
Received 27 July 2023, accepted 11 August 2023, date of publication 21 August 2023, date of current version 25 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3306957

A Broad Ensemble Learning System for Drifting
Stream Classification
SEPEHR BAKHSHI 1, POUYA GHAHRAMANIAN 1, HAMED BONAB 2,3,
AND FAZLI CAN 1, (Member, IEEE)
1Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey
2Manning College of Information and Computer Sciences, Amherst, MA 01003, USA
3Amazon.com, Inc., Seattle, WA 98109, USA

Corresponding author: Fazli Can (canf@cs.bilkent.edu.tr)

This work was supported in part by the Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) under Grant 120E103.

ABSTRACT In a data stream environment, classification models must effectively and efficiently handle
concept drift. Ensemblemethods arewidely used for this purpose; however, the ones available in the literature
either use a large data chunk to update the model or learn the data one by one. In the former, the model may
miss the changes in the data distribution, while in the latter, the model may suffer from inefficiency and
instability. To address these issues, we introduce a novel ensemble approach based on the Broad Learning
System (BLS), wheremini chunks are used at each update. BLS is an effective lightweight neural architecture
recently developed for incremental learning. Although it is fast, it requires huge data chunks for effective
updates and is unable to handle dynamic changes observed in data streams. Our proposed approach, named
Broad Ensemble Learning System (BELS), uses a novel updatingmethod that significantly improves best-in-
class model accuracy. It employs an ensemble of output layers to address the limitations of BLS and handle
drifts. Our model tracks the changes in the accuracy of the ensemble components and reacts to these changes.
We present our mathematical derivation of BELS, perform comprehensive experiments with 35 datasets that
demonstrate the adaptability of our model to various drift types, and provide its hyperparameter, ablation,
and imbalanced dataset performance analysis. The experimental results show that the proposed approach
outperforms 10 state-of-the-art baselines, and supplies an overall improvement of 18.59% in terms of average
prequential accuracy.

INDEX TERMS Data stream mining, concept drift, ensemble learning, neural networks, big data.

I. INTRODUCTION
Various data stream sources generate an immense amount of
data in the blink of an eye. Social media, IoT devices, and sen-
sors are all examples of such sources. The ‘‘3 V’s of Big Data
Management’’ summarizes the hurdles in this field. These
are the Volume of the data, Variety which refers to numerous
data types, and Velocity, which is one of the major problems
in handling data streams due to its fast data arrival rate [1].
As a result of these hurdles, building models that are capa-
ble of learning in a streaming environment is a challenging
task. The developedmethods require an approach specifically
designed for this task, as it faces problems different from
traditional machine learning.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jerry Chun-Wei Lin .

Amajor issue in data streammining is concept drift, which
refers to changes in the probability distribution of data over
time [2], [3], [4], [5]. If the change affects the decision bound-
aries it is referred to as real drift, and if the distribution is
altered without affecting the decision boundaries, it is called
virtual drift [6]. Concept drift is mainly categorized into
four types: Abrupt, Gradual, Incremental, and Recurring [3].
In abrupt drift, the concept is suddenly altered to a new one
which usually results in a prompt accuracy decline; however,
gradual drift refers to the replacement of the old concept
with a new one in a gradual way. In incremental drift, an old
concept changes to a new one incrementally over a period of
time. The main difference between gradual and incremental
drift is that in the former one, the class distribution is also
prone to changes; however, in the latter, the values of the data
are changed during a span of time [7]. Recurring drift occurs

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 89315

https://orcid.org/0000-0003-2292-6130
https://orcid.org/0000-0003-3479-8842
https://orcid.org/0000-0003-2811-706X
https://orcid.org/0000-0003-0016-4278
https://orcid.org/0000-0001-8768-9709

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

when an old and previously observed concept replaces the
current one.

In terms of their implementation, data stream classification
models in the literature could be categorized into two main
approaches: chunk-based methods and online learning [8].
In a chunk-based approach, a fixed-size chunk of data is typ-
ically collected to update the model as new data items arrive;
however, in an online learning approach, one data point at
a time is used to update the system. Each approach has its
pros and cons. Compared to online methods, a chunk-based
approach learns faster at the start of the training because the
model is seeded with a large initial chunk of data. This makes
the update process more effective at the initial steps; however,
a concept drift may occur later in the learning process, and
if the drift is located within a chunk, it may be missed.
Such a concept drift may result in a significant reduction in
model accuracy. In the case of online learning, the latter prob-
lem does not affect the performance of the model; however,
the model may suffer from slower initial learning perfor-
mance [9]. Another problem of an online model is its runtime.
Compared to the chunk-based models, online learning meth-
ods are less efficient and require more computations. Online
models also suffer from instability as they learn the data one at
a time [9].

A. MOTIVATION
The disadvantages of using an online or chunk-based model
motivate us to propose a method to alleviate the issues in
these two approaches while keeping their positive features.
Our main goal is to propose a resilient model that is able to
function effectively and efficiently in a stream environment.
To do so, we propose our solution based on Broad Learning
System (BLS) [10], a lightweight neural network. Using
lightweight neural networks for concept drift adaptation is a
relatively unexplored research avenue [11] and in this work,
we aim to explore its potential for stream processing.

BLS solves a much simpler least square equation for train-
ing the model in place of time-consuming loss calculations
and backpropagation. Although an incremental version of
BLS is introduced in the original paper, BLS is not suitable
yet to be used in a stream environment for the following two
reasons: (i) in incremental mode, BLS is effective only when
the chunk size is large; and (ii) the model has no mechanism
to handle concept drift. Since using large chunks may result
in missing concept drifts inside a chunk, we use mini chunks
(2 ≤ chunk size ≤ 50). Above all, to handle the problem of
slow learning in the initial steps of an online model, or a
model that is trained with mini chunks, we adapt the BLS
to learn with small chunk sizes and have a comprehensive
feature mapping and output layer. We track the changes
in the accuracy of the ensemble components, and remove,
replace, or add them to the model at each time step. With
this frequent exchange of the ensemble components between
a pool of removed ensemble components and the ensemble
itself, we create an ensemble of diverse classifiers, as each

of these ensemble components is trained with different data.
This enables our model to react faster to concept drifts, and
in the case of false removal of a component, it is quickly
returned to the learning process. The same feature also helps
our approach to be resilient. As mentioned by Vardi [12],
‘‘resilience via distributivity and redundancy is one of the
great principles of computer science’’, and this principle is
one of the main reasons that ensemble approaches func-
tion effectively in a stream environment, and compared to
a single classifier, are more resilient to changes in the data
distribution. This redundancy (using several classifiers in an
ensemble) decreases the efficiency of the model. Given that
learning with mini chunks and using an ensemble both have
a negative impact on the efficiency of the model in terms of
computational cost, we only use output layers of the Broad
Learning System as our ensemble components and use a
single feature mapping and enhancement layer. Meaning that
the ensemble consists of a part of BLS and not the whole BLS
model. This results in a significant reduction in computational
burden. In-depth technical aspects of our ensemble model are
demonstrated in the following sections.

B. CONTRIBUTIONS
Our main contributions are the following. We
• Design and mathematically derive an enhanced version
of BLS suitable for stream environment, trained with
small chunks of data;

• Propose an efficient and effective passive ensemble
approach for concept drift handling based on tracking
the changes in the accuracy of each ensemble compo-
nent, and utilizing the output layers of the BLS as the
ensemble components;

• Conduct experiments on 35 datasets with various con-
cept drift types, and compare our results with 10 state-
of-the-art baselines.

• Assess the performance of our model in imbalanced
drifting data streams and show that it maintains a com-
petitive behavior with the most recent method designed
specially for imbalanced learning, named ROSE [13];

• Provide our implementation onGitHub1 so that all of our
results can be reproduced and our method can be easily
used as a baseline in future studies and modified for new
purposes.

In the upcoming sections, we first review the related works
in the literature in Section II. Next, we explain our proposed
approach in detail in Section III. Then the experimental
design is presented in Section IV. We report our experi-
mental results and compare our model with the baselines
in Section V. We conclude our work and specify a future
direction in Section VI.

II. RELATED WORK
In this section, we study the proposed approaches for
data stream classification from three different perspectives.

1https://github.com/sepehrbakhshi/BELS

89316 VOLUME 11, 2023

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

We begin by reviewing the methods for concept drift adap-
tation in the literature (1), then we present the ensemble
approaches and categorize them into active vs. passive (2),
and chunk-based vs. online algorithms (3) [14].

A. CONCEPT DRIFT ADAPTATION
For concept drift adaptation, two approaches are mainly stud-
ied in the literature. As mentioned by Gama et al. [4], these
two model management techniques are single classifiers [8]
and ensemble methods [15].

A single classifier is normally accompanied by a concept
drift detector. The detection algorithm utilizes alerts to warn
the classifier of a drift. To find a drift point, detectionmethods
usually follow the error rate and trigger an alarm in the
case of an unusual decline in overall accuracy. DDM [5],
EDDM [16], ADWIN [17], and OCDD [18] use this strategy.

Another approach is to keep track of the statistical changes
in the data distribution. PCA-CD [19], EDE [20], and
CM [21] are designed based on this method. After an alarm
is triggered, the classifier usually restarts learning from that
point on. kNN and the Hoeffding Tree [22] are among the
most popular classifiers used for this purpose. All the above-
mentioned methods are supervised; however, unsupervised
detection of concept drift is also studied by Gözüaç1k et al.
in a recent work [23]. Another work on unsupervised concept
drift detection, but this time on multi-label classification,
is presented by Gulcan and Can [24].

Models that use a single classifier are efficient; however,
retraining the model from scratch or replacing it with a new
classifier, results in a delay in the learning process, since the
model loses useful information learned so far; furthermore,
in the case of a recurrent drift, the model should learn an
already learned concept from scratch.

Ensemble methods are one of the most powerful tools
for analyzing data that enable us to handle various issues
in knowledge discovery from imbalanced learning to han-
dling noisy data [25]. Many works are proposed based on
ensemble learning for static environment [26], [27], [28].
Inspired by their impressive performance in static settings,
ensemble methods are widely studied in data stream environ-
ments. In ensemble-based models, a combination of learners
is used to make the final decision. For concept drift adap-
tation, ensemble methods use various techniques; however,
there are a few similar strategies that most of them utilize
to maintain their high effectiveness during the learning pro-
cess. For instance, they may have an adaptive strategy that
adds and removes the classifiers based on their performance.
Some ensemble methods preserve the old classifiers that
are removed from the ensemble [4], and utilize these clas-
sifiers in the later stages of the learning process based on
the needs of the model. This approach helps the ensemble
model to have an effective reaction to concept recurrence.
Our proposed approach uses this strategy, but one of the
drawbacks of preserving the old classifiers is the high storage
and computational burden. Using a limit for the number of

preserved classifiers is a simple yet effective strategy that we
use for alleviating this issue. Another considerable advantage
of declaring a limit for the number of classifier components
of an ensemble is that controlling the ensemble size provides
a consistent runtime during stream classification. The com-
putational load of the model increases substantially as the
number of classifier components increases, and this leads to
an inefficient and sometimes broken system that is unable to
process new data.

Apart from the brief description of ensemble methods
presented above, we classify them from two perspectives.
Initially, we consider theway they handle concept drift. In this
sense, ensemble approaches fall into two subgroups: Active
and Passive. Furthermore, when it comes to data processing
criteria, two primary options are available: Chunk-Based and
Online.

B. ACTIVE vs. PASSIVE ENSEMBLE METHODS
Active methods rely on a concept drift detection method to
trigger an alarm. Then, the ensemble model reacts to this
drift by adding new classifiers, updating them, or restart-
ing their learning process. Adaptive Random Forest (ARF)
[29], Leveraging bagging [30], Adaptive Classifiers Ensem-
ble (ACE) [31], Heterogeneous Dynamic Weighted Majority
(HDWM) [32], comprehensive active learning method for
multi-class imbalanced streaming data with concept drift
(CALMID) [33], Streaming Random Patches (SRP) [34], and
Robust online self-adjusting ensemble for continual learning
on imbalanced drifting data streams (ROSE) [13] are among
the well-known algorithms in this category.

In passive models, no concept drift detector is used, and a
weighting strategy is commonly employed to help the model
adapt to the new changes [35]. The model may also add or
remove classifiers from the ensemble. With this method, the
ensemble relies on the most recent data to make a predic-
tion [8]. Additive Expert Ensembles (AddExp) [36], Dynamic
Weighted Majority (DWM) [37], Geometrically Optimum
and Online-Weighted Ensemble (GOOWE) [38], Learn++.
NSE [39], Resample-based Ensemble Framework for Drift-
ing Imbalanced Stream (R-DI) [40], and Kappa Updated
Ensemble (KUE) [41] fall into this category.

C. CHUNK-BASED vs. ONLINE ENSEMBLES
In a chunk-based ensemble, a chunk of data is collected
before each update. Using large chunks of data causes some
problems like missing the actual drift point. This leads to
delayed response in case of a concept drift and decreases the
accuracy of the model. In contrast to online models, chunk-
based models are more efficient as they process a chunk of
data simultaneously instead of processing the data one by
one. Accuracy Weighted Ensemble (AWE) [42], Learn++.
NSE [39], and Accuracy Updated Ensemble (AUE) [43] are
in this category.

Unlike the chunk-based models, online ensembles process
each data item separately, eliminating the need to gather a

VOLUME 11, 2023 89317

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

FIGURE 1. Overall schema of Broad Ensemble Learning System (BELS) for drifting stream classification.

chunk of data. This approach increases memory efficiency.
On the other hand, processing a single data instance sequen-
tially is time-consuming, and may result in the instability
of the model. Meaning that small changes in the input may
negatively affect the learning power of the model. Diver-
sity of Dealing with Drift (DDD) [44], DWM [37], and
AddEXP [36] are examples of online ensembles.

III. METHOD
This section is organized as follows. First, we introduce the
problem definition. Next, we provide a brief overview of the
BLS approach. Then, we present the technical details of our
proposed approach, which we call BELS.

A. PROBLEM DEFINITION
In a data stream environment, data is continuously generated
via a source over time. We refer to a data chunk at time step
k as Xk , and define the problem of data stream classification
as follows. First, the model generates the probability values
for each class to predict the class of incoming data chunk Xk .
Assuming that there are C predefined classes, sk is the prob-
abilities vector with the length of the number of labels. For
each instance, we assume that the correct label becomes avail-
able at time step k+1, making the prequential evaluation [45]
process possible. The model is then incrementally updated
using the correct labels of Xk and the obtained features.
Fundamentally, this process is the assumption used in the
majority of the data stream classification studies and is known
as the test-then-train learning paradigm in the literature [45].
As a result, every data instance is used both for training and
testing. We propose BELS as being specifically designed for
this problem setting. In the following subsections, we intro-
duce our method step by step.

B. BLS: BROAD LEARNING SYSTEM
Broad Learning System (BLS) [10] achieves high perfor-
mance in static environments, both in terms of runtime and
accuracy. In its architecture, the number of layers is mini-
mized and instead, each layer consists of several nodes. In the
first stage, BLS takes the input data and creates a feature
mapping layer using a linear function. Then an activation
function is used in the enhancement layer, and the output of
the feature mapping layer is fed to it. Next, the output of

both the feature mapping layer and the enhancement layer
is concatenated and fed to the output layer. To determine
the output weights, BLS solves the least squares problem by
finding the pseudoinverse.

In the feature mapping layer, the data is mapped using
φi(XWei + βei) function, where Wei and βei are random
weights and bias of the ith mapped feature respectively. Wei
and βei are initiated randomly. Eachmapped feature is used to
form a group of n mapped features by concatenation, where
n is the maximum number of feature mapping nodes in each
group [10].

This concatenation is denoted as Zn = [Z1, . . . ,Zn] [10].
Next, the output of this feature mapping layer is fed to an
activation function and forms the enhancement layer. Further-
more, ith feature map is used to form the jth enhancement
node Hj as follows: ξ (Z iWhj + βhj) [10]. Like the feature
mapping layer, the concatenation of m enhancement nodes
is grouped as Hm

= [H1, . . . ,Hm] [10] where m is the
maximum number of enhancement nodes. Based on the BLS
paper [10], the broad model is defined as follows:

Y = [Z1, . . . ,Zn|ξ (ZnWh1 + βh1), . . . , ξ (Z
nWhm + βhm)]W

= [Z1, . . . ,Zn|H1, . . . ,Hm]W

= [Zn|Hm]W

The ultimate goal of the system is to find W by solving a
least square problem.

BLS proposes an incremental way of updating the system
for large datasets. The incremental approach uses a large
chunk of data to update the system at every step; however,
there are three main reasons that make BLS an ineffective
systemwhile dealing with data streams: i) BLS uses the initial
set of incoming data to calculate the feature mapping. The
problem is that in each time step, the system uses the same
data representation without any update. ii) By using a smaller
chunk size, the proposed pseudoinverse updating in BLS is
not effective, since it needs a very large chunk of data for
an effective update. iii) There is no mechanism to handle
concept drift in BLS and its proposed variants. Note that our
proposed model is different from other variations in [46].
In [46], the proposed variations of BLS are not designed
for a stream environment, and can not handle concept drift.
Furthermore, our model utilizes an ensemble approach and

89318 VOLUME 11, 2023

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

focuses on using small chunk sizes for tracking the changes
in the accuracy of the ensemble components.

C. BELS: BROAD ENSEMBLE LEARNING SYSTEM
To tackle the problemsmentioned in Section III.Bwe propose
BELS [47]. In Sections III-C1 and III-C2 we propose a
solution for considering the whole data items for generating
the feature mapping, enhancement, and output layers, which
prepares the model for effective updates with smaller chunk
sizes (Sc ≤ 1000). In Section III-C3 we introduce our ensem-
ble approach for dealing with concept drift.

Figure 1 shows the overall structure of BELS. As we can
see in this figure, when the first chunk of data is received,
it is fed to the feature mapping layer. Next, the output of
the feature mapping layer is fed to the enhancement layer.
Subsequently, the output of these two layers is concatenated
and fed to an ensemble of output layers, and the final decision
is made based on the majority voting. We utilize a pool of
removed output layers where the ones removed from the
ensemble are kept in it. Frequent exchange of the removed
output layer instances in the pool and the active ones in the
ensemble is used as a strategy for handling concept drift.
A detailed explanation of each step is presented in the fol-
lowing subsections.

1) UPDATING THE FEATURE MAPPING IN BELS
BLS employs a sparse autoencoder to overcome the random-
ness of the generated features. We use the same method to
deal with this issue; however, despite BLS, we update this
feature representation after each chunk of the data.

To obtain this feature representation, BLS uses an iterative
method. Eq. (1) is defined in BLS paper for this purpose [10].
The output of these iterative steps is denoted as µ.

wi+1 :=
(
zT z+ ρI

)−1 (
zTXk + ρ

(
oi − ui

))
oi+1 := Sλ/ρ

(
wi+1 + ui

)
ui+1 := ui + (wi+1 − oi+1)

(1)

In Eq. (1), Xk is the input data in time step k and z is
the projection of the input data using XWei + βei for the
ith feature group. We and βe are randomly generated with
proper dimensions initialized at the beginning of the first time
interval. Note that we apply the same We and βe during the
training for each update. ui, oi, and wi are initialized as zero
matrices at the beginning of the iteration. These matrices are
only used in the updates of the iterative steps of Eq. (1). In the
formula, ρ > 0, I is the identity matrix, and S is the soft
thresholding operator [10]. In Eq. (2), (a) is the sum of wi+1
and ui. In our experiments, we use κ = 0.001. S is calculated
as follows [10]:

Sκ (a) =

a− κ, a > κ

0, |a| ≤ κ

a+ κ, a < −κ

(2)

While considering the incremental input in a stream envi-
ronment, the projection of data is different for each chunk
of data. Meaning that we can not utilize the first set of data
to calculate the µ, and use the same µ for the rest of the
incoming data. Additionally, if the data chunk is small, then
this projection is not comprehensive enough. To solve this
problem, we propose an updating system for Eq. (1), that
in each step k , µi is the projection of the entire data from
step one to step k . In each time step, the system uses the
renewed µ, and this helps the model to have a comprehensive
feature mapping layer that represents the entire data up to that
time step. This technique improves the accuracy of the model
drastically when dealing with both small and large chunks.

To implement this idea, we need to update zTXk and zT z
in each time step for every set of mapping features in k ,
separately.

Let us denote zTXk as T1. We know that the dimensions
of T1 are independent of the number of data instances in
each time step, and depend on the number of feature mapping
nodes, as well as the number of features in each data instance.
Based on this fact, we can use the following theorem in our
method:
Theorem 1: For two matrices A and A′ with the same

number of columns, if we multiply AT with A, and A′T with A′,
the result of both multiplications are square matrices with the
equivalent size. We refer to them as At and A′t , respectively.
Let us concatenate A and A′ vertically and denote the new
matrix as Ac. The product of ATc and Ac is a square matrix
equal to the sum of At and A′t . The hypothesis can be formu-
lated as follows:

ATc Ac = ATA+ A′TA′ where: Ac =
[
A | A′

]
(3)

Proof: Let A be an m by n matrix and let A′ be an m′ by
n matrix. Ac is obtained by concatenating A and A′ matrices
vertically as follows:

Ac =

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn
a′11 a′12 . . . a′1n
a′21 a′22 . . . a′2n
...

...
. . .

...

a′m′1 a
′

m′2 . . . a′m′n

The left-hand side of the Eq. (3) is the multiplication of

ATc and Ac matrices. Let us denote the element at ith row and
jth column of the resulting matrix as lij. Also, let the (i, j)th
element of the resulting matrix on the right-hand side of the
Eq. (3) be represented by rij. In the following, we show that
these two elements are equal regardless of the i and j values,
meaning that the resulting matrices in the left and right-hand

VOLUME 11, 2023 89319

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

sides of the Eq. (3) are equal.

lij =
m+m′∑
k=1

Akic × A
kj
c =

m∑
k=1

Akic × A
kj
c +

m+m′∑
k=m+1

Akic × A
kj
c

=

m∑
k=1

aki × akj +
m′∑
k ′=1

ak ′i × ak ′j

rij = (ATA)ij + (A′TA′)ij =
m∑
k=1

aki × akj +
m′∑
k ′=1

ak ′i × ak ′j

□
Based on Theorem 1, Eq. (4) is used to update T1 value.

T1k =
k∑
i=1

T1i (4)

Let us denote zT z as T2. Assuming that the number of
columns in z does not change during the training phase, based
on Theorem 1, we define the Eq. (5) to update T2 at each
step k:

T2k =
k∑
i=1

T2i (5)

We use T2k and T1k as the input for the modified version of
Eq. (1), and utilize it as in Eq. (6).

wi+1 :=
(
T2k + ρI

)−1 (
T1kXk + ρ

(
oi − ui

))
oi+1 := Sλ/ρ

(
wi+1 + ui

)
ui+1 := ui + (wi+1 − oi+1)

(6)

The enhancement nodes are created using the following
formula [10]:

Hj = [tanh(Zk nWhj + βhj)] (7)

Zk n is a set of feature mapping nodes at time step k , and
Whj and βhj are generated randomly. It’s noteworthy that the
enhancement layer is used as it is proposed in [10].

While updating the model, the random weights are fixed
and the enhancement nodes are updated at each step. The
process of updating the feature mapping and enhancement
layers is shown in Algorithm 1.
After concatenating the output of the feature mapping

layer and the enhancement layer horizontally, the next step
is calculating the pseudoinverse for the least square problem
discussed in BLS [10].

2) UPDATING THE PSEUDOINVERSE IN BELS
Unlike BLS, where the pseudoinverse is calculated based on
the instances of the last chunk of the data, we revise this
calculation such that it represents the pseudoinverse of the
whole data until that time step.

Suppose that A is the result of concatenating the output of
the feature mapping layer and the output of the enhancement

Algorithm 1 Feature Mapping and Enhancement Layer
Update
Input: data chunk Xk
Output: a set of feature mapping and enhancement nodes

denoted as Ak
1: initiate randomWe, Wh, βe and βh at the beginning
2: Xk = data instances at step k
3: for i=0; i ≤ n do
4: z = (XkWei + βei)
5: T1 = XkzT

6: T2 = zT z
7: if k = 0 then
8: T1k = T1
9: T2k = T2
10: else
11: T1k = T1k−1 + T1
12: T2k = T2k−1 + T2
13: end if
14: calculate µi with Eq. (6)
15: Zi = Xµi
16: end for
17: set the feature mapping group Zk n = [Z1, . . . ,Zn]
18: for j← 1; j ≤ m do
19: calculate Hj = [tanh(ZK nWhj + βhj)] with Eq. (7)
20: end for
21: set the enhancement node group Hkm = [H1, . . . ,Hm]

Ak = [Zk n|Hkm]

layer horizontally. To obtain the pseudoinverse, BLS uses
Eq. (8) [10]:

W = (λI + AAT)
−1
ATY (8)

where Y is the labels of a chunk of training data and λ is a
small positive value added to the diagonals of A. To calculate
weights of the output layer, which is considered as the solu-
tion for the least square problem, we update AAT at each time
step k and refer to it as At :

At = AT kAk (9)

Then, we multiply AT k by Yk , which is the set of labels at
time step k and define it as follows:

Dt = ATk Yk (10)

At k and Dt k values are obtained as:

Atk =
k∑
i=1

Ati and Dtk =
k∑
i=1

Dti (11)

Based on theorem 1, we know that at the end of step k , At k
andDt k are equal to At andDt of the entire data until that time
step, respectively. The process is shown in Algorithm 2. First
we calculate At k and Dt k (Algorithm 2:1-9). Then, Eq. (12)
is used to update the pseudoinverse (Algorithm 2:10).

W =
(
λI + Atk

)−1Dtk (12)

89320 VOLUME 11, 2023

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

Algorithm 2 Output Layer Weight Calculation
Input: a set of feature mapping and enhancement nodes

denoted as Ak
Output: W
1: At = ATk Ak
2: Dt = ATk Yk
3: if k = 0 then
4: Atk = At
5: Dtk = Dt
6: else
7: Atk = Atk−1 + At
8: Dtk = Dtk−1 + Dt
9: end if

10: W = (λI + Atk)
−1Dtk

TABLE 1. Additional symbols and notation for BELS (Algorithm 3).

For testing, we use a similar approach to BLS [10]; how-
ever, like the previous steps, we separate the calculations
related to feature mapping and enhancement layers, and the
output layer. Let us assume that Atest k is the concatenation
of test results of feature mapping and enhancement layers.
We use Atest k for producing the prediction based on the
following formula in the final stage [10]:

ŷk = Atest kW (13)

3) CONCEPT DRIFT ADAPTATION IN BELS
For concept drift handling, we use an ensemble approach.
Our approach is passive as we do not use any concept drift
detection mechanism. Simply, we keep updating the feature
mapping layer and enhancement layer as new data chunk
arrives; however, an ensemble of output layer instances is
used to determine the final result. Each output layer instance
is a collection of output layer nodes.

There are two main reasons for excluding the feature map-
ping and enhancement layers from our ensemble: (i) Using an
ensemble of a complete BLS model, which includes feature
mapping, enhancement, and output layers, is not efficient
as it requires additional calculations,(ii) Initializing the fea-
ture mapping and enhancement layer for each incoming data

Algorithm 3 BELS (Broad Ensemble Learning System)
Require: D: data stream, Xk : data chunk at step k, Yk : labels

of the data chunk at step k, δ: accuracy threshold
Ensure: ŷk : prediction of the ensemble as a score vector at

step k
1: while D has more instance do
2: if ξ is not full then
3: ξ ← add new output layer
4: else if ξ is full or L length > (ξ length /2) then
5: for i← 0; i ≤ L length - 1 do
6: remove ξ [L[i]]
7: if L length > (ξ length/2) then
8: P← ξ [L[i]]
9: end if
10: end for
11: while ξ is not full and i < bP length do
12: ξ ← bP[i]
13: remove bP[i] from P
14: end while
15: if P length > Mp then
16: keep the lastMp instances of P
17: end if
18: end if
19: calculate Atest k
20: for i← 0; i ≤ ξ length do
21: if Oi is initialized then
22: sik , accik ← prediction & acc of Oi Eq.(13)
23: if Sc!= 2 then
24: δ = overall acc
25: end if
26: if accik < δ then
27: L← i
28: end if
29: end if
30: end for
31: ŷk ← use the set of sik for hard voting
32: for j← 0; j ≤ P length do
33: accjk ← test P[j] using Eq. (13)
34: if accjk > η then bP← P[j]
35: end if
36: end for
37: Ak ← update F and E using Algorithm 1.
38: for i← 0; i ≤ ξ length do
39: update Oi using Algorithm 2.
40: end for
41: end while

chunk delays the learning process, because the initial feature
mapping and enhancement layers of the data are not com-
prehensive. In our ensemble, the output layer instances with
the best prediction accuracy in the last chunk are kept in the
model, and those with an accuracy less than the threshold
δ are replaced with a new one, or one of the output layer
instances in the pool. The pool consists of removed output

VOLUME 11, 2023 89321

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

layer instances. Basically, our proposed approach for manag-
ing concept drift involves regularly swapping out the output
layer instances that have been removed from the pool or
newly generated ones, with the active ones in the ensemble.
Using small chunk sizes results in more exchanges, and this
helps our ensemble to have a set of diverse components.
Besides, it also reacts swiftly to any changes in the distri-
bution of data. Symbols and notations used in the ensemble
learning process and the detailed steps of our approach are
shown in Table 1 and Algorithm 3, respectively.

Our model is defined with three independent but connected
parts. Feature mapping layer denoted by F , enhancement
layer denoted by E and output layer denoted by O. BELS
consists of a single F and E and an ensemble of l output
layer instances ξ = {O1,O2,O2, . . . ,Ol}. To update these
parts at each time step, Algorithm 1 andAlgorithm 2 are used.
A set of new data instances I = {I1, I2, I3, . . . , ISc} where
2 ≤ Sc ≤ 50 is used for each update.

Let us assume that we have received the first chunk of data
and our model is initialized. In the upcoming iterations, first,
we check if the number of output layer instances has reached
the predefined maximum number (Algorithm 3: 2-3). If ξ is
full, then the model removes the output layer instances that
have an accuracy less than a threshold. If the number of output
layer instances in L is more than the instances in ξ , then the
output layer instances in L are added to P (Algorithm 3:4-10).
Next, the model adds the previously removed output layer
instances from bP back to the model (Algorithm 3:11-14).
bP Consists of output layer instances that were removed
once and now are eligible to return to the learning process.
Then we check the size of the pool, and if it passes the
predefined threshold (Mp), we only keep the last Mp output
layer instances in the pool.

In the testing phase, the accuracy of each output layer
instance is calculated, and the index of the worst-performing
ones is added to L (Algorithm 3:20-30).
Hard voting is used for calculating the final prediction.

In hard voting, the score vector of an output layer instance sk

is first transformed into a one-hot vector, and then combined
with the sk of the other output layer instances to determine
the final prediction (Algorithm 3:31). Next, output layer
instances in P are tested. If any of them has an accuracy
more than a threshold (denoted by η), then that output layer
instance is added to bP (Algorithm 3:32-36). This process
gives the output layer instances in P a chance to be added to
ξ and used in the learning process as of the next time step.
Finally, the model is updated (Algorithm 3:38-40) and the
same processes are repeated.

4) TIME COMPLEXITY ANALYSIS
Since we assume that the calculations for building each fea-
ture mapping and enhancement node take O(1) time, let us
assume that building the feature mapping layer and enhance-
ment layer takes O(n) and O(m) time respectively, where n is
the number of feature mapping nodes, andm is the number of
enhancement nodes. Based on this assumption, we conclude

that Algorithm 1 and the first phase of testing (which includes
generating the feature mapping and enhancement layers) take
O(n + m) time. Next, we have our ensemble method in
Algorithm 3. Execution time for initializing the model and
removing the output layer instances, or adding them back to
the model (Algorithm 3:2-18) are negligible.

Let us denote the ensemble size as Sξ . Then, the final
prediction for each output layer instance is calculated in
(Algorithm 3:20-30), and it takes O(Sξ) time.

Later, we test the output layer instances in the pool in
(Algorithm 3:32-36). This process takesO(P) time. For train-
ing, we first update the feature mapping and enhancement
layer using Algorithm 1. This process is executed once for
each chunk, and it takesO(n+m) time. Finally, we update the
output layer instances using Algorithm 2. In this algorithm,
we calculate the pseudoinverse. Let us denote chunk size
as Sc. Based on the dimensions of Dt k and At k , we conclude
that Algorithm 2 takesO(max(Sc, (n+m))2min(Sc, (n+m)))
time.

For N
Sc

chunks of data, the whole process complexity is as
follows:

O
(
N
Sc

(
2(m+ n)+ Sξ + P+

(
Sξ max(Sc, (n+ m))2

min(Sc, (n+ m))
)))

(14)

Obviously, among different parts of the algorithm, the one
withO(ξ max(Sc, (n+m))2min(Sc, (n+m))) time complexity
dominates the whole process. The final complexity of the
algorithm is as follows:

O
(N
Sc

(
Sξ max(Sc, (n+ m))2min(Sc, (n+ m))

))
(15)

The analysis shows that our model’s efficiency in terms of
processing time is agnostic of the feature set size, and depends
on the chunk size, number of ensemble components, and the
number of nodes. This ability allows the user of the model to
set the hyperparameters based on the needs of the project in a
real-world environment. As we discuss later, the efficiency
of the baseline methods heavily relies on the size of the
feature set, and it significantly decreases as the feature set
size increases.

IV. EXPERIMENTAL DESIGN
In this section, first, the datasets and baseline methods are
introduced, then we elaborate on our experimental setup.

A. DATASETS
In our experiments, we use 30 datasets to evaluate the effec-
tiveness of our model (in terms of accuracy) and efficiency
(in terms of runtime) and compare it with the baselines.
Five additional synthetic datasets are also used to assess
the performance of the proposed model on an imbalanced
learning scenario. Therefore, in our experiments, the total
number of datasets is 35. Our datasets cover a wide spectrum

89322 VOLUME 11, 2023

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

TABLE 2. Properties of 35 Datasets used in the experiments (Type: R -
Real, S - Synthetic; DT: A - Abrupt, I - Incremental, G - Gradual, R-
Recurring).

TABLE 3. List of parameters.

of possibilities that can be observed in data streams. Their
properties are presented in Table 2.

All four drift types are used in the experiments: Gradual
(G), Incremental (I), Abrupt (A), and Recurring (R). In the
same table, (U) stands for unknown drift type. For each
dataset, its type (real or synthetic), the drift type, the number
of features, and the number of class labels are denoted as
Type, (DT), (# F), and (# C); respectively.

2https://github.com/ogozuacik/concept-drift-datasets-scikit-multiflow
3http://mlkd.csd.auth.gr/concept_drift.html
4https://sites.google.com/site/nonstationaryarchive/datasets

The first four synthetic datasets in Table 2 are from the
available works in the literature [53], [54], and the LED,
SEA, and Waveform datasets are generated using the scikit-
multiflow library [57]. In the LED dataset, seven drifting
features are used without noise. For the SEA dataset, each
number in the dataset names represents one of the clas-
sification functions (there are four classification functions:
{0, 1, 2, 3}). At each drift point, a new classification function
is used to generate the stream. We introduce five drift points
in each dataset. SEA-Abrupt and SEA-Incremental datasets
have 10% and 20% noise, respectively. For adding noise
to the datasets, the labels of the dataset change from 0 to
1 and vice versa, according to a probability distribution [57].
The Waveform-Noisy dataset adds 19 irrelevant attributes
as noise to the dataset [57]. Hyperplane, RBF, Agrawal,
Sine, and Stagger generators are also used to create synthetic
datasets with various types and speeds of drift. These datasets
are generated using the MOA library [58]. In the hyper-
plane dataset, two different magnitudes of change (0.25 and
0.50) are utilized. The RBF datasets have two different drift
speeds indicated as ‘Fast’ and ‘Slow’ in their names. For
the remaining datasets, the numbers indicate the sequence of
classification functions used to synthesize the drift.

B. EXPERIMENTAL SETUP
The evaluation is based on the interleaved-test-then-train
approach [45]. It is themost common technique for evaluating
classification models in a data stream environment. In this
approach, a data instance or a chunk of instances is first used
for testing, then for training the model.

One of the most challenging tasks in data stream mining
is optimizing hyperparameters for neural networks. Recently,
a potential straightforward solution has been proposed, which
involves using a pool of neural networks with varying hyper-
parameters [59]. During the learning process, all neural net-
works in the pool are trained, and after receiving each data
instance, themodel with the lowest loss (excluding the current
data instance) is used for prediction; however, in our case,
such an approach may result in a significant computational
burden. To address this issue, we utilize a modified version
of this method that only considers the first 1,000 data items
to choose a set of hyperparameters for the rest of the learn-
ing process (for Usenet and Email datasets we use the first
100 data items due to their small size). For each dataset,
we use this subset of data to perform a local grid search
to determine the optimal number of feature mapping nodes,
number of enhancement nodes, and chunk size. We then
choose the combination of hyperparameters with the highest
accuracy and continue using the same set of hyperparameters
during the learning process.We limit the number of nodes and
chunk sizes to a predefined set to reduce the time needed for
the grid search. Therefore, three combinations of BELS are
used as follows: BELS1 (n: 25, m: 1), BELS2 (n: 25, m: 50),
BELS3 (n: 100, m: 100), where, as defined earlier, n is the
number of feature mapping nodes, and m is the number of

VOLUME 11, 2023 89323

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

TABLE 4. Baseline methods with a short description.

TABLE 5. Ablation study results: Comparison between BELS, its variants, and BLS in terms of average prequential accuracy and runtime (runtime is
reported in centiseconds for processing of 1,000 data items). Accuracy improvement of BELS wrt. to BLS is provided in the last column. The best results
for each dataset are in bold.

enhancement nodes. For chunk size, we use a set of five dif-
ferent chunk sizes: {2, 5, 10, 20, 50}. These hyperparameters
are tuned based on a grid search on several values, and the
ones that contribute positively to both runtime and accuracy
are chosen as default. The list of parameters is provided in
Table 3.

The other three hyperparameters are set to default when
the model is initiated:Mo = 75,MP = 300, η = 0.5, and δ is
updated dynamically in the model (See Algorithm 3:23-25).

To compare the performance of BELS with other meth-
ods, we choose 10 state-of-the-art models as baselines. The
names of the baseline models and a short explanation of
their approach are supplied in Table 4. All the baselines
(except GOOWE, KUE, and ROSE) are available in the
MOA library [58]. The source codes for GOOWE,5 KUE,6

and ROSE7 are available on their GitHub. To have a fair
comparison, we use the default configuration for BELS and
baselines. For the baseline methods, the default values intro-
duced in their papers are utilized in the experiments. All of
the experiments are conducted in a chunk setting and the
default chunk size of MOA is utilized except ROSE, which
is inherently online and the chunk-based evaluation of the
model is not available.

The experiments are conducted on a PC with Intel(R)
Xeon(R) Gold 5118 CPU @ 2.30 GHz and 128 GB RAM
on an Ubuntu 18.04.4 LTS operating system.

5https://github.com/abuyukcakir/goowe-python
6https://people.vcu.edu/ acano/KUE/
7https://github.com/canoalberto/ROSE

V. EXPERIMENTAL RESULTS AND EVALUATION
In this section, we first compare our method with its variants
and also with the original BLS. Then we perform a thor-
ough experimental evaluation with various baselines in terms
of prequential accuracy and runtime. Next, we discuss the
results of statistical significance analysis. Finally, the results
of hyperparameter sensitivity analysis and the performance
of our method in imbalanced data streams are discussed.

A. BELS VS. BLS - ABLATION STUDY
To study the effect of our approach on the learning process
and the handling of concept drift, we conduct a step-by-step
study to observe average prequential accuracy and runtime.
We analyze the effects of the different features of BELS on
accuracy by performing experiments on three different BELS
variants and compare them with the original BLS model in
terms of runtime effectiveness and efficiency.
• BLS: The original Broad Learning System method.
• BELS-FPs: BELS method with the enhancements men-
tioned in Section III-C1 and III-C2, which includes
feature mapping layer and pseudoinverse update.

• BELS-Ens: BELS as an ensemble method. This part
does not contain the pool of removed output layer
instances.

• BELS: Complete BELS version with all of its features
including BELS-Ens and the pool.

We report the results of four data streams of a good variety
on four datasets. The chosen datasets contain all types of
concept drift (incremental, gradual, abrupt, and recurring).
To have a fair comparison, we use the same hyperparameters

89324 VOLUME 11, 2023

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

TABLE 6. Average prequential accuracy results (in %). For each row, the highest value is marked with bold text. Avg. % Imp. by BELS wrt a baseline is the
mean value of % improvements obtained for individual datasets. Average Rank is the mean rank of each method for individual datasets.

for all three variants of BELS and the BLS. The results are
shown in Table 5.

BLS is not designed for a data stream environment.
Based on this fact, we know that BLS is faster than our
algorithm but it has lower accuracy in a stream environ-
ment. As we see in Table 5, by utilizing each feature of
the BELS, the accuracy improves, which yields the best
performance in the complete version of BELS with an aver-
age accuracy improvement of 41.44% on four datasets used
in this experiment. Average accuracy improvement is the
mean of improvement over all datasets, and is calculated as
(Accuracy Increase× 100/Original Accuracy).

B. EFFECTIVENESS AND EFFICIENCY ANALYSIS
The prequential evaluation results are shown in Table 6. The
results demonstrate that our proposed method outperforms
the baseline methods on 12 out of 30 datasets, and has a
marginal difference with the best-performing baseline in the
remaining datasets. Our observations on datasets of varying
drift types with different numbers of class labels and features
demonstrate the adaptability of our model under a vari-
ety of classification conditions. On average BELS improves
the accuracy by 18.59% compared to the baselines used in
the experiments across 30 datasets. Experiments on noisy
datasets also show that our model is robust to noise.

We can see the runtime of the models in Table 7. Run-
time is considered as the processing time for test and train-
ing of 1,000 data instances in the test-then-train method.
The results show that our model has an average process-
ing time of 625.63 centiseconds for processing 1,000 data
items. It is worth mentioning that, being implemented in
Python, the BELS model functions slower compared to Java-
based models. Despite this inherent difference, BELS still
achieves a competitive average runtime. As mentioned earlier
in Section III-C4, unlike the baselines, our runtime results
are independent of the feature set size. For instance, the
runtime results for Email and Spam datasets with 913 and
499 features, respectively, highlight this issue (See Table 7.).
Compared to other datasets, the baseline methods exhibit a
longer runtime on these two particular datasets.

The plots in Figure 2 show that BELS has robust concept
drift-resistant performance: it maintains better performance
when concept drift occurs (indicated by the fluctuated accu-
racies as the data stream progresses). Furthermore, it provides
a higher level of accuracy compared to the three top-ranked
baselines (ARF, LevBag, and ROSE) in five out of the six
plots.

In the Electricity dataset, we observe abrupt fluctuations in
the prequential accuracy. This suggests that there might be an
abrupt drift in this dataset. In the Poker dataset, there are mild
abrupt changes in the accuracies; and in the case of BELS,

VOLUME 11, 2023 89325

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

TABLE 7. Average runtime for processing 1,000 data instances (in centiseconds). For each row, the lowest value is marked with bold text. Average Rank is
the mean rank of each method for individual datasets.

we see soft transitions in the plot that demonstrate the ability
of BELS to handle concept drifts in such cases. The remain-
ing four datasets (Usenet, RBF-Slow, Rotating Hyperplane,
Stagger-Abrupt-Rec-1212) include all four types of drifts.
In these datasets, BELS demonstrates its effectiveness in han-
dling drift. In three of these datasets, Rotating Hyperplane,
RBF-Slow, and Stagger-Abrupt-Rec-1212, BELS is the top-
performingmodel during thewhole process. In Usenet, which
has multiple drifts within a short span of 1,500 data items,
BELS demonstrates its overall effectiveness and recovers
swiftly.

To gain a better perspective of the average rankings of the
methods used in our experimental evaluation, we demonstrate
them in Figure 3. Each bar shows the average ranking of the
models in terms of accuracy and runtime.

C. STATISTICAL SIGNIFICANCE ANALYSIS
In this part, we present a statistical test on both accuracy
and runtime. The analysis is conducted for 11 models and
30 datasets. By using theFriedman Testwe first reject the null
hypothesis that there is no statistically significant difference
between the mean values of the populations. Then we use
post-hoc Bonferroni-Dunn test to check if there is a signif-
icant difference between the results of our proposed model
and the baselines [60].

For this test, we first rank the models based on their per-
formance. Then based on the post-hoc Bonferroni-Dunn test,
we calculate the Critical Difference as CD = 2.40. In our

experiment α = 0.05. Figure 4 shows the critical distance
diagram for average prequential accuracy and runtime.8

The CD diagram reveals that BELS ranks higher compared
to the 10 state-of-the-art models in terms of average prequen-
tial accuracy. BELS statistically significantly outperforms six
of the models (KUE, OzaADWIN, GOOWE, DWM, HAT,
and SAM-kNN) and is in the same group as ROSE, LevBag,
ARF, and SRP.

Regarding runtime, BELS does not exhibit a significant
difference from SAM-kNN, ROSE, GOOWE, ARF, and SRP,
which are all defined for data streams. However, HAT, DWM,
KUE, OzaADWIN, and LevBag statistically significantly
outperform the proposed model in terms of runtime.

D. HYPERPARAMETER SENSITIVITY ANALYSIS
In this part, we study the effects of the main hyperparameters
on the overall performance of BELS. Four datasets are used
for this purpose. With this intent, Sc (chunk size), Mo (max-
imum number of output layer instances), and Mp (maximum
number of output layer instances in P) are studied because of
their importance in the learning process and handling concept
drift. Table 8 shows the results for hyperparameter sensitivity
analysis. Initially, we set a default setting for each dataset
based on the first 1,000 data instances (check Section IV-B
for details). We only modify the target hyperparameter, and
the remaining ones stay the same in all experiments. Based on
the results for chunk size, we observe that the best accuracy

8https://orangedatamining.com

89326 VOLUME 11, 2023

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

FIGURE 2. Prequential temporal accuracy results of BELS and three top-ranked baselines (ARF, LevBag, and ROSE) for real (first row), and
synthetic datasets (second row). The initial capital of drift types is given within parentheses (U: Unknown, A: Abrupt, G: Gradual, I:
Incremental, R: Recurring).

TABLE 8. Hyperparameter analysis results: Observations are reported in terms of average prequential accuracy and runtime (in centiseconds for
processing 1,000 data items). For the Usenet dataset, we do not report the results for chunk sizes 250 and 500, since the dataset has only 1,500 data
items. The best results for each hyperparameter for each dataset are in bold.

FIGURE 3. Average rank comparison (lower is better) for prequential
accuracy and runtime based on Tables 6 and 7.

results for each dataset are for chunk sizes less than 100.
BELS is designed for learning with small chunk sizes at every
step, since it reacts to the changes in accuracy, and frequently

replaces the ensemble components with the new ones or the
ones in the pool. Based on the observations in this section,
we suggest using chunk sizes smaller than 100. As mentioned
earlier in Section IV-B, we use the first 1,000 instances to
automatically determine the chunk size which is chosen from
a set of {2, 5, 10, 20, 50}. The reason for removing a chunk
size equal to one from this set is its inefficiency. Aswe can see
in Table 8, the runtime of themodel is substantially dependent
on the chunk size.

Based on the results in Section V-A, we observe that
having an ensemble of output layer instances improves the
results, meaning that the ensemble size should be greater
than one. In our experiments, the default number of output
layer instances (Mo) is set to 75. The reason is that adding
more instances leads to longer runtime, and fewer output
layer instances may result in poor performance in terms of
accuracy.

Next, we analyze the effect of pool size (Mp). After increas-
ingMp to 200 and more, the accuracy remains the same. The
reason is that based on our ensemble method, after adding an
output layer instance back to the learning process, we remove

VOLUME 11, 2023 89327

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

FIGURE 4. Critical distance diagrams for the (a) Average prequential
accuracy and (b) runtime using the data on Tables 6 and 7. (CD = 2.40).

it from P (see Algorithm 3:13). For this reason, usually Mp
does not exceed the defined limit for P. We choose an upper
bound of 300 forMp in all of the experiments.
Our suggestions for default hyperparameters are presented

in Section IV-B (Table 3), and they are repeated here for
ease of reference: The chunk size is selected from a set of
{2, 5, 10, 20, 50}, Mo= 75, andMP= 300.

E. HANDLING IMBALANCED DRIFTING DATA STREAMS
To assess the performance of our method in imbalanced
streams, we compare it with the top five approaches in the
accuracy ranking in Table 6: ROSE, LevBag, ARF, SRP,
and KUE. We report the Kappa metric results for compari-
son [61], [62], [63]. The Kappameasure is applicable for both
multi-class and binary classification problems and has proven
to be a dependable measure for evaluating the performance of
data stream classification models, particularly when dealing
with imbalanced datasets [61].
In this experiment, we use five real (R) and five synthetic

(S) datasets. The real datasets are chosen from the set of
imbalanced datasets included in a recent survey [61]. The
imbalance ratio in synthetic datasets is set to 0.9:0.1 in binary
and 0.6:0.2:0.1:0.1 in multi-class datasets with four labels.
The synthetic datasets contain concept drift.

The average Kappa scores are reported in Table 9. The
Kappa score is between (−1, 1). Kappa scores closer to one
suggest higher levels of agreement between predicted and
true labels, signifying better handling of imbalanced datasets.
The results show that our model outperforms the baselines in
terms of average Kappa. In terms of average rank, our model
achieves the same rank as ROSE on the examined datasets.

TABLE 9. Imbalanced data streams analysis results: Kappa scores (in %)
for the BELS and top five baselines in the accuracy table (Table 6).

Applying the Friedman test to the models in this section [60],
indicates that the null hypothesis could not be rejected, and
there is no significant difference between the classifiers.

VI. CONCLUSION AND FUTURE WORK
In this work, we present BELS, a novel ensemble model
for data stream classification in non-stationary environments.
We describe real-world and unique challenges that data
stream causes and focus on handling concept drift using
a novel approach. BELS tracks changes in the accuracy
of the ensemble components and frequently reacts to these
changes by exchanging classifier components between the
pool of removed ensemble components and the active ensem-
ble members. The results show that on average, BELS
improves the accuracy, compared to the state-of-the-art mod-
els designed specifically for data streams, by 18.59%, and in
terms of processing time, it is a suitable choice for evolving
environments.

Despite the competitive results in the imbalanced learning
scenario, our future plans involve enhancing our model to
handle this issue more effectively. Another problem in data
stream environments is the lack of available class labels in
real-world scenarios. As a part of our future work, we also
plan to improve BELS for semi-supervised data stream clas-
sification.

REFERENCES
[1] D. Laney, ‘‘3D data management: Controlling data volume, velocity, and

variety,’’META Group Res. Note, vol. 6, no. 70, p. 1, 2001.
[2] G. Widmer and M. Kubat, ‘‘Learning in the presence of concept drift and

hidden contexts,’’Mach. Learn., vol. 23, no. 1, pp. 69–101, Apr. 1996.
[3] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, ‘‘Learning under

concept drift: A review,’’ IEEE Trans. Knowl. Data Eng., vol. 31, no. 12,
pp. 2346–2363, Dec. 2019.

[4] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, ‘‘A sur-
vey on concept drift adaptation,’’ ACM Comput. Surv. (CSUR), vol. 46,
no. 4, pp. 1–37, Apr. 2014.

[5] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, ‘‘Learning with
drift detection,’’ in Proc. Brazilian Symp. Artif. Intell. Berlin, Germany:
Springer, 2004, pp. 286–295.

[6] S. Ramírez-Gallego, B. Krawczyk, S. García, M. Woźniak, and F. Herrera,
‘‘A survey on data preprocessing for data stream mining: Current status
and future directions,’’ Neurocomputing, vol. 239, pp. 39–57, May 2017.

[7] A. S. Iwashita and J. P. Papa, ‘‘An overview on concept drift learning,’’
IEEE Access, vol. 7, pp. 1532–1547, 2019.

[8] G.Ditzler,M. Roveri, C. Alippi, andR. Polikar, ‘‘Learning in nonstationary
environments: A survey,’’ IEEE Comput. Intell. Mag., vol. 10, no. 4,
pp. 12–25, Nov. 2015.

89328 VOLUME 11, 2023

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

[9] Z. Li, W. Huang, Y. Xiong, S. Ren, and T. Zhu, ‘‘Incremental learning
imbalanced data streams with concept drift: The dynamic updated ensem-
ble algorithm,’’ Knowl.-Based Syst., vol. 195, May 2020, Art. no. 105694.

[10] C. L. P. Chen and Z. Liu, ‘‘Broad learning system: An effective and
efficient incremental learning system without the need for deep architec-
ture,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 10–24,
Jan. 2018.

[11] L. Yuan, H. Li, B. Xia, C. Gao, M. Liu, W. Yuan, and X. You, ‘‘Recent
advances in concept drift adaptation methods for deep learning,’’ in Proc.
31st Int. Joint Conf. Artif. Intell. (IJCAI), L. D. Raedt, Ed., Jul. 2022,
pp. 5654–5661, doi: 10.24963/ijcai.2022/788.

[12] M. Y. Vardi, ‘‘Efficiency vs. resilience: What COVID-19 teaches comput-
ing,’’ Commun. ACM, vol. 63, no. 5, p. 9, Apr. 2020.

[13] A. Cano and B. Krawczyk, ‘‘ROSE: Robust online self-adjusting ensemble
for continual learning on imbalanced drifting data streams,’’Mach. Learn.,
vol. 111, no. 7, pp. 2561–2599, Jul. 2022.

[14] G. Ditzler and R. Polikar, ‘‘Incremental learning of concept drift from
streaming imbalanced data,’’ IEEE Trans. Knowl. Data Eng., vol. 25,
no. 10, pp. 2283–2301, Oct. 2013.

[15] H. Bonab and F. Can, ‘‘Less is more: A comprehensive framework for the
number of components of ensemble classifiers,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 9, pp. 2735–2745, Sep. 2019.

[16] M. Baena-Garcıa, J. D. Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda,
and R. Morales-Bueno, ‘‘Early drift detection method,’’ in Proc.
4th Int. Workshop Knowl. Discovery Data Streams, vol. 6, 2006,
pp. 77–86.

[17] A. Bifet and R. Gavaldà, ‘‘Learning from time-changing data with adap-
tive windowing,’’ in Proc. SIAM Int. Conf. Data Mining, Apr. 2007,
pp. 443–448.

[18] Ö. Gözüaçık and F. Can, ‘‘Concept learning using one-class classifiers for
implicit drift detection in evolving data streams,’’ Artif. Intell. Rev., vol. 54,
no. 5, pp. 3725–3747, Jun. 2021.

[19] A. A. Qahtan, B. Alharbi, S. Wang, and X. Zhang, ‘‘A PCA-based change
detection framework for multidimensional data streams: Change detection
in multidimensional data streams,’’ in Proc. 21st ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2015, pp. 935–944.

[20] F. Gu, G. Zhang, J. Lu, and C.-T. Lin, ‘‘Concept drift detection based on
equal density estimation,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2016, pp. 24–30.

[21] N. Lu, J. Lu, G. Zhang, and R. L. de Mantaras, ‘‘A concept drift-
tolerant case-base editing technique,’’ Artif. Intell., vol. 230, pp. 108–133,
Jan. 2016.

[22] G. Hulten, L. Spencer, and P. Domingos, ‘‘Mining time-changing data
streams,’’ in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2001, pp. 97–106.

[23] Ö. Gözüaçık, A. Büyükçakır, H. Bonab, and F. Can, ‘‘Unsupervised con-
cept drift detection with a discriminative classifier,’’ in Proc. 28th ACM
Int. Conf. Inf. Knowl. Manage., Nov. 2019, pp. 2365–2368.

[24] E. B. Gulcan and F. Can, ‘‘Unsupervised concept drift detection for multi-
label data streams,’’ Artif. Intell. Rev., vol. 56, no. 3, pp. 2401–2434,
Mar. 2023.

[25] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, ‘‘A survey on ensemble
learning,’’ Frontiers Comput. Sci., vol. 14, no. 2, pp. 241–258, 2020.

[26] S. Akbar, A. Ahmad, M. Hayat, A. U. Rehman, S. Khan, and F. Ali,
‘‘iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous
feature representation and genetic algorithm based ensemble learning
model,’’ Comput. Biol. Med., vol. 137, Oct. 2021, Art. no. 104778.

[27] A. Ahmad, S. Akbar, M. Tahir, M. Hayat, and F. Ali, ‘‘iAFPs-EnC-GA:
Identifying antifungal peptides using sequential and evolutionary descrip-
tors based multi-information fusion and ensemble learning approach,’’
Chemometric Intell. Lab. Syst., vol. 222, Mar. 2022, Art. no. 104516.

[28] S. Akbar, M. Hayat, M. Iqbal, and M. A. Jan, ‘‘iACP-GAEnsC: Evolution-
ary genetic algorithm based ensemble classification of anticancer peptides
by utilizing hybrid feature space,’’ Artif. Intell. Med., vol. 79, pp. 62–70,
Jun. 2017.

[29] H.M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck, B. Pfharinger,
G. Holmes, and T. Abdessalem, ‘‘Adaptive random forests for evolv-
ing data stream classification,’’ Mach. Learn., vol. 106, nos. 9–10,
pp. 1469–1495, Oct. 2017.

[30] A. Bifet, G. Holmes, and B. Pfahringer, ‘‘Leveraging bagging for evolving
data streams,’’ in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery
Databases. Berlin, Germany: Springer, 2010, pp. 135–150.

[31] K. Nishida, K. Yamauchi, and T. Omori, ‘‘Ace: Adaptive classifiers-
ensemble system for concept-drifting environments,’’ in Proc. Int.
Workshop Multiple Classifier Syst. Berlin, Germany: Springer, 2005,
pp. 176–185.

[32] M.M. Idrees, L. L. Minku, F. Stahl, and A. Badii, ‘‘A heterogeneous online
learning ensemble for non-stationary environments,’’ Knowl.-Based Syst.,
vol. 188, Jan. 2020, Art. no. 104983.

[33] W. Liu, H. Zhang, Z. Ding, Q. Liu, and C. Zhu, ‘‘A comprehensive active
learning method for multiclass imbalanced data streams with concept
drift,’’ Knowl.-Based Syst., vol. 215, Mar. 2021, Art. no. 106778.

[34] H. M. Gomes, J. Read, and A. Bifet, ‘‘Streaming random patches for
evolving data stream classification,’’ in Proc. IEEE Int. Conf. Data Mining
(ICDM), Nov. 2019, pp. 240–249.

[35] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,
‘‘Ensemble learning for data stream analysis: A survey,’’ Inf. Fusion,
vol. 37, pp. 132–156, Sep. 2017.

[36] J. Z. Kolter and M. A. Maloof, ‘‘Using additive expert ensembles to
cope with concept drift,’’ in Proc. 22nd Int. Conf. Mach. Learn., 2005,
pp. 449–456.

[37] J. Z. Kolter andM. A.Maloof, ‘‘Dynamic weighted majority: An ensemble
method for drifting concepts,’’ J. Mach. Learn. Res., vol. 8, pp. 2755–2790,
Dec. 2007.

[38] H. R. Bonab and F. Can, ‘‘GOOWE: Geometrically optimum and online-
weighted ensemble classifier for evolving data streams,’’ ACM Trans.
Knowl. Discovery from Data (TKDD), vol. 12, no. 2, pp. 1–33, Apr. 2018.

[39] R. Elwell and R. Polikar, ‘‘Incremental learning of concept drift in non-
stationary environments,’’ IEEE Trans. Neural Netw., vol. 22, no. 10,
pp. 1517–1531, Oct. 2011.

[40] H. Zhang, W. Liu, S. Wang, J. Shan, and Q. Liu, ‘‘Resample-based ensem-
ble framework for drifting imbalanced data streams,’’ IEEE Access, vol. 7,
pp. 65103–65115, 2019.

[41] A. Cano and B. Krawczyk, ‘‘Kappa updated ensemble for drifting data
stream mining,’’Mach. Learn., vol. 109, no. 1, pp. 175–218, Jan. 2020.

[42] H. Wang, W. Fan, P. S. Yu, and J. Han, ‘‘Mining concept-drifting data
streams using ensemble classifiers,’’ in Proc. 9th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2003, pp. 226–235.

[43] D. Brzeziński and J. Stefanowski, ‘‘Accuracy updated ensemble for data
streams with concept drift,’’ in Proc. Int. Conf. Hybrid Artif. Intell. Syst.
Berlin, Germany: Springer, 2011, pp. 155–163.

[44] L. L. Minku and X. Yao, ‘‘DDD: A new ensemble approach for deal-
ing with concept drift,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 4,
pp. 619–633, Apr. 2012.

[45] J. Gama, R. Sebastiao, and P. P. Rodrigues, ‘‘Issues in evaluation of stream
learning algorithms,’’ in Proc. 15th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2009, pp. 329–338.

[46] C. L. P. Chen, Z. Liu, and S. Feng, ‘‘Universal approximation capability of
broad learning system and its structural variations,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 4, pp. 1191–1204, Apr. 2019.

[47] S. Bakhshi, ‘‘BELS: A broad ensemble learning system for data stream
classification,’’ M.S. thesis, Dept. Comput. Eng., Bilkent Universitesi,
Ankara, Turkey, 2021. Accessed: Jul. 27, 2023. [Online]. Available:
http://hdl.handle.net/11693/76862

[48] M. Harries, Splice-2 Comparative Evaluation: Electricity Pricing (PAN-
DORA Electronic Collection). Univ. of New South Wales, School
of Computer Science and Engineering, 1999. [Online]. Available:
https://books.google.com.tr/books?id=1Zr1vQAACAAJ

[49] I. Katakis, G. Tsoumakas, and I. Vlahavas, ‘‘Tracking recurring contexts
using ensemble classifiers: An application to email filtering,’’ Knowl. Inf.
Syst., vol. 22, no. 3, pp. 371–391, Mar. 2010.

[50] T. S. Sethi and M. Kantardzic, ‘‘On the reliable detection of concept drift
from streaming unlabeled data,’’ Expert Syst. Appl., vol. 82, pp. 77–99,
Oct. 2017.

[51] D. Dua and C. Graff. (2017).UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

[52] I. Katakis, G. Tsoumakas, and I. P. Vlahavas, ‘‘An ensemble of classifiers
for copingwith recurring contexts in data streams,’’ inProc. 18th Eur. Conf.
Artif. Intell. (ECAI), 2008, pp. 763–764.

[53] V. Losing, B. Hammer, and H. Wersing, ‘‘KNN classifier with self adjust-
ingmemory for heterogeneous concept drift,’’ inProc. IEEE 16th Int. Conf.
Data Mining (ICDM), Dec. 2016, pp. 291–300.

[54] K. B. Dyer, R. Capo, and R. Polikar, ‘‘COMPOSE: A semisupervised
learning framework for initially labeled nonstationary streaming data,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 1, pp. 12–26, Jan. 2014.

VOLUME 11, 2023 89329

http://dx.doi.org/10.24963/ijcai.2022/788

S. Bakhshi et al.: Broad Ensemble Learning System for Drifting Stream Classification

[55] A. Bifet and R. Gavalda, ‘‘Adaptive learning from evolving data streams,’’
in Proc. Int. Symp. Intell. Data Anal. Berlin, Germany: Springer, 2009,
pp. 249–260.

[56] N. C. Oza and S. J. Russell, ‘‘Online bagging and boosting,’’ in Proc. 8th
Int. Workshop Artif. Intell. Statist., 2001, pp. 229–236.

[57] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, ‘‘Scikit-multiflow:
A multi-output streaming framework,’’ J. Mach. Learn. Res., vol. 19,
no. 72, pp. 1–5, 2018. [Online]. Available: http://jmlr.org/papers/v19/18-
251.html

[58] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen,
and T. Seidl, ‘‘MOA: Massive online analysis, a framework for stream
classification and clustering,’’ in Proc. 1st Workshop Appl. Pattern Anal.,
2010, pp. 44–50.

[59] N. Gunasekara, H. M. Gomes, B. Pfahringer, and A. Bifet, ‘‘Online hyper-
parameter optimization for streaming neural networks,’’ in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2022, pp. 1–9.

[60] J. Demšar, ‘‘Statistical comparisons of classifiers over multiple data sets,’’
J. Mach. Learn. Res., vol. 7, pp. 1–30, Jan. 2006.

[61] G. Aguiar, B. Krawczyk, and A. Cano, ‘‘A survey on learning from
imbalanced data streams: Taxonomy, challenges, empirical study, and
reproducible experimental framework,’’ 2022, arXiv:2204.03719.

[62] D. Brzezinski, J. Stefanowski, R. Susmaga, and I. Szczech, ‘‘On the
dynamics of classification measures for imbalanced and streaming data,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 8, pp. 2868–2878,
Aug. 2020.

[63] D. Brzezinski, J. Stefanowski, R. Susmaga, and I. Szczȩch, ‘‘Visual-
based analysis of classification measures and their properties for class
imbalanced problems,’’ Inf. Sci., vol. 462, pp. 242–261, Sep. 2018.

SEPEHR BAKHSHI received the B.S. degree
in computer engineering from the University of
Bonab, Bonab, Iran. He is currently pursuing the
M.S. degree with Bilkent University, under the
supervision of Prof. Fazl Can. In 2019, he joined
the Bilkent Information Retrieval Group (BilIR).
His current research interests include data stream
mining, natural language processing, and informa-
tion retrieval.

POUYA GHAHRAMANIAN received the B.S.
degree in computer software engineering from
the Iran University of Science and Technology
(IUST), in 2018. He is currently pursuing the
M.S. degree with Bilkent University, under the
supervision of Prof. Fazl Can. His current research
interests include machine learning, natural lan-
guage processing, and data stream mining. He is
a member of the Bilkent Information Retrieval
Group (BilIR).

HAMED BONAB received the B.S. degree in
computer engineering from the Iran University of
Science and Technology, Tehran, Iran, the M.S.
degree in computer engineering from Bilkent Uni-
versity, Ankara, Turkey, and the Ph.D. degree in
computer science from the College of Informa-
tion and Computer Sciences, University of Mas-
sachusetts Amherst, Amherst, MA, USA. During
the Ph.D. degree, hewaswith the Center for Intelli-
gent Information Retrieval (CIIR) along with Prof.

James Allan. He is currently an Applied Scientist II with Amazon.com
Inc., where he is focusing on various product search problems. His current
research interests include information retrieval, natural language processing,
machine learning, and stream processing.

FAZLI CAN (Member, IEEE) received the B.S.
and M.S. degrees in electrical-electronics and
computer engineering and the Ph.D. degree
in computer engineering from Middle East
Technical University, Ankara, Turkey, in 1976,
1979, and 1985, respectively. He conducted
the Ph.D. research under the supervision of
Prof. E. Ozkarahan; at Arizona State University,
Tempe, AZ, USA, and Intel, Chandler, AZ, USA;
as a part of the RAP Database Machine Project.

He is currently a Faculty Member with Bilkent University, Ankara. Before
joining Bilkent, he was a tenured Full Professor with Miami University,
Oxford, OH, USA. He co-edited ACM SIGIR Forum from 1995 to 2002 and
is the Co-Founder of the Bilkent Information Retrieval Group (BilIR),
Bilkent University. His interest in dynamic information processing dates
back to his incremental clustering paper inACMTransactions on Information
Systems, in 1993, and some other earlier work with Prof. E. Ozkarahan
on dynamic cluster maintenance. His current research interests include
information retrieval and data mining.

89330 VOLUME 11, 2023

