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ABSTRACT A fast charging station (FCS), which consists of eight fast and extreme chargers that operate
individually and simultaneously, is considered in this research work. The FCS is supplied from the main
grid as well as a Photovoltaic (PV) Farm that includes a two-unit array of 250 kW per array. The impact
of the FCS on the voltage sag is quantified using two indices: a voltage sag energy index and a voltage sag
severity index. The voltage sag severity is determined based on the sag duration, in accordance with the
Semiconductor Equipment and Materials International Group (SEMI) curve. This paper subsequently aims
to accurately determine the origin of voltage sag events, whether due to a fault (short circuit) in the system
or due to a charging event that occurs at an FCS. The cases in which the voltage sag limit is violated are
identified as normal events (due to charging events at the FCS) or anomaly events (due to faults), using
a machine learning-based method. Both events of normal and anomaly are simulated based on a Monte
Carlo method. Different wavelet functions of different orders are introduced to extract the events’ features
relying on the change between cycles of the voltage and the current waveform. The minimum redundancy
maximum relevance algorithm is applied to obtain an optimal set of features to improve the classification’s
performance. The results of voltage sag energy index indicate that the voltage sag energy is about 0.28 p.u.
for almost 50% of the applied scenarios. Likewise, the sag severity index is more than one for nearly 50% of
the charging events considered in this study.Moreover, the findings reveal that all normal and anomaly events
are accurately classified using biorthogonal of order 3.9 when ensemble tree or naïve Bayes classifiers are
trained and tested by the proposed set of features. Not only can the overall performance of the power system
be improved by accurately classifying normal and abnormal events, but power outages are also prevented
and maintenance costs are reduced.

INDEX TERMS Fast charging station, voltage sag, electric vehicle, anomaly detection, machine learning.

NOMENCLATURE
ξsag The voltage sag energy index.
Unom The nominal voltage.
U The retained voltage.
T The duration of the event.
UR The retained voltage of phase R.
US The retained voltage of phase S.
UT The retained voltage of phase T.
χe The voltage sag severity index.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nagesh Prabhu .

Ucurve The value of the magnitude of the SEMI F47
reference curve.

ϕ The sag event duration.
i Index of FCS, distribution transformer, or a

breaker
Ti The ith distribution transformer to feed the ith

charging station.
Si The ith breaker to connect the ith charging station.
J Index of phase.
uJ [n] The sample value of the voltage signal of the Jth

phase.
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IJ [n] The sample value of the current signal
of the Jth phase.

nth Indication of the current instant.
κ The number of samples per cycle.
uJ [n− κ − 1] The voltage value sampled one cycle

ago.
iJ [n− κ − 1] The current value sampled one cycle

ago.
4β The energy of the wavelet coefficients

of the approximation.
4α The energy of the wavelet coefficients

of the details.
βj The wavelet coefficients of the approx-

imation of jth wavelet decomposition
level.

αj The wavelet coefficients of the detail of
jth wavelet decomposition level.

j Index of wavelet decomposition level.
η The high pass filters.
η The low pass filters.
Xr A given feature (r ∈ {1, 2, . . . ..ω}.
ω The total number of features.
9 The estimated feature importance.
I (ϒ,X) The mutual information for the discrete

variables ϒ and X.
λ The class label.
X A set of the selected feature.
Xs One feature out of the feature set.
8ϒ The sample space of the discrete vari-

able ϒ .
8X The sample space of the discrete vari-

able X.
Gini A measure for selecting the best split.

The number of classes.
p(r|ϑ) The fraction of records of class r at a

given node ϑ.

S The number of base classifiers.
Ci The ith base classifier.
D The original training dataset.

A test record.
C∗ Indicator for a majority vote on the indi-

vidual predictor.
ϒ A random variable.
v A given class label.
c A positive value defined by a user indi-

cates to a penalty of misclassifying.
A slack variable representing the dis-
tance from the object that does not lie
in the side of its class to the hyperplane.

Acc Index for the accuracy measurement.
p Index for the precision measurement.
r Index for the recall measurement.
T Index for the F-score measurement.
FCS Fast charging station.
PCC The point-of-common-coupling.

SEMI The semiconductor equipment and materials
international.

MCS Monte Carlo simulation.
LUQ Left upper quadrant.
LLQ Left lower quadrant.
RUQ Right upper quadrant.
RLQ Right lower quadrant.
PV Photovoltaic.
AF All feature.
SF Selected feature.
DWT Discrete wavelet transform.
TP True Positive.
TN True Negatives.
FP False Positives.
FN False Negatives.
ODTC Optimizable decision tree classifier.
SVMC Support vector machine classifier.
ETC Ensemble tree classifier.
KNBC Kernel naïve Bayes classifier.
MRMR The minimum redundancy maximum rele-

vance.
db Indication of the Daubechies wavelet function.
bior Indication of biorthogonal the wavelet function.
coif Indication of the coiflet wavelet function.
sym Indication of the symlet wavelet function.

I. INTRODUCTION
A. BACKGROUND
In the modern era, power systems and their customers have
become increasingly sensitive to the quality of supplied
power due to the heavy reliance of modern industries on
power electronic components, smart sensors, and actuators.
These devices are highly susceptible to power system dis-
turbances, such as voltage sag which can be considered as
the origin of 70 to 90% of power quality problems [1].
Voltage sags, also known as dips, are a momentary reduc-
tion in the RMS voltage magnitude in power systems. The
critical characteristics of voltage sags are their magnitude
and duration, which typically range from 0.1 to 0.9 per
unit (p.u.) and 0.5 cycles to 1 minute, respectively [2].
Some equipment, such as personal computers, compact disc
players, electronic alarms, video recorders and microwave
ovens, can reset due to a short reduction in voltage. More-
over, adjustable-speed drives, or programmable logic con-
trollers for industrial processes, can trip during voltage
sags, causing significant economic losses [3]. The voltage
sag problem has been addressed in key works published
recently and from different aspects aiming to, for instance,
estimate its frequency [4], locate its source [5], investi-
gate its impact [6], compensate its impact [7], classify its
phenomena [8], [9], and emulate its techniques [8]. Previ-
ous work related to voltage sags can be divided broadly
into three main groups, the first of which focused mainly
on voltage sag assessment [10], [11], [12], [13], [14]
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while the second group of studies was devoted to stochas-
tic prediction and/or detection of voltage sags in power
systems [15], [16], [17], [18], [19], [20], [21], [22].
The third group of studies estimated the costs of volt-
age sags and/or the sensitivity of equipment to voltage
sags [23], [24], [25], [26], [27], [28], [29]. In order to achieve
these aims, the previous studies aimed to investigate the sag
magnitude, sag duration, and sag frequency while presuming
system faults to be the major cause of voltage sags. Although
faults are the main cause of voltage sags at transmission
and distribution levels [30], none of the surveyed work has
considered the impact of fast charging stations (FCSs) on
voltage sags. While monitors can be utilized to obtain an
accurate evaluation of voltage sag performance, several dozen
years are required to do so [31]. Instead, characteristics of
voltage sag can be estimated randomly using a simulation
tool.

B. AIM OF THE CURRENT WORK
The goal of the work presented in this paper is to fill the
research gap by investigating the impact of fast and extreme
charging stations on voltage sags by quantifying both indices
of voltage sag energy and voltage sag severity. This paper sub-
sequently aims to accurately determine the origin of voltage
sag events, whether due to a fault (short circuit) in the system
or to a charging event that occurs at an FCS.

C. CONTRIBUTION
The research presented in this paper is devoted to estimat-
ing the effect of operating different extreme fast chargers,
whether individually or simultaneously, on the power distri-
bution system’s voltage sag. The key contributions of this
work are summarized as follows:

1. Quantifying the impact of FCSs on voltage sag using two
indices, as recommended by IEEE standard: voltage sag
energy index and voltage sag severity index.

2. Applying the minimum redundancy maximum relevance
algorithm to obtain an optimal set of features that
can be utilized to improve detection and classification
performance.

3. Proposing a wavelet function of a specific order and a
machine learning classifier, applied to the change between
cycles of the voltage and current signals, in order to obtain
the best classification accuracy.

4. Detection and classification of the origins of voltage sag,
whether based on normal events (charging) occurring at
FCSs or based on anomaly events (faults) occurring in the
distribution power system.

II. PROBABILISTIC ASSESSMENT OF VOLTAGE SAG
A. FAST CHARGING STATIONS
A voltage sag is a transient event caused by various reasons
such as motor starting and sudden load changes. An FSC
requires high power from the electric grid, varying from zero
(when the FCS is ideal) to the maximum rated power of

the charger (when the FCS is occupied), and then charging
that power over a period of time into electric vehicles (EVs).
Therefore, the operation of an FCS depicts the pattern of both
motor starting (by requiring a high current from the grid) and
sudden load changes (by changing between the two states of
idle and occupied). When a station consists of more than one
charger, the amount of power required from the grid, as well
as the changes between the two states, are increased and thus
may lead to a voltage sag.

B. VOLTAGE SAG INDICES
A sag in the electric power system voltage is characterized
by two attributes: the lowest root-mean-square (rms) voltage
during the event, known as the retained voltage, and the time
that the retained voltage stays below a predefined limit, which
is termed a sag duration. The IEEE Guide for Voltage Sag
Indices (IEEE Std 1564-2014 [32]) gives the recommended
value for the sag threshold as 90% of the nominal voltage and,
accordingly, the sag duration is the amount of time (number
of cycles) the rms stays below 90% of the declared voltage.
In this work, two indices that are recommended in [32],
namely the voltage sag energy index and the voltage sag
severity index, are utilized to quantify the impact on voltage
sag of an FCS

Voltage sag energy index:the voltage sag energy, ξsag,
is defined as:

ξsag =

∫ T

0

[
1 −

(
U (t)
Unom

)2
]
dt (1)

where U (t) is the rms voltage value calculated over the
duration of the event and Unom is the nominal voltage. Fur-
thermore, when the rms voltage is assumed to be constant
during the event, the voltage sag energy is determined as:

ξsag =

[
1 −

(
U

Unom

)2
]

× T (2)

where U and T are the retained voltage and the duration
of the event, respectively. For the case of a three-phase sag,
the retained voltage of each phase is utilized to calculate the
voltage sag energy as:

ξsag =

[
3 −

[(
UR
Unom

)2

+

(
US
Unom

)2

+

(
UT
Unom

)2
]]

× T

(3)

where UR, US , and UT are, respectively, the retained voltage
of phase R, S, and T.
Voltage sag severity index:In order to calculate the volt-

age sag severity index, the IEEE Guide for Voltage Sag
Indices recommends using the Semiconductor Equipment
and Materials International Group (SEMI) F47 curve [33]
as well as the per unit retained voltage and duration of the
voltage sag. The voltage sag severity index, χe, is defined as:

χe =
1 − U

1 − Ucurve(ϕ)
(4)
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TABLE 1. Algorithm for estimating the severity of voltage sag.

FIGURE 1. Severity of voltage sag based on the SEMI F47 curve.

whereUcurve(ϕ) is the value of the magnitude of the reference
curve corresponding to the event duration ϕ.

The idea of the SEMI curve is outlined in Fig. 1. Given both
the depth of a voltage sag and its duration, χe is calculated
according to its position on the reference in Fig. 1. For an
event on the reference curve, χe is equal to one. For an event
below the reference curve, χe is less than one, and for an event
above the reference curve, χe is more than one. Table 1 can be
utilized to determine the voltage sag severity as per the SEMI
curve.

III. INPUT DATA REQUIRED FOR VEHICLE CHARGING
MODEL
A. BACKGROUND
In general, disturbance classification consists of three steps:
1. signal analysis and feature extraction; 2. feature selection;
and 3. disturbances classification [34]. For signal analysis,
several approaches have been developed based on signal
processing techniques. These include fast Fourier transform
(FFT); discrete Fourier transforms (DFT); short-time Fourier
transform (STFT); S-transform (ST); and wavelet transform
(WT) [35]. The signal processing technique is selected based
on the nature of the signal under study. The WT decomposes
the signal into several levels, while features such as wavelet
coefficients, energy, and entropy are extracted [36]. The
feature extraction process is usually excessively arbitrary.

Following the signal decomposition and feature extraction
stages, the feature selection is conducted. If the number of
features is high, the best features are selected, but why the
previous work chose these features, and whether they are
conducive to discriminating different power quality distur-
bances (i.e., voltage sag), has yet to be clearly answered.
In order to solve this problem, researchers have paid attention
to filtrating features through an optimization algorithm so as
to capture the most critical features for power quality distur-
bance classification. In [37], the artificial bee colony method
is used for the optimal feature selection of power qual-
ity disturbances. A particle swarm optimization method is
employed in [38] to find the optimal number of input features.
In [39], an adaptive probabilistic neural network is used as a
global optimization algorithm to gradually remove redundant
and irrelevant features in noisy environments. Subsequently,
classifiers are used to classify power quality disturbances. For
this purpose, in the literature, different classifiers are used,
such as artificial neural networks (ANN) [40], support vector
machines (SVMs) [41], decision trees (DTs) [42], and deep
learning techniques [43].

B. RESEARCH METHODOLOGY
A layout of the proposed methodology is depicted in Fig. 2.
The methodology for this paper involves the following steps:

1. Data collection: the IEEE 4 bus test system is utilized to
conduct different case studies and generate the data. The
collected data are the three phase voltage and current sig-
nals measured at the bus in which the FCSs are integrated.

2. Classification of voltage sag events: voltage sag events are
classified into two events, namely normal and anomaly.
Normal events are caused by charging events at FCSs
while anomaly events are caused by faults at the power
grid.

3. Feature extraction and selection: discrete wavelet trans-
form (DWT) is utilized to extract features of the collected
data. The best features are then selected according to
defined criteria that are illustrated in Section III-E. These
features will be used as inputs to the anomaly detection
model.

4. Normal and anomaly detection model: after the features
are extracted and selected, a machine learning technique is
utilized for anomaly detection. The model’s performance
can be evaluated using different indices, such as accuracy,
precision, and recall.

C. DISTRIBUTION SYSTEM DESCRIPTION
Thework presented in this paper considers the IEEE 4 bus test
system that operates at a nominal voltage of 12.47 kV [44].
A one three-phase transformer bank is utilized to step down
the system voltage from 12.47 kV to 4.16 kV in order to
meet the demand of a delta connected load, at a distance of
1.372 km away from the substation, at bus 4. The rated capac-
ity of the transformer is 6000 kVA where the spot load of
each line-to-line is rated as 1.5 MVA, 2 MVA, and 2.5 MVA,
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FIGURE 2. Flowchart of the proposed methodology.

at 0.85, 0.9, and 0.95 lagging power factor, respectively.More
details of the operating conditions of the distribution system
under study can be found in [45].

1) DISTRIBUTION SYSTEM MODIFICATION
The configuration of load at bus 4 of the distribution system
under study is modified to be a balanced Wye connected load
rated as 1.5567 MW and 0.8143 MVar per phase and thus
the secondary of the distribution transformer is also modified
to Wye connection. Furthermore, the PV farm and FCSs are
integrated into the test system, as depicted in Fig. 3.

2) PV FARM’S INTEGRATION
A two-unit PV array of 250 kW per PV array is connected
to the test system, at the system’s utilization voltage level,
via a three-phase transformer rated 5000 kVA, as indicated
in Fig. 3. The solar farm mainly consists of a power plant
controller, a PV array, a boost converter, and a DC-AC
inverter [46]. The power plant controller is used primarily
for adjustment of the reference powers (i.e., active, reactive)
of the inverter in the solar farm according to the mea-
sured values of voltage, active, and reactive powers at the
point-of-common-coupling (PCC). Each PV array generates

a maximum power of 250 kW at the nominal temperature
and irradiation of 28◦C and 1000W/m2, respectively. The
boost converter is utilized to obtain the maximum power
point tracking via control of the DC voltage. The dynamic
of the solar farm is controlled using the DC-AC inverter.
Characteristics of the PV system are shown in Table 2.

3) FAST CHARGING STATIONS’ CONNECTION
There are eight FCSs connected to the distribution test system
at the PCC. Each FCS is connected to the system via a
distribution transformer (Ti) which is connected to FCS i via
Si breaker, where i indicates the FCS number. Here, the output
power of FCS1, FCS2, FCS3, and FCS4 is equal to the output
power of FCS5, FCS6, FCS7, and FCS8, respectively. Thus,
the rated kVA of the transformer T1, T2, T3, and T4 is equal
to the kVA rated of T5, T6, T7, and T8. Each distribution
transformer Ti steps down the primary voltage of 4.16 kV
to 0.480 kV, the voltage level utilized by each FCS i. Each
breaker Si has two states, namely on and off. The state ‘‘on’’
indicates that the breaker Si is closed, hence the FCS i is
occupied. The state ‘‘off’’ means that the breaker Si is open
and thusFCS i is idle. Although the current that passes via two
different breakers may be equal, the states of each breaker Si
is independent of the other breaker’s states.

D. WAVELET-BASED DATASET COLLECTION
For each simulated event (normal or anomaly) that causes
a voltage sag, the voltage and current samples of the
three-phases at the PCC, to which the PV farm is tied, are
utilized to create the attributes matrix. The attribute matrix
includes the transient signature of the sampled current and
voltage. Twomethods are utilized to build the attribute matrix
in order to include: 1) the transient signature of the sampled
current and voltage as measured at the PCC; and 2) the
difference between two samples one cycle apart [47], as in
equations (5) and (6). In each method, the attribute matrix
consists of κ number of samples where κ is the number of
samples per cycle.

UJ [n] = uJ [n] − uJ [n− κ − 1] (5)

IJ [n] = iJ [n] − iJ [n− κ − 1] (6)

where J is an index for each phase (i.e., R, S, and T),
uJ [n] and IJ [n] represent, respectively, the sample values
of the voltage and current signals of the Jth phase, at the
nth instant, uJ [n− κ − 1] and iJ [n− κ − 1] are the voltage
and current values sampled one cycle ago, (i.e., before ≈

0.01667 s), and UJ [n] and IJ [n] are the values included
in the attribute matrix as per the second method. The DWT
is applied to decompose the attribute matrix to the wavelet
space in order to extract the hidden features of the sam-
pled data. The decomposition level is determined based on
the sampling rate of the three-phase sampled signals. The
three-phase voltage and current signals that are sampled at
κ (i.e., κ = 256) samples per cycle results in a sampling
rate of 15.36 kHz. Therefore, six decomposition levels are
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FIGURE 3. Single line diagram of the modified IEEE 4 bus test feeder.

required to center the power system frequency (60 Hz) in the
lowest band of the original signal (scaling level jo) as well as
for extracting the features in all wavelet sub-bands. Among
many sets of wavelet basis functions, four wavelet families
(Daubechies (db#), Biorthogonal (bior#), Coiflet (coif#), and
Symlet (sym#)) at different orders, as presented in Table 3, are
used for extraction features of the sampled signals, selected
according to their characteristics as well as for their superior
performance in the previous work that studied voltage quality
(i.e., sag) [48], [49], [50], [51]. Here, the # symbol indicates
the order of that given wavelet function. In this paper, the
energy of the wavelet coefficients of the approximation 4β

and of the details 4α are utilized as indices for classifying
the origin of voltage sag. In order to obtain the energy of the
wavelet coefficients, the wavelet coefficients of the approx-
imation (βj) and detail (αj) of each wavelet decomposition
level j are calculated as follows:

βj(k) =

∑
n

η(n− 2k)βj−1(n) (7)

αj(k) =

∑
n

η(n− 2k)αj−1(n) (8)

4βj =

∑
n

∣∣βj(k)∣∣2 (9)

4αj =

∑
n

∣∣αj(k)∣∣2 (10)

where η and η are the low pass and high pass filters, respec-
tively.

E. FEATURE SELECTION
For each phase of the three-phase voltage and current signals,
the energy of the wavelet coefficients is calculated at all
levels of wavelet decomposition (six levels). As a result,
seven attributes are extracted for each phase (six detailed
wavelet decompositions and one approximation). Therefore,
the feature matrix, whether for normal or anomaly events,
consists of 42 attributes in columns (seven per phase for
current and voltage signals), but 128 and 132 records in rows
for normal and anomaly events, respectively. To reduce the
number of attributes and obtain an optimal set of features,

TABLE 2. Specification of the PV system.

the minimum redundancy maximum relevance (MRMR)
algorithm is applied with the aim of minimizing the redun-
dancy and maximizing the relevance of a feature set to
the response variable [52]. Let ω represent the total num-
ber of features (i.e., 42), and Xr is a given feature (r ∈

{1, 2, . . . ..ω}), then the estimated feature importance by the
MRMR, based on the mutual information quotient, is defined
as:

9MRMR(χr ) =
I (ϒ,Xr )

1
|λ |

∑
χs∈λ

I (X,Xr )
(11)

where ϒ , λ , and
∣∣λ ∣∣ are the class label, a set of the selected

feature, and the size of feature set, Xs ∈ λ , is one feature
out of the feature set λ , Xr (Xr /∈ λ ) is a feature currently
not selected, and I (., .) denotes the mutual information and
is calculated for discrete variables ϒ,X as follows:

I (ϒ,X) =

∑
υ∈8ϒ ,χ∈8X

P(X = χ, ϒ = υ)

× log
P(X = χ, ϒ = υ)
P (X = χ)P(ϒ = υ)

(12)

where 8ϒ and 8X are the sample spaces of ϒ and X,
respectively. If X and ϒ are independent, then the mutual
information (I) equals 0. However, if X and ϒ are similar
variables, then the mutual information (I) equals the entropy
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TABLE 3. Comparison of different wavelet functions based on defined criteria.

of X . The feature that has the largest value of 9MRMR with
nonzero redundancy and nonzero relevance in λ C, the com-
plement of λ , is selected. If the given rank score by the
MRMR is large, this indicates that the corresponding fea-
ture is important. As the variation of the feature importance
score is increased, the confidence of that selection is also
increased.

F. MACHINE LEARNING ALGORITHM
1) OPTIMIZABLE DECISION TREE CLASSIFIER
The first classifier considered in this paper is an optimizable
decision tree classifier (ODTC). Unlike traditional decision
trees that use a fixed set of decision rules, an ODTC is able
to learn and optimize the decision rules during the training
process. The main idea behind an ODTC is to represent the
data as a tree-like structure, where each node represents a
decision rule that splits the data whereby the best splits are
selected based on the minimum degree of impurity measured
by the Gini index as [53]:

Gini (ϑ) = 1 −

−1∑
r=0

|(p(r|ϑ)|2 (13)

where indicates the number of classes and (p(r|ϑ) repre-
sents the fraction of records of class r at a given node ϑ . The
goal is to find the decision rules that best separate the normal
(FCS events) and anomaly classes (faults’ events). During the
training process, the algorithm iteratively splits the data into
smaller and smaller groups until each group contains only
events of the same class. This process results in a decision
tree that can be used to classify new events as normal or
anomaly. The ODTC can optimize the decision rules by using
a loss function, which measures the performance of the tree
on the training data. The algorithm adjusts the decision rules
to minimize the loss function, leading to improved accuracy
in classifying new events. The loss function can be chosen
to reflect the nature of the problem and the desired accuracy.
Some common loss functions include the mean squared error
and the cross-entropy loss.

2) ENSEMBLE TREE CLASSIFIER
The main objective of training models using ensemble meth-
ods is for improving classification accuracy by aggregating
the predictions of multiple classifiers. The ensemble tree
classifier (ETC) technique ‘‘constructs a set of base classifiers
from training data and performs classification by taking a vote
on the prediction made by each base classifier’’ [53]. The
general procedure to build the ensemble tree is as follows:
create a training set from the original data D. Subsequently,
from each training set Di, construct a base classifier Ci, then,
according to the majority vote of the base classifiers Ci, a test
record x is classified as:

C∗(x) = Vote(C1 ( ) , C2 ( ) , . . . . . . . . . ,CS ( )) (14)

where S is the number of base classifiers. In this study, the
technique utilized for constructing the ensemble decision
tree is ‘‘bootstrap aggregation’’, known as ‘‘bagging’’. This
technique works by taking a base learning classifier and
recalling it many times using different training sets [54],
whereby samples of the training data can be replaced during
the training stage to improve the model’s performance.

3) KERNAL Naïve BAYES CLASSIFIER
The naïve Bayes (NB) classifier works on the assumption
that the independence of attributes given a class label v is
determined as follows [55]:

P (X|ϒ = v) =

ω∏
r=1

P(Xr |ϒ = v) (15)

where each features set X = {X1,X2, . . . . . . . . . ,Xω} con-
sists of ω attributes. In order to classify a test record x by
the NB classifier, it is necessary to determine the posterior
probability for each class v as follows:

P (ϒ = v|X) =
P(ϒ)

∏ω
r=1 P(Xr |ϒ = v)
P(X)

(16)

Thus, the class that maximizes the value of the numerator
is selected since the value of P(X) is fixed for each class
ϒ . The main concept behind the kernel naïve Bayes clas-
sifier (KNBC) is to map the data into a high-dimensional
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TABLE 4. Confusion matrix for two classes.

feature space, where the data can be more easily separated
into classes. The algorithm achieves this by using a kernel
function, which transforms the original features into a new
set. The kernel function can be chosen to reflect the nature
of the data and the problem being solved. Some common
kernel functions include radial basis functions, polynomial
functions, and sigmoid functions. Once the data has been
mapped onto the high-dimensional feature space, the naïve
Bayes algorithm is applied to classify the data into normal
or anomaly classes. The algorithm works by estimating the
probability distribution of each class and then using Bayes’
theorem to calculate the probability that a new event belongs
to each class. The class with the highest probability is then
assigned to the new event [55].

4) SUPPORT VECTOR MACHINE CLASSIFIER
A support vector machine classifier (SVMC) constructs a
decision boundary that can separate the training examples and
classify them into their corresponding classes. The decision
boundary may be linear or nonlinear, as is the case in most
real-world problems. Therefore, due to the difficulty of lin-
early separating the training examples in their input space,
a transformation is required to map the training examples
from their input space into a higher-dimensional space, where
they can be linearly separated. The learning task of this
non-linear classifier of the SVM can be seen as an optimiza-
tion problem [56]:

min
,b,k

1
2

T
+ c

∑
e=1

(17)

e

(
wTφ (Se) + b

)
≥ 1 + (18)

≥ 0 (19)

where c and are positive values that can be defined by a user
and ∈ {1, −1} . c indicates the penalty of misclassifying
the training examples, and is a slack variable representing
the distance from the object that does not lie in the side of
its class to the hyperplane. The Gaussian kernel function,
as defined in (4), which is utilized in this paper, satisfies the
so-called Mercer’s conditions [56].

5) ASSESSMENT MATRICS
The purpose of testing the models on unseen data is to
investigate their level of accuracy. Accuracy for models is

computed as the ratio of the number of records that classified
accurately with the total number of records. The confusion
matrix is a tool in machine learning that is commonly used
to assess the performance of a classifier. It is a table that
summarizes the correct and incorrect predictions made by
the classifier for different categories. The confusion matrix
provides valuable information about the performance of the
classifier and helps to identify areas for improvement. Table 2
shows the confusion matrix of two variables. Accuracy for
models is computed based on the confusionmatrix as the ratio
of the numbers of instances that classified accurately with the
total number of instances.

Accuracy, Acc =
TP+ TN

TP+ FP+ FN + TN
× 100 (20)

Moreover, precision and recall are two metrics that are calcu-
lated from the confusion matrix to evaluate the performance
of the classifier. It may be noted from Table 4 that there
are four parameters. A brief description of each parameter is
provided below:

True Positives (TP): These are the correct positive pre-
dictions made by the classifier representing the number of
anomaly events that are correctly classified.

False Positives (FP): These are incorrect positive pre-
dictions made by the classifier indicating to the number of
anomaly cases that are misclassified as normal events.

False Negatives (FN): These are incorrect negative predic-
tions made by the classifier; thus this indicates the number of
normal events that are misclassified as anomaly events.

True Negatives (TN): These are the correct negative pre-
dictions made by the classifier, thus representing the number
of normal events that are correctly classified.

Hence, precision and recall are calculated, respectively, as:

Precision, p =
TP

TP+ FP
(21)

Recall, r =
TP

TP+ FN
(22)

The F-measure (T) is determined as in (23) to estimate the
extent to which a group includes only instances of a particular
class and all instances of that class [57]:

F − measure,T =
2 × p × r

p + r
(23)

IV. EVALUATION AND RESULTS
A. CASE 1: VOLTAGE SAG ASSESSMENT
In this case, the impact of FCSs on voltage sag is investigated,
using the test bed system shown in Fig. 3. Different scenarios
are applied where these scenarios rely on the breakers’ states.
As an example, in each applied scenario, one breaker, Si,
will be turned on at time t , to activate the FCS i, while the
other breakers will have been turned on and/or off in advance.
Thus, in each scenario, an FCS, controlled by the breaker of
interest, is activated and consequently draws a large current
from the grid to meet the rated power of that FCS (similar to
starting a motor). The number of scenarios generated for each
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TABLE 5. Switching strategy proposed to consider different cases according to the activated fast charger.

breaker of interest is determined by 2n−1, where the numbers
2 and n represent states of the breaker and the number of
breakers in the test system controlling the FCSs. Switching
any breaker on or off means switching on or off the FCS that
is controlled by that breaker (similar to sudden load changes).
When breakers S1, S3, and S4 are closed, the current passing
through breaker S1 is equal to one-third or one-fifth of the
current that passes through breakers S3 and S4, respectively.
When all breakers, shown in Fig. 3, are closed, the active
power required by FCSs at the PCC is equal to 1.28 MW ful-
filled by the main grid as well as the PV farm. The simulated
cases (1024 cases) considered for this case study are listed in
Table 5. In each simulated case, one of the eight breakers is
closed at time t (at t = 1.5 s), indicating that one of the FCSs,
to which the breaker is connected, is occupied at that instance
of time while the rest of the breakers are either switched on
and/or off before that time t . The reason for simulating the
large number of cases is to assess the impact of FCSs on the
voltage sag under all the possible scenarios.

B. EVALUATION OF CASE 1
In this section, the impact of the FCS on the voltage sag is
quantified using two indices: the voltage sag energy index,
ξsag, and the voltage sag severity index, χe. The rms voltage
value, at the PCC, is compared with the voltage sag threshold.
When a charging event at any of the fast chargers (depicted
in Fig. 3) causes the rms voltage at the PCC to remain below
90% of its nominal voltage value for a number of cycles
(shown in Table 1), that charging event considers the voltage
sag scenario. For example. Fig. 4 depicts the rms current and
voltage waveforms calculated for the three-phase. In Fig. 4,
the breaker S3 is switched ON at time t (labelled as (2)
in the figure) indicating that a charging event is occurring
at FCS3, while S2 was switched ON in advance indicating

FIGURE 4. Current (top) and voltage (bottom) waveforms measured at
PCC when FCS2 and FCS3 are occupied.

that a charging event is occurring at FCS2 (labelled as (1)
in Fig 4. When breaker S3 was switched ON, the drawn
current at the PCC was increased making the voltage to dip
below the threshold, as shown in the bottom plot of Fig. 4.
Each point in Fig. 5(a) can be projected onto the horizontal
and vertical axes which represent, respectively, the maximum
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FIGURE 5. Extreme values of rms voltage during different charging events. (a) Minimum and maximum rms voltage per charging event of each
breaker. (b) Box plot of rms voltage per breaker utilized to activate a fast charger.

and minimum rms voltages for a charging event occurring
at FCS i, when one breaker, Si, was turned on at time t =

1.5 s, while the other breakers were turned on and/or off
in advance. The overlap of the rms voltage is depicted in
Fig. 5(a), for charging events occurring at different slots
(i.e., FCS4 and FCS8) due to the equality of their output,
asmentioned in point (3) of Section III-C.Moreover, Fig. 5(b)
displays the boxplot that summarizes the rms voltage of all
charging events that occurred at each fast chargerFCS i, using
the values of maximum, minimum, median, and the first and
third quartiles. Fig. 6(a) depicts the frequency of occurrence
of the minimum rms voltage measured at the PCC for all
charging scenarios considered in this case study that violated
the limit of voltage sag. Given the sag duration, the cumula-
tive probability is presented on the right side of the y-axis in
Fig. 6(a), demonstrating that the minimum rms voltage value
is 0.85 p.u. for about 50% of the applied scenarios in this case
study. Furthermore, frequency of occurrence of the voltage
sag energy, as well as its cumulative probability, is shown in
Fig. 6(b), indicating that the voltage sag energy, or interpreted
as lack of energy not delivered to an impedance load, is about
0.28 p.u. for almost 50% of the applied scenarios. The results
of voltage sag severity index are presented in the x-axis of
Fig. 7(a). The voltage sag severity is determined based on the
sag duration, in accordance with the SEMI curve shown in
Fig. 1. If the magnitude of any charging event is below the
voltage sag threshold (90%), the result of the event is included
in Fig. 7. When the voltage sag severity index, depicted in
Fig. 7, is more than one, it means that the magnitude of
that event, from which the voltage sag severity was calcu-
lated, is below the SEMI curve shown in Fig. 1. In contrast,
a voltage sag severity index of less than one indicates that
the magnitude of that event is above the SEMI curve. The sag
severity index is more than one for nearly 50% of the charging
events considered in this case study, as shown on the right side

of the y-axis, in Fig. 7(a). Furthermore, Fig. 7(b) presents
the frequency of occurrence of the voltage sag severity of
all charging events that occurred at each fast charger FCS i.
The frequency of occurrence among all charging events that
occurred at the fast charger FCS4 result in the highest fre-
quency of occurrence for a voltage sag severity of more than
1.3, as presented in Fig. 7(b).

C. CASE 2: VOLTAGE SAG ORIGIN CLASSIFICATION
In this case study, two different scenarios are considered.
Faults at the modified distribution test system, shown in
Fig. 3, are applied to generate the data for the first scenario
whereas FCSs are integrated into the test system to generate
the data for the second scenario. Both of these two scenarios
may lead to a temporary reduction in voltage at the PCC,
which is known as a voltage sag. The aim of this case study is
to distinguish between the origins of the voltage sag in order
to determinewhether it is attributed to the occurrence of faults
at the distribution system or the activation of an FCS.

1) NORMAL EVENTS
When any breaker Si, shown in Fig. 3, is closed, the FCS i
controlled by that breaker is activated (switched on), indicat-
ing that a charging event is occurring at that instance of time.
Upon switching states of the breakers, different FCSs are
activated/disactivated, indicating that FCSs are occupied/idle
at the time of switching the breakers. The time of switching
the breakers for all events generated in this case are the same
(at t = 1.5 s). The rms voltage at the PCC is monitored
and compared with the level of voltage sag. The cases where
the voltage sag limit are violated are utilized for further pro-
cessing and labeled as normal events. Although these cases
caused voltage sags, they are the result of charging events that
occurred at FCSs and thus are identified as normal events.
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FIGURE 6. Frequency of occurrence and cumulative distribution function. (a) Minimum rms voltage per charging event. (b) Voltage sag energy.

FIGURE 7. Frequency of occurrence and cumulative distribution function. (a) Voltage sag severity. (b) Voltage sag severity per breaker.

2) ANOMALY EVENTS
Most voltage sags in a distribution system are attributed to
the occurrence of faults. Thus, different types of ground
and non-ground faults, such as three-phase, two-phase, and
single-phase, are simulated at 16,404 ft away from the PCC,
as shown in Fig. 3. Various values of fault resistance, such as
0.001�, 0.01�, 0.1�, 1�, 10�, and 100�, are considered
for each type of simulated fault. The time of applying each
type of fault in this scenario is the same (at t = 1.5 s) and
lasts for the same duration (four cycles). Cases where the rms
voltage at the PCC violates the level of the voltage sag are
labeled as anomaly events.

D. EVENETS GENERATED IN MONTE CARLO SIMULATION
The cases of both normal and anomaly events are gener-
ated based on a Monte Carlo simulation (MCS). Variables
of each event are generated randomly based on a uniform
distribution.

1) SEMULATED NORMAL EVENTS
Variables that are randomly generated for normal events are
breakers’ states (i.e., S1, S2, etc.) PV irradiation, and PV cell
temperature. Referring to Table 5, breakers’ states are divided
into four quadrants: left upper quadrant (LUQ), left lower
quadrant (LLQ), right upper quadrant (RUQ), and right lower
quadrant (RLQ). Three scenarios for normal events have been
considered:

1. Considering only the LUQ in Table 5, eight normal cases
are generated in each row by controlling states of the
breakers S1, S2, S3, and S4, which results in a total of
32 normal events (2n−1

× n). In each simulated event of
the 32 cases, states of the breakers, as shown in the RUQ
of Table 5 (S5, S6, S7, and S8), are determined randomly
by MCS. In order to determine the state of each breaker
in the RUQ, a random number, uniformly distributed,
is generated for each case, and rounded to the nearest
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FIGURE 8. Features selected from the original signals using the MRMR algorithm. (a) Features’ description. (b) Features selected by the
corresponding wavelet function.

FIGURE 9. Classification accuracies as a percentage, using all features and selected features of the original signals.

integer (i.e., 0 or 1) where 0 indicates that the breaker is
open and 1 means that the breaker is closed.

2. Considering the RLQ in Table 5, by controlling the states
of the breakers S5, S6, S7, and S8, eight normal events are
generated. Contrary to the normal events generated in the
previous point, one breaker always switches off at time t =

1.5 s, as shown in the RLQ of Table 5, resulting in a total of
32 normal events. In each simulated event of the 32 cases,
states of the breakers shown in the LLQ of Table 5 (S1, S2,
S3, and S4) are assigned randomly by MCS, as previously
indicated.

3. Considering the RUQ and LLQ of Table 5, for each sim-
ulated event in this case, the state of any breaker is deter-
mined randomly using a uniform distribution, as stated in
point one, and activated at time t = 0 s. Furthermore,
PV irradiance and temperature are predicted randomly
based on MCS and their values drawn uniformly from
[0min, 0max] and [γmin, γmax], respectively. Here 0min and
0max are the lower and upper bounds of the PV irradi-

ance values (i.e., 500 and 1750) and γmin and γmax are
the minimum and maximum PV temperature values (i.e.,
4 and 55). For each simulated event, the value of PV
irradiance and temperature are assigned at time t = 0 s,
and at time t = 1.5 s, a disturbance value, 0dis and γdis,
is added/subtracted to/from the random assigned value
(i.e., 150 and 7) in order to mimic a weather disturbance
at that instance of time. A total of 64 cases (82) are sim-
ulated and labeled as normal events, implying that eight
disturbance values are utilized per parameter considered
in this scenario. It is worth noting that the normal events
are simulated in the first two scenarios, given that the PV
irradiance and temperature are 0r and γr .

2) SEMULATED ANOMALY EVENTS
Fault events are simulated in batches where each batch has
three fault parameters, namely: fault type, fault resistance,
and fault location. The first two parameters are determined
as explained in point (2) of Section IV-C. However, fault
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FIGURE 10. Results of precision and recall for different classifiers using the original signals. (a) Results using all features. (b) Results using
selected features as per the MRMR algorithm.

FIGURE 11. F-score results using all features and selected features of the original signals.

location is assigned randomly using MCS by generating a
random integer number uniformly distributed over the inter-
val of [τmin, τmax], where τmin and τmax are the minimum and
maximum distances as a percentage of the total line length.
A total of 66 events have been simulated per batch and two
batches of faults have been considered.

E. EVALUATION OF CASE 2
In this case study, the three-phase current and voltage samples
measured at the PCC are used to build the attribute matrix.
The attribute matrix is decomposed by the DWT and fed to
machine learning classifiers, as explained in Section III-D
and Section III-F, respectively. The evaluation in this case
relies on two different methods, the first of which utilizes the
original current and voltage signals as monitored at the PCC

where the second method of assessment uses the difference
between two samples, one cycle apart, of the current and
voltage signals as measured at the PCC. In each method, four
classifiers (ODTC, ETC, KNBC, and SVMC) are trained,
by 50 % of the normal and anomaly events (160 cases), and
tested by the other 50% cases, using two approaches: 1) all
features as extracted by the DWT; and 2) selected features as
explained in Section III-E.

1) PERFORMANCE EVALUATION BASED ON ORIGINAL
CURRENT AND VOLTAGE SIGNALS
Features that were selected by each wavelet function from the
original waveforms are displayed in Fig. 8(b), where their
importance as a percentage is shown in the x-axis, and can
be described based on the phase number (i.e., R, S, or T).
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FIGURE 12. Features selected using the MRMR algorithm for the case when the change between samples is utilized. (a) Features’ description.
(b) Features selected by the corresponding wavelet function.

FIGURE 13. Classification accuracies as a percentage when the change between samples is utilized using all features and selected features.

The signal, whether current or voltage (i.e., I or V), and
the wavelet level of decomposition (i.e., A6, D6, . . . , D1),
are presented in Fig. 8(a). Fig. 9 presents the classification
accuracies of each classifier tested by using all the features
(AF) and some of the features (SF) selected from the original
current and voltage values.

The results show that when all the features (42 features)
are used, the performance of the classifiers is improved,
especially for ETC. As an example, when Daubechies of
order 4 (db 4) is trained by ETC and used to classify events
into normal and anomaly, it provides 97.7% classification
accuracy. The precision and recall are calculated and illus-
trated in Fig. 10. These two metrics are a commonly utilized
tool when there is imbalance in the dataset. Inspection of
Fig. 10(a) shows that biorthogonal of order 3.9 (bior3.9)
achieves 1 per unit, for the precision and for the recall, when

ETC and KNBC are utilized to train and test the decomposed
original signals using all features, respectively. Hence, ETC
is able to accurately classify all events that belong to the
true negative class (normal events) when bior3.9 is utilized.
However, some data of the true positive class (abnormal
events) are misclassified as normal events as the precision
values for ETC indicate (< 1 p.u.). In contrast, this means
that KNBC is able to accurately classify all events that belong
to the true positive class (abnormal events) when bior3.9 is
utilized, but some data belonging to the true negative class
(normal events) are misclassified as abnormal events as the
recall values for KNBC indicate (< 1 p.u.). Moreover, Fig. 10
indicates that, using the selected features shown in Fig. 8(b),
SVMC is able to accurately classify all events that belong
to the true negative class (normal events) when bior3.9 is
utilized. Based on the values of precision and recall, the
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FIGURE 14. Results of precision and recall for different classifiers using the change between samples. (a) Results using all features. (b) Results
using selected features as per the MRMR algorithm.

FIGURE 15. F-score results using all features and selected features while considering the change between samples.

values of the F-score are calculated as depicted in Fig. 11,
where the results indicated by the F-score show that training
and testing the ETC by all the features extracted using db4
from the original signals achieves the highest F-score, which
is more than 0.99.

2) PERFORMANCE EVALUATION BASED ON THE
DIFFERENCE OF SAMPLES OF CURRENT AND VOLTAGE
SIGNALS
In this case, the difference of each consecutive sample of
the current and voltage waveforms is utilized to collect the
data set. The classifiers are assessed based on all features
extracted by wavelet functions, as well as some of the fea-
tures presented in Fig. 12(b), and extracted as illustrated in
Section III-E. The performance results of testing all clas-
sifiers using the classification accuracies are displayed in

Fig. 13. Inspection of Fig. 13 reveals that the obtained clas-
sification accuracies using bior3.9 are 100% when ETC and
KNBC are trained and tested by the selected features shown
in Fig. 12(b). This means that, instead of using the origi-
nal signal, using the difference of each consecutive sample
exhibits the hidden features leading to improved classifier
performance. The results of precision and recall, which are
presented in Fig. 14, indicate that performance of the clas-
sifiers is superior when these classifiers use only selected
features compared to using all of them. When the features
are selected as depicted in Fig. 12(b), for example, ETC
and KNBC are able to accurately classify all normal and
anomaly events with their corresponding classes. Both classi-
fiers achieve precision and recall of 1, as shown in Fig.14(b),
demonstrating a significant improvement in performance.
The results of the F-score, which are presented in Fig. 15,
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show that biorthogonal of order 3.9 (bior3.9) outperforms
the other wavelet functions such as Daubechies, Coiflets, and
Symlets. Furthermore, when bior3.9 is trained and tested by
the selected features, using either ETC or KNBC, the F-score
is 1, meaning that all data of true negative class are classified
correctly as well as indicating that none of the data belonging
to the true positive class is misclassified.

F. DISCUSSION
In this paper, four classifiers (ETC, SVMC, OTDC, and
KNBC) are proposed as a means to detecting the origin of
voltage sag, whether caused by a fault in the distribution
power system (anomaly events) or because of a charging
event occurring at a fast charging station (normal events).
Twomethods are utilized to train and test the classifiers: using
the original current and voltage signals; and using the differ-
ence of each consecutive sample of their signals. Different
wavelet families of different orders are utilized to decompose
the signals from each utilized method. The evaluation results
show that considering the difference of each consecutive
sample leads to improved performance of the classifiers.
Furthermore, the findings highlight the importance of the
selected features as well as the wavelet function in accurately
detecting anomalies in the power system. Biorthogonal of
order 3.9 (bior3.9) is the best wavelet function that can be
used in detecting and classifying the origin of voltage sags
in a distribution network, if the relevant features have been
selected and trained using either an ensemble tree classifier
or a kernel naïve Bayes classifier.

V. CONCLUSION
In this paper, the impact of a fast charging station on voltage
sag is quantified using two indices, as recommended by
IEEE Std 1564-2014: the voltage sag energy index and the
voltage sag severity index. The origin of voltage sag events
is also determined as due either to a fault in the system
or to a charging event that occurs at an FCS. Therefore,
a machine learning-based method is proposed to accurately
classify the origin of voltage sag as normal or anomaly
events. Normal events are represented by charging events that
occurred at the fast chargers, whether individually or as a
combination. Anomaly events are represented by applying
different fault scenarios that rely on various fault resistance
and locations. The cases of both normal and anomaly events
are generated based on a Monte Carlo simulation. Different
wavelet functions of different orders are introduced to extract
events’ features relying on the change between cycles of
the voltage and the current waveform. The minimum redun-
dancy maximum relevance algorithm is applied in order to
obtain an optimal set of features to improve the classifica-
tion’s performance. The results of classification of all normal
and abnormal events reveal that the obtained classification
accuracies using biorthogonal of order 3.9 are 100%, when
ensemble tree or naïve Bayes classifiers are trained and tested
by the selected optimal features. This research provides a

helpful tool for power system operators who seek to improve
the grid’s reliability and stability.
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