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ABSTRACT In this paper, we consider the problem of multi-cell interference coordination by joint
beamforming and power control. Recent efforts have explored the use of reinforcement learning (RL)
methods to tackle this complex optimization problem. Typically, a decentralized multi-agent framework
is adopted, wherein each base station operates as an independent RL agent. This distributed coordination
has gained attention because designing a reward function that effectively captures the condition of the entire
cellular network is challenging for single-agent RL models. However, the distributed approach introduces
unique challenges, particularly the non-stationary of the multi-agent environment, as agents continually
adapt their policies to interact with one another. The non-stationary environment necessitates information
exchange among agents, as local observations of each agent are insufficient to fully capture the true
state of the environment. Unfortunately, this information exchange incurs a significant overhead, thereby
limiting data transmission capabilities. To address these challenges, we propose a novel single-agent RL
approach that eliminates the need for information exchange and the conventional reward function. Instead,
we leverage success examples to guide the learning process. Simulation results show that the proposed
approach outperforms the existing multi-agent method and theoretical algorithm in terms of sum rates.
Additionally, our approach ensures a uniform quality of service while maximizing the overall sum rate.

INDEX TERMS Beamforming, example-based control, interference coordination, power control, reinforce-
ment leaning.

I. INTRODUCTION
In mobile communication systems, base stations (BSs)
utilize the frequency reuse concept to share the available
spectrum. That is, the co-channel cells are separated by a
sufficient distance to mitigate inter-cell interference (ICI),
thereby maintaining the communication quality. However,
it results in a reduced system capacity [1]. In fact, because
of the ever-growing demand for mobile traffic, the universal
frequency reuse (UFR) has long been adopted to achieve
aggressive spectrum reuse and simplify frequency planning.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tariq Masood .

Under UFR, all BSs simultaneously share the entire available
spectrum, leading to significant levels of ICI. The signal-to-
noise-plus-interference ratio (SINR) plays a crucial role in
determining the spectral efficiency of a link. Unfortunately,
the adoption of UFR leads to substantial ICI, particularly
impacting users at the cell borders and degrading their signal
qualities.

To ensure a uniform achievable rate for cellular networks,
network multiple-input multiple-output (MIMO) transmis-
sion has been employed to improve the signal quality for
cell-edge users [2], [3]. In Long-Term Evolution-Advanced
(LTE-A), this technique is known as coordinated multi-
point (CoMP) [4]. However, implementing network MIMO
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entails high processing and implementation complexity [5].
Inter-cell interference coordination (ICIC) has emerged as
a more practical approach for mitigating ICI [6], [7]. ICIC
involves imposing certain constraints on the radio resource
management to enhance channel conditions for severely
interfered user equipments (UEs), thereby achieving high
spectral efficiency. Two commonly adopted ICIC strategies
are soft frequency reuse (SFR) and fractional frequency reuse
(FFR) [8], [9], [10]. Specifically, SFR has been widely uti-
lized in LTE-A to minimize ICI at cell borders and improve
overall system performance.

Another promising approach for coordinating interference
among co-channel cells is the joint optimization of transmit
beamforming and power control [11], [12]. In practical cel-
lular setups, BSs are equipped with multiple antennas, while
UEs typically have single antennas. When multiple antennas
are deployed at the transmitter, the transmit beam pattern
can be adjusted to minimize the interference experienced
by the receivers in co-channel cells. However, in scenarios
where antenna arrays are employed at the receivers, each
receive beamforming operation is performed independently,
thereby limiting its ability to mitigate interference for all
co-channel receivers simultaneously. Therefore, there is a
distinction between transmit and receive beamforming in
the cellular network, as the former can be jointly designed,
while the latter cannot. It is important to note that when
the number of antennas is greater than or equal to the num-
ber of co-channel receivers, transmit beamforming enables
the strategic placement of nulls in the directions of each
co-channel receiver [13], [14]. In addition to beamforming,
coordinating the transmit power among BSs is also crucial.
This introduces the challenge of jointly optimizing transmit
beamforming and power control across co-channel cells.

In cellular commutation systems, the system capacity
refers to the achievable sum rate of all UEs within the system.
However, maximizing the system capacity poses a challenge
as it involves a non-convex objective function, making it an
NP-hard problem. To tackle this issue, several suboptimal
methods have been proposed to obtain feasible solutions,
which can be categorized into centralized and distributed
approaches.

In a centralized framework, all BSs share their channel
state information (CSI) with a central controller, responsible
for calculating feasible solutions for each BS. Fractional
programming (FP) [15] reformulates the original non-convex
problem as a sequence of convex problems, enabling the use
of an iterative optimization algorithm operating in a central-
ized way. On the other hand, the distributed framework allows
individual BSs to compute their own transmit beamforming
and power based on local observations in a distributed man-
ner. In [16], the authors propose a distributed algorithm for
maximizing the system sum rate by reformulating it as an
iterative minimization of weighted mean-square error. This
reformulation establishes an equivalence relation, allowing
each BS to optimize its transmission strategy in a distributed
way while considering the impact on the overall sum rate.

FIGURE 1. The agent-environment interface of an RL system.

The coordination between concurrent co-channel BSs
presents a complex decision-making problem. In addition
to the aforementioned theoretical approaches, reinforcement
learning (RL) frameworks can be utilized to learn decision
policies for sequential decision problems. RL is a machine
learning approach that rewards desired behaviors and penal-
izes undesired ones. An RL model comprises two main
entities: an agent and an environment, as illustrated in Fig. 1.
The agent learns to interact with the environment by tak-
ing a sequence of actions. Throughout this interaction, the
agent observes both the states and rewards provided by the
environment.

Recently, an RL-based approach has been proposed for
distributed downlink-beamforming coordination in cellular
networks [17]. In this approach, each BS in the network
functions as an RL agent, operating within a shared environ-
ment. However, RL techniques were initially developed for
single-agent settings and stationary environments. Therefore,
in the multi-agent setting, a major challenge arises due to the
non-stationarity of the shared environment [18], [19], [20].
The nonstationary nature of the environment arises from the
fact that all agents learn concurrently and independently, and
the actions taken by any one agent impact the objectives of the
other agents. Consequently, in a multi-agent setting, in order
for agents to make informed decisions, they need to exchange
specific information among themselves to understand the
behavior of other concurrent agents.

In addition to the extensive information exchange required
among agents, designing a suitable reward function poses
a significant challenge in multi-agent learning [21], [22].
Manually engineered reward functions are critical for the
success of RLmodels. Arguably, the need for a well-designed
reward function imposes significant constraints on RL.
To this, some previous works in [23] and [24] have explored
alternative methods, such as imitation learning, to avoid the
explicit design of reward functions. In imitation learning,
RL agents learn from a set of expert demonstrations without
relying on predefined rewards. This approach is inspired
by the concept of generative adversarial networks [25].
By performing distribution matching, imitation learning min-
imizes the divergence between the target distribution and the
distribution resulting from the agent’s interaction with the
environment.

While imitation learning methods greedily imitate demon-
strated actions, it is important to note that aggregation errors
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can lead to deviations from the demonstrated states. Address-
ing this challenge, a novel learning method called C-learning
was recently proposed [26]. C-learning reformulates classic
goal-conditioned RL by training a classifier to predict and
control the future state of the environment. Building upon the
C-learning approach, an example-based control method [27]
enables agents to not only reach specific goals but also solve
tasks. In this problem setting, a collection of success exam-
ples representing success states is used to teach the agent to
recognize ‘‘what the world would look like if the task were
solved.’’

To address the challenges of information exchange and
reward function design, we propose a single-agent RL-based
method for joint transmit beamforming and power coor-
dination. Our approach eliminates the need for informa-
tion exchange and avoids the manual design of a complex
reward function by leveraging example-based control through
binary classification. We use success examples to guide
the RL model towards optimal achievable sum rates. Our
method offers several advantages compared to existing
approaches. Firstly, it overcomes the nonstationary nature
of environments resulting from changing decision-making
policies. Secondly, it alleviates the burden of designing
intricate reward functions, which are often challenging and
resource-intensive to obtain. Thirdly, our method eliminates
the need for information exchange among BSs, reducing
radio resource overhead and improving data transmission
and system capacity. Additionally, our approach ensures a
uniform achievable rate for co-channel UEs regardless of
their locations, while maximizing the overall system sum
rate. Finally, by substituting examples for rewards, our RL
model can tackle more general tasks, expanding its learning
capabilities beyond specific goals. Traditional RL models,
in contrast, focus solely on reaching desired states associated
with specific goals. Simulation results demonstrate that our
method outperforms both multi-agent and theoretical FP
methods in terms of system sum rates.

The remaining sections of this paper are organized as
follows. Section II presents the system and channel models.
In Section III, we provide a comprehensive review of the
multi-agent RL approach. Section IV introduces the problem
formulation and presents the derivation of the example-based
RL method. The proposed example-controlled single-agent
RL model for joint transmit beamforming and power control
coordination is presented in Section V. Simulation results are
provided in Section VI. Finally, Section VII concludes the
paper.

In this paper, the following notation is used. The super-
scripts T and † represent the matrix transpose and conjugate
transpose, respectively. The expectation, floor and modulo
operations are denoted by E (·), ⌊·⌋ and mod(·), respectively.
The function CN (m, v) denotes the complex normal distribu-
tion with mean m and variance v. U (a, b) represents the uni-
form distribution over the range [a, b]. The symbol∼ denotes
‘‘distributed as’’, and ≡

√
−1 is the imaginary root.

Ca×b represents spaces in a × b matrices with complex

FIGURE 2. Multi-cell multi-user MISO wireless system.

entries. The notation ∥w∥2 denotes the Euclidean norm of
vector w.

II. SYSTEM AND CHANNEL MODELS
Consider a downlink cellular network consisting of B cells,
where each BS is equipped with a uniform linear antenna
array ofN elements.Within each cell, single-antenna UEs are
served simultaneously using orthogonal frequency bands to
avoid interference within the cell. The commonly employed
technique for achieving this is orthogonal frequency-division
multiple access (OFDMA) [28]. OFDMA is a multicarrier
modulation scheme that divides the input data stream into
multiple sub-streams, which are transmitted in parallel over
different orthogonal subchannels. The number of sub-streams
is determined to ensure that the bandwidth of each subchan-
nel is smaller than the coherence bandwidth of the channel,
thus promoting relatively flat fading characteristics across the
orthogonal subchannels.

Due to the absence of interference within the cell,
we employ a single-user detection mechanism [29], [30].
Consequently, each orthogonal frequency band in the cellular
network accommodates B co-channel UEs. For the sake of
simplicity, let us assume that the bth UE establishes a direct
link with the bth BS (i.e., its home BS). As a result, the
downlink scenario can be modeled as a multi-input single-
output (MISO) system, as shown in Fig. 2. For each direct
link, there are two distinct kinds of neighboring entities: the
interferers and the interfered neighbors. In Fig. 2, for direct
link between BS 0 and UE 0, the set of UEs {UE1, UE2, . . . ,
UE6} represents the neighbors interfered by BS 0, whereas
the set of BSs {BS1, BS2, . . . , BS6} corresponds to the
interferers to UE 0. The received signal at UE b at time t can
be expressed as follows:

yb (t)

=wb (t)h†b,b (t) xb (t)+
∑

j̸=b
wj (t)h

†
j,b (t) xj (t) + zb (t) ,

(1)

where wb (t) ∈ CN×1 is the downlink beamforming vector at
BS b, hj,b (t) ∈ CN×1 represents the downlink channel vector
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between BS j and UE b, xb (t) ∈ C is the data transmitted
from BS b and zb (t) ∈ C denotes the additive white Gaussian
noise (AWGN) with variance σ 2. The beamforming vector
wb (t) is a unit vector. Let Pj (t) ≡ E

[∣∣xj (t)∣∣2] denote the
transmit power fromBS j at time slot t . In (1), the first product
term represents the contribution from the direct link, while
the second term, which is a summation of product terms,
accounts for the total interference caused by the interferers
{BS j, ∀j ̸= b}.

Now let’s define the channel model between any pair
of BS j and UE k . Following a similar approach to [17],
we assume a block fading channel model. In this model,
the large-scale fading remains unchanged within a block of
consecutive time slots, while the small-scale fading varies for
each individual time slot. Let βj,k represent the large-scale
fading coefficient and L be the number of multipaths. Within
a block fading at time slot t , the small-scale fading coefficient
and the angle of departure (AOD) for path l are denoted
by α

(l)
j,k (t) and φ

(l)
j,k (t), respectively. Additionally, the fading

coefficient α
(l)
j,k (t) follows a complex Gaussian distribution

CN
(
0,1

/
L
)
and the AOD φ

(l)
j,k (t) is with uniform distri-

bution U
(
θj,k − 1

/
2, θj,k + 1

/
2
)
, where 1 is the angular

spread and θj,k is the nominal AOD. TheGauss-Markov (GM)
model [31], a widely used model for characterizing the fading
processes, is employed in this paper. Specifically, we utilize
the first-order GM process to describe the small-scale fading
as follows:

α
(l)
j,k (t + 1) = ρα

(l)
j,k (t) +

√
1 − ρ2uj,k (t) , (2)

where uj,k (t) ∼ CN (0, 1) is the white Gaussian driving
noise. The parameter ρ ∈ [0, 1] represents the correlation
coefficient, where a small value indicates fast fading, while
a large value indicates slow fading. The array steering vector
a (φ) ∈ CN×1 in the direction of φ is given by

a (φ)=
[
1, e 2π(d/λ) cosφ, . . . , e 2π(d/λ)(N−1)cosφ

]T
∈ CN×1,

(3)

where λ and d denote the wavelength and antenna spacing,
respectively. We assume that the antenna spacing is half of
the wavelength, i.e., d = λ/2.
Therefore, the downlink channel vector between BS j and

UE k at time slot t is expressed as follows:

hj,k (t)

=
√

β j,k

∑L

l=1
α

(l)
j,k (t) al

(
φ

(l)
j,k (t)

)
, ∀j, k ∈ {1, . . . ,B}

(4)

According to (1), the SINR observed by UE b at time slot
t is given by

0b (W (t) ,P (t)) =

Pb (t)
∣∣∣h†b,b (t)wb (t)

∣∣∣2
+σ 2 , (5)

where we define W (t) ≡ [w1 (t) ,w2 (t) , . . . ,wB (t)] and
P (t) ≡ [P1 (t) ,P2 (t) , . . . ,PB (t)]. The corresponding
achievable instantaneous rate is given by

Rb (W (t) ,P (t)) = log2 (1 + 0b (W (t) ,P (t))) . (6)

In conventional radio cellular systems, the ICI term in (5)
is often considered as an uncontrollable background noise,
similar to the thermal noise. However, it is crucial to acknowl-
edge the presence of a race condition among co-channel cells,
where the BS serving a specific UE becomes an interferer
to the co-channel UEs in neighboring cells. In this paper,
we introduce a novel interference coordination method based
on RL to effectively manage and control the ICI experienced
within each cell.

III. REVIEW AND LIMITATIONS OF MULTI-AGENT
RL APPROACHES
In this section, we present a comprehensive review of the
current state-of-the-art multi-agent RL approaches used for
distributed multi-cell interference coordination [16], [17],
which serve as performance benchmarks for our proposed
method. In the multi-agent framework, each BS in a cellular
network acts as an RL agent operating in a shared envi-
ronment. However, this multi-agent setup introduces non-
stationarity to the environment, as each agent continually
adjusts its policy to adapt to the actions of other agents.
As a result, convergence of models in such nonstation-
ary environments is slow, and the solutions generated tend
to be suboptimal. To address this issue, constant informa-
tion exchange between agents is essential. Additionally, the
choice of reward function greatly impacts the performance of
the system [21], [22]. While sophisticated reward functions
can enhance performance, they necessitate substantial infor-
mation exchange overhead.

In the following subsections, we provide a detailed exam-
ination of information exchange and reward function design
techniques utilized in distributed multi-agent RL approaches.
Subsequently, we discuss the limitations associated with
multi-agent RL approaches.

A. INFORMATION EXCHANGE
In a multi-agent environment, relying solely on the local
information observed by an individual agent is insufficient to
capture the complete state of the environment. Consequently,
each agent must engage in information exchange with other
concurrent agents [16], [17] to obtain a holistic under-
standing of the environment’s global state. However, this
necessitates a significant allocation of radio resources, intro-
ducing a substantial overhead. Moreover, the aggregation
of global information collected from all BSs results in an
exceedingly high-dimensional state space, which hampers the
efficiency of the learning process. In contrast, single-agent
RL approaches circumvent the need for such additional radio
resource overhead and entail much smaller state lengths,
enabling more efficient learning.
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FIGURE 3. Detail of preparation phase.

FIGURE 4. Information exchange in the second sub-phase of preparation
phase for multi-agent RL setup in [17].

In the framework design [17], each time slot is divided into
two phases: the preparation phase and the data transmission
phase, as depicted in Fig. 3. The preparation phase comprises
three sub-phases, where the first two sub-phases are dedi-
cated to gathering information for the transmit beamforming
codes and power levels in the subsequent third sub-phase.
The subsequent third phase involves the downlink data trans-
mission. Similar to [17] and [22], the environment state
observed by each agent encompasses information from three
key aspects: the agent’s local side, the surrounding interferers,
and the interfered neighbors. Specifically, during the first
sub-phase of the preparation phase, the agent collects seven
local information elements from its own perspective. The
first three elements correspond to the indices of the transmit
power, beamforming vector, and achievable rate from the
previous time slot. The remaining four elements are obtained
through feedback from the UE being served, including direct
downlink channel gains and interference-plus-noise powers
obtained from the last two measurements.

Before delving into the details of the information exchange
among all BSs during the second sub-phase of the preparation
phase, let us revisit the concept of the two neighborhood sets
associated with the direct link of each BS, as illustrated in
Fig. 2. These sets consist of the interferers (i.e., the interfering
BSs) and the interfered neighbors (i.e., the interfered UEs).
Specifically, for the kth direct link between BS k and UE k ,
the interferer set, denoted as Tk (t), contains the indices of the
BSs that cause significant interference to UE k at time slot t .
Conversely, the interfered set, denoted as Ok (t), comprises
the indices of UEs that experience interference from BS k at
time slot t . Taking BS 0 as an example, as illustrated in Fig. 2,
the interferer set T0 (t) = {1, 2, . . . , 6} represents the BSs
that impose substantial interference on the direct link between

BS 0 and UE 0. Furthermore, BS 0 itself causes significant
interference to UEs in the interfered set O0 (t) = {1, 2, .., 6}.
After agent k takes an action at time slot t , it acquires infor-

mation about the changes in the surrounding environment and
the impact it has on the interfered neighbors by exchang-
ing information with the interferers in Tk (t) and the inter-
fered neighbors in Ok (t), respectively. According to [17],
the information exchange process is summarized in Fig. 4.
Through this procedure, at each time slot t , agent k gath-
ers 4 |Tk (t)| + 4 |Tk (t − 1)| pieces of information from the
interferers in the current and previous time slots. Addition-
ally, 4 |Ok (t)| pieces of information are collected from the
interfered neighbors in Ok (t). Thus, in the second sub-phase
of the preparation phase, each agent k needs to gather a total
of 4 |Tk (t)|+4 |Tk (t − 1)|+4 |Ok (t)| pieces of information
at each time slot t .

B. REWARD FUNCTION DESIGN
Due to the distributed nature of multi-agent RL, each agent
autonomously optimizes its achievable rate by selecting
actions it considers best. However, this decentralized frame-
work can lead to agents causing significant interference to
one another, thereby diminishing the overall system sum rate.
This interference is a consequence of the intricate interac-
tions among simultaneous agents, resulting in nonstationary
environments. Nonstationary environments pose challenges
in designing the reward function, as they require complex
computations and substantial radio resource overhead.

In multi-agent environments, the design of an appropriate
RL reward function plays a crucial role in optimizing the
overall system performance [21], [22]. In [17], a reward
function is formulated to maximize the achievable rate as
defined in (6). The reward function computed by agent b at
time slot t is given by the following expression:

fb (t) = Rb (W (t) ,P (t)) − 9b (W (t) ,P (t)) , (7)

where Rb (W (t) ,P (t)) is the instantaneous rate achieved by
BS b in (6) and the function 9b (W (t) ,P (t)) serves as a
penalty imposed on the agent b. This penalty represents the
overall reduction in achievable rate caused by the interference
from BS b to the interfered BSs in Ob (t + 1). It is defined by

9b (W (t) ,P (t))

=

∑
j∈Ob(t+1)

{log2(1+

Pj (t)
∣∣∣h†j,j (t)wj (t)

∣∣∣2∑
i̸=b,j Pi (t)

∣∣∣h†i,j (t)wi (t)
∣∣∣2 + σ 2

)

−Rj (W (t) ,P (t))
}
, ∀b (8)

In (8), the interference caused by BS b is subtracted from
the SINR of each interfered BS j in Ob (t + 1). Therefore,
the achievable rate of BS j is calculated without consider-
ing the interference from BS b. This indicates that a higher
penalty 9b in (8) indicates that the action taken by agent b
introduces significant interference to the system, thereby
leading to a reduced reward in (7).
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C. LIMITATIONS OF MULTI-AGENT RL APPROACHES
In a multi-agent RL environment, the observed environ-
ment state by each agent consists a tuple of 7 + 4 |Tk (t)| +

4 |Tk (t − 1)|+4 |Ok (t)| environment features. Among these,
7 dimensions are derived from the local side, while the
remaining dimensions arise from the information exchange
among agents. Consequently, the state space becomes highly
dimensional, posing challenges in practical implementation.
For instance, in [17], even when considering only the first-tier
of co-channel cells (i.e., a set size of 6 for both interferers
and interfered neighbors), the state dimension escalates to 79.
High-dimensional RL state spaces present two challenges.
Firstly, they necessitate a substantial allocation of radio
resources, which reduces the available resources for actual
data transmission. Thus, this resource allocation overhead can
impact the overall system performance.

Secondly, high-dimensional state spaces make it more
challenging to learn optimal solutions. As the state space
grows larger, the learning process becomes more complex
and computationally intensive, making it harder to con-
verge to an optimal solution. Thus, addressing the chal-
lenges posed by high-dimensional state spaces is crucial in
developing practical and efficient interference coordination
methods.

IV. PROBLEM FORMULATION AND DERIVATION OF
EXAMPLE-BASED RL VIA BINARY CLASSIFICATION
Themulti-agent distributed framework encounters three chal-
lenges: the design of reward functions, the adaptation to
nonstationary environments, and the significant requirement
of information exchange overhead. They have led to limited
exploration of single-agent RL models, primarily due to the
difficulty of formulating an appropriate reward function to
maximize the sum rate of cellular networks.

Motivated by these challenges, we propose a novel
single-agent RL approach that eliminates the need for a
reward function, effectively addressing these difficulties.
In this section, we provide the problem formulation and
derive an example-based RL approach that utilizes binary
classification to solve the problem. By leveraging success
examples and avoiding the reward function design and
information exchange, our method offers a practical and
efficient solution for interference coordination in cellular
networks.

A. PROBLEM FORMULATION
We aim to jointly optimize the transmit beamforming vectors
inW (t) and power control in P (t) to maximize the following
achievable sum rate:

R (W (t) ,P (t)) ≡

∑B

b=1
Rb (W (t) ,P (t))

=

∑B

b=1
log2 (1 + 0b (W (t) ,P (t))) (9)

More generally, our goal is tomaximize the achievable sum
rate objective function in (9) with respect to W (t) and P (t),

subject to specific constraints:

max
W(t)∈WP(t)∈P

∑B

b=1
log2 (1 + 0b (W (t) ,P (t))) (10a)

subject to 3b (W (t) ,P (t)) ⋛ 3∗, ∀b (10b)

In (10a), W refers to the beamforming codebook, and
P represents the set of transmit power levels. In (10b),
the set of functions {3b (W (t) ,P (t)) , ∀b} is utilized to
impose specific constraints on the problem and3∗ represents
a pre-defined positive threshold. The symbol ⋛ represents
either the greater than or equal to (≥) or less than or equal
to (≤) operators, depending on the specific type of con-
straints. For instance, with rate constraints, the constraint
function 3b (W (t) ,P (t)) corresponds to the rate of BS b
(i.e., Rb (W (t) ,P (t)) in (6)), and 3∗ denotes a predeter-
mined minimum requirement for the achievable rate. Then
the constraints in (10b) ensure that the rate of each UE in
the system will be not below the minimum rate require-
ment3∗. In this case, the constraints in (10b) are equivalently
expressed as the set of inequalities: Rb (W (t) ,P (t)) ≥

3∗, ∀b.
While existing multi-agent RL approaches [17], [22] focus

on maximizing the system sum rate as stated in (10a), they
cannot guarantee the fulfillment of the minimum rate require-
ment for each BS. In contrast, our proposed approach pro-
vides a straightforward integration of the constraints specified
in (10b) into the maximization of the achievable sum rate
in (10a). This integration is achieved through the use of
success examples, which guide the RLmodel towards optimal
solutions that satisfy the specified constraints.

B. EXAMPLE-BASED RL WITH BINARY CLASSIFICATION
FOR THE OPTIMIZATION PROBLEM IN (10)
Now, we proceed to derive the example-based RL without
a reward function, which allows us to train the agent to
effectively tackle the task outlined in (10). This approach
utilizes success examples to maximize the sum rate in (10a)
while adhering to the constraints specified in (10b). Unlike
conventional goal-conditioned RL methods, our RL agent is
trained in a versatile manner to handle various tasks, rather
than solely aiming to achieve a specific goal. This diversity
in training enables the agent to acquire policies that can
successfully address tasks in novel environments, even those
that present previously unseen success examples [23], [24],
and [27].
Our learning method is primarily inspired by the

C-learning algorithm, which pioneered the solution to classic
goal-conditioned RL by predicting and controlling future
states of the environment [26]. Based on the experiences
gathered from a particular policy, the C-learning algorithm
trains the agent to predict the futures states associated with a
different policy. By acquiring the capability to predict future
states, we can influence subsequent states through policies
that lead to the desired future states. This entails the estima-
tion of the probability density function of future states, which
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is a challenging task. Rather than directly training the estima-
tor, the C-learning algorithm employs contrastive learning to
train a binary classifier that can discriminate between ‘‘future
states’’ and ‘‘random states’’. Subsequently, the learned clas-
sifier is employed to derive the future state density function
using Bayes’ rule. In this paper, we leverage the same concept
to train a binary classifier that predicts whether a given task
is successfully solved at a specific time step.

To apply RL to address the optimization problem in (10),
it is essential to establish a well-definedMarkov process with
the dynamics p (st+1 | st , at) and an initial state distribution
p1 (s1), where st and at represent the state and action at time
step t , respectively. We introduce a binary random variable
et ∈ {0, 1} to indicate whether the task is solved at time step t .
Thus, the function p (et = 1 | st) represents the probability
of solving the task given state st . With a policy πφ (at | st)
parameterized by φ, the function pπ (et = 1 | st , at) repre-
sents the likelihood of the task being solved at the state st
under the policy πφ (at | st). The γ -discounted probability of
solving the task at a futurestep t+ ∈ {t, t + 1, . . .} can be
recursively expressed as follows, relating the current and next
time steps:

pπ (et+ = 1 | st , at) = (1 − γ ) pπ (et = 1 | st , at)
+ γ Ep(st+1 | st ,at),πφ(at+1 | st+1)

[
pπ (et+ = 1 | st+1, at+1)

]
.

(11)

Based on the recursive identity in (11), the example-based
control problem aims to find the policy πφ (at | st) that
maximizes the following likelihood:

argmax
π

pπ (et+ = 1)

= argmax
π

Ep1(s1),
[
pπ (et+ = 1 | s1, a1)

]
, (12)

where the future step t+ takes values from t+ ∈ {1, 2, . . .} as
it starts from the initial state s1. The objective pπ (et+ = 1)
in (12) serves as an equivalent reward function to be max-
imized in traditional RL. However, existing RL algorithms
cannot be directly applied to the example-based control prob-
lem in (12) due to the unknown likelihood pπ (et = 1 | st , at).
Nevertheless, in this task-solving problem, the distribution of
success states, p (st | et = 1), can be learned from experiences
acquired through interactions with the environment.

Gathering experiences from environment can be pro-
hibitively expensive in many applications. As a result, an off-
policy version is often proposed, allowing the agent to learn
a policy using experiences from a replay buffer D col-
lected from other policies. This approach facilitates learn-
ing from two distinct datasets. The first dataset, the replay
buffer D, contains a sequence of off-policy transitions
{(st , at , st+1) ∼ p (st , at , st+1)}, offering valuable informa-
tion about the environment dynamics. The second dataset
consists of success examples in S∗

= {s∗ ∼ p (st | et = 1)},
which serve to illustrate the desired the task that the agent
aims to accomplish. Additionally, it is necessary to determine
the frequency with which each state st is visited in order to
properly define the example-based control problem. It has

been noted in [27] that example-based control methods are
robust to the choice of the state distribution being visited.
Therefore, in our approach, we conduct example-based con-
trol using the ‘‘uniform distribution of success examples’’
denoted by pU (st | et+ = 1).
Now, let’s outline the approach for predicting future

success states. Similar to C-learning [26], we train a
binary classifier Cπ

θ (st , at), where θ represents the clas-
sifier’s parameters. This classifier is specifically designed
to indirectly estimate the probability distribution mentioned
in (11). Its primary task is to discriminate between positive
‘‘success examples’’ and negative ‘‘unlabeled random tran-
sitions’’. To train the classifier, we need to sample suc-
cess examples and unlabeled random transitions. Success
examples in positive set are sampled from the conditional
distribution pπ (st , at | et+ = 1), while unlabeled random
transitions in negative set are sampled from the marginal
distribution p (st , at).

It is worth noting that the sampled positive set represents an
incomplete set of success examples, as some examples in the
unlabeled set may also be positive. This raises the question
of how to effectively train a classical classifier using such
an atypical training set. Fortunately, the authors in [32] have
demonstrated that, even with positive and unlabeled samples,
a binary classifier can be trained to predict probabilities
that differ only by a constant factor from the probabilities
produced by a model trained on a typical training set con-
sisting of completely labeled positive and negative samples.
Based on their findings, we assign the weighting coefficients
p (et+ = 1) and 1.0 to the sets of positive and unlabeled
examples, respectively. Thus, the Bayes optimal solution for
our binary classifier is given by

Cπ
θ (st , at)

=
p (et+ = 1) × pπ (st , at | et+ = 1)

p (et+ = 1) × pπ (st , at | et+ = 1) + 1.0 × p (st , at)
.

(13)

By applying Bayes’ formula, we can equivalently express
the probability distribution pπ (et+ = 1 | st , at) in (11)
as pπ (st , at | et+ = 1) p (et+ = 1)

/
p (st , at). Remarkably,

these three probability functions in this equivalence are coin-
cidentally present in (13). Consequently, the probability of
successfully solving the task at the future step t+ in (11)
can be derived from the probability predicted by the binary
classifier in (13), as shown below:

pπ (et+ = 1 | st , at) =
Cπ

θ (st , at)

1 − Cπ
θ (st , at)

. (14)

We proceed to train the binary classifier Cπ
θ to maximize the

following objective function:

Lπ (θ )≡p (et+ = 1)×Epπ (st , at | et+ =1)
[
logCπ

θ (st , at)
]︸ ︷︷ ︸

(a)

+ 1 × Ep(st ,at )
[
log

(
1 − Cπ

θ (st , at)
)]

(15)
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where the success examples and random transitions are
weighted with coefficients p (et+ = 1) and 1.0, respectively.
In (15), the conditional distribution pπ (st , at | et+ = 1) and
marginal distribution p (st , at) are the distributions from
which the success examples and random transitions are sam-
pled, respectively. Specifically, the training of the classifier
involves distinguishing between success examples and ran-
dom transitions by utilizing the first and second expectations
in (15), respectively.

The second expectation in (15) can be estimated by using
Monte Carlo examples sampled from the replay buffer D, i.e.,
(st , at) ∼ p (st , at). However, due to the unavailability of the
conditional distribution pπ (st , at | et+ = 1), we are unable
to sample success examples to estimate the first expectation.
Nevertheless, let’s examine term (a) in (15), corresponding to
the probability distribution p (et+ = 1) pπ (st , at | et+ = 1),
which can be factored into the product of pπ (et+ = 1 | st , at)
and p (st , at). Notably, pπ (et+ = 1 | st , at) is expressed by
the recursive identity in (11) and can be estimated using the
classifier’s predictions in (14). As in [27], we substitute (14)
and (11) into term (a) in (15) to reformulate the objective
function as follows:

Lπ (θ )

≡ (1 − γ )EpU (st |et+=1),p(at |st )[1 × 1 × logCπ
θ (st , at)

]︸ ︷︷ ︸
(a)

+Ep(st ,at ,st+1)[γω × logCπ
θ (st , at)︸ ︷︷ ︸

(b)

+log
(
1 − Cπ

θ (st , at)
)︸ ︷︷ ︸

(c)

]

(16)

where ω represents the expected prediction ratio of the binary
classifier Cπ

θ , as expressed in (14), at the next time step:

ω ≡ Ep(at+1 | st+1)

[
Cπ

θ (st+1, at+1)

1 − Cπ
θ (st+1, at+1)

]
. (17)

In (16), the terms (a) and (b) correspond to term (a) in (15),
which is associated with success examples. Furthermore,
in (16), the binary classifier Cπ

θ is trained to predict 1.0 and
γω

/
(1 + γω) for the current success examples (term (a)) and

the success examples the next time step (term (b)), respec-
tively. For term (c), the classifier is trained to predict 0 for
random transitions.

Nowwe utilize the classifierCπ
θ to assess actions generated

by the policy πφ . In this context, the binary classifier and RL
policy act as the critic and actor networks [33], respectively.
Based on the objective function in (16), the classifier Cπ

θ is
trained to minimize the following loss function of the critic
network, consisting of two cross-entropy (CE) losses:

min
θ

{(1 − γ )

×EpU (st |et+ = 1
)
, p (at | st)

[
CE

(
Cπ

θ (st+1, at+1) ; y = 1
)]

+ (1 + γω) ×Ep(st ,at ,st+1)

×
[
CE

(
Cπ

θ (st+1, at+1) ; y=γω/(1 + γω)
)]}

, (18)

where CE(·; ·) denotes the binary CE loss. The first CE loss
in (18) corresponds to the success examples, which are uni-
formly sampled from the set of success examples, S∗. These
success examples are assigned a positive label y = 1. On the
other hand, the second CE loss is related to experiences
sampled from the unlabeled replay buffer D. Note that while
sampling from the unlabeled replay buffer, an experience can
be either a positive success example or a negative random
transition. According to [32], we assign the unlabeled sam-
ples the label y = γω

/
(1 + γω).

Given the classifier Cπ
θ , the policy πφ is updated to select

actions that maximize the classifier’s confidence in solving
the task in the future:

max
φ

Eπφ(at |st )
[
Cπ

θ (st , at)
]

(19)

The policy objective in (19) aligns with the objective used in
an actor-critic iterative algorithm. In each iteration, we alter-
nate between updating the critic and actor networks. At the
end of each iteration, we store the transition in the replay
buffer D. The actor and critic networks are iteratively updated
until convergence is achieved or a predefined number of
iterations is reached.

V. THE PROPOSED SIGNLE-AGENT RL-BASED
APPROACH FOR JOINT TRANSMIT
BEAMFORMING AND POWER
CONTROL COORDINATION
In this section, we present our example-controlled RL
approach for enhancing system sum rate in wireless commu-
nication systems. The section is divided into four subsections,
each addressing a crucial aspect of our approach.

A. SYSTEM ARCHITECHTURE WITH
EXAMPLE-CONTROLLED RL MODEL
AND ACHIEVING CONSISTENT SIGNAL
QUSLITY LEVEL
The system architecture, depicting the interaction between
the agent and the environment, is illustrated in Fig. 5. The
agent consists of two components: the critic and actor net-
works. The environment represents a cellular network com-
prising B BSs. In our proposed approach, the RL agent serves
as the central controller, establishing connections with all the
BSs through a backhaul network. Within each cell, multiple
UEs operate simultaneously, with each UE being assigned a
distinct orthogonal subchannel.

In each cell, the UEs are randomly distributed within the
coverage area, and their perceived signal quality is largely
influenced by the distance from the serving BS. To achieve
a consistent signal quality level, network MIMO transmis-
sion techniques have been utilized [2], [3], [4]. However,
these techniques often introduce significant processing over-
head and implementation complexity [5]. Additionally, pre-
vious works such as [16] and [17] have explored distributed
multi-agent RL approaches to maximize the achievable sum
rate in (9).
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FIGURE 5. The system architecture showcasing the agent-environment
interaction.

Nevertheless, these approaches often prioritize the sum rate
at expense of UEs located at the cell edges. This trade-off
arises becausemaximizing the system sum rate in (9) relies on
the water-filling principle [34], which allocates more power
to UEs with better channel conditions and less power to UEs
with poorer channel conditions. As a result, these approaches
cannot ensure that each BS achieves a rate higher than a
predetermined minimum threshold.

To enhance the signal quality for UEs with poor channel
conditions, the implementation of rate constraints can be
highly beneficial. Specifically, we propose using example
control methods that indirectly impose constraints on the
maximization of the objective function in (10a) using success
examples, whose achievable rates are higher than a preset
minimum rate. This involves defining the constraint func-
tion in (10b) based on the individual rates specified in (6).
By doing so, it is ensured that the minimum individual rate
among UEs remains above the predetermined threshold. This
effectively improves the signal quality and performance for
UEs with unfavorable channel conditions.

B. SORTED CHANNEL ASSIGNMENT FOR ENHANCED
SYSTEM SUM RATE
To further enhance the overall system capacity, we also devise
a simple yet effective method. Inspired by the concept in the
condition number of channel matrix [34], which suggests that
co-channel UEs with similar channel gains can potentially
improve the system capacity, we propose a strategy to lever-
age this insight. Our approach involves the assignment of a
group of co-channel UEswith comparable channel conditions
to a specific frequency band. To achieve this, we utilize
received signal strength (RSS) measurements as a basis for
grouping UEs.

The UEs within each cell are sorted in descending order
according to their RSS measurements, as illustrated in Fig. 6,
where the same color or numbering indicates the utilization of
the same frequency band. Assuming a consistent numbering
of frequency bands across cells, each BS assigns the first
frequency band to the UE closest to it, the second band to
the next closest UE, and so on. We term this technique as
sorted channel assignment (SCA). By utilizing this frequency

FIGURE 6. Sorting the UEs within each cell in descending order based on
their RSS measurements.

planning technique, the co-channels UEs operating on the
same band will have similar serving distances, in contrast
to random channel assignment (RCA), where the channel
assignment is unrelated to serving distance.

SCA, through its effective grouping of co-channel UEs
with similar large-scale channel conditions, contributes to
reducing the condition number of the corresponding channel
matrix for each group. This reduction is desirable since a
condition number close to 1 indicates a well-conditioned
channel matrix, resulting in increased capacity.

In summary, the combination of rate constraints in
Subsection V-A and the implementation of SCA in
Subsection V-B provides effective strategies for improving
signal quality for UEs with poor channel conditions and
further increasing the overall system capacity.

C. GNENRATION OF SUCCESS EXAMPLE SET
Recall that W and P represent the beamforming codebook
and set of possible transmit power levels, respectively. Thus,
the action spaceA is defined asA = {(p,w) , p ∈ P,w ∈ W.
Each element in A consists of a pair of index values,
one for the beamforming vector and the other for transmit
power level. As there are B BSs in the cellular network, the
action vector generated by our agent will be 2B-dimensional.
To meet a transmit power constraint pmax, we evenly divide
the power range [0,pmax] into NP discrete levels. Accord-
ingly, the set of possible transmit power levels is defined as
P = {0, 1p, 21p, . . . ,pmax}, where 1p ≡ pmax

/
(NP − 1).

The codebookW comprises NW beam codes, with each code
specifying a distinct beam direction. We adopt the codebook
design utilized [17], which allows for a higher number of
codes than antenna elements, i.e., NW ≥ N . The ith element
of the kth code is given as follows:

wk [i]

=
1

√
N

exp
(

2π
S

⌊
i× mod

(
k +

NW

2
,NW

)/
NW

S

⌋)
,

(20)
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where S represents the number of available phases for each
antenna element. In this paper, we set the value of S to be 16.

In our proposed RL model, the agent acquires environ-
ment states from the connected BSs. The state is represented
by a simple two-dimensional (2)-D) vector. The first entry
corresponds to the achievable system sum rate, which is the
optimization goal defined in (10a). The second entry relates
to the constraints outlined in (10b). The specific definition
of second state entry depends on the choice of the constraint
function 3b (W (t) ,P (t)) in (10b). It can be specified in
various ways, such as the minimum individual achievable
rate, expressed as minb{Rb (W (t) ,P (t))} or the maximum
penalty, represented as maxb{9b (W (t) ,P (t))}.

If we consider the minimum achievable rate constraint
(i.e., 3b (W (t) ,P (t)) ≡ Rb (W (t) ,P (t))), the inequal-
ity constraints in (10b) ensure that the achievable rate of
each BS exceeds the predetermined minimum threshold 3∗,
expressed as minb {Rb (W (t) ,P (t))} ≥3∗. Alternatively,
if we adopt the penalty constraint (i.e., 3b (W (t) ,P (t)) ≡

9b (W (t) ,P (t))), the total achievable rate loss caused by
any BS b is limited to be less than the minimum loss 3∗,
indicated by, maxb {9b (W (t) ,P (t))} ≤3∗.

Our example-controlled RL model exhibits the ability to
learn and solve a wide range of tasks defined by a collec-
tion of success examples in S∗. Each success example is
characterized by a 2-D state that fulfills two conditions, one
pertaining to the first state entry and the other concerning the
second entry. As a result, the proposed single-agent RLmodel
operates in a compact state space with a dimensionality of 2.
In contrast, the distributed multi-agent RL method [17] has
a much higher state dimensionality, reaching up to 79 even
when considering a set size of 6 for both interferers and
interfered neighbors.

The incorporation of success examples in our model
facilitates the learning of more general notions of success.
To achieve this, we train the binary classifier Cπ

θ to effec-
tively differentiate between success examples and random
transitions, as explained in Section IV-B. The training process
involves an atypical training dataset that comprises both the
set of success examples S∗ and the unlabeled examples from
the replay buffer D.
To generate the 2-D success examples in S∗, we consider

two pairs of positive thresholds and margins, {η1, 11} and
{η2, 12}, to impose constraints on the first and second entries
of success examples, respectively. The first entry corresponds
to the system sum rate in (10a) and is randomly selected
from the interval [η1, η1 + 11]. While higher sum rates are
desirable, we need to set an upper bound η1 + 11 on the
system sum rates of success examples due to the limited
capacity of cellular networks.

The second entry of a success example is associated with
the constraints imposed on the objective function maximiza-
tion in (10a). In this paper, we consider two constraint
functions in (10b): the penalty 9b in (8) and the individual
achievable rate Rb in (6). By using the penalty, we can limit
the total loss of achievable rate caused by any BS b. In this

case, the second entries of success examples are uniformly
sampled from the interval [η2 − 12, η2], where η2 − 12 is
the lower bound of the total loss with η2 > 12 > 0. Alter-
natively, to ensure a minimum achievable rate for each UE,
we set the constraint function in (10b) to the UE’s individual
achievable rate, i.e., 3b (W (t) ,P (t)) = Rb (W (t) ,P (t)).
In this case, the second entry of a success examples are
randomly chosen from the interval [η2, η2 + 12], where
η2 + 12 is the upper bound of the individual achievable rate.

Let’s illustrate the generation of success examples. Assum-
ing the first threshold/margin pair is {η1 = 8, 11 = 4},
the first state entries are thus uniformly sampled from the
intervals [η1, η1 + 11]= [8, 12]. This indicates that the sys-
tem sum rate, which is to be maximized according to (10a),
will be greater than 8 but upper bounded by 12. Assume
threshold/margin pair {η2 = 2, 12 = 1} for the second
state entry. If we employ the penalty constraint, the sec-
ond state entry are thus randomly chosen from the interval
[η2 − 12, η2]= [1, 2]. This implies that the total loss of
achievable rate caused by any BS will be less than 2 but lower
bounded by 1. Alternatively, employing the rate constraint,
the second state entries are randomly sampled from the inter-
val [η2, η2 + 12]= [2, 3]. Thus, the achievable rate for each
UE will be greater than 2 but upper bounded by 3.

D. ALGORITHM OF OUR EXAMPLE-CONTROLLED
RL APPROACH
The system architecture of our example-controlled RL
approach is presented in Fig. 5, and the corresponding
algorithm is summarized in Table 1. In Table 1, variables with
superscripts (p) and (n) are associated with success examples
and random transitions, respectively. The algorithm operates
in an iterative fashion, alternating between improving the
classifier Cπ

θ (critic network with parameter set θ ) and the
policy πφ (actor network with parameter set φ).
During each training iteration, the algorithm follows

Step 1 to Step 5 for the offline training of the binary clas-
sifier Cπ

θ , and Step 6 to Step 9 for the online update of
the policy πφ . In Step 1, we sample a state s(p)t from the
success example set S∗ and generate an action a(p)

t condi-
tioned on the state s(p)t according to the policy πφ . Similarly,
in Step 2, a random transition (s(n)t , a(n)

t , s(n)t+1) is sampled
from the replay buffer D, and an action a(n)t+1 conditioned on
the state s(n)t+1 is generated using the policy πφ . Step 3 involves
calculating the probability of successfully solving the task at
the next time step as defined by (14). Next, in Steps 4 and 5,
we update the classifier Cπ

θ based on the gradient of the
loss function L (θ) with respect to the parameter set θ . The
output of classifier Cπ

θ is the probability that the input is a
success example. As specified in (18), the loss function L (θ)

in Step 4 can be minimized if the classifier predicts a proba-
bility of 1 for success examples (Cπ

θ

(
s(p)t , a(p)

t

)
= 1) and a

probability of γω
/
(1 + γω) at the next time step for random

transitions (Cπ
θ

(
s(n)t , a(n)

t

)
= γω

/
(1 + γω)). This training
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TABLE 1. Algorithm of our example-controlled RL approach.

approach, where the classifier is trained to predict the success
probability for the next time step, resembles the bootstrapping
in temporal difference learning [35].
Next, we proceed with the online update of the policy πφ

in Steps 6 to 9. Initially, in Step 6, we retrieve the most recent
state st from the replay buffer D. Conditioned on st , the
policy (agent) generates an action at , which is then applied
to the environment in Step 7. Following the application of the
action, we obtain the latest state-action pair (st , at ). In Step 8,
we perform the gradient-ascent update on the policy πφ ,
aiming to maximize the classifier’s prediction Cπ

θ (st , at) as
defined in (19).

During the online learning process, after the agent applies
the action at to the environment, the environment state tran-
sitions from the current state st to the subsequent state st+1.
Hence, at the end of each iteration, we gather a new transition
(st , at , st+1) and add it to the replay buffer D in Step 9. This
enables the accumulation of additional training data for sub-
sequent iterations. Through this iterative procedure, both the
classifier and policy networks are updated until convergence
is achieved or a predetermined number of training iterations
is reached.

VI. SIMULATION RESULTS
In this section, we evaluate the performance based on the
average achievable rate. The average achievable rate is the
average rate per UE, which is calculated by dividing the sys-
tem sum rate in (9) by the number of co-channel UEs.
To establish benchmarks, we compare our results with two
existing methods: the FP algorithm [15] and a multi-agent
RL scheme [17]. The FP algorithm is a theoretical method
capable of generating beam patterns for arbitraryAODs with
continuous transmit power levels. Due to the infinite size

TABLE 2. Thresholds and margins for generation of success examples.

of its action space, the FP algorithm is only applicable in
theory and not feasible in practical implementations. On the
other hand, the multi-agent RL method proposed in [17] is
more practical but requires a significant amount of radio
resource overhead for information exchange among agents,
as discussed in Section III-A.

For the evaluation, we consider a two-tier homogeneous
cellular network of 19 hexagonal cells. The cell radius is set
to 200 meters and each BS is equipped with three anten-
nas. To ensure accurate simulations, UEs located within
10 meters of the serving BS are excluded from our simula-
tions. We assume that UEs are uniformly distributed within
each cell. The channel parameters are set according to the
benchmark method in [17]. The maximum transmit power
constraint of the BSs is set to pmax = 38 dBm. The large-scale
fading coefficient βj,k between BS j and UE k incorporates
both path loss and log-normal shadowing. The path loss is
modeled as 120.9 + 37.6×log10dj,k dB, where dj,k denotes
the distance between BS j and UE k . The standard deviation
of log-normal shadowing is 8 dB. We set the number of mul-
tipath L to 4 and the angular spread 1 to 3 degrees. The noise
variance σ 2 is −114 dBm and the correlation coefficient ρ

for small-scale fading is 0.64.
Unless explicitly stated otherwise, we use a codebook

size of NP = 5 and four available power levels
(NW= 4). The value of the second state entry depends
on the selection of constraint functions in (10b). We con-
sider two distinct constraints: the minimum achievable
rate minb{Rb (W (t) ,P (t))} (rate constraint) and the max-
imum penalty maxb{9b (W (t) ,P (t))} (penalty constraint).
To generate success examples, we employ the thresholds and
margins specified in Table 2. Unless explicitly indicated,
we utilize the RCA as described in Section V. Also, in each
of the following non-bar figures, the value for each time
slot is calculated as the average of the preceding 500 time
slots. The choice of a window size of 500 time slots for the
moving average serves to smooth out short-term fluctuations
and provide a clearer trend in the data. Decreasing thewindow
size could lead to jaggedness and misrepresent trends. The
500 slots strike a balance for accurate representation.

In Fig. 7, we present a comparison of average achiev-
able rates among different approaches, including the pro-
posed method and two benchmarks: multi-agent RL and
FP algorithm. The reward function of the multi-agent RL
method is defined by (7), which incorporates penalties in (8).
To ensure a fair comparison, we adopt the penalty func-
tion as the constraint function in (10b) for our proposed
method. The results show that the proposed method signif-
icantly outperforms the multi-agent RL method significantly,
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FIGURE 7. Average achievable rate comparisons of different approaches.
(NP = 5 and NW = 4).

achieving approximately 98.18% of the average achievable
rate of the theoretical FP algorithm. Several reasons con-
tribute to the superior performance of the proposed method
over multi-agent RL learning. Firstly, our proposed model
eliminates the challenges associated with nonstationary envi-
ronments, which often result in slow convergence and sub-
optimal solutions. Thus, the proposed method is able to
converge to superior solutions. Secondly, we utilize success
examples to guide the learning process, thereby avoiding
the complexities associated with designing reward functions,
that is particularly challenging in nonstationary environ-
ments. Consequently, the proposed method does not suffer
from performance degradation caused by poorly designed
reward functions. On the other hand, multi-agent models are
inherently constrained by the nonstationary environment and
the need to design suitable reward functions. Additionally,
addressing nonstationary environments requires a substantial
amount of information exchange overhead, which the pro-
posed method effectively avoids.

Figure 8 illustrates a performance comparison for dif-
ferent combinations of NP and NW. Specifically, among
the possible combinations for an action space size of A =

40, we consider (NP,NW) = (5, 8) and (NP,NW) =

(8, 5). By comparing these combinations to the baseline
case of (NP,NW) = (5, 5), we find that increasing the
codebook size (5, 8) is more effective in enhancing the
system capacity compared to increasing the power level
(8, 5). This can be attributed to the fact that increasing
the codebook size results in antenna beam patterns with
narrower beamwidth, effectively reducing co-channel inter-
ference. Therefore, increasing the codebook size offers
greater benefits to system capacity when the action space
size |A| is limited. To recap, in Fig. 7, the proposed
method with (NP,NW) = (5, 4) achieves 98.18% of the
average achievable rate of the theoretical FP algorithm.

FIGURE 8. Average achievable rate comparison for different
combinations of (NP,Nw ).

FIGURE 9. Per-BS achievable rate distribution across the 19 BSs
corresponding to Fig. 7.

Interestingly, the results in Fig. 8 reveal that the proposed
method with (NP,NW) = (5, 8) can even outperform the
suboptimal FP algorithm with an infinite action space size
(NP → ∞,NW → ∞). This observation highlights the
suitability of the example-based RL approach utilizing binary
classification for addressing the optimization problem out-
lined in (10).

To provide a deeper understanding of the system perfor-
mance, Fig. 9 illustrates the distribution of achievable rates
among these 19 BSs. It is evident that the individual rates
of the BSs exhibit significant variations, with highest rate
being 7.23 times greater than the lowest rate. Specifically,
the standard deviation of the rates exceeds half of the average
rate (std > mean/2), as shown in Fig. 9. This wide variation
in individual rates arises due to the primary focus of the
penalty constraint on maximizing the overall system sum
rate, without considering the individual rates of the UEs.
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FIGURE 10. Per-BS achievable rate distribution across 19 BSs:
comparison of different constraints and channel assignments.

Consequently, more power is allocated to UEs with favorable
channel conditions, while less power is allocated to UEs with
poorer channel conditions [34].

As mentioned in Subsections V-A and V-B, employing
rate constraints, in conjunction with SCA, provides an effec-
tive strategy for improving the signal quality of UEs with
poor channel conditions and increasing the overall system
capacity. In Fig. 10, we present a performance comparison
of the proposed approach considering different constrains
and channel assignments. The benchmark scenario utilizes
the proposed method with penalty constraints and RCA,
resulting in an achievable rate distribution with a standard
deviation of 5.39 and a mean of 8.45. This indicates that
the achievable rate distribution is significantly spread out
relative to the mean. It should be noted that the penalty
constraints, employed in the multi-agent model [17], not only
result in an uneven rate distribution as shown in Fig. 9, but
also require considerable radio resource overhead. To address
these issues, we replace the penalty constraint with the rate
constraint. Figure 10 demonstrates a substantial decrease in
the standard deviation from 5.39 to 1.97 compared to using
the penalty constraint, while the mean rate experiences a
slight decrease from 8.45 to 8.27. In addition, by applying
the SCA, we can further reduce the standard deviation and
increase the mean rate. Figure 10 shows that replacing RCA
with SCA in the proposed method with the rate constraint
leads to a dramatic reduction in the standard deviation by
half, from 1.97 to 0.86, while increasing the mean rate from
8.27 to 9.02. This improvement can be attributed to the
utilization of SCA, which facilitates similar channel gains
among co-channel UEs, thereby enhancing the overall system
capacity.

Figure 11 illustrates the results of the average achievable
rate corresponding to Fig. 10. When employing the RCA,
it can be observed that using the rate constraint results in
slightly lower average achievable rate compared to using the
penalty constraint. This observation is consistent with the
fact that the penalty constraint provides more comprehen-
sive information about the environment compared to the rate

FIGURE 11. Average achievable rate corresponding to Fig. 10.

FIGURE 12. Combination selection of NP and NW for SCA and RCA under
the constraint |A| = NPNW = 20.

constraint. However, the rate constraint offers the advantage
of providing a more uniform rate distribution, as depicted
in Fig. 10. This is because the rate constraint does not
require information exchange between the BSs, unlike the
penalty constraint, while still achieving a more balanced
data rate among the UEs. Additionally, Fig. 11 demonstrates
that the application of SCA to the proposed method with
rate constraint even significantly outperforms the theoretical
FP algorithm. As mentioned early, this improvement can be
attributed to the ability of SCA to form co-channel UEs with
relatively similar channel gains.

In order to reduce co-channel interference, it is indeed
beneficial to have a finer granularity of elements in both the
beamforming codebookW and the transmit power level setP.
However, this finer granularity leads to a large action spaceA,
which can make learning optimal RL policies more challeng-
ing. Thus, it is important to find a balance and reduce the size
of the action space whenever possible. This trade-off can be
explored by selecting appropriate values for NP (the num-
ber of available power levels) and NW (the codebook size).
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Figure 12 investigates the selection of a better combination
of (NP,NW) under the constraint |A| = NPNW = 20.
By varying the values of NP and NW, the impact on
system performance can be examined to find the optimal
combination.

From the results in Fig. 12, it is observed that for the
SCA, increasing the codebook size NW improves the average
system sum rate compared to increasing the number of power
levels. This improvement arises because SCA assigns fre-
quency bands to co-channel UEs in a manner that ensures the
serving distances of these co-channel UEs from their respec-
tive BSs becomesmore similar. As a result, it is recommended
to increase the codebook size to narrow the beamwidth,
effectively reducing co-channel interference. On the other
hand, with RCA, there is a significant variation in the dis-
tances between different co-channel UEs and their respective
serving BSs. Consequently, under a restricted action space
size, RCA faces a trade-off between maximizing the sum rate
through adaptive power loading and minimizing co-channel
interference through beam pattern selection. In Fig. 12, the
trade-off in choosingNP andNW for RCA is depicted, where
the combination of (NP,NW) = (5, 4) yields higher sum
rates compared to other combinations. Overall, the choice
of (NP,NW) depends on the channel assignment method
employed and the specific trade-offs between power loading
and beam pattern selection to effectively mitigate co-channel
interference and maximize the system sum rate.

VII. CONCLUSION
Recently, there has been growing interest in the use of dis-
tributed multi-agent RL models to tackle downlink multi-cell
interference coordination. This approach has gained attention
due to the inherent challenges in designing reward functions
for centralized single-agent RL models that can capture the
condition of the entire cellular network can be challeng-
ing. However, one of the primary hurdles encountered in
multi-agent distributed learning is the instability arising from
nonstationary environments.

To overcome this challenge, we proposed a novel
single-agent RL model that leverages success examples to
optimize transmit beamforming and power control simultane-
ously, without relying on explicit reward functions. Notably,
our approach eliminates the need for information exchange
among BSs, setting it apart from multi-agent RL models.
Simulation results showed that our model outperforms both
the theoretical FP algorithm and the multi-agent model.
Furthermore, our proposed model not only maximizes the
sum rate, but also ensures a more uniform signal quality level
among the co-channel UEs. This is of significant importance
as it enhances the overall user experience and mitigates the
issue of uneven service quality among UEs that share the
same frequency resources.
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