IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 24 July 2023, accepted 11 August 2023, date of publication 21 August 2023, date of current version 25 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3307023

==l survey

Automated Application Deployment on
Multi-Access Edge Computing: A Survey

ALVARO SANTOS 12, JORGE BERNARDINO ', (Member, IEEE), AND NOELIA CORREIA"2

!Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, 3030-199 Coimbra, Portugal
2Center for Electronic, Optoelectronic, and Telecommunications (CEOT), University of Algarve, 8005-139 Faro, Portugal

Corresponding author: Alvaro Santos (ans @isec.pt)
This work was supported by the Foundation for Science and Technology (FCT) of Portugal within the Center for Electronics,

Optoelectronics, and Telecommunications (CEOT) under Projects UIDB/00631/2020 CEOT BASE and UIDP/00631/2020
CEOTPROGRAMATICO.

ABSTRACT The advent of technologies such as 5G makes it possible to improve the availability and
quality of existing services and introduce new ones, such as enhanced mobile broadband, IoT applications,
augmented reality, mission-critical services, cloud gaming, or smart infrastructure. It is now possible to get
faster responses to a wide range of requests, but the addition of more users and services can still make
normal operation difficult due to network congestion, bandwidth limitations, scalability issues, service
differentiation, or security concerns. To solve this problem, and to help meet Service Level Agreements
(SLAs), some services must be brought closer to the user. The Multi-access Edge Computing (MEC)
initiative is a step in this direction, enabling cloud-like services to be moved closer to the end user, providing
lower access latencies. However, the dynamic nature of edge computing environments, and the mobility of
users, require the implementation of automated service delivery processes that can adapt to environmental
conditions, such as the use of optimal policies tailored to the scenario. This article surveys the research
focused on MEC:s, particularly those that use automated deployment mechanisms, namely Infrastructure as
Code (IaC) tools. Today, these tools play a key role in automated deployment mechanisms, especially for
maintaining optimal policies, which is still under investigation. The result of this assessment has been the
identification of the relevance of IaC to these processes and the identification of future research directions.

INDEX TERMS Multi-access edge computing, infrastructure as code, automated deployments.

I. INTRODUCTION increasing vulnerability, in addition to being a single point

The cloud offers several essential services for day-to-day
use, including applications, storage, processing in high-
performance systems, Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), Software as a Service (SaaS), Func-
tion as a Service (FaaS), Container as a Service (CaaS), only
to mention some [1], [2], [3], [4], [S]. All of these services
make it possible to increase responsiveness in a wide range
of areas, with applications that are richer in functionality.
However, centralization on the cloud has its drawbacks. One
is latency, which is the time that elapses between the moment
arequest is made and the moment a response is received. Cen-
tralization can also raise some security and privacy concerns,

The associate editor coordinating the review of this manuscript and

approving it for publication was Nurul I. Sarkar

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

of failure, and having lack of transparency and compliance
challenges. Other drawbacks include decontextualization of
data, bandwidth contracts, and reduced overall performance.
These concerns have led to a shift in the opposite direction,
with researchers trying to bring the capabilities of the cloud
closer to the sources of information. It is therefore necessary
for information sources and their customers to have local
access to services similar to those found in cloud datacenters,
known as the edge [4].

The evolution of edge computing offers many benefits.
By reducing the physical distance between data sources
and processing resources, edge computing reduces latency,
improves bandwidth utilization, and increases overall perfor-
mance. This proximity enables faster response times, facil-
itates real-time analytics, and supports bandwidth-intensive

89393

https://orcid.org/0000-0002-4574-1684
https://orcid.org/0000-0001-9660-2011
https://orcid.org/0000-0001-7051-7193
https://orcid.org/0000-0003-2770-8319

IEEE Access

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

applications such as video streaming, immersive virtual real-
ity experiences, and even computationally intensive IoT
devices.

In light of the the above, the European Telecommunica-
tion Standards Institute (ETSI) has proposed a specification
called Multi-access Edge Computing (MEC), which aims to
structure and define a way to implement these micro/mini-
clouds at the edge [6], [7]. Multi-access Edge Computing is
an evolution of Mobile Edge Computing. It recognizes that
devices can be more than just mobile. In this way, MEC is
no longer restricted to the network of the supplier, but can
also be made available at the offices of the customer [8]. This
new form of deployment creates opportunities by offering
new services, new customers, and interoperability between
services and the MEC, while allowing application developers
and content providers to benefit from ultra-low latency, high
bandwidth for Quality of Service (QoS), and both security
and privacy enhancements.

Although providers may choose different strategies and
infrastructures, there are initiatives aimed at standardizing
the models and protocols used, such as O-RAN [9], [10],
from the Open RAN Alliance. This will contribute to
a wider deployment of applications at the edge, reduc-
ing problems associated with high latency, reduced
bandwidth and low throughput, while ensuring Quality
of Service (QoS), information security and Quality of
Experience (QoE) [4], [11], [12].

In view of the constant evolution of systems and customers,
the need for a dynamic approach to MEC implementation
processes is becoming increasingly apparent. To automate the
process of deploying applications and services, there must
be ways to describe the resources (applications, services and
their dependencies) to be installed in each MEC. However,
despite efforts to agree on the forms of implementation,
the way in which the provisioning and deployment descrip-
tion is carried out is highly dependent on existing or future
infrastructures. In this context, Infrastructure as Code (IaC)
tools are particularly important, as they enable the descrip-
tion and automation of the provisioning and deployment
processes without the need for step-by-step manual inter-
vention [13], [14]. The aim of this article is to systematize
knowledge about the automation of application deployment
processes in edge computing environments, and related tech-
nologies, with a particular focus on IaC. To this end, the
following research questions are defined:

RQ1: What methods exist for automating the deployment
of applications in MEC environments?

RQ2: Which laC methodologies are best suited for deploy-
ments in MEC environments?

The remainder of this article is structured as follows.
Section II introduces the MEC concept, cloud services and
the MEC standard defined by ETSI. Section III introduces the
IaC concept and some of the most common IaC tools. Section
IV presents the methodology adopted for related work search.
Future research directions are presented in Section V, while
Section VI concludes the article.

89394

Il. MULTI-ACCESS EDGE COMPUTING
The MEC is a type of network architecture that provides
cloud computing capabilities, and an IT service environ-
ment, at the network edge [15], [16]. Its primary goal is
to bring computing, storage, and network resources closer
to end users and their devices. In doing so, MEC aims to
reduce latency, improve real-time data processing, increase
network efficiency, enable ultra-low latency applications, and
drive innovation in areas such as IoT, Smart Homes, Smart
Cities, Smart Industries, Augmented Reality, and Vehicle-
to-Everything (V2X) communications. Unlike general edge
computing, MEC specifically aims to provide standardized
interfaces and open platforms for deploying and managing
applications at the network edge.

The following subsections provide an introduction to cloud
concepts and the MEC standard defined by ETSI.

A. CLOUD SERVICES

To meet the need for service availability, the cloud is increas-
ingly being used for the provision of services and func-
tionality on a large scale [17], [18], [19]. Depending on
the required level of availability and the relevance of char-
acteristics related to the location, security, and privacy of
information, there are different forms of implementation,
usually framed in public or private clouds. More recently,
hybrid cloud models (complementing private cloud services
with public cloud services) and multi-cloud (using cloud ser-
vices from different service providers) have become increas-
ingly important to make infrastructures more adaptable to
existing needs and services more resilient [5], [20], [21].
In the context of MEC [6], [22], and edge computing [17]
in general, the aim is to bring centralized cloud function-
alities to the edge so that customers can take advantage of
the functionalities while benefiting from response times that
are more appropriate to the characteristics of the services
being implemented [23], [24]. Given the market share of
certain cloud service providers, it is foreseeable that at least
some edge computing environments can be implemented with
systems similar to those used in more traditional clouds,
although adapted to the specifics of edge computing. This
means that services from Amazon Web Services (AWS),
Microsoft Azure, Google Cloud Platform (GCP), Alibaba
Cloud, or open systems such as OpenStack, Kubernetes and
others are expected to be available on the MEC servers.
A discussion of these services can be found in [25], where
an analysis of the characteristics of the most commonly used
cloud services is performed and the existence of support for
edge or on-premises services is confirmed.

B. ETSI STANDARD

In the current context of 5G evolution, bringing cloud
capabilities closer to users will significantly reduce service
access latency. This means that with the appropriate deploy-
ment of applications at the edge, users can benefit from
improved QoE. But there are more advantages than just

VOLUME 11, 2023

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

IEEE Access

latency reduction for the users consuming these services.
By bringing processing and storage capabilities closer to
the user, network congestion can be significantly reduced,
benefiting all users.

However, problems can also arise from over-reliance on
the edge [26]. The storage and processing capabilities at the
edge are much more limited than those offered by the cloud,
and may not be able to satisfy the number of local users
who want to use them. The relevance of using the edge can
also vary depending on the type of application. In [7], three
types of services are identified: enhanced Mobile Broad Band
(eMBB), Ultra Reliability and Low latency Communica-
tions (URLLC), and massive Machine Type Communications
(mMTC). The eMBB applications are characterized by high
bandwidth requirements, for example, video on-demand; the
URLLC applications include applications with low response
time requirements, such as Tactile Internet [27], Interactive
Gaming, Augmented Reality, Virtual Reality, industry or
automotive; and the mMTC services refer to applications that
involve many devices, such as sensors, with low response
time requirements, but not as low as the previous one. How-
ever, mMTC applications can cause limitations due to the
number of devices that generate a large amount of data on
the network.

Defining an architecture that is capable of migrating ser-
vices and applications between the MEC and the cloud,
or between MEC platforms, is critical to its success. Migra-
tion to the cloud may be justified not only by the need to
access higher processing and storage capabilities, but also
by the need to respond to concurrent application requests.
The migration of services between MEC may be justified
if the user has mobility. This may be the case, for exam-
ple, for automotive and intelligent vehicle services, where
it may not make sense to maintain an application in an
MEC whose location or network connections become less
reliable [28], [29].

The ETSI has defined a general architecture [6] for what
a MEC should be, which presented in Figure 1. As shown,
there is a clear need for management modules that allocate
the essential resources to each application and ensure the
functioning of the entire ecosystem. These MEC platforms
are designed to make use of existing resources, some of which
are already being used by operators to build communications
networks. Therefore, opening up these services to customers
cannot jeopardize the functioning of other services.

For the MEC to work properly, there must be services that
enable it, such as:

« Discover network, users, capabilities and local services;

o Manage traffic, DNS, mobility, V2X, etc.;

o Registration of own services and discovery of locally
available third-party services;

o APIs for interoperability between MEC systems and
infrastructure, such as, Network Functions Virtualiza-
tion (NFV) [30] and Software-Defined Networking
(SDN) [31].

VOLUME 11, 2023

IIl. INFRASTRUCTURE AS CODE TOOLS

Cloud implementation solutions can rely on Graphical User
Interfaces (GUI), dashboards, or specific task management
applications, upon the creation of the first instances of ser-
vices, or when production adjustments are needed.. How-
ever, these approaches become impractical when multiple
instances need to be created. These are not suitable for
automating the entire process. For this reason, platforms offer
a Command-Line Interface (CLI) that allows services to be
managed through commands, as well as the creation of sets
of instructions and commands (scripts) for more agile task
repetition.

For more complex and distributed applications, it will
be beneficial to use languages that allow to describe the
infrastructure, platforms, services and applications in a more
abstract way, so that they can adapt to the different environ-
ments available. This is already possible with some tradi-
tional cloud services. These include the IaC or Application
Description Templates, which allow the provisioning and
deployment of applications and services to be described using
scripts or Domain-Specific languages (DSL).

The initiatives and tools to accomplish an automated
deployment are numerous. Among them one can find: Ansi-
ble, CAMEL, Chef, OpenStack Heat (HOT files), Puppet,
Terraform, and TOSCA. These systems do not always work
in the same way or have the same objectives. For exam-
ple, Terraform is a system that is characterized as a tool,
although it has a language for describing the needs and
actions to be taken. On the other hand, the OASIS TOSCA
standard is a declarative language that allows a fairly com-
plete description of the support infrastructures, applications,
services, and all the relationships between the constituent
nodes, in a generic way and adaptable to the environments
in which it is used. When using TOSCA, it is essential to
have systems in the support infrastructure, such as orches-
trators, that will use the descriptions to instantiate and exe-
cute the appropriate actions for the proper functioning of
the service.

The following subsections provide more details on the
above mentioned IaC tools and a comparative analysis of their
characteristics. One of the points to be analyzed is the type
of description, whether it is a more declarative or procedural
approach, usually corresponding to the ability to be more or
less abstract. Another point is the operating model, whether
it includes effective execution tools or depends on other sys-
tems, and whether it runs only locally or follows, for example,
a client-server model. In order for future systems to general-
ize the way descriptions are made, it is important to identify
how the various constituent elements of a deployment are
defined, and how they can be interrelated and ordered for
effective deployment. It will also be important to identify
the support that each tool provides for the post-deployment
operations. In this regard, we intend to determine whether the
tools include mechanisms for monitoring and subsequently
acting on deployments to adapt them to the dynamic realities
in which they will be used.

89395

IEEE Access

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

Mx1
CFS . %
L}
portal Operations Support System 2
M E
Device i User app i]
app M)l(2 LCM proxy Mm1 <+ %
(8]
=
} MEC orchestrator [~
Mm9
<+ Mm2 <+ Mm3
Other +
MEC
Mp3 MEC |
platform service
MEC ©
4 Mp1 Mbp1 - MEC MEC
. | gt (| 322, || e 3
! element reqts cycle -
Service Traffic DNS Mm5 mgmt mgmt mgmt 8
MEC MEC MEC Miles; handling .
A A A control O
PP PP pp MEC platform manager g
MEC platform
=+ Mp2 + Mm6 Mm4 -+
Data plane !
32‘8’ \I/ . p. = tl i Virtualisation infrastructure
irtualisation infrastructure T
host MEC host | Mm7 fanager

FIGURE 1. Multi-access edge system reference architecture [6].

A. ANSIBLE

This tool allows the automation of various processes, such
as provisioning, application deployment, management and
configuration, equipment updates, among others. However,
Ansible can be used to automate any process because it
allows for process descriptions that are not limited to specific
functionalities, enabling interoperability with other tools or
the execution of applications and scripts to extend its capa-
bilities [32].

The specification of processes is done in a procedural way
through YAML. Actions to execute processes are performed
without the need to install any specific services or agents
on client systems (targets), and SSH connections are used to
execute tasks.

For compatibility with existing cloud platforms (e.g.,
AWS, GCP, Azure, OpenStack) and other systems (e.g.,
Cisco network equipment, Juniper, VMware virtualization
systems), modules are available to configure most net-
work services. New modules/scripts can be created (using
e.g., python, ruby, bash) to act on other systems, with
a very active community developing and sharing these
scripts.

Ansible consists of a control node where the YAML pro-
cedures, called playbooks, are executed. There is also an
inventory file that describes the target systems of the actions
(where the scripts are executed). Unlike other systems that
are configured remotely based on existing communication
capabilities, such as a specific API, Ansible is based on local
script execution, which means that instructions are executed
locally on those systems after the script is transferred (e.g.

89396

Linux via SSH). This approach thus avoids the development
and maintenance of APIs (see Figure 2).

The scripts allow the use of variables to pass essential
parameters. For example, the IP address of a database server
can be passed as a parameter to to access databases created
by others. The scripts also allow conditional execution based
on the success or failure of previous commands.

When compared to other tools, Ansible is not concerned
with a more abstract organization of components and how
they relate to each other, making it applicable to smaller
projects. The main goal is to execute scripts that perform a set
of tasks to provide the intended services, and the representa-
tion of a modular composition can be achieved through a good
organization of the scripts. The relationships between the
components should be defined by a correct sequencing of the
execution of operations. Post-implementation management
operations are performed through Ansible scripts triggered
by external monitoring entities or manually by operators.

B. CAMEL

The Cloud Application Modelling and Execution Language
(CAMEL) [33], [34] is a DSL that describes actions for
deploying and managing applications and services at several
levels: where services should be installed, the requirements
to be fulfilled, the scalability methods that can be used,
security configurations, the organization of the components
and also their execution. CAMEL emerged from the PaaSage
project [35]. The main objective of the project was to develop
a multipurpose platform that would help not only in the
design and execution of tasks during the development of

VOLUME 11, 2023

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

IEEE Access

Network Automation compared to servers

02] ob et {53
Module code is
executed locally on the A
control node

Ansible Automation Platform

Local Execution

oct

A

Module code is copied
to the managed node,
executed, then
removed

FIGURE 2. Network automation with Ansible [32].

multi-cloud services, but also in the deployment phase. This is
a very versatile tool, multi-purpose and applicable to projects
of different dimensions.

The DSL CAMEL [36], [37] was developed with several
assumptions in mind: cloud provider independence, sepa-
ration of concerns, reusability, abstraction. As it is only a
language, it does not directly provide ways to implement the
descriptions, so a whole system is needed that takes advantage
of these descriptions to make them effective in the target
systems. In this specific case, the tasks are developed in the
context of the different modules that make up the PaaSage
platform (as shown by the workflow in Figure 3). The plat-
form interprets the descriptions of the desired objectives and
plans how to achieve them. The necessary instructions are
mapped into the existing mechanisms to interact with the
components that support the application, such as servers or
network devices. The main objective of the platform is to
support [aaS models, although other models can be explored
in its context.

In DSL CAMEL, a service is defined in a declarative
way based on a file that describes all its requirements
(system requirements and their dependencies) and policies
too. The definition of the representative model of a ser-
vice includes general information about the service (name,
version, administrators, etc.), the intended model (servers,
services, applications, and their relations/dependencies),
operational requirements, metrics that must be respected,
scaling and localization actions, among others.

All tasks involved in these processes can be adapted
according to metrics collected by the PaaSage system, mean-
ing that there will be a self-adaptive workflow (see Figure 3).

C. CHEF

The Progress Chef, or Chef for short [38], consists of a
set of tools for automating the configuration of servers or
cloud platforms, facilitating the management of the entire
infrastructure of an application, service or company network.
When compared to other tools, the main characteristic of

VOLUME 11, 2023

Ansible Automation Platform

Remote Execution

Network Devices /
API Endpoints

Linux / Windows
Hosts

Chef is that it works with a client/server architecture in
which the server manages and schedules the instructions to
be given to the clients. The clients are Chef agents installed
on systems that will be the targets of the configuration
(e.g. AWS supports Chef) and this operating model allows
the implementation of IaaS or PaaS models. This compart-
mentalized approach allows for more decoupling, parallel
developments in different places, and dealing with larger
projects.

Chef enables the creation of cookbooks of recipes for
the configuration of applications, services or infrastructure
required by an enterprise. Recipes are described in a proce-
dural way using Ruby.

The platform is known as Chef Infra and includes tools
for creating, applying and managing the recipes. In addition
to the tools for creating the recipes, as in the case of the
Chef Workstation shown in Figure 4, there is an essential
entity, the Chef Server, which manages the cookbooks and
the information about the systems (clients) on which the
recipes are applied. The recipes are sent from the server to
the clients, which execute them in the context of an agent, the
Chef Infra Client. This client can periodically check with the
server to see if there are any updates to be applied. Chef has a
supermarket where several recipes are available for the most
common systems.

In addition to recipes, cookbooks can contain attribute
definitions, recipe usage policies, templates for creating more
complex scenarios (e.g., adapting configurations to different
versions of an operating system), and other information. Chef
Infra includes tools and agents for obtaining information
about the status of services, to facilitate the management
of the entire infrastructure. In short, the organization of the
components required for a particular deployment is achieved
through the appropriate structuring of recipes in the context of
cookbooks that contain the set of procedures to be performed.
Template files can be used to define basic recipes, allowing
deployments to be adapted according to a set of input vari-
ables.

89397

IEEE Access

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

Quality of
service
modelling

Provisioning and
deployment
modelling

Provisioning and
deployment
requirements

Service-level

Scalability rules
objectives v

Executionware fe—

l

)

4frastructure><-->

Adapter

CAMEL
Cloud provider-
independent model

Profiler

Constraint

problem Cloud provider-

Reasoner f—b>

specificmodel

Organisation
models

Organisation Provider
modelling modelling

Provider models

/

B B e

Modelling Deployment Execution

phase phase phase
FIGURE 3. CAMEL models in the self-adaptation workflow [37].
D/ @ Q Ccuer CicHer) cHEF
high
Cookstyle Test Kitchen ChefSpec data store search availagbility
:f IJJJ EI CcHer GcHeEr G cHEF
Chef InSpec recipes cookbooks cookbooks supermarket run-list policy
CHEF Chef Server Clients
FIGURE 4. Chef general workflow [39].
D. HEAT E. PUPPET

Heat is the OpenStack module responsible for orchestrating
service deployments [40]. As such, Heat’s scope is lim-
ited to OpenStack. Initially, the descriptions were made as
compatible as possible with the form of description used
in AWS through CloudFormation. This form of description
evolved and gave rise to Heat Orchestration Template (HOT)
files [41], in which the intended behavior is performed declar-
atively. HOT files are described using the YAML language.

Among the various parts that can be configured, emphasis
should be placed on the resources that relate to the actual
services or systems to be installed, and the conditions that can
affect these actions. Within the description of resources, it is
possible to describe the dependencies between them, which
allows the Heat orchestrator to outline a plan of actions to
be taken. Its less abstract and decoupled approach makes this
tool more suitable for projects of limited size, and with a very
specific focus.

Heat runs on the OpenStack platform, which includes mon-
itoring systems (e.g., Ceilometer) that allow triggering the
execution of new models to change those in operation.

89398

Puppet is defined as a tool for automating the process of
installing services and systems [42]. Puppet operates on a
client/server architecture. A server manages the operations
to be performed on the target systems, which is done by
agents installed on these systems. The agent (called facter)
informs the server about the characteristics of the systems
on which it is installed, as well as their status. The server
collects this information in a catalog of services and systems,
which it then uses to act in the most appropriate way, to make
new deployments or adapt existing ones (see Figure 5). The
connections between the client and the server are secured
using SSL.

Service descriptions are done declaratively using Puppet
files (.pp). These descriptions are implemented in Puppet
DSL or Ruby, although the plans that are used by the orches-
trator (called Bolt) can also be implemented in YAML [43].
Puppet files are organized into modules so that they can be
reused. In this context, the Puppet Forge repository [44] is
made available to the community with configurations suitable
for most cloud systems and services on the market.

VOLUME 11, 2023

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

IEEE Access

3. Report 1. Facts 2. Catalog

A

4.Report
Primary Server

FIGURE 5. Puppet operation [45].

Resources can be of various types, including those that are
built-in: package, service, file, user, exec, group, notify. Other
types can be obtained from repositories or automatically
included in certain releases [45]. Definitions allow to specify
requirements for a given resource to be properly deployed,
thus allowing to define dependencies between resources.

F. TERRAFORM

Terraform [46], [47] is classified as an IaC tool that allows
provisioning and deployment in public or private clouds of
computing instances (usually, virtual machines or contain-
ers), storage, networking, or other configuration needs to
make available all the necessary infrastructure for a given
application, falling under IaaS, PaaS and their derivative
models. Terraform is a tool that is simple to install, as there is
no need to install agents on client systems that are the target of
configurations. This tool is primarily designed for the deploy-
ment of services rather than for their ongoing management.
More specifically, when configurations are changed or a new
plan is created, it will be executed taking into account the
previous actions; the new deployment may require a prior
shutdown of services or, in other cases, the use of vendor tools
to make specific changes. In short, the adaptations are not
a straightforward process, being more suitable for long-term
deployments.

The configuration descriptions are in the form of text files
(.t £f). These files can be used multiple times in the same or
different contexts. As text files, they can also be easily shared
and managed through version control systems to facilitate
team development. Once written, the configuration files are
processed by the Terraform Provider, which generates an
application plan according to the platform on which it will be
available and its dependencies.When approved by the user,
the plan is applied, allowing the deployment of the entire
infrastructure.

Terraform currently allows working with more than
1700 providers, available in a Registry service provided by
HashiCorp [48], where the most used public and private
clouds are included (e.g., AWS, Azure, GCP, OpenStack,
VMware, Kubernetes).

The configuration files just mentioned consist in the
declarative representation of the infrastructure with a suc-
cessive specification of blocks, each one representing a
relevant element for the configuration, such as: resource,
variable, provider. The language follows the format defined
by HashiCorp itself, respecting the HCL syntax [49].

VOLUME 11, 2023

Service Template

Node Types

Node Type
Capability Definitions

f Topology Template

~N

' type for

Relationship
Template

Requiremeht Definition:

Relationship Types
Relationship Typ

) \SBDE}JalLH //

) /Properties
——

Properties
——
—

LERLISEMI]

/L

type for

Node
Template

Plans

N\ [

\F/ - 1)
FIGURE 6. Structural elements of a TOSCA 1.0 service template and their
relations [53].

G. TOSCA

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) is an initiative of the Organization
for the Advancement of Structured Information Standards
(OASIS) to define a generic language for describing cloud
services and all the resources and dependencies required for
their deployment [50]. The TOSCA descriptions are made
in a declarative way and aim to be as platform independent
as possible, ensuring portability of applications between sys-
tems.

YAML is used for the descriptions, improving readability
and making the scripts easier to understand. At the time of
writing, the standard is in version 1.3 [51] and version 2 is
in preparation [52]. A TOSCA script is called a service
template and contains all the information necessary to deploy
the applications it describes. A service template may have
dependencies on others to complete its descriptions.

A service template contains generic information (meta-
data) about the deployments, but also allows the definition of
all application details. Element types can be described in an
abstract and reusable way, and then application components
are specified according to these types (see Figure 6).

The above scripts describe the types of nodes that
are considered relevant to the deployment in question.
These types (node_types) correspond to generic and
reusable ways of describing the constituent elements of
the configuration, from which they are concretized to
suit the applications, in the so-called node_templates.
The existing relationships between them are also defined.
For instance, a node corresponding to a database engine
requires a host (machine and OS) on which it will be
installed. In this situation, there is a relationship between
the nodes representing these entities, properly represented
in the TOSCA language by relationship_types and
relationship_templates. It is possible to define
capabilities for descriptions (capability_types), and
also any requirements that nodes or relationships may require.

89399

IEEE Access

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

In the topology_template section, the necessary
instantiations of each type and the concrete relationships
between them (e.g., node_templates, relationship
_templates) are objectively described. Through the inter-
faces associated with each node or relationship, the necessary
mechanisms that can lead to the realization (provisioning,
installation, configuration) of the services in question are
defined and initiated. For example, the actions to be per-
formed when a node is created, started, or stopped.

At this stage, TOSCA is only designed for the deployment
of applications, while their subsequent management is not
a priority. However, in the context of interfaces and policies,
events can be generated at any time that lead to a restructuring
of the deployment, possibly in response to service scaling or
relocation requirements.

Once the service templates have been created, they can be
distributed via a TOSCA Cloud Service ARchive (CSAR)
file, which includes the actual TOSCA descriptions and any
additional resources required for the deployments (these can
be scripts in other formats, virtual machines images, contain-
ers, etc.).

TOSCA emerges due to a lack of standardization in the
way cloud services are operating. In fact, a lack of portabil-
ity can potentially slow down further developments, so the
idea behind the TOSCA standard is to render improvements
in the deployment, termination, and any other management
function of cloud applications. TOSCA provides mechanisms
to describe all the nodes and relationships required for a
deployment, but it does not provide tools to execute the
procedures described in the descriptions. This task is left
to the TOSCA orchestrators, which can be implemented in
a suitable way for each objective. Some orchestrator exam-
ples are: xOpera (implements the TOSCA standard with the
Ansible automation tool where Ansible playbooks can be
used as orchestration actuators within the TOSCA interface
operations) [54], [55], Cloudify (an extension to the TOSCA
descriptions that does not follow the standard exactly) [56],
Ubicity (an orchestrator whose implementation fully respects
the standard) [57], Turandot (an implementation for Kuber-
netes) [58].

H. ANALYSIS OF IaC TOOLS
All the tools described (summarized in Table 1) allow the
representation of suitable configurations for most services,
but in some this is done more concretely while in others it
is done more abstractly. According to [13], the best solution
may be to complement the use of one tool with others. For
instance, xOpera, which is based on TOSCA, uses Ansible to
describe the implementation of TOSCA interface actions.
The languages used to describe deployments vary, although
YAML is used in more systems. Puppet, the oldest of the plat-
forms presented, in its latest versions already allows the use
of YAML in parts of its definition (plans) to make the config-
urations easier. The main difference in terms of descriptions
is that some follow the procedural model, with a predictable

89400

sequence of execution, while others have a declarative model.
Those that follow the declarative model present alternatives
for executing scripts in a more sequential manner, in order to
translate essential steps of service configuration.

Due to the complexity that some applications can reach,
the ability to organize entities in a more abstract way, and to
identify their constituent components can facilitate their def-
inition and subsequent maintenance. TOSCA, as a standard,
is the one that can more accurately translate the complexity of
the system into nodes and their relationships, although there
are ways of doing this in the others. The cases where it may
be more complicated to create a representation that allows the
best visualization of the constituent nodes, their relationships
or dependencies, are those that represent procedural models,
such as Ansible and Chef. In these cases, it is possible to
minimize these problems with a good organization of the
scripts, allowing the separation of the configurations of each
element into autonomous and easily identifiable files.

In declarative models there is always a way of specifying
the dependencies between the various elements. This is a
fundamental point so that the deployment is done correctly,
and is achieved in all of them (e.g., it makes no sense to install
a database engine and then install the operating system on
which it will run).

In the procedural models, the metrics and operating con-
ditions to be verified can be done in the traditional way as
in a programming language (e.g., 1 f, when, or similar).
In the remaining models, there are ways to define them by
specifying the requirements and capabilities of the resources,
following the terms used in the context of TOSCA, but with
similar solutions in the remaining formats (e.g., using of
keywords like constraints,conditions, required,
provided).

In terms of the types of cloud computing services sup-
ported, the tools mentioned allow support for IaaS envi-
ronments and, directly or indirectly, PaaS. In the case of
CAMEL, the documentation assumes that it only fits into the
TaaS model.

All tools support the requirements of the first two phases of
the service lifecycle as defined in the TOSCA 2.0 undergoing
proposal [52]: Day 0 - Service Design (modeling the design
of a solution); and Day 1 - Service Deployment (resource pro-
visioning and service delivery). Regarding the operations for
a post-deployment phase (third phase of the service lifecycle
in TOSCA 2.0, designated by Day 2 - Service Management),
not all tools allow these operations by themselves. Ansible
depends on the existence of an external system (e.g. a mon-
itoring service) that executes the correct scripts. Terraform
also needs an external stimulus to change a deployment, but
it preserves the previous state and the new deployment oper-
ations are planned taking into account the previous state and
the goal. TOSCA includes mechanisms that can be triggered
by external events (policies and notifications), but depends on
the orchestrator implementation and external systems.

Configuration examples for the various IaC tools are avail-
able at: https://github.com/ansualg/laClools-Examples.

VOLUME 11, 2023

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

IEEE Access

TABLE 1. laC tools.

Ansible CAMEL Chef Heat Puppet Terraform TOSCA
Creator AnsibleWorks | EU Project Progress OpenStack Perforce HashiCorp OASIS
Type Procedural Declarative Procedural Declarative Declarative Declarative Declarative
System Model Server and | Server and | Client/Server Server and | Client/Server Server and | IaC only
SSH APIs APIs plugins
TaaS, PaaS TaaS, PaaS TaaS TaaS, PaaS TaaS (mainly) TaaS, PaaS TaaS, PaaS laaS, PaaS
Language (DSL) YAML CAMEL DSL | Ruby YAML Puppet DSL, | HCL YAML
Ruby
Files Playbooks, CAMEL files Cookbooks, HOT files Puppet files Terraform Service templates,
inventory recipes plan CSARs
Component repre- | No! Yes Yes Yes Yes Yes Yes
sentation
Dependencies defi- | No! Yes No! Yes Yes Yes Yes
nition
Configuration No! Yes No! Yes Yes! Yes! Yes
abstraction
Policies or QoS External Yes Yes Yes Yes Yes! Yes
Post-deployment External Yes Yes Yes Yes Yes External
operations

! Programmatically or based on the definition order

IV. RELATED WORK

This section provides an overview of the use of techniques
and technologies related to the automation of application
deployment processes in MEC, including service adaptation
to server overloads, increase in requests, and user or service
mobility. Given the importance of automation processes for
the present work, where the set of IaC tools mentioned in
Section III becomes particularly relevant, a search was con-
ducted on works that mention at least one of these tools.
Authors who give relevance to the IaC tools by referring to
any of them show sensitivity to the importance of automating
the deployment process. The search was carried out in the
main repositories, ACM, IEEE Xplore and Scopus, filtering
as follows:

Terms in metadata, title, abstract, keywords:
“"Multi-access Edge Computing” OR
\\MECI’

At least one IaC:
“Ansible” OR “Chef” OR “CAMEL” OR
“Puppet” OR “Terraform” OR “TOSCA” OR
(“Heat” AND “OpenStack”)

Publication date:
2018.01.01 <date < 2022.12.31

Type:
Peer-reviewed publication

The articles that met the defined criteria are summarized
in Table 2. The contributions analyzed below are intended
to provide valuable insights into the challenges and solu-
tions associated with automating and adapting services in
MEC environments. Understanding the chosen deployment
platform, supporting scaling and migration, monitoring key
characteristics and leveraging key technologies such as SDN,
NFV, Network Slicing or Containers are critical for effi-
cient and dynamic deployments. In addition, the use of IaC
tools plays an important role in automating the deployment
process.

VOLUME 11, 2023

A. APPLICATION DEPLOYMENT

It is envisaged that applications from different clients can
coexist in a MEC and, therefore, operate in isolated envi-
ronments that ensure their security and the security of other
clients. According to ETSI, this can be achieved using Virtual
Machines (VMs). However, deploying a VM is a heavy pro-
cess, with high processing, memory, storage, and bandwidth
requirements. Therefore, a more recent work has considered
lighter deployment solutions based on containers or unikernel
operating systems [79]. The literature tends to focus more on
containers, which are also preferred for implementing Virtual
Network Functions (VNF) due to their light weight, easy
configuration and fast implementation.

Containers are seen as a lighter and more practical solu-
tion when instances are placed at the edge, for end-device
representation. In [59], a container is created for each end-
device (body camera), which is responsible for offloading
tasks from its device. Ansible is used to build a testbed for
the created scenario. In [60] and [61], the benefits associated
with the speed of deployment when transitioning from VMs
to containers are highlighted, in addition to the gains in
flexibility. These works also take advantage of Ansible, but
the authors point out that Ansible is very effective for rapid
prototyping, although not so suitable when high performance
is required. In [62], the transition from VMs to containers is
identified as the best option for 5G services, while [63] points
out containers as a future solution for service migration in
the context of virtual mobile devices, given the improvements
they can bring due to their reduced overload.

Regardless of whether containers or other solutions are
used, there are several works that highlight the improvement
in QoE when processing is placed closer to the client. In [64],
the authors consider three cloud levels when deploying the
application: main-cloud, mini-cloud and micro-cloud. The
main-cloud refers to the traditional cloud located in large
datacenters, the micro-cloud represents the services located at

89401

IEEE Access

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

TABLE 2. Related work.

Work Deployment Processse:aling Migration Monitoring' | SDN | NFV | Slicing IaC Tools Containers
[59] Kubernetes - Stateless c,Lp,j - - - Ansible, Puppet Yes
[60] Docker - Stateful c,l,m,r Yes - - Ansible Yes
[61] Docker - Stateful c,l,m - - - Ansible Yes
[62] 5G-CARMEN - Yes b, 1 Yes Yes Yes? Heat, TOSCA Yes
[63] OpenStack Yes? Yes S Yes Yes - Ansible Yes?
[64] OpenStack Yes? Yes d, 1 Yes? Yes? - Heat -
[65] Docker, VirtualBox Yes Yes b, 1 Yes Yes Yes TOSCA Yes
[66] OpenStack - Yes? b, 1 Yes Yes Yes Heat, TOSCA Yes
[67] OpenStack Yes? Stateless c,h 1r - Yes - TOSCA Yes?
[68] OpenStack - - c 1, - Yes - TOSCA -
[69] Opensatck Yes Yes? e 1,0, - Yes - Heat, TOSCA Yes?
[70] OpenStack Yes Yes b,e, 1, Yes Yes Yes Ansible Yes
[71] Kubernetes, VMware - - b,c,1 Yes Yes Yes TOSCA Yes
[72] OpenStack, Kubernetes Yes Yes? b, 1 Yes Yes Yes? Ansible, Heat, TOSCA Yes
[73] OpenStack, Kubernetes Yes Yes h, 1t Yes Yes Yes TOSCA Yes
[74] Melodic Yes? Yes? c,h,l,mr - VNF Yes CAMEL Yes
[75] OpenStack? - -~ 1 Yes | Yes Yes Heat, TOSCA Yes?
[76] Kubernetes? Yes Yes 1t Yes - - Ansible Yes?
[77] OpenStack Yes Yes Lt Yes Yes - Heat Yes?
[78] OpenStack Yes - c,e,m,0,q,u Yes Yes Yes Heat Yes

!'b - bandwidth, ¢ - CPU load, d - delay, e - execution time, h - throughput, j - hop count, 1 - latency, m - memory, o - cost, p - priority, q - QoE, r - RTT,

s - packet source, t - traffic, u - users or requests
2 lightly mentioned

the edge, close to where they are needed, and the mini-clouds
appear at an intermediate level (at the level of what can
be considered Fog) that allows the aggregation of services
from multiple micro-clouds. The study shows that response
times can be reduced up to half by moving services from
the cloud closer to the customer. OpenStack services were
used to support the test environment, and these services were
orchestrated using OpenStack Heat.

In addition to the choice between using VMs or containers,
deploying applications at the edge requires flexible provision-
ing and organization of network resources so that access to
the provided instances is transparent. Many authors highlight
the use of SDN or NFV for this purpose (see Table 2). Some
work focuses mainly on the benefits of implementing NFV
and SDN services in MEC, individually or together, as in
the case of [65]. The authors conduct a comparative study
to demonstrate the benefits of using containers to deploy
VNF compared to native or virtual machines. For example,
according to the study, the Squid application consumes 16.8%
of CPU when deployed via a VM, compared to 1.25% of CPU
when deployed via containers. The difference in memory
consumption is also significant. When 2GB usage limits were
imposed on both VMs and containers, the VMs used all of the
memory, while the container version used only 93.66MB. The
experiments were carried out using a platform called Light-
MANO, and resources are advertised using TOSCA-based
descriptors via the LightMANO REST interface.

The type of application can also have a strong impact
on the choice of the most appropriate deployment model.
As mentioned above, 5G applications are classified into
the following three groups: eMBB, URLLC and mMTC.
In [66], the authors consider the possibility of deploying
applications in two possible locations depending on their
type: Central Office or Edge. With this in mind, an algorithm

89402

is presented to choose among four possibilities: i) Central
Office only; ii) Edge only; iii) Central Office and Edge in
parallel (according to the level of resource usage); iv) Edge
and Central Office sequentially (first Edge and then Central
Office). The algorithm always starts with the “Central Office
only” model, but depending on the resources available at the
edge, it will offload to one of the other models (opting for
“Edge only” when it has 100% of the available resources).
The following ratios between cloud and edge deployments are
shown: 10:0 for eMBB, 1.5:8.5 for URLLC and 7.8:2.2 for
mMTC. The creation of the test environment was supported
by OpenStack and Heat, but communication control was
performed using OpenStack’s Tacker and TOSCA.

In [67], a fully functional prototype of a MEC is presented,
following the ETSI standards. The prototype was used to
compare the availability of services when using a MEC with
the availability of services when these are placed in the
core of the cloud, in particular considering video streaming
services. From the tests, the authors obtained core-to-edge
and edge-to-core handover times of 73.3s and 29.0s, respec-
tively. These times include the VM activation required to
support the services. The throughput tests, which considered
processing at the edge or core and the level of CPU utilization
required for each, achieved equivalent throughput values for
CPU utilization levels of 20% for the edge and 15% when
forwarding traffic to the core. The authors conclude that there
is still room for improvement. In terms of RTT, the edge
values were around half of those achieved for the cloud when
considering video requests to a server. It was also shown
that the latency introduced by the MEC itself was negligible
and that no losses were detected during handover. In this
work, TOSCA is used as a model to describe the applica-
tions in the MEC. The prototype has been developed using
OpenStack.

VOLUME 11, 2023

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

IEEE Access

OpenStack is also presented in [68] and [69] as a solu-
tion for implementing MEC, through an extension called
Automated Provisioning framework for MEC (APMEC).
Deployments are performed using TOSCA templates, which
are later translated into HOT to be orchestrated by OpenStack
Heat. In this work, the OpenStack Tacker plays a crucial role
in orchestrating the VNF essential for the operation of MEC
services (a MEC service is defined as the combination of a
MEC application and the set of virtualized network functions
essential to its operation). APMEC enables VNF reuse and
can therefore support more user requests. The results show
more than 60% of accepted user requests with 30% lower
routing costs compared to a baseline approach.

In [70], it is proposed to implement IoT applications
by decomposing them into simpler and reusable functions,
which are then made available through NFV. The network
support for this architecture is based on SDN. In this way,
it is intended to simplify the deployment of applications
through an organization called IoT Service Slicing Functions.
This architecture also facilitates the migration of applications
between MEC, as well as scaling operations. Deployment is
done using Ansible playbooks. The work also demonstrates
the difference in performance when deploying using contain-
ers or VMs. The first solution, using Docker, takes three times
longer than the second.

In [71], the concept of slices is also used to allow the
sharing of services provided by the MEC owner to multiple
MEC customers (who in turn provide services to their end-
users). The proposal follows the MEC ETSI definition but
introduces changes to support the deployment of APplication
Slices (APS) based on a set of Application Component Func-
tions (ACF), corresponding to Docker containers running on
Kubernetes.The use of slices for each MEC customer allows
isolation. The authors present a work-in-progress system and
the results show that the increased load of one customer does
not affect the overall service quality of the others. Experi-
ments also show that results can be improved if services can
be shared, rather than identical services from different slices
competing with each other. In this case, the improvement in
latency when accessing services is around 20%. The authors
also point out that MEC APplication Slice Subnets (MAPSS)
can be deployed using TOSCA, although some customization
is required.

The work [72] presents a testbed for SG and MEC environ-
ments based on open-source software is presented. The main
contribution of this work is to gather information on how to
set up testbed environments at zero cost using containers,
Kubernetes and OpenShift, although VM deployment can
also be enabled. Regarding the deployment of applications
and VNEF, it is said that the intention is to use TOSCA, which
will then be translated into OpenStack Heat.

Another model found in the literature for service provi-
sioning is based on private MEC implementations, in order
to ensure lower response times and information privacy. This
is the case of [73], which presents a developed platform,
ECoreCloud, for the provision of 5G network services in

VOLUME 11, 2023

“smartfactory”’ environments using private implementations
of these services or using the infrastructure of the network
operator. The authors explore the possibility of moving phys-
ical machine services associated with the control of fac-
tory equipment to the cloud, in order to make the services
more flexible and take advantage of the cloud. This requires
ensuring that adequate response times can be achieved for
controlling the equipment. Several implementation models
are discussed, from completely private services (for use in
industry) to services shared with the public. It was shown that
services requiring response times of up to 30 ms, could be
handled through the services provided by ECoreCloud with
times below this limit. In this work TOSCA is used to perform
the VNF deployment.

A hybrid model is also explored in [74]. The article com-
pares the RTT and throughput for both private cloud and
hybrid implementation models. The private clouds used were
NorNet Core (consisting of servers distributed across several
universities and research institutions in Norway) and Simula
(an implementation built at the Simula Research Laboratory
based on OpenStack). Hybrid models were set up using Sim-
ula and AWS, and, also, NorNet Core and AWS.

The work [75] focuses on another dimension that should
be taken into account in the deployment of services in MEC,
when the mobility of users leads to the crossing of borders and
the use of roaming services. In these situations, and also when
trying to allocate resources during periods of high demand,
it may be necessary to use techniques normally used in stock
markets to set prices for the use of existing resources. Instead
of relying on prices set by “big providers”, the price is
negotiated between the supplier and the customer. The setting
of usage costs according to supply and demand, as well as
the acquisition of futures and options contracts for the use
of services, as in the stock market, should be a line of price
application to be considered. The authors give an example
where a new episode of a streaming series is released and
rights can be purchased in advance for certain future dates.
Eventually, this acquisition can be canceled by selling the
rights to other interested parties and according to the prices
of the moment. The provision of services may eventually
be automated, and the importance of the existence of tools
(OpenStack Heat and TOSCA are given as examples) for
defining the services to be orchestrated and transferring the
images for later instantiation is mentioned.

B. MIGRATION AND HANDOVER

MEC service relocation is an important application manage-
ment mechanism and is essential to cope with increases in
load on certain servers or to accommodate client mobility.
In general, the overall objective is to ensure service continuity
when systems are moved, while ensuring that usage policies,
QoS and QoE are maintained.

Service migration can be done from the centralized cloud
to the edge, to bring processing closer to customers and
improve QoE, or from the edge to the cloud when there are
not enough resources at the edge to meet demand. In [76],

89403

IEEE Access

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

the authors argue that the transition between the cloud and
the edge should be transparent to the customer. SDN is used
to route traffic to the appropriate application instances at the
edge, or to the cloud when it is no longer appropriate to run
them close to the client. By using SDN, applications can be
made available at the MEC level without any customization.
However, it is necessary to register the application at the
SDN controller level, by specifying its IP and ports. To prove
the viability of the proposal, a testbed is set up using Ansi-
ble to configure the nodes of the virtual network topology.
According to the authors, even with a slow first request, the
transparent approach is still significantly faster than any non-
transparent solution that requires redirection via the cloud.

In [59], two different ways of deciding on service migration
are considered: centralized and decentralized. The centralized
decision takes into account data collected globally from the
whole system. The decentralized decision is made by the edge
devices based on the information exchanged between them.
The QoS values evaluated were the CPU load, the priority of
the task, its security level, or the number of hops between the
end device and a candidate edge device, which reflects the
path length and thus the latency. However, in such work, only
the centralized version is used and only stateless applications
are considered for the tests, i.e., the authors only consider
migrations where it is not necessary to secure the execution
state between the instantiations running at different edge
locations. A testbed using Ansible was set up to perform the
tests. The possibility of using Puppet to perform the deploy-
ment during load balancing operations is also mentioned.
Simplified migration tests were carried out, simulating the
failure of an edge device. Relatively low transfer values were
obtained, measured from the time of failure in one system to
the time of availability in another. However, the tests do not
take into account the need for software or data transfer.

In [60] and [61], the authors propose an extension to the
ETSIMEC [6] definition using container migration technolo-
gies, which is much easier and faster than VM migration.
The differences between stateful and stateless migration are
discussed, and it is pointed out that in stateful migration
the protection and recovery of the so-called “‘user context”
should be the responsibility of the application. The appli-
cation is the one that knows what the transition of the user
context between deployments in different hosts or MEC
means. To make the whole process more flexible, it is pro-
posed to store the state in a container, which will facilitate its
transfer between MEC. The migration consists of two phases:
the transfer of the application and the transfer of the “user
context”’, both based on the migration of containers. In tests,
migration processes of about 11 seconds with a stop time of
3 seconds were achieved. The test environment was set up and
controlled using Ansible.

There are works, such as [63], that also assume the sepa-
ration of data storage and processing locations. In this case,
the data is centralized (although the existence of a local
repository synchronized with the global one is foreseen),
and its immediate transfer is not required. Migration needs

89404

are detected when requests for the same device appear from
different routes. This work uses VMs, but the authors mention
the need for containers to speed up migrations. Ansible is
used to deploy and start the images at the new location.
Processing is maintained in the old system while the new
one is prepared in the new location. When the new image is
available the processing is redirected using SDN. Tests show
that using an SDN controller at the cloud results in migration
times of 24 ms, while placing the controller at the edge results
in migration times of 2 ms.

In situations of high mobility, such as in V2X environ-
ments, the existence of more efficient migration processes
becomes even more important. In [62], the migration prob-
lem is studied for situations where the vehicles cross, for
example, the borders between countries. Given the nature of
the vehicles, migration is done in advance by deploying the
necessary VNF in the MEC that is expected to be selected,
using the movement of the vehicle as a reference. This work
distinguishes between stateful and stateless migrations. How-
ever, the stateless solution was considered more suitable for
implementation, given the huge diversity of domains to be
reconciled by the management platform, to maintain conti-
nuity of service with low latency, making this management
difficult. For this reason, this work also considers the main-
tenance of the VNF in the previous MEC, transferring only
those that are considered more relevant. In the context of
the project under development the authors indicate the use
of TOSCA, YANG or OpenStack Heat (HOT files) for the
orchestration of the solutions they intend to implement.

The study in [67] tested the handover of video services
between the cloud and the edge, and no loss of service was
detected. The time between the handover request and the time
when the service is fully instantiated and delivering content
was measured. This cloud-to-edge handover time was more
than twice the edge-to-cloud time, but the tests performed
didn’t require any state transfer, which facilitates handover
operations.

In [77], the provision of Content Delivery Network (CDN)
services is studied, in the particular case of service provision
when users are traveling on a train. The goal is to provide
the service close to the user, but in the context of the work
the location is quite variable. The system includes a mon-
itoring module that makes it possible to know the current
location and predict the future location based on the type
of the transport. In this case there is no need to migrate
applications, as the authors mention that the applications are
already available in the MEC. Only the need to have the
content (video) available according to the variable location of
the users is considered. The results show a 10.9% reduction
in network core load, while achieving a cache hit ratio of
99.8% (avoiding the need to fetch from central servers).
These cache utilization levels were achieved as the number of
users increased, and considering a small number of videos to
watch (10 videos, for a total of 6.8 GB).The implementation
of the testbed included the use of OpenStack Heat. SDN is
used to redirect traffic to the appropriate MEC.

VOLUME 11, 2023

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

IEEE Access

C. SCALING

The need to satisfy adequate QoE levels requires permanent
monitoring of services. Increases in RTT values can be the
result of increased latency due to mobility of client devices,
as discussed in Subsection IV-B, but they can also be the
result of an increase in load on servers. This increase can
be due to several factors, such as an excess of available
applications (possibly from multiple clients), but it can also
be an internal application problem, or too many users. Scaling
operations are essential to deal with these cases, and improve
user QoE.

A CDN architecture, to be used by video streaming ser-
vice providers, is proposed in [78]. This proposal takes into
account what is known as CDN slicing. In this work, the
systems are monitored to respond to overload due to an
increase in the number of users, and the load on CPU, RAM
and storage is taken into account. Two possible solutions are
mentioned: vertical scaling and horizontal scaling. Vertical
scaling corresponds to an increase in capacity (CPU, RAM,
...), while horizontal scaling corresponds to an increase in
the number of instances (requiring load balancing systems
for proper operation). In this work, the authors focus on
vertical scaling. When an overload is detected, a new VM
with more capacity is started while the previous one remains
running. Only when the VM with more capacity is available
will it start to provide the services, discarding the previous
one. The algorithm also considers scaling down, when fewer
resources are needed, making it possible to reduce processing
capacity and opt for a more economical solution. OpenStack
Heat is used to set up the test environment for evaluating the
algorithm, and the tests performed show that it is possible to
reduce the periods during which the user is exposed to low
levels of QOE, as scaling up is performed as soon as a drop in
QOE is detected.

An algorithm for the scaling of IoT services is presented
in [70], whose implementation is done using IoT Service
Slice Functions. These functions result from the decom-
position of more complex services into simpler functions,
implemented using VNF available in MEC and reusable
between IoT devices. This makes the process of scaling some
of these simplified functions easier.

D. DISCUSSION
The works presented address many of the difficulties that can
arise when deploying applications in MEC. The motivations
mentioned for deploying services at the edge, and in particu-
lar in MEC, include the need to reduce latency and improve
user QoE. The preference for more flexible solutions is high-
lighted, and here the use of container-based deployments is
repeatedly mentioned as a lighter and more flexible solution.
VM-based deployments are perceived to be heavier and more
time-consuming, making not only the deployment task but
also the migration of services or scaling tasks more difficult.
Scaling operations are already common when adapting
services to the demand, whether in the cloud, at the edge or

VOLUME 11, 2023

on-premises, but now service migration is becoming partic-
ularly important in the context of edge deployments. Given
the high mobility of users, it will be necessary to adapt
the availability of services to maintain satisfaction levels.
Mechanisms to implement service migration between MEC
may also be required to achieve better QoS and QoE.

Depending on the services to be provided, different solu-
tions are considered. In situations where the evolution of the
user’s location is predictable, as well as the content that will
be required (e.g., video on demand), the necessary resources
can be provided in advance. There are scenarios, considered
in some works, where users may not benefit significantly
from moving services to the edge, or the gains are relatively
small. Migrating services between MEC to meet SLAS, poli-
cies, QoS or QoE requirements can involve heavy processes.
The works analyzed mention stateful migrations, where the
state of the application has to be transferred, and stateless
migrations, where the state does not have to be transferred.
In some works, the stateless option was chosen for the first
prototype tests because it was considered to be easier to
implement, but it will certainly not be a reality in most cases.
In the works where stateful migration is mentioned, the option
for defining user contexts based on containers appears to
be the most reasonable. Migrating an entire VM, including
its entire service state, will result in increased transfer and
repositioning times in the target systems, which will affect
the QoE of using these services. In situations where even a
container-based solution is too heavy to meet service conti-
nuity requirements, it may be necessary to plan the transition
to minimize service downtime as much as possible. One
possible solution is to continue to provide the service from
the old site until the new site is fully prepared. Another
solution is to separate the state and data from the applications
themselves, with the data possibly at a location other than
the application site. The use of synchronization mechanisms
with cloud services from the current/old site to the new site
is also presented as a possibility. In any case, it is possible to
verify through the works that the existence of smaller states
and applications facilitates this task. In this sense, there are
approaches based on the concatenation of smaller functions
(VNF) that could facilitate all these processes. The scaling
operations will also be easier in this situation.

In MEC, multiple applications with different requirements
will certainly coexist, but it is essential that they do not
interfere with each other or affect the overall use of the ser-
vices. Some works point to slicing techniques as an important
contribution to isolate applications or to share MEC resources
between them.

Automation of the deployment, scaling and migration pro-
cesses will be essential and IaC tools will certainly play
a fundamental role. In the articles reviewed, the IaC tools
traditionally used for deploying applications and services in
the cloud were also used for the deployment in the different
service delivery models: at the edge, on-premises or in hybrid
models. The analyzed articles mention the use of IaC to set
up the test environments, as well as a means of transferring

89405

IEEE Access

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

the configurations to be performed in the target systems (e.g.,
in the case of service migration). In the case of stateless
migrations, the use of descriptive ways to indicate the config-
urations (to be made in the systems) allows the process to be
simplified, with TOSCA being mentioned several times as the
most abstract and generic model to cope with the heterogene-
ity and interoperability of the systems. Although TOSCA is a
standard, its practical use is not yet widespread, as Ansible is
often used as a tool for automating the installation of systems.

Monitoring resource usage at the edge is also quite rele-
vant. In addition to service response times, the articles also
analyze the load levels reached by the CPU and memory
usage. With regard to response times, it is mentioned that
comparative time monitoring between different solutions is
carried out in order to select those that offer an appropriate
level for the services to be provided.

From the works analyzed, it is possible to draw some
conclusions about the research questions presented:

o RQI1: What methods exist for automating the deployment
of applications in MEC environments?
It is possible to verify that the automation of applica-
tion deployment processes in MEC follows the same
principles used for deployment in the cloud. However,
the emphasis is on the need to make the processes
lighter and more agile, taking into account the more
limited resources at the edge, as well as the nature of
the users, whose mobility requires greater dynamism
and adaptation of the processes performed. For example,
it highlights the option of deployments based on simpler
VNF or containers rather than VMs, or the option of
slicing techniques to help isolate applications that may
share the same resources.

e RQ2: Which IaC methodologies are best suited for
deployments in MEC environments?
The reviewed articles consider IaC tools to automate
deployment processes, and testbeds have been built to
assess the validity of the proposals. The references used
did not highlight the need for modifications when adapt-
ing them to MEC environments. Furthermore, the use of
IaC (in particular those that allow a more generic and
adaptable description) is identified to as an essential tool
to enable deployments in different MEC systems.

V. FUTURE RESEARCH DIRECTIONS
The deployment of services in the MEC is intended to
improve user QoE, but there are challenges that arise and need
to be addressed so that the quality is not compromised. Some
tasks related to application deployment, application migra-
tion between different points of the network, and service
scaling to cope with variable usage intensities, were identified
as research issues, and the following future research direc-
tions can be outlined:
o Modular and distributed applications for dynamic

systems

The use of shared and dynamic systems, such as

those envisaged for MEC, will benefit from simpler

89406

and modularly organized applications, such as micro-
services [80], which allow only the essential to be
executed at any given time, and freeing resources for
use by other applications. The decomposition of appli-
cations into simpler, reusable modules allows them to
be delivered to their users in a more reliable and dis-
tributed way. This way an application can run in a
distributed manner, with modules available and used
in different locations in the cloud, at the edge or on-
premises. As the user moves between locations, modules
can be made available more quickly, closer to where
they are needed. However, between the time one module
starts processing information and the time it is sent to the
next module, the latter may have changed its location
on the network, or an alternative module may have been
assigned. Appropriate techniques are needed to address
these issues.

« Support for the creation of dynamic mashups based
on RESTful paradigm
Distributed applications benefit from effective ways
to connect their different modules, allowing for flexi-
ble application deployments. Distributing an application
across multiple network points requires the ability to
transfer state or data between modules. The output of
one or more modules becomes the input of others. When
using RESTful architectures, the state or results pro-
duced by one module can be directly transferred to
another module defined in the execution plan, reducing
the problems of state management and maintenance,
particularly in mobile systems. To simplify the process
of service discovery and certification of the modules
used, the establishment of appropriate connections may
be supported by more centralized service registries or
may rely on the use of SDN, which allows traffic to
be redirected to the appropriate locations. This type of
implementation creates dynamic pipelines between the
different modules, and these must be planned properly.

o Mashup optimization
The way in which these processes would be carried out
needs to be optimized so that applications do not lose
reasonable levels of QoE and comply with contractual
policies. Given the load that MEC can experience, it is
important to continually optimize services as demand
evolves or requirements are not met.

VI. CONCLUSION

This survey reviews existing research on MEC and the use of
IaC as a mechanism for automated deployment. The improve-
ments in QoE, QoS and SLA compliance that the MEC can
provide are discussed, and key considerations are highlighted.
The core features of IaC tools for automating the deployment
processes and adapting them to the target systems, given
the dynamic nature of these processes, are also emphasized.
However, the variability of this process and the use of shared
resources require special attention to ensure that global ser-
vice quality levels are not compromised. Dynamic adaptation

VOLUME 11, 2023

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

IEEE Access

of deployments, migration processes to support user mobility,
and scaling techniques to accommodate varying number of
users, become essential considerations. Therefore, the imple-
mentation of deployment optimization techniques is expected
to play a critical role in advancing this field.

REFERENCES

[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

A. Puliafito, G. Tricomi, A. Zafeiropoulos, and S. Papavassiliou, ““Smart
cities of the future as cyber physical systems: Challenges and enabling
technologies,” Sensors, vol. 21, no. 10, pp. 1-25, 2021.

H. Rajaei and F. Mirzaei, “IoT, smart homes, and zigbee simulation,”
Simul. Ser., vol. 50, no. 3, pp. 77-86, 2018.

R. Amadio, A. Isgandarova, and D. Mazzei, “Building a taxonomony
of industry 4.0 needs and enabling technologies,” EasyChair Preprint,
2021, no. 5621. [Online]. Available: https://easychair.org/publications/
preprint/WJtF

S. Hamdan, M. Ayyash, and S. Almajali, “Edge-computing architectures
for applications: A survey,” Sensors, vol. 20, no. 22, pp. 1-52, 2020.

R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan, and
B. Varghese, “A manifesto for future generation cloud computing:
Research directions for the next decade,” ACM Comput. Surv., vol. 51,
no. 5, pp. 1-12, 2019.

Multi-Access Edge Computing (MEC); Framework and Reference Archi-
tecture, Standard GS MEC 003, ETSI, 2022.

Cloud RAN and MEC: A Perfect Pairing, Standard 23, ETSI, 2018.

X. Li, C. Guimardes, G. Landi, J. Brenes, J. Mangues-Bafalluy,
J. Baranda, D. Corujo, V. Cunha, J. Fonseca, J. Alegria, A. Z. Orive,
J. Ordonez-Lucena, P. Iovanna, C. J. Bernardos, A. Mourad, and
X. Costa-Pérez, ‘““Multi-domain solutions for the deployment of private 5G
networks,” IEEE Access, vol. 9, pp. 106865-106884, 2021.

ORAN Alliance. (2021). O-RAN Minimum Viable Plan and Acceleration
Towards Commercialization. Accessed: Feb. 6, 2023. [Online]. Available:
https://www.o-ran.org

ORAN Alliance. (2020). O-RAN Use Cases and Deployment Scenarios:
Towards Open and Smart RAN. Accessed: Feb. 6, 2023. [Online]. Avail-
able: https://www.o-ran.org/resources

M. Varela, L. Skorin-Kapov, and T. Ebrahimi, “Quality of service ver-
sus quality of experience,” in Quality of Experience (T-Labs Series
in Telecommunication Services), S. Moller and A. Raake, Eds. Cham,
Switzerland: Springer, 2014, pp. 85-96.

D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang, “Quality-of-
service in cloud computing: Modeling techniques and their applications,”
J. Internet Services Appl., vol. 5, no. 1, pp. 1-17, Dec. 2014.

G. N. Nedeltcheva, A. De La Fuente Ruiz, L. O. E. Arrieta, N. Bat, and
L. Blasi, “Towards supporting the generation of infrastructure as code
through modelling approaches—Systematic literature review,” in Proc.
IEEE 19th Int. Conf. Softw. Archit. Companion (ICSA-C), Mar. 2022,
pp. 210-217.

E. Chirivella-Perez, J. M. A. Calero, Q. Wang, and J. Gutiérrez-Aguado,
“Orchestration architecture for automatic deployment of 5G services from
bare metal in mobile edge computing infrastructure,” Wireless Commun.
Mobile Comput., vol. 2018, pp. 1-18, Nov. 2018.

ETSI MEC: An Introduction, ETSI, Sophia Antipolis, France, 2022.

Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “ETSI white
paper #11 mobile edge computing—A key technology towards 5G,”” Eur.
Telecommun. Standards Inst., Sophia Antipolis, France, Tech. Rep., 11,
2015.

J. Wiersma, “Cloud and edge computing,” in Data Center Handbook.
Hoboken, NJ, USA: Wiley, 2021.

J. Guerreiro, L. Rodrigues, and N. Correia, “Allocation of resources in
SAaaS clouds managing thing mashups,” IEEE Trans. Netw. Service Man-
age., vol. 17, no. 3, pp. 1597-1609, Sep. 2020.

J. Guerreiro, L. Rodrigues, and N. Correia, ‘‘Resource allocation model for
sensor clouds under the sensing as a service paradigm,” Computers, vol. 8,
no. 1, p. 18, Feb. 2019.

K. M. Giannoutakis, M. Spanopoulos-Karalexidis, C. K. F. Papadopoulos,
and D. Tzovaras, “Next generation cloud architectures,” in The Cloud-to-
Thing Continuum: Opportunities and Challenges in Cloud, Fog and Edge
Computing, T. Lynn, J. G. Mooney, B. Lee, and P. T. Endo, Eds. Cham,
Switzerland: Springer, 2020.

M. A. Calles, Serverless Security: Understand, Assess, and Implement
Secure and Reliable Applications in AWS, Microsoft Azure, and Google
Cloud. New York, NY, USA: Apress, 2020.

VOLUME 11, 2023

(22]

(23]

(24]

(25]

(26]

(27]

(28]
(29]
(30]
(31]
(32]

(33]

(34]

(35]

(36]

(371

(38]
(39]
[40]

(41]

[42]

[43]

[44]
[45]
[46]
[47]
(48]

[49]

[50]

R. Zhu, L. Liu, H. Song, and M. Ma, “Multi-access edge computing
enabled and novel applications,” Neural Comput. Appl., vol. 32, no. 19,
pp. 15313-15316, Oct. 2020.

B. Attanasio, A. Mazayev, S. D. Plessis, and N. Correia, “Cognitive load
balancing approach for 6G MEC serving IoT mashups,” Mathematics,
vol. 10, no. 1, p. 101, Dec. 2021.

Z.Wen, K. Yang, X. Liu, S. Li, and J. Zou, “Joint offloading and computing
design in wireless powered mobile-edge computing systems with full-
duplex relaying,” IEEE Access, vol. 6, pp. 72786-72795, 2018.

A. Santos, N. Correia, and J. Bernardino, “On the suitability of cloud
models for MEC deployment purposes,” in Proc. 6th Exp. Int. Conf., 2023,
pp. 1-12.

F. Spinelli and V. Mancuso, ‘“Toward enabled industrial verticals in 5G:
A survey on MEC-based approaches to provisioning and flexibility,”
IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 596-630, Ist Quart.,
2021.

S. K. Sharma, I. Woungang, A. Anpalagan, and S. Chatzinotas, “Toward
tactile internet in beyond 5G era: Recent advances, current issues, and
future directions,” IEEE Access, vol. 8, pp. 56948-56991, 2020.
Multi-Access Edge Computing (MEC): Study on Inter-MEC Systems and
MEC-Cloud Systems Coordination, Standard MEC 035, ETSI, 2021.
ETSIL. Application Mobility Service API. Accessed: Feb. 26, 2023.
[Online]. Available: https://forge.etsi.org/rep/mec/gs021-amsi-api
Network Functions Virtualisation (NFV). Architectural Framework,
Standard GS NFV 002, ETSI, 2005.

G. Lee, “Software-defined networking,” in Cloud Networking, G. Lee, Ed.
Boston, MA, USA: Morgan Kaufmann, 2014.

Red Hat. RedHat Ansible—Automation for Everyone. Accessed: Feb. 26,
2023. [Online]. Available: https://ansible.com

PaaSage Consortium. Cloud Application Modelling and Execution
Language (CAMEL). Accessed: Feb. 26, 2023. [Online]. Available:
https://camel-dsl.org/

A. P. Achilleos, K. Kritikos, A. Rossini, G. M. Kapitsaki, J. Domaschka,
M. Orzechowski, D. Seybold, F. Griesinger, N. Nikolov, D. Romero, and
G. A. Papadopoulos, “The cloud application modelling and execution
language,” J. Cloud Comput., vol. 8, no. 1, p. 20, Dec. 2019.

PaaSage Consortium. PaaSage. [Online]. Available: https://paasage.
ercim.eu/

K. Kritikos, J. Domaschka, and A. Rossini, “SRL: A scalability rule
language for multi-cloud environments,” in Proc. IEEE 6th Int. Conf.
Cloud Comput. Technol. Sci., Dec. 2014, pp. 1-9.

A. Rossini, K. Kritikos, N. Nikolov, J. Domaschka, F. Griesinger, and
D. Seybold. (Dec. 2016). CAMEL Documentation. PaaSage Consortium.
[Online]. Available: https://gitlab.ow2.org/paasage/camel/raw/master/
documents/CAMELDocumentation.pdf

Progress. Chef Software DevOps Automation Solutions. Accessed: Feb. 26,
2023. [Online]. Available: https://www.chef.io/

Progress. Chef Documentation. Accessed: Feb. 26, 2023. [Online]. Avail-
able: https://docs.chef.io/

OpenStack. Heat Documentation. Accessed: Feb. 26, 2023. [Online].
Available: https://docs.openstack.org/heat/latest/

OpenStack. Heat Orchestration Template (HOT) Guide. Accessed: Feb. 26,
2023. [Online]. Available: https://docs.openstack.org/heat/latest/template_
guide/hot_guide.html

Perforce. Puppet—Infrastructure & IT Automation at Scale.
Accessed: Feb. 26, 2023. [Online]. Available: http://www.puppet.com
Perforce. Writing Plans in YAML. Accessed: Feb. 26, 2023. [Online].
Available: https://www.puppet.com/docs/bolt/latest/writing_yaml_plans.
html

Perforce. Puppet Forge. Accessed: Feb. 26, 2023. [Online]. Available:
https://forge.puppet.com/

Perforce. Puppet Overview. Accessed: Feb. 26, 2023. [Online]. Available:
https://www.puppet.com/docs/puppet/7/puppet_overview.html
HashiCorp. Automate Infrastructure on Any Cloud With Terraform.
Accessed: Feb. 27, 2023. [Online]. Available: https://www.terraform.io/
HashiCorp. What is Terraform? Accessed: Feb. 27, 2023. [Online]. Avail-
able: https://developer.hashicorp.com/terraform/intro

HashiCorp. Terraform Registry. Accessed: Feb. 27, 2023. [Online]. Avail-
able: https://registry.terraform.io/

HashiCorp. HCL Native Syntax Specification. Accessed: Feb. 27,
2023. [Online]. Available: https://github.com/hashicorp/hcl/blob/main/
hclsyntax/spec.md

OASIS. OASIS Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) TC. Accessed: Feb. 27, 2023. [Online]. Available:
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

89407

IEEE Access

A. Santos et al.: Automated Application Deployment on Multi-Access Edge Computing: A Survey

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

TOSCA Simple Profile in YAML Version 1.3, Org. Adv. Struct. Inf. Stan-
dards, Woburn, MA, USA, 2020.

OASIS. (Jan. 2023). TOSCA Version 2.0 Committee Specification
Draft 05. Organization for the Advancement of Structured Information
Standards. [Online]. Available: https://docs.oasis-open.org/tosca/TOSCA/
v2.0/TOSCA-v2.0.html

TOSCA—Topology and Orchestration Specification for Cloud Applica-
tions Version 1.0, Org. Adv. Struct. Inf. Standards, Woburn, MA, USA,
2013.

XLAB. xOpera. Accessed: Feb. 27, 2023.
https://github.com/xlab-si/xopera-opera

XLAB. xOpera Documentation. Accessed: Feb. 27, 2023. [Online]. Avail-
able: https://xlab-si.github.io/xopera-docs/

Cloudify. Cloudify DevOps Automation & Orchestration Platform.
Accessed: Feb. 27, 2023. [Online]. Available: https://cloudify.co/

Ubicity Co. Ubicity Orchestrator. Accessed: Feb. 27, 2023. [Online].
Available: http://www.ubicity.com/products.html

T. Liron and P. Jordan. Turandot. Accessed: Feb. 27, 2023. [Online].
Available: https://github.com/tliron/turandot

D. Fraunholz, R. Schorghofer-Vrinssen, H. Konig, W. Miihlbauer, and
R. Zahoranksy, ‘“Mobility-enabling edge cloud infrastructure: Testbed
and experimental evaluation,” in Proc. IEEE Cloud Summit, Oct. 2021,
pp. 19-24.

F. Barbarulo, C. Puliafito, A. Virdis, and E. Mingozzi, “Enabling appli-
cation relocation in ETSI MEC: A container-migration approach,” in
Proc. IEEE 33rd Annu. Int. Symp. Pers., Indoor Mobile Radio Commun.
(PIMRC), Sep. 2022, pp. 1-6.

F. Barbarulo, C. Puliafito, A. Virdis, and E. Mingozzi, “Extending ETSI
MEC towards stateful application relocation based on container migra-
tion,” in Proc. IEEE 23rd Int. Symp. World Wireless, Mobile Multimedia
Netw. (WoWMoM), Jun. 2022, pp. 367-376.

N. Slamnik-Krijestorac, H. C. C. de Resende, C. Donato, S. Latré,
R. Riggio, and J. Marquez-Barja, ‘“Leveraging mobile edge computing to
improve vehicular communications,” in Proc. IEEE 17th Annu. Consum.
Commun. Netw. Conf. (CCNC), Jan. 2020, pp. 1-4.

J. Santa, J. Ortiz, P. J. Fernandez, M. Luis, C. Gomes, J. Oliveira,
D. Gomes, R. Sanchez-Iborra, S. Sargento, and A. F. Skarmeta,
“MIGRATE: Mobile device virtualisation through state transfer,” IEEE
Access, vol. 8, pp. 25848-25862, 2020.

M. M. A. Muthanna, V. Nikolayevich, A. Volkov, and K. Abdukodir,
“Approaches for multi-tier cloud structure management,” in Proc. 11th
Int. Congr. Ultra Modern Telecommun. Control Syst. Workshops (ICUMT),
Oct. 2019, pp. 1-7.

R. Riggio, S. N. Khan, T. Subramanya, I. G. B. Yahia, and D. Lopez,
“LightMANO: Converging NFV and SDN at the edges of the network,”
in Proc. IEEE/IFIP Netw. Oper. Manage. Symp., Apr. 2018, pp. 1-9.
H.-T. Chien, Y.-D. Lin, C.-L. Lai, and C.-T. Wang, “End-to-end slic-
ing with optimized communication and computing resource allocation
in multi-tenant 5G systems,” IEEE Trans. Veh. Technol., vol. 69, no. 2,
pp. 2079-2091, Feb. 2020.

C. Parada, F. Fontes, C. Marques, V. Cunha, and C. Leitdo, “Multi-access
edge computing: A 5G technology,” in Proc. Eur. Conf. Netw. Commun.
(EuCNC), Jun. 2018, pp. 277-279.

T. Doan-Van, A. Kropp, G. T. Nguyen, H. Salah, and F. H. P. Fitzek,
“Programmable first: Automated orchestration between MEC and NFV
platforms,” in Proc. 16th IEEE Annu. Consum. Commun. Netw. Conf.
(CCNC), Jan. 2019, pp. 1-2.

T. V. Doan, A. Kropp, G. T. Nguyen, H. Salah, and F. Frank, ‘“Reusing
sub-chains of network functions to support MEC services,” in Proc. IEEE
Symp. Comput. Commun. (ISCC), Jun. 2019, pp. 1-8.

L. Nkenyereye, J. Hwang, Q.-V. Pham, and J. Song, “Virtual IoT service
slice functions for multiaccess edge computing platform,” IEEE Internet
Things J., vol. 8, no. 14, pp. 11233-11248, Jul. 2021.

S. Bolettieri, D. T. Bui, and R. Bruno, “Towards end-to-end applica-
tion slicing in multi-access edge computing systems: Architecture dis-
cussion and proof-of-concept,” Future Gener. Comput. Syst., vol. 136,
pp. 110-127, Nov. 2022.

L. T. Bolivar, C. Tselios, D. Mellado Area, and G. Tsolis, “On the
deployment of an open-source, 5G-aware evaluation testbed,” in Proc.
6th IEEE Int. Conf. Mobile Cloud Comput., Services, Eng. (MobileCloud),
Mar. 2018, pp. 51-58.

M.-Y. Wu, J.-C. Huang, Y.-M. Hung, C.-Y. Chien, J. S. Luo, and
S.-P. Liang, “The edge cloud implementation and application of transna-
tional smart factory of 5G private network,” in Proc. 23rd Asia—Pacific
Netw. Operations Manage. Symp. (APNOMS), Sep. 2022, pp. 1-6.

[Online]. Available:

89408

(74]

(751

[76]

(771

(78]

[79]

(80]

T. Dreibholz, S. Mazumdar, F. Zahid, A. Taherkordi, and E. G. Gran,
“Mobile edge as part of the multi-cloud ecosystem: A performance study,”
in Proc. 27th Euromicro Int. Conf. Parallel, Distrib. Network-Based Pro-
cess. (PDP), Feb. 2019, pp. 59-66.

A. Leiter and L. Bokor, “A study on use cases and business aspects of
cloud stock exchange,” in Proc. Int. Conf. Inf. Netw. (ICOIN), Jan. 2020,
pp. 732-737.

J. Hammer and H. Hellwagner, “Efficient transparent access to 5G edge
services,” in Proc. IEEE 8th Int. Conf. Netw. Softwarization (NetSoft),
Jun. 2022, pp. 91-96.

D. Santos, R. Silva, D. Corujo, R. L. Aguiar, and B. Parreira, ‘“Follow the
user: A framework for dynamically placing content using 5G-enablers,”
IEEE Access, vol. 9, pp. 14688-14709, 2021.

T. Taleb, P. A. Frangoudis, I. Benkacem, and A. Ksentini, “CDN slicing
over a multi-domain edge cloud,” IEEE Trans. Mobile Comput., vol. 19,
no. 9, pp. 2010-2027, Sep. 2020.

Study on MEC Support for Alternative Virtualization Technologies,
Standard GR MEC 027, ETSI, 2019.

L. Roda-Sanchez, C. Garrido-Hidalgo, F. Royo, J. L. Maté-Gémez,
T. Olivares, and A. Fernandez-Caballero, “Cloud-edge microservices
architecture and service orchestration: An integral solution for a real-
world deployment experience,” Internet Things, vol. 22, Jul. 2023,
Art. no. 100777.

ALVARO SANTOS received the B.Sc. degree in
informatics engineering and the M.Sc. degree in
systems and information technologies from the
University of Coimbra, Portugal, in 1994 and
2000, respectively. He is currently pursu-
ing the Ph.D. degree in informatics engineer-
ing with the University of Algarve, Portugal.
From 1995 to 1999, he was a Teaching Assistant
with the Polytechnic Institute of Coimbra, where
he has been an Adjunct Professor, since 2000.

He has taught several curricular units, such as artificial intelligence, oper-
ating systems, network services (he has a CCNA certification), advanced
programming, mobile architectures, and mobile programming. He has more
than 25 publications in refereed conferences, journals, and book chapters.
His research interests include the IoT, cloud computing, edge computing,
mobile computing, cross-platform solutions, and software design patterns.

1\\

JORGE BERNARDINO (Member, IEEE) received
the Ph.D. degree from the University of Coimbra,
in 2002. From 2005 to 2010, he was the Presi-
dent of the Coimbra Engineering Institute (ISEC).
From 2017 to 2019, he was also the President of
ISEC Scientific Council. In 2014, he was a Visit-
ing Professor with CMU. He was the Director of
the Applied Research Institute (i2A), Polytechnic
of Coimbra, from 2019 to 2021. He is currently
a Coordinator Professor with the Polytechnic of

Coimbra-ISEC, Portugal. He has authored more than 200 publications in ref-
ereed conferences and journals and participated in several national and inter-
national projects. His research interests include big data, NoSQL, data ware-
housing, dependability, the Internet of Things, and software engineering.

NOELIA CORREIA received the B.Sc. and M.Sc.
degrees in computer science from the University
of Algarve, Faro, Portugal, in 1995 and 1998,
respectively, and the Ph.D. degree in optical net-
works (computer science) from the University of
Algarve, in 2005, in collaboration with University
College London, U.K. She is currently a Lecturer
with the Science and Technology Faculty, Univer-
sity of Algarve. Her research interests include the
application of optimization techniques to several

network design problems, in the optical, wireless, sensor networks, and the
0T fields, and development of algorithms. She is a Founding Member of the
Center for Electronics, Optoelectronics and Telecommunications, University
of Algarve, a research center supported by the Portuguese Foundation for
Science and Technology. She is also the Networks and Systems Group
Coordinator.

VOLUME 11, 2023

