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ABSTRACT Considering the head and tail deformation phenomenon in the slab rolling process, this paper
studies the online width adjustment control problem of the continuous casting slab based on the digital
twin framework. First, the material mechanical properties, geometric model and boundary conditions of the
continuous casting slab rolling are given to establish the deformation model of the continuous casting slab
rolling process by using the rigid-viscoplastic finite element method. Second, the deformation model of the
rolled piece is mainly reflected by shape parameters of the head and tail. The feature design of the head and
tail shape is carried out based on the finite element simulation results, and multi-layer perceptron is used
to extract features and realize the model regression for obtaining a digital twin model. Then, in view of the
parameters of the continuous casting slab, the digital twin model is used to predict the loss-width curve at
the head and tail of the slab online, and then the roll gap of the vertical roll mill is corrected synchronously to
realize the width adjustment technology of the continuous casting slab and reduce production costs. Finally,
taking the slab rolling process of a steel factory as an example, the accuracy and effectiveness of the proposed
method are illustrated.

INDEX TERMS Continuous casting slab, digital twin, finite element, multi-layer perceptron.

I. INTRODUCTION
A. BACKGROUND
The hot rolling production is an essential procedure in the
whole steel rolling process, and it is also the key to the
cloud-edge-end efficient collaborative management and con-
trol system. The hot-rolling digital intelligent manufacturing
system is of great significance to promote the construction
of high-quality intelligent factories [1], [2], [3]. At present,
the continuous casting slab is basically used as raw materials
in the production of hot strip rolling. During the rolling
process, the slab shape changes with the rolling mill works,
especially the head and tail parts [4], [5]. In order to improve
the production efficiency of the continuous casting machine,
it is necessary to reduce the width specification of the con-
tinuous casting slab as much as possible. For satisfying the
needs of producing slabs of different widths and ensure the
normal production of strip steel with various width spec-
ifications, the width of the crystallizer should be adjusted
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according to the width of the slab. Furthermore, the online
width adjustment technology of the continuous casting slab
in the roughing rolling unit of the strip steel production line
is realized [6], [7], and the technology can continuously cast
slabs of different widths without stopping the machine, which
saves a lot of manpower and material resources, and greatly
improves the production rhythm and efficiency. Especially
when realizing the production needs of hot delivery and
continuous casting and rolling, this technology is particularly
important [8].

B. RELATED WORK NOW
For the purpose of solving the problem of significant width
variation of the slab head and tail caused by edging and
horizontal rolling, the short stroke control (SSC) strat-
egy [9], [10], [11] is adopted according to the width reduction
deformation curve of the slab head and tail, and the technol-
ogy has been widely used in actual production. Therefore,
modeling of slab deformation curve becomes particularly
important. S. Xiong et al. conducted physical simulation
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experiments to observe and summarize the deformation laws
of slabs and analyzed the influencing factors of deforma-
tion [12]. The calculation equation of shape parameters is
proposed to set the form and control parameters of the short
stroke curve. However, this method has disadvantages of
ignoring many factors affecting deformation, long research
and development time, and large funds. With the growth of
computer technology and computationalmechanics, the finite
element (FE) method has gradually been diffusely used in the
steel industry. The FEmethod analyzes themetal deformation
process with fewer artificial assumptions, and describes the
deformation process more realistically. Compared with the
physical simulation experiment method, the FE method can
obtain data that cannot be obtained or is difficult to obtain by
the experimental method, and can save experimental costs.

According to the constitutive relationship of materials, the
FEmethod can be divided into elastic-plastic FEmethod [13],
rigid-plastic/rigid-viscoplastic FE method [14], hyperelastic
FE method [15]. Compared with other FE methods, the rigid-
plastic/rigid-viscoplastic FE method transforms the solution
of plastic partial differential equations into the problem of
finding functional extremum in the form of energy rate inte-
gration. Through FE discretization, it is further transformed
into a nonlinear algebraic equation about the node velocity,
and other parameters such as strain rate and stress are cal-
culated according to the obtained node velocity. Due to the
avoidance of geometric nonlinear problems, the incremental
step size of the rigid-plastic/rigid-viscoplastic FE method
is relatively large, and it has the advantages of no cumu-
lative error in stress calculation and short calculation time.
Although ignoring the elastic deformation of the material
brings some errors, for metals deformed at high temperatures,
the plastic strain is much greater than the elastic strain, and
this error can be ignored. Joun et al. made tool velocity and
material velocity field as unknown variables, and approxi-
mately predicted the deformation of material in ring rolling
by an axisymmetric rigid–viscoplastic FE method [16]. Tan
et al. developed a 3D thermo-mechanical coupled model of
the milling process using the rigid-viscoplastic finite ele-
ment theory [17]. Carvalho presented a phenomenological
viscoelastic-viscoplastic model for accurately simulating the
large strain constitutive response of polymeric materials [18].
Liang et al. proposed a new FE formulation to apply a vis-
coplastic medium [19]. The above literature shows that the
rigid-viscoplastic FE method is suitable for the deformation
model analysis of different materials.

The stress changes in the rolling system are complex, and
the accuracy of the FE simulation and the deviation from
the actual results need to be strictly controlled to satisfy the
rolling area width adjustment accuracy. The digital twin (DT)
technology that has emerged in recent years can solve this
problem well since it enables real-time connectivity between
the physical and virtual worlds [20], [21], [22], [23]. More
specifically, the DT model can simulate and replicate the
real-time behavior of physical systems operating under life-
cycle conditions. The construction process of the DT model

includes geometric model construction, mechanism model
construction, data model construction, data transmission and
other parts [24], [25]. In practical engineering applications,
these factors will affect the accuracy and efficiency of DTs.
Establishing a model based on data is the most critical link
in the process of a DT model, which affects the reliability
and efficiency of the output. Combining physical models with
dynamic data models is a logical solution to improve the
efficiency of DTs. Li et al. established the fault progressive
mechanism of the bearing in the whole life based on the mea-
sured signals, and obtained the DT model of the life-cycle
rolling bearing with multi-scale fault in virtual space [26].
Xiang et al. designed an end-face defect control framework
based on DT with cloud-edge collaboration for recognizing
defect [27]. Lippi et al. presented a novel hierarchical archi-
tecture that utilizes the DT to build logical abstractions of
the overall system and to learn causal models of the envi-
ronment directly from data [28]. At present, the research of
DT is mainly focused on the fault detection in the production
process, and it has not been used to describe the deformation
of the slab in the rolling process.

This paper mainly studies the problem of online width
adjustment control in continuous casting slab rolling process.
The main contributions are as follows:

• Given the material mechanical properties, geometric
model and boundary conditions of the continuous cast-
ing slab, the deformation model of the rolling process is
established by using the rigid-viscoplastic FE method.

• The FE simulation results are preprocessed, the feature
parameters of the head and tail shape are determined,
then multi-layer perceptron (MPL) is used to realize
feature extraction and establish a DT model.

• In view of the DTmodel, the loss-width curve at the slab
shape of the head and tail is predicted online, and then
the roll gap of the vertical roller mill is corrected syn-
chronously to realize the width adjustment and rolling
of the continuous casting slab.

The rest of this paper is organized as follows. Section II
gives the deformationmodel of the rolling process. Section III
establishes the DTmodel. Section IV designs the wide adjust-
ment controller by the SSC method. Section V simulates the
numerical example. Section VI gives the summary and looks
forward to the future work.

II. DEFORMATION MODEL ESTABLISHMENT OF ROLLING
PROCESS
A. DESCRIPTION OF ROLLING PROCESS
Currently, the main study in the control of rolling systems
include the development of accurate mathematical models
(describe the dynamics of the rolling process, including the
material deformation, friction, and other factors affecting
the system’s behavior), feedback control techniques (mea-
sure relevant system variables, such as roll force, thick-
ness, or temperature, and use this information to adjust
the control inputs in real time), adaptive control methods
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(continuously monitor the system’s behavior and adjust the
control parameters accordingly to maintain optimal perfor-
mance), model predictive control (utilize a mathematical
model of the rolling system to predict its future behav-
ior), neural network control approaches (learn the complex
mapping between system inputs and outputs, allowing for
adaptive and nonlinear control), and real-timemonitoring and
visualization tools (monitor critical variables, detect anoma-
lies, and make informed decisions to optimize the control
actions). These advancements have led to improved perfor-
mance, quality, and efficiency in rolling processes, benefiting
industries that rely on metal manufacturing.

In a general hot rolling production line, the rough rolling
unit consists of a set of reversing rolling mills E1 and R1,
two pyrometers and a width gauge. The rolling line layout
is shown in Fig. 1. The rough rolling width control target
is determined according to the finished strip width, finish
rolling allowance and finish rolling width. And then the
rolling initial setting calculation is carried out in combination
with the relevant information of incoming materials. After
each pass of rolling is completed, the rolling setting value of
the subsequent pass is adjusted according to the actual width
data measured by the width gauge to ensure that the rough
rolling exit width can hit the target.

FIGURE 1. Hot rolling production line.

The general process starts with the feeding of the raw slab
into the roughing mill, where it undergoes compression and
length increase in the E1 mill. Next, it enters the R1 mill
for shape adjustment and surface quality treatment. And the
load cell, the cylinder position and the screw position are
deployed on the rolls to measure the roll gap and rolling
force, respectively. Throughout the process, the pyrometer
monitor the slab temperature, while the width gauge precisely
measures the slab’s width.

It can be seen from the above rolling process that the key
factor affecting the accuracy of the rolling process is the
determination of the rough rolling width and thickness, that
is, the selection of the roll gap. Regardless of thickness setting
or width setting, it is first necessary to determine the thickness
and width distribution of each pass, that is, the reduction
amount of each pass of rough rolling is distributed reasonably,
then the slab with a thickness of H can be rolled out of a
strip with a thickness of Hc through multiple passes of rough
rolling. On the one hand, the choice ofHc should consider that
the roughing mill can roll the slab from H to Hc with odd or

even passes. On the other hand, it should also be determined
according to the thickness of the finished product to be rolled
and the load of the finishing rolling unit.

WhenHc is determined, the task is to determine the number
of passes. For a single-stand reversing roughing mill, the
average reduction △Hm can be calculated based on [29].

△Hm =
1
R

(
1.9 × 971N

nmPm

)2

(1)

where nm is the average speed of rolls in each pass, Pm is the
average rolling force of each pass, N is the motor power and
R is the roll radius. Then, the number of passes is

RN =
H − Hc
1Hm

(2)

And the reduction amount of the jth pass is

1Hj = δj

RN∑
ς=1

1Hς

RN∑
ς=1

1Hς = H − Hc (3)

where δj is the distribution coefficient of reduction in the jth
pass.

For the width, the slab width B and the rough rolling exit
width Bc also should be determined first. Bc is slightly wider
than the finished product width Bn to prevent the looper and
coiler from narrowing the bandwidth.

Bc = Bn + 1 (4)

where 1 ∈ [5mm, 10mm]. And the width reduction of each
vertical roller is

1BEij = 1BE6ξij

1BE6 = (1.015B− Bc) +

∑
DBRij (5)

where ξij is the width reduction distribution coefficient,
DBRij is the spread amount of the ith rack and the jth pass,
1BE6 is the total width reduction and 1BEij is the width
reduction of the ith vertical roller in the jth pass.

B. RIGID-VISCOPLASTIC FE METHOD
At a certain moment of quasi-static deformation, the
deformed body is in equilibrium. Let the volume of the
deformed body be v and the surface be S. Stress bound-
ary conditions are given on the force boundary SF , and
the displacement boundary conditions are given on the
velocity boundary Sv. Then the real solution of the rigid-
viscoplastic FE makes the following functional take the
extremum [30], [31].

5 =

∫
v
σ̄ ˙̄εdv−

∫
SF
FiuidS (6)

where σ̄ is the equivalent stress, ˙̄ε is the equivalent strain
rate, Fi is the given surface force on the force boundary SF ,
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ui is the given velocity on the velocity boundary Sv. Introduc-
ing the volume incompressibility condition into Eq. (6), the
first-order variational expression is obtained as

5 =

∫
v
σ̄ ˙̄εdv+

α

2

∫
v
(ε̇v)

2dv−

∫
SF
FiuidS (7)

where α is the penalty factor, ε̇v is the equivalent volumetric
strain rate. Using an eight-node hexahedron isoparametric
element to discretize the deformation body, then we get
the velocity component at any point in the element {u} =

[N ] {u}e, where [N ] is the shape function matrix, {u}e is the
unit node velocity vector. Therefore, the strain rate compo-
nent at any point in the element can be obtained as

{
˙̄ε
}

=

[L] [N ] {u}e = [B] {u}e, where [L] is the differential operator
matrix, [B] is the element strain rate matrix. Finally, the
deformable body is divided into m units and n nodes, and
the velocity field is obtained according to techniques such
as variational principle, iterative algorithm and Taylor series
expansion. {

ue
}
n =

{
ue

}
n−1 +

{
1ue

}
(8)

where {1ue} satisfies
m∑
e=1

(
[P]n−1 + [M ]

) {
1ue

}
=

m∑
e=1

(
{f } − [H ]n−1 − [M ]

{
ue

}
n−1

)
(9)

where

[P]n−1 =
2
3
σ̄

∫
Sev

1
˙̄εn−1

[
[K ] −

2
3

1
˙̄εn−1

[K ]
{
ue

}
n−1{

ue
}T
n−1 [K ]

]
dv

[M ] = α

∫
Sev
[B]T [C] [C]T [B] dv, {f }=

∫
SF

[N ]T {F} dS

[H ]n−1 =
2
3
σ̄

∫
Sev

1
˙̄εn−1

[K ]
{
ue

}
n−1dv, [K ] = [B]T [B]

[C] =
[
1 1 1 1 0 0 0 0

]T (10)

Finally, an approximate real solution that satisfies the accu-
racy requirements can be obtained.

C. SOLVING THE DEFORMATION MODEL OF ROLLING
PROCESS
Since the rolled piece is in a high-temperature state during
the rough rolling process, the rolled piece is treated as a
rigid plastic body material and the roll is regarded as a
non-deformable rigid body. Therefore, the rigid-viscoplastic
FE method (6), (7) can be used to establish the deformation
model of the width adjustment rolling process.

It is worth noting that the general deformation law of the
slab width adjustment rolling process has been summarized
through long-term field rolling experiments. The slab shape
after rolling can be described by six parameters: head loss,

FIGURE 2. DEFORM-3D simulation calculation process.

head length, tail loss, tail length, tail inflection point loss
and tail inflection point loss length. Then, according to the
literature [32], [33], these parameters are determined by the
slab geometry, material, width reduction, vertical roll diam-
eter and environmental factors. Therefore, the slab model is
established and the shape parameters are calculated using the
rigid-viscosity-plastic FEmethod. The simulation calculation
algorithm is shown in Fig. 2, and the specific process is as
follows:

1. Use computer-aided design (CAD) software to construct
the geometric model of continuous casting slab width adjust-
ment rolling simulation. The geometric model of the roll and
the rolled piece is mainly determined by the vertical roll, the
horizontal roll and the slab. The first stand vertical roll of the
roughing mill generally has two types–flat vertical roll and
grooved vertical roll. The horizontal roll is all in the form of
the flat roll body, and the slab raw materials are reasonably
selected.

2. Use DEFORM-3D software to solve Eq. (7), which
consists of three parts: pre-processor, solver and post pro-
cessor. The tasks of the pre-processor include importing the
geometric model, selecting the material model of the rolled
piece, meshing the geometric model and applying boundary
loads. The material model is described by the rate-dependent
plastic model, and the four-node tetrahedron isoparametric
element is used to divide the grid of the slab. The selection
of boundary conditions is based on the symmetry of the slab
shape and the boundary conditions. Only 1/4 of the slab is
taken for research, and symmetrical constraints are imposed
on the two symmetrical planes in the center. The tasks of the
solver and post processor are to solve the algorithm and view
the calculation results, respectively.
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III. SLAB SHAPE OF HEAD AND TAIL DT REALIZATION
ARCHITECTURE
The method of using the rigid-viscoplastic FE method to
obtain the head and tail shape of the continuous casting slab
after width adjustment rolling requires a large amount of
calculation and takes a long time, which cannot satisfy the
requirement of actual production online control. Therefore,
it is necessary to establish an online calculation model for
the slab shape parameters of the head and tail for real-time
control. In this section, the MPL is considered to calculate
the slab shape parameters of the head and tail online, and
the corresponding DT model is obtained.

FIGURE 3. DT implementation framework.

The DT-oriented slab shape of head and tail online predic-
tion system creates a virtual scene based on the real scene,
connects the two scenes through the sensing and data inter-
action interface to form a closed-loop data exchange chan-
nel, and realizes virtual-real mapping and two-way iterative
optimization between physical equipment and digital space.
Realizing the digital twin of the hot rolling process requires
the Internet of Things (IoT) platform as a carrier, and the
digital twin realization architecture is shown in Fig. 3, which
mainly includes physical layer, edge layer, Infrastructure-as-
a-Service (IaaS) layer, Platform-as-a-Service (PaaS) layer,
and Software-as-a-Service (SaaS) layer.

The physical layer serves as the foundation of the digital
twin implementation and includes the actual physical devices
and sensors. In the context of hot rolling, the physical layer
encompasses equipment such as rolling mills, sensors, and
cameras that are used for sensing and capturing real-time
data. The edge layer is situated on-site or in close proximity
to the site, acting as a bridge between the physical layer
and the cloud platform. It possesses computational and stor-
age capabilities for processing and analyzing real-time data.
In the case of hot rolling, the edge layer can execute real-time
data processing and predictive models, providing real-time

decision support and control instructions. The IaaS layer
provides the foundational infrastructure resources, including
computing, storage, and networking. Within the digital twin
implementation, the IaaS layer furnishes the necessary com-
puting and storage capabilities to support tasks such as data
processing, model training, and inference. The PaaS layer
delivers the software and development tools required for the
digital twin platform. It supports the development, deploy-
ment, and management of digital twin applications, encom-
passing functionalities such as data management, model
management, and visualization. In the context of hot rolling,
the PaaS layer can provide real-time data visualization, model
training, and optimization algorithm management. The SaaS
layer offers cloud-based applications and services directly
accessible to users. Within the digital twin implementation,
the SaaS layer provides the online prediction system and ana-
lytical tools specific to the hot rolling process. This empowers
users to monitor and optimize the hot rolling process, enhanc-
ing production efficiency and product quality. Together, these
layers form the architecture of a digital twin implementa-
tion. By leveraging physical devices, edge computing, cloud
platforms, and application software, it enables data exchange
and iterative optimization between the real and virtual scenes.
This integration enhances the visualization, intelligence, and
control capabilities of the hot rolling process.

The DT model is built as a three tuple:

DT = {P,V ,C} (11)

where P represents the actual data collection based on sensors
in the physical space, V represents the DT of physical entities
and intelligent entities constructed based on simulation tech-
nology in virtual space, C represents the connection method
of the two spaces, which solves the problem of real-time data
transmission and fast update.

A. PHYSICAL ENTITY P
The physical entity model P is composed of various func-
tional subsystems and sensing devices to realize the percep-
tion and collection of massive data on the status of sources,
networks, loads and storage links in the real world. In this
paper, the measurement data are obtained according to the
rigid-viscoplastic FE method model.

B. VIRTUAL MODEL V
The virtual model V is the mapping of the physical entity,
which realizes the mirror copy of the real world in the vir-
tual space. That is, physical entities are modeled as virtual
mechanisms. The model has attributes such as processing
action behavior, signal transmission and control, and has the
ability to reproduce the production activities of the physical
workshop.

MLP can enable the idea of mapping from data to models,
the principle is shown in Fig. 4. Take the FE simulation results
as the original sample data set. In order to avoid and reduce
the data range of the initial variable, it is necessary to perform
feature scaling on the data. And the dataset is divided into
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FIGURE 4. MLP network structure and principles of training with FE data.

training set and test set. The training sample features are
selected as vertical rolling width reduction 1B, horizontal
rolling thickness reduction 1H , slab original width B, slab
original thickness H , vertical roll diameter RE , horizontal
roll diameter RH , rolling material M , rolling temperature
T and friction f . The prediction output is the slab shape
description parameters of the head and tail, including loss
of head width 1WH , loss length of head width 1LH , loss
of tail width 1WT , loss length of tail width 1LT , loss of
tail inflection point 1WCT and loss length of tail inflection
point 1LCT .

Based on the number of features and the number of pre-
diction parameters, the network structure of MLP is defined,
that is, the number of layers in the hidden layer, the number
of nodes in the input layer, each hidden layer and the output
layer are determined, respectively. On the basis of creating
the model, random initialization of weights and biases is
performed to initialize the model. Mean squared error MSE
is selected as the loss function, the equation is as follows:

MSE =
1
n

·

n∑
k=1

∥∥Yk − Y ′
k
∥∥2 (12)

where Yk = {1WH , 1LH , 1WT , 1LT , 1WCT , 1LCT } is
the true value, and Y ′

k is the corresponding predicted value.
MSE measures the closeness between the real value and the

predicted value, and the smaller the value, the smaller the
error of the predicted value.

Then, the gradient is calculated by the backpropagation
algorithm, and the optimizer is used to update the weights
and biases of the model, the equation is as follows:

w(k+1)
i = w(k)

i − g(k)
i

g(k)
i =

ηv̂(k)i√
ŝ(k)i + θ

(13)

where g(k)
i is the distance that the ith parameter of MLP

descends along the gradient direction at the kth iteration,
v(k)i and s(k)i are the exponentially decaying averaging of
historical gradient square and the exponentially decaying
averaging of historical gradient, respectively. v̂(k)i and ŝ(k)i are
the bias corrections of v(k)i and s(k)i , respectively. And

v̂(k)i =
v(k)i

1 − σ1

ŝ(k)i =
s(k)i

1 − σ2

v(k+1)
i = σ1v

(k)
i + (1 − σ1)

∂MSE
∂wi

(
w(k)

)
s(k+1)
i = σ2s

(k)
i + (1 − σ2)

(
∂MSE
∂wi

(
w(k)

))2

(14)

where σ1 and σ2 are learning rate hyperparameters, and the
process is repeated until the stopping condition is reached.

C. CONNECTION C
C is the connection between the physical entity and the data
platform, the connection between the physical entity and
the virtual space, the connection between the physical entity
and the intelligent entity, the connection between the data
platform and the virtual space, the connection between the
data platform and the intelligent entity and the connection
between the virtual space and the intelligent entity. It is also
a network platform for building DT systems.

IV. SHORT STROKE CONTROL
In the actual production process, the short stroke con-
trol (SSC) technology adjusts the vertical roll gap during
vertical rolling to change the shape of head and tail and
dog bone distribution of slab. Therefore, it offsets the width
change during subsequent horizontal rolling, and obtains a
qualified slab whose width fluctuation is controlled within
a certain range. In the case of other conditions being the
same, the change in the thickness reduction during horizontal
rolling will not only cause the change in the width loss at
the head and tail, but also change the slab shape of the
head and tail, especially the tail. Then, it is necessary to
determine the form of the short stroke curve according to
the slab shape after horizontal rolling. Generally speaking,
the FE algorithm can obtain short stroke curve parameters.
However, the algorithm has a large amount of calculation,
and it is difficult to be extended to different production lines
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for real-time calculation. Therefore, Therefore, the MPL is
considered to predict the short stroke curve online and realize
the synchronous width adjustment of SSC technology.

In general, through the width reduction of the vertical
roll and the thickness reduction of the horizontal roll, the
width loss phenomenon will occur at the slab head and tail.
The slab shape of the head is the loss-of-width type, and
the shape of the tail is the loss-of-width type, the fishtail
type and the widening type. The three-stage SSC form is
adopted, as shown in Fig. 5, where the head control segment
is composed of a slash segment, the control parameters are
BH1 and LH1. The tail control segment is composed of two
consecutive slash segments, the control parameters are BT1,
BT2, LT1 and LT2. When the tail shape is widened or lost,
BT1=BT2 and LT1=LT2, the tail of the short stroke curve
degenerates into a straight line.

FIGURE 5. Three-stage SSC and control parameters.

Based on the DT model (11), the SSC parameter calcula-
tion model is designed, and the control length equation is as
follows:

LH1 = ωLH · 1LH · (1 − εH )α

LT1 = ωLT1 · 1LT · (1 − εH )β

LT2 = ωLT2 · 1LCT · (1 − εH )β (15)

where α is the head extension coefficient, β is the tail exten-
sion coefficient, εH is the thickness reduction, ωLH , ωLT1 and
ωLT2 are the adaptive coefficient of SSC length.

Meanwhile, the control width equation is as follows:

BH1 = ZAS + ωBH · 1WH · (1 − εE )1.1(1 − εH )0.9

BT1 = ZAS + ωBT1 · 1WCT · (1 − εE )1.2(1 − εH )0.83

BT2 = ZAS + ωBT2 · 1WT · (1 − εE )1.2(1 − εH )0.83 (16)

where zero adjustment system (ZAS) is the static opening
of vertical rolling mill, εE is the width reduction rate during
vertical rolling, ωBH , ωBT1 and ωBT2 are the self-adaptation
of SSC width coefficient.

In summary, the deformationmodel of the widening rolling
process established by the rigid viscoplastic FE method is
used to obtain the measured data. Based on DT model (11),
combined with Eqs. (15) and (16), the deformation curve is
obtained and the prediction result is transferred to the SSC
system to get the automatic control system of head and tail
shape of continuous casting slab rough rolling. Ultimately,
the width control over the full length of the slab is achieved.

V. NUMERICAL SIMULATION
In this section, the slab parameters first set based on the actual
working environment of the wide and thick plate factory of a
steel plate division, as shown in Tab. 1.

TABLE 1. The slab parameters.

First, based on Rigid-viscoplastic FE method, DEFORM-
3D software is used to get 870 sample sets, and the slab
shape of the head and tail after vertical rolling are shown
in Figs. 6 and 7.

FIGURE 6. The slab shape of head after vertical rolling.

FIGURE 7. The slab shape of tail after vertical rolling.

Then, the results of FE simulation calculations are used as
training samples, a total of 600 groups, to train the DT model
for the slab shape of the head and tail parameter prediction,
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FIGURE 8. The value of the loss function.

FIGURE 9. A rough rolling mill.

TABLE 2. Curve control parameters.

and 270 groups are used as model test sets. The loss func-
tion (12) are shown in Fig. 8. After iterating for 20000 steps,
the results converge.

In the algorithm implementation process, we deploy a
post-rolling online width gauge to achieve real-time monitor-
ing ofmaterial width variations. The post-rolling onlinewidth
gauge can not only measure the head and tail shape and width
of the rolled product, but also utilize the actual measurement
values to reflect and correct errors in the control model.
By accumulating production data and continuously learning,
this approach ensures the effectiveness of the control system.

Finally, we test the automatic control system of head and
tail shape of continuous casting slab rough rolling with a
slab with a geometric size of 3500mm×1600mm×250mm.
Taking a steel factory conducts tests, as shown in Fig. 9,

FIGURE 10. Short stroke curves implementation effect.

combined with DT model (11), we obtained the SSC param-
eters (Tab. 2) and short stroke curves implementation effect
(Fig. 10).

VI. CONCLUSION
In this paper, we propose a novel approach for online width
adjustment control of continuous casting slabs based on the
digital twin framework. Our methodology involves the use
of a deformation model that takes into account the material
mechanical properties, geometric model, and boundary con-
ditions of the continuous casting slab rolling process using
the rigid-viscoplastic finite element method. By analyzing
the shape parameters of the head and tail of the rolled piece,
we are able to design features that capture the deformation
characteristics of the slab. Using these features and a multi-
layer perceptron, we develops a digital twin model that can
accurately predict the loss-width curve at the head and tail
of the slab in real-time. Our proposed method enables the
synchronous correction of the roll gap of the vertical roll mill
to achieve the desired width adjustment of the continuous
casting slab, thereby reducing production costs. In the simu-
lation, we use the post-rolling online width gauge to measure
the head and tail shape and width of the rolled product, and
then the error is corrected by accumulating production data
and continuously learning the model. The result shows the
accuracy and effectiveness of the proposed method.

In future work, we plan to expand the scope of our
approach to include other types of deformation phenomena
that may occur during slab rolling, such as edge cracks and
surface defects. We also aim to investigate the impact of
various process parameters, such as casting speed and cooling
rate, on the deformation behavior of continuous casting slabs.
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