleton-based
fall detection. This exploration can be facilitated by taking
advantage of advances in more efficient 3D pose estimation
methods [107] and a variety of approaches for 3D skeleton-
based action recognition [107].

2) ENHANCING POSE ESTIMATION QUALITY
Skeleton-based action recognition is highly dependent on
the accuracy of pose estimation. Poor pose estimation can
negatively affect the recognition performance [125]. In the
case of a fall, the action typically occurs in a short period
of time, and the pose estimation may be inaccurate when the
person is falling/fallen. Fig. 12 shows an example of bad pose
estimation when the person is falling/fallen.

Therefore, there is a need to enhance the keypoint quality
through the adoption of advanced pose estimation methods.
These newer methods, such as [166], [167] for 2D keypoints,
and [168], [169] for 3D keypoints, offer significant advance-
ments in terms of keypoint quality. A list of frequently
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updated 2D and 3D pose estimation methods can be found
online at [170] and [171], respectively. In addition to the pose
estimation frameworks mentioned in Section IV-B1, explor-
ing other frameworks that implement more advanced pose
estimation methods is a promising direction. The MMPose
framework [172] serves as a noteworthy example in this
regard.

Alternatively, the pose estimation quality can be improved
by implementing pose refinement techniques such as [173]
for 2D poses and [174] for 3D poses.

C. IMPROVEMENTS IN LEARNING METHODS
Several approaches can be employed to improve learning
methodologies:

• Employing advanced architectures can enhance
skeleton-based fall detection performance, as discussed
in Section IV-D3. As shown in Table 4, most meth-
ods relied on conventional architectures such as CNN,
LSTM, and GRU, with few studies using modern archi-
tectures such as Transformer [56], [68], GCN [66], [87],
and ST-GCN [67], [72].The evolution of architectures,
such as Transformers and GNN/GCN, has led to notable
improvements. This includes the development of more
powerful Transformers [175], enhanced GNNs inspired
by ST-GCN [176], and innovative hybrid approaches
that combine Transformers and GNNs, as demonstrated
in [177]. However, existing work in skeleton-based
fall detection has yet to fully exploit the potential
of these advanced architectures. Incorporating these
advanced architectures holds great promise for enhanc-
ing skeleton-based fall detection methods.

• Few-shot learning is a sub-area of ML that focuses on
learning from a few training samples. There are several
approaches [178], [179] to leverage few-shot learning in
action recognition. Obviously, the few-shot learning is a
promising direction to improve the performance of fall
detection, given the shortage of fall data.

• Semi-supervised [180], unsupervised learning [181] are
also promising directions as they can harness unlabeled
data to enhance the performance of the detection system.

• Multi-modality learning has shown potential in enhanc-
ing action recognition performance by incorporating
information from various modalities, such as RGB,
depth, skeleton, or infrared data [25]. Therefore, it is
promising to develop frameworks for fall detection
that leverage multi-modality learning. Indirect imple-
mentation of multi-modality learning involves utilizing
skeleton data estimated from multiple modalities. For
example, the authors in [182] employed 3D skeleton
data estimated from millimeter wave (mmWave), RGB
images, and Inertial Measurement Unit (IMU) sen-
sors for action detection. Alternatively, multi-modality
learning can be directly achieved by utilizing different
types of data from multiple modalities. For instance,
in [183], the authors employed both skeleton data and

RGB images for action recognition. The availability of
multi-modality fall datasets like UP-Fall [98] makes the
development of such frameworks feasible.

D. STANDARDIZATION OF EVALUATION PROTOCOL
The variability in results presented in Table 5 can be attributed
to the lack of uniform evaluation protocols. This inconsis-
tency gives rise to multiple issues concerning the comparabil-
ity of recognition performance and speed performance across
different studies, as well as the reproducibility of the results,
as discussed in Section IV-G1. Therefore, it is crucial to
establish a standardized evaluation protocol, which includes
both recognition performance and speed performance, for fair
comparison and reproducibility.

As discussed in Section IV-G3, existing evaluation meth-
ods do not include challenging aspects in their assessment.
The generalizability of the proposed methods should be
assessed using tougher evaluation protocols to address this
limitation. The robustness of the results would be enhanced if
cross-view evaluation (training and testing on different cam-
era views) or cross-subject evaluation (training and testing on
different subjects) were incorporated, as in [133].

E. TOWARDS REAL-LIFE SKELETON-BASED FALL
DETECTION SYSTEMS
1) ADDRESSING THE NEEDS OF THE ELDERLY
Despite being a primary user group, the needs and perspec-
tives of the elderly are often overlooked in the development
and usage of fall detection systems [184]. This oversight
extends to skeleton-based fall detection systems as well.
The current skeleton-based fall detection systems heavily
rely on simulated datasets that fail to accurately represent
the age range of the elderly (refer Age Range column to
Table 2) or neglect the actual demands of the elderly in
building such systems. To bridge this gap, it is essential to
involve key stakeholders, including AI researchers, system
developers, healthcare/biomechanics professionals, and most
importantly, the elderly themselves, in the development pro-
cess. By actively engaging all these stakeholders, we can
ensure that the resulting systems effectively address the real
demands of the elderly and cater to their unique needs.

2) PRIVACY-PRESERVING, EXPLAINABLE SYSTEMS
Current skeleton-based fall detection systems depend on
extracting skeleton data from RGB videos. However, these
RGB videos may raise privacy concerns due to the presence
of sensitive personal information, such as identifiable features
like faces and genders. This contrasts with to other fall detec-
tion systems that provide privacy protection [11]. Therefore,
it is crucial to develop a skeleton-based fall detection system
that effectively protects individual privacy. One solution is to
develop privacy-preserving pose estimation methods [185].
In addition, explainability is another factor that should be
considered when developing skeleton-based fall detection
systems that employ DL methods, as discussed in IV-D3.
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This is particularly important to improve user confidence and
acceptance of the developed systems.

3) MULTI-PERSON, MULTI-CAMERA, EXPLAINABLE FALL
DETECTION SYSTEM IN REAL-TIME
The extraction of skeleton data is an essential step in
skeleton-based fall detection methods, but it also increases
the time cost of the system. Therefore, it is crucial to design
the system efficiently to ensure its real-time performance.
In addition, most of the existing methods can detect a fall
event only for a single person from a single camera. However,
in real-life scenarios, especially in surveillance, there may be
multiple people and multiple cameras involved. To address
this, a skeleton-based fall detection system should be able
to detect the fall events for multiple people simultaneously
and make use of the information from multiple cameras to
improve its performance.

F. FALL PREDICTION
The terms ‘‘action recognition’’ and ‘‘action prediction’’ can
be easily confused and have diverse definitions across vari-
ous studies. While action recognition typically refers to the
task of recognizing a human action from a trimmed video
input where the entire action execution is captured from its
beginning to its end, action prediction aims to use incomplete
video input to identify the action, i.e., making inferences
about an action before fully observing its complete execution
[186]. Moreover, action prediction can be categorized into
two subtasks, as outlined in [186]:

• Early action prediction: aims to predict the action in a
trimmed video by observing only a limited number of
initial frames (e.g., 30% of total frames) of the video.

• Long-term action prediction: focus on prediction the
future action based on the observed action. In other
words, given a sequence of action A (which can be
either completed or ongoing), the objective is to pre-
dict the subsequent action B. Risk-based action pre-
diction, as discussed in [187], [188], is a specific type
of long-term action prediction. Its aim is to forecast
an action in advance, with a defined anticipation time
τa before the action takes place. Essentially, the task
involves predicting the action label at time t − τa, given
that the action begins at time stamp t .

Similar to action recognition, fall detection systems typ-
ically take a reactive approach, detecting a fall event only
after it has occurred. Despite accurate fall detection, the
consequences of the fall can be severe, especially for the
elderly. To mitigate this, a promising approach is to predict
falls before they are fully completed (similar to early action
prediction) or, ideally, even before they occur (like risk-based
action prediction). This proactive approach enables timely
intervention to mitigate the negative consequences associated
with falls. For instance, activating safety airbags to protect
critical body parts of the elderly can be implemented when
a fall is predicted to happen [189]. Moreover, risk-based
fall detection becomes even more valuable if falls can be

predicted well in advance, such as over extended periods of
time (e.g., days, weeks). This enables caregivers to prioritize
attention for individuals who are at a higher risk of falling.
An example of this is presented in [190], where the authors
analyze gait parameters to predict the likelihood of falls
occurring within the next three weeks.
Skeleton-based fall prediction remains relatively unex-

plored in the literature, with only a limited number of studies
conducted thus far (e.g., early fall detection as shown in [191],
[192]). As a result, there is significant potential for further
investigation and research in this area.

VI. CONCLUSION
Fall detection is a crucial function in intelligent healthcare
systems, especially for the elderly. Researchers have devel-
oped various methods that use skeleton data extracted from
RGB videos to detect falls.
In this paper, we conducted a comprehensive examination

of skeleton-based fall detection methods. Our analysis cov-
ered the entire system pipeline, including data collection, data
preprocessing, feature extraction, and recognition techniques.
Additionally, we provided a performance comparison of the
reviewed methods on the popular fall detection benchmark
datasets. Moreover, we identified the key challenges faced
in this field and highlighted potential research directions for
future studies.
Through extensive discussions and analysis, this paper

aims to inspire researchers in this field to emphasize the prac-
tical application aspects, such as privacy concerns and detec-
tion speed, of skeleton-based fall detection systems, rather
than focusing solely on the recognition accuracy. We hope
that this paper will serve as a useful reference for researchers
and practitioners in this research domain.
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