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ABSTRACT Since cyberattacks have become sophisticated in the form of advanced persistent threats
(APTs), predicting and defending the APT attacks have drawn lots of attention. Although there have been
related studies such as attack graphs, Hidden Markov Models, and Bayesian networks, they have four
representative limitations; (i) non-standard attack modeling, (ii) lack of data-driven approaches, (iii) absence
of real-world APT dataset, and (iv) high system dependability. In this paper, we propose Bayesian ATT&CK
Network (BAN) which is based on system-independent data-driven approach. Specifically, BAN is based on
Bayesian network, which adopts structure learning and parameter learning to model APT attackers with the
MITRE ATT&CK® framework. The trained BAN aims to predict upcoming attack techniques and derives
corresponding countermeasures. In addition, we prepare datasets via both automatic and manual labeling to
overcome the data insufficiency issues of APT prediction. Experimental results show that BAN successfully
contributes to handling APT attacks, given the best parameters extracted from extensive evaluations.

INDEX TERMS Attack prediction, advanced persistent threat, ATT&CK framework, Bayesian network,

cyber threat intelligence.

I. INTRODUCTION

The global pandemic has accelerated the transition to digital
and remote work, making cyberspace more critical than ever.
After the pandemic, numerous people have been forced to
work and live remotely. Moreover, various businesses have
had to adapt by shifting their business online. As a result,
much sensitive data have been moved to cyberspace, and
reliance on cyberspace has increased dramatically. Unfortu-
nately, as much information has transferred to cyberspace,
cyber threats are also advancing.

Existing cyber threats have been mostly regarded as simple
and single attacks. However, as cyber threats have become
more sophisticated, targeted, and persistent, an Advanced
Persistent Threat (APT) has recently become the most sig-
nificant cyber threat. APT is an advanced and long-lasting
cyber threat developed by a highly organized, sophisticated,
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and well-resourced group [1]. APT attacks have evolved as
more sophisticated and frequent since their first appearance,
causing considerable damage to countries and companies.
In addition, APT attacks often occur for political and social
motives rather than financial returns, resulting in various
types of damage. The most representative example is the
Democratic National Committee (DNC) hacking by Russian
attackers just before the 2016 US presidential election [2].
Although APT attacks are growing daily, it is challenging
to defend against them. Unlike conventional cyberattacks,
APT attacks utilize almost all of the techniques used in exist-
ing cyberattacks. Furthermore, an APT attack can effectively
bypass the attack detection system because they are often
highly targeted and long-lasting. That is, the APT attackers
can focus on the most vulnerable part of the system after
collecting the target information. Therefore, it is tough for
the defender to detect and respond to these APT attacks.
Due to the difficulty of detecting the APT attack, reac-
tive attack detection and defense systems cannot effectively
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defend against APT attacks. We must abandon the false
belief that real-time attack detection and defense are per-
fect. Instead, the defenders must predict the next attack
based on the information and design a proactive defense
method. By predicting the attacks, it is possible to cope with
a failure in attack detection, minimize the damage of the
attacks through a preemptive response, and finally prevent the
attacker from achieving their ultimate goal.

Several studies have been conducted to predict cyberat-
tacks. Most notably, many studies predict the next cyberattack
based on the attack graph [3], [4], [5]. Also, some studies
probabilistically infer the next attack based on machine learn-
ing, such as Hidden Markov Model [6], [7], [8] and Bayesian
network [9], [10], [11]. Recently, attack prediction research
is also being developed using deep learning [12], [13].

However, these cyberattack prediction methods have sev-
eral limitations. First, they did not model the attacker’s
behavior in a general, standard framework. Some models
can only predict the presence or absence of an attack [14],
[15], or the predefined stage of an attack [6], [7], [8]. Also,
several studies based on an Attack graph [3], [4] can model
detailed attacks, but these studies manually model attacks by
researchers’ opinions. This lack of standardization can lead to
inconsistent modeling methods depending on the individual
expert, making it challenging to integrate with other defense
systems.

Second, existing studies utilize a manual method in which
experts subjectively determine the structures or parameters
of the model rather than data-driven learning. For exam-
ple, several studies based on attack graph [3], [11] generate
an attack graph based on the security experts’ knowledge,
not the objective data. As a result, these studies require
high-educated security experts to manually generate attack
graphs based on their deep knowledge of the defense envi-
ronment.

Third, existing studies do not utilize actual APT attack
data that occurred in the real-world. Although some stud-
ies [6], [7] have utilized raw alert data (IDS logs), these
data are not able to represent the actual behavior of the
APT attackers. Additionally, researches that utilizes an attack
graph [3], [11] to model the specific attack actions has not
been validated through data. Accordingly, it is unknown
whether the models will be effective in the real-world
situations.

Finally, the prediction systems depend on the network
structure and the detection system. For example, since the
attack graph is dependent on the network and host environ-
ment, the studies based on attack graph [3], [4], [5] require
a new model if the environment is different. Also, studies
that predict cyberattacks based on raw alerts [6], [7] depend
on a specific detection system of training datasets. If the
detection system, such as IDS, has been changed, the model
does not work correctly and has to be retrained. Therefore,
itis unsuitable for the current companies’ environment, where
the enterprise network structures and detection systems are
frequently changed.
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To this end, we propose the Bayesian ATT&CK Network
(BAN). which is a Bayesian network-based attack predic-
tion model, to overcome these limitations. BAN models
the attacker’s behavior in detail based on a global standard
framework, MITRE ATT&CK® [16]. In addition, we have
constructed our own datasets that represent real APT cases.
These datasets were created from reports analyzing previous
APT attacks. Therefore, since the MITRE ATT&CK and
our datasets do not depend on the network environment,
our model can be used independently from network struc-
tures and detection systems. In addition, we maximized the
objectivity and usability of the model by introducing fully
automated data-driven learning. Also, BAN can predict not
only the next attacks but also the attacker’s ultimate goal.
Finally, we also maximized the usefulness of BAN by offer-
ing appropriate defense techniques to the defender. Hence,
we can operate the BAN in four aspects: predict the next
attacks, the next defenses, the goal attacks, and the goal
defenses. We performed experiments and evaluations using
the prepared unbiased dataset to verify the performance of
the proposed model.

The contributions of our study are as follows.

« We have created datasets comprising past APT cases.
We mapped extensive historical APT attack reports to
MITRE ATT&CK in various ways. Unlike the raw log
datasets that were generated in a particular network,
our datasets are well-suited to any kind of network
setting. Therefore, BAN trained on our datasets is also
independent of the network environment, maximizing its
usefulness.

o We implemented a fully automated data-driven learn-
ing process. Both the structure and parameters of
the Bayesian network can be learned automatically.
Through experiments, we find a suitable learning
algorithm and parameters for our model and propose
a new learning method based on the impact-based
weighted score function.

o As a result of evaluating the model with the prepared
dataset, it showed an f1-score of 0.628 at the next attack
prediction and 0.606 at the next defense prediction.
Also, in terms of predicting the ultimate goal attack and
defense, it showed an f1-score of 0.565 at the goal attack
prediction and 0.635 at the goal defense prediction.

Il. RELATED WORK
A. ATTACK PREDICTION IN CYBER SECURITY
Over the past few decades, many methods have been explored
to defend against cyberattacks. However, as cyberattacks
become more sophisticated and rapidly evolve, it is difficult
to detect attacks and preemptively defend them. Thus, the
defenders have to predict the next attacks and prepare proac-
tive defense strategies. For this reason, various cyberattack
prediction studies have been actively studied.

Among these attack prediction approaches, the most repre-
sentative approach is attack graph [17]. After the concept of
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TABLE 1. Comparison of existing cyberattack prediction models.

. Training Environment  Data-driven Defense
Study Approach Attack prediction level dataset independent learning suggestion
Hughes and Sheyner. [3]  Attack Graph Node in Attack Graph - x x x
. . DARPA 2000,
Ramaki et al. [4] Attack Graph Node in Attack Graph DARPA GCP 3.1 3 [ J x
GhasemiGol ef al. 5] Attack Graph Node in Attack Graph - ® ® [ ]
Lisy et al. [14] Game Theory Action of Game (12 classes) - o % [ )
. Action of Game
Pibil et al. [15] Game Theory (Select Host ID to attack) - [ J ® [ )
Farhadi et al. [6] Hidden Markov Model  Class of Attack (13 classes) DARPA 2000 % f %
Kholidy et al. [7] Hidden Markov Model  State of System (4 classes) DARPA 2000 ® f ®
Sendi et al. [8] Hidden Markov Model  State of System (4 classes) DARPA 2000 % f [ J
Fredj et al. [12] Deep Learning Type of Attack (36 classes) DEFCON CTF 17 x [ J x
. . HDFS, OpenStack,
Lietal. [13] Deep Learning Phase of Attack (29 classes) PageRank, BGL ® [ ] ®
Qin and Lee. [10] Bayesian Network Node in Attack Graph DARPA GCP 3.1 ® f ®
Ramaki et al. [9] Bayesian Network Node in Attack Graph DARPA 2000 x t x
Poolsappasit et al. [11] Bayesian Network Node in Attack Graph - x x [ J
This work Bayesian Network MITRE ATT&CK technique Expert, TRAM, [ J [} [}

(More than 120 classes)

rcATT, MITRE *

T The authors designed the structure of the model, while only the parameters of their model were trained using the data.
¥ Our datasets are based on past APT attack cases, while other datasets mainly consist of IDS logs. See section.V-C1

an attack graph appeared in 1998, Hughes and Sheyner [3]
proposed the concept of attack prediction using an attack
graph in 2003. Since then, various attack graphs have been
proposed. Ramaki et al. [4] proposed a real-time episode
correlation algorithm (RTECA) and used it for alert correla-
tion and prediction of multi-step attack scenarios. They also
developed a causal correlation matrix (CCM) for attack pre-
diction. Also, GhasemiGol et al. [5] improved the prediction
performance by proposing an uncertainty-aware attack graph.

The Bayesian network (BN), used extensively in various
fields, was also employed for attack prediction. Most of
the studies using BN added the concept of probability to
the attack graph. Most representatively, [10] transformed the
attack graph into a causal network and used it for low-level
alert correlation and next attack prediction. In addition,
Ramaki et al. [9] proposed a Bayesian attack graph. They
constructed a Bayesian attack graph using low-level alerts in
offline mode and applied it to predict the next attack in online
mode. Poolsappasit et al. [11] proposed a risk management
framework for enterprise networks using a Bayesian attack
graph. This study is not only focused on attack prediction
but also considers security control for risk minimization.
In addition, various attack prediction methods using game
theory [14], [15], HMM [6], [7], [8], deep learning [12], [13]
have been proposed.

Nonetheless, there are some limitations within the current
research. First, the attack prediction results are either too
abstract [6], [7], [8] or newly defined by the authors [3], [4],
[5]. This makes it difficult for defenders to prepare the coun-
termeasures. Second, most studies utilize raw log datasets
that are applicable only to specific network. Even more, some
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studies do not utilize any datasets at all. This makes their
models dependent on the network environment and increases
the personal involvement of the authors when constructing
the models. Finally, some studies do not suggest appropriate
countermeasures to their attack prediction results. This leads
to the difficulty of defending against predicted cyberattacks
in a real-world environment.

In contrast, in this study, we utilize self-built APT
datasets to identify APT attack patterns in the real-world.
In addition, we adopted MITRE ATT&CK, which is
environment-independent by its design, to make our model
independent of the network environment. Finally, we built
a model optimized for our APT datasets by minimizing the
intervention of experts and automating the learning process
of the Bayesian network. We note that our model is not
based on an attack graph approach. Unlike a Bayesian attack
graph [11], which adds the concept of probability to the
attack graph, our approach is more like utilizing a traditional
Bayesian network for APT attack prediction. The compari-
son of current cyberattack prediction studies is described in
Table 1.

B. DEFENSE FRAMEWORK IN CYBER SECURITY
Diverse studies were also proposed to suggest a defense
policy according to the attack. Related methods which can
suggest proper defense techniques are as follows.

First, various static defense modeling techniques based on
the attack graph have been proposed. Bistarelli et al. [18]
proposed the defense tree to model economically effective
defense policies from the defender’s point of view. The same
authors further developed the CP-Defense tree and calculated
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the most appropriate countermeasure by replacing it with an
answer set optimization (ASO) problem [19]. Roy et al. [20],
[21] proposed an attack countermeasure tree (ACT) for cal-
culating and reducing the attack risk. The major difference
between the ACT and the defense tree is that, in the defense
tree, defenses can be added only to leaf nodes, but in ACT,
defenses can be added to any node. Kordy et al. [22], [23]
proposed a new variation of the defense tree, an attack-
defense tree (ADTree). The ADTree is similar to the ACT, but
while the ACT aims to calculate return on investment (ROI)
and return on attack (ROA), ADTree is designed for more
rigorous and general purposes.

Studies on using Bayesian networks from the defender’s
point of view have also been explored. Sommestad et al. [24],
[25] introduced the Bayesian defense graph by adding the
concept of probability to the original defense tree. The
author uses the Bayesian defense graph to calculate not only
the probability of an attack but also the expected damage
from the attack. Therefore, the defenders can utilize the
Bayesian defense graph to select an appropriate countermea-
sure. The authors also proposed a probabilistic relational
model that enables more general and accurate modeling
through follow-up studies [26].

Moreover, attack and defense modeling using Boolean
logic Driven Markov Processes (BDMP) [27], [28], network
defense and hardening policy building algorithm using game
theory [29], [30] have been proposed.

These researches about cyberattack defense also have simi-
lar limitations as the attack graph study. These approaches are
subjective because defenders must build the model manually.
Also, since the suggested defenses are simple techniques and
do not train a model based on data, performance can be poor
in practical use.

IIl. MODELING APT ATTACK AND DEFENSE SCENARIO

A standard limitation of cyberattack prediction and defense
studies, discussed in the previous chapter, is that they cannot
precisely model the attacker’s behavior. Consequently, there
is a critical problem that the result of the attack prediction
is too conceptual, so suitable defense techniques cannot be
selected from the defender’s point of view. In order to estab-
lish the APT attack prediction and defense proposal system,
which is the ultimate goal of this study, it is necessary to
solve this issue. Hence, this chapter will review the methods
of modeling attackers’ behaviors and defenders’ defense
techniques.

A. MODELING APT ATTACK
Many methods for modeling existing cyberattacks have been
proposed [31]. APT attack modeling does not differ much
from cyberattack modeling techniques. However, because
APT attacks use more advanced strategies over a long period,
more advanced modeling techniques are being studied [32],
[33].

The cyberattack modeling technique widely used in both
academia and industry is Cyber Kill Chain [34], [35] devel-
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oped by Lockheed Martin. However, although it can effec-
tively model the stages of an APT attack, there is still a
limitation that there is no explanation about which attack
techniques can be utilized in each stage.

As mentioned in the introduction, it is essential to predict
an attacker’s behavior precisely. Therefore, a more detailed
modeling framework than the cyber kill chain is needed.
For this reason, among various techniques for modeling
APT attacks, the framework selected in this study is MITRE
ATT&CK® [16], [36], [37].

1) MITRE ATT&CK®

MITRE ATT&CK® is a curated knowledge base and model
for cyber adversary behavior, reflecting the various phases
of an adversary’s attack lifecycle and the platforms they are
known to target [16]. MITRE ATT&CK® is based on the
concept of tactics, techniques, and Procedures (TTP) [38]
defined by NIST. Therefore, the items of MITRE ATT&CK®
consist of tactics and techniques, excluding procedures that
are too specific in TTP.

Tactics represent the “why” of an ATT&CK technique
or sub-technique. It is the adversary’s tactical objective: the
reason for performing an action [16]. The MITRE ATT&CK
framework consists of 14 tactics, from the TA0O043 (Recon-
naissance) tactic to the TAO040 (Impact) tactic.

Techniques represent “how” an adversary achieves a tac-
tical objective by performing an action. Techniques may
also represent ‘“what” an adversary gains by performing
an action [16]. Each technique is associated with one or
more tactics. Sub-techniques further break down behaviors
described by techniques into more specific descriptions of
how behavior is used to achieve an objective [16]. The latest
version at the time of this research, MITRE ATT&CK®
version 10, consists of a total of 188 techniques and 379 sub-
techniques.

Since MITRE ATT&CK® can model even detailed attack
techniques, it is being used as a standard worldwide. More-
over, many government agencies and cyber security com-
panies are using this ATT&CK framework to analyze the
APT attacks and apply it to their security software [39].
Also, MITER ATT&CK is regularly verified and updated
by numerous cyber security experts [40], [41]. Through this
updating process, the latest attack TTPs are added, and exist-
ing TTPs are also re-validated to increase reliability. Because
of the popularity, peer review, and up-to-dateness of MITRE
ATT&CK, we chose MITRE ATT&CK as the attack model-
ing framework for this study. Also, it is impractical to provide
more detailed attack modeling and prediction due to a lack of
available data and a standardized framework.

B. MODELING APT DEFENSE

The final goal of this study is to predict APT attacks and
provide appropriate countermeasures. Therefore, it is neces-
sary to model appropriate defenses against possible attack
techniques.
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Modeling countermeasures against cyberattacks have been
researched and organized by many institutions. For exam-
ple, NIST classified and defined countermeasures to defend
against cyberattacks in the SP-800-53 document [42]. CIS
developed CIS Control v8 to provide defenders with an
implementable level of defense [43]. In addition, ISO/IEC
defines information security standards by providing ISO/IEC
27000 series [44]. Microsoft has also documented the security
controls available in its cloud product; Azure [45].

1) MITRE FRAMEWORKS

MITRE, which developed the MITRE ATT&CK®, researched
cyber defense techniques and created a framework. The
first framework developed is ATT&CK Mitigation [46]
included in ATT&CK Framework. ATT&CK Mitigation
roughly described the countermeasures against the ATT&CK
technique. As the MITRE ATT&CK® is updated, it is also
periodically updated.

The following defense framework that emerged is MITRE
Shield” [47]. MITRE Shield"' is a publicly accessible knowl-
edge base of active defense tactics and techniques based on
real-world observations [47]. MITRE provides a correspon-
dence relationship between MITRE ATT&CK®’s technique
and MITRE Shield s technique to induce the defender to
respond appropriately to a TsMpecific attack. However, the tech-
niques of MITRE Shield have a disadvantage in that it
is difficult to be used because there are too many abstract
descriptions. To resolve these drawbacks, the newly devel-
oped framework after the abolition of Shield is MITRE
Engage [48], [49].

MITRE EngageTM [48], [49] was developed to solve
existing problems based on the MITRE Shield”. How-
ever, unlike the Shield, Engage focuses on denial, decep-
tion, and adversary engagement. Furthermore, unlike Shield,
which is composed of tactics and techniques in the same
way as MITRE ATT&CK®, Engage is composed of Goal,
Approach, and Activity. In addition, each item is divided
into strategic actions and engagement actions. MITRE
EngageTM also provides a correspondence relationship with
MITRE ATT&CK® techniques, enabling effective attack
response.

Apart from Shield and Engage, MITRE D3FEND" [50],
[51] was also developed. The most significant differ-
ence between the previous three defense frameworks and
DEFEND is that ATT&CK and DEFEND are mapped
through ontology-based artifact analysis [51]. In addition, the
reliability of the framework was increased by providing a
detailed reference for the defense technology.

Since all of the frameworks introduced above provide map-
ping with ATT&CK, all frameworks can respond to the attack
prediction result. However, the specific implementation plan
of the proposed defense technology is beyond the scope of
this study. Therefore, in this study, the Mitigation framework,
which has been verified for the longest time, is used for
convenience.
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IV. BAYESIAN NETWORK

This section briefly reviews a Bayesian network, which is
the main machine learning model in this study. Bayesian net-
work is a probabilistic graphical model that has been widely
used and verified in many fields for a long time. The main
idea of the Bayesian network is to represent the conditional
probability relationship more intuitively by using the directed
acyclic graph (DAG). By definition, random variables are rep-
resented as nodes, and the relationships between the variables
are represented as the edges. By composing such a model,
it is possible to identify the overall relationships between
variables and infer other variables when some variables are
observed.

A. DEFINITION
A Bayesian network is mathematically defined as follows.

Definition 1 (Bayesian Network): Bayesian network (BN)

is a triple B = (X, G, ®) where

« Random Variables: X is a set of random variables in the
domain.

e Graph: G = (V,E) is a directed acyclic graph with
nodes V = {X1, ..., X,} and edge E representing direct
dependencies between the variables.

o Parameters: ® is a parameter of Bayesian network in
the form of conditional probability table or conditional
prabability distribution. More formally, ® encodes the
parameters {0k }icl...n, jeTny, keT; of the network, where

Oijk = P(X; = xi | Tx, = wyj) . (D

[Ty, denotes the set of parents of X; in G, J My, denots the
joint domain of the variables in ITy;, x; is the k-th value
of X; and wy; is the j-th configuration of Iy,

Based on this definition, the joint probability distribution
can be expressed in a straightforward form of factorizing
conditional distributions.

Theorem 1 (Joint Probability Distribution in Bayesian Net-
work): In the Bayesian network, a unique joint probability
distribution over X given by

P(Xl,...,Xn)ZHP(Xi| ITx,) . 2)
i=1

B. LEARNING

As we can see from the definition of the Bayesian network,
we need to find out X, G, and ® to create BN. Among
them, the set of random variables X is easily determined
according to the problem definition. Also, the most intuitive
way to create a graph G is to find the edges E by identifying
associations between random variables X by a domain expert.
In addition, parameters ® can also be calculated or assigned
using the knowledge of an expert.

However, since this method requires significantly skilled
experts and is based on subjective expert opinions, the per-
formance can be poor in actual data. To solve these problems,
most practical studies train the Bayesian network based on the
collected datasets. The collected dataset is defined as follows.

91953



IEEE Access

Y. Kim et al.: BAN: Predicting APT Attack Based on Bayesian Network With MITRE ATT&CK Framework

Definition 2 (Dataset): DatasetD = {Dy, ..., D,,}is aset
of data D; = {Djl, R D}’} where D]’: is a value of X; in data
Dj
When a dataset is given, a Bayesian network’s learning pro-
cess is expressed as follows.

P(G,®|D,X) = P@O|G,D,X) PG|D,X) .
— ———

learning parameter learning  structure learning

3
As seen in Eq. (3), the learning process primarily consists
of structure learning and parameter learning.

1) STRUCTURE LEARNING

Definition 3 (Structure Learning of Bayesian Network):
Given a dataset D and random variables X, Structure learning
of Bayesian network consists in finding a most plausible
network structure G*.

G* = argmax P(G | D, X). %)
G

The structure learning techniques of the Bayesian net-
work, which have been actively studied and applied to many
problems, are divided into three main methods: 1) score-
based learning, which defines evaluation criteria for graphs
and explores various graphs. 2) constraint-based learning,
which directly identifies the relationship between nodes by
performing the independence test. 3) hybrid learning, which
combines score-based learning and constraint-based learning.

Firstly, in score-based learning, a score function S(G | D)
is defined to evaluate the graph structure [52]. As a score
function, likelihood is generally used as a basic metric based
on information theory, and the score is penalized accord-
ing to the model complexity. There are some representative
examples of such a score function, include Akaike Infor-
mation Criterion (AIC) [53], Bayesian Information Criterion
(BIC) [53], factorized normalized maximum likelihood score
(fNML) [54], etc. These score functions utilize the log-
likelihood, which is shown in Eq. (5)

no 4 T ’
log(P(DIG)) = D~ "> Ny log (%) ENG)
y

i=1 j=1 k=1

where:
n = Number of random variables X (|X|)
r; = Number of states of X; (]X;])
gi = Number of possible configurations

of the parent set ITy, of X; (|ITy;])
Nijx = Number of instances in the data D
where the variable X; takes its k-th value and

the variables in Iy, take their j-th configuration
X

Nij = 2 k=1 Nijk -
Also, the score function can be defined as Eq. (6).
S(G | D) = log(P(D|G)) — ¢(N)IIGII, (6)
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where:

¢(N) = Regularization function
[|G|| = The number of parameters in the graph G .

In the likelihood-based score function, the parameters of
the graph are calculated through the MLE method. As can be
seen from Eq. (6), the likelihood-based scores have the term
which maximizes the likelihood and the regularization term
(¢(N)||G])) for decreasing the model’s complexity. Depend-
ing on the regularization term, it is AIC when ¢(f) = 1, and
BIC when ¢(¢) = log(#)/2.

Also, there is a BD (Bayesian Dirichlet) score family
to which the Bayesian learning concept is applied. These
score functions include Bayesian Dirichlet equivalent score
(BDe) [55], Bayesian Dirichlet equivalent uniform score
(BDeu) [56], Bayesian Dirichlet sparse score (BDs) [57], K2
score [58]. The equation of BDe, the most representative BD
score, is as follows.

n qi i
Sbae(G|D) = log(P(G) + Z[HZB} . (D
i=1] j=1 k=1
where:
_ T (nij)
A _log(F(sz’;mz’))
B =log (_F(fgzékn;n)zm)

nijk = The hyperparameters
for the Dirichlet prior distribution

ri
Mj = 2o Mijk
I'(.) = Gamma function.

In Eq. (7), there is no problem even if P(G) is assumed as a
uniform distribution, so the term log(P(G)) is not considered
when calculating the actual score. In Eq. (7), if njx = 1,
it becomes K2 score [58], and if the prior distribution of the
graph is assumed as uniform distribution, it becomes BDeu
score [56].

After defining the score function, score-based learning
methods search for the graph structure space and select
the graph structure with the highest score. Algorithms
for searching for the graph have been proposed: from
greedy techniques, such as simple hill climbing [59] and
Tabu search [60], to heuristic algorithms, such as genetic
algorithm [61] and simulated annealing [62]. Also, innovative
method, such as orderMCMC [63], searches for the order
space of random variables without directly exploring the
graph structure.

Secondly, the constraint-based learning methods con-
duct the independence tests, such as the Chi-squared test,
to identify the relationship between nodes. Constraint-based
learning algorithms have been developed to minimize the
number of required independence tests. Examples of the
constraint-based learning algorithm include PC [64], Grow-
Shrink [65], and Incremental Association [66].
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Finally, the hybrid learning algorithm is a structure learn-
ing algorithm that properly harmonizes constraint-based
learning and score-based learning. For instance, Max-Min
Hill-Climbing [66] and Restricted Maximization [67] have
been proposed.

2) PARAMETER LEARNING

Definition 4 (Parameter Learning in Bayesian Network):
Given a dataset D, random variables X and the network struc-
ture G, Parameter learning of the Bayesian network consists
in estimating the optimal parameters ©*.

O* = argmax P(© | G, D, X). 8)
o)

The most straightforward and intuitive parameter learning
technique is maximum likelihood estimation (MLE) [68].
In the case of MLE, the parameters that maximize the like-
lihood are selected. In other words, it is a method of choos-
ing the parameters that describe the data most accurately.
Expressing MLE as a simple equation is equivalent to Eq.

).

Oyig = argé)nax P(D|0®,G,X). 9)

Unlike MLE, which learns parameters based on the
likelihood, there is another parameter learning technique
based on Bayes theorem [69]. These techniques are often
called Bayesian learning or Bayesian parameter estimation.
In MLE, parameters are treated as one fixed value, whereas
in the Bayesian approach, parameters are treated as ran-
dom variables with a prior distribution. Therefore, Bayesian
approaches calculate the posterior distributions of parameters
based on the prior distributions and given data. However,
if the parameters are considered as distributions, the com-
putation complexity for inference increases exponentially.
Thus, the point estimation method to solve this problem has
been proposed, called maximum A posteriori (MAP) [70].
MAP selects the fixed parameters that maximize the posterior
distribution. MAP can be expressed in a simple equation as
follows.

Oap = arg(r)naxP(@ | G,D, X). (10)

C. INFERENCE

If the Bayesian network is trained based on data or expert
knowledge, it can be used in real problems. Generally, we can
infer unobserved variables based on observed variables (evi-
dence). There are two main inference methods in a Bayesian
network: exact inference and approximate inference.

Exact inference is a method that infers the probabilities
of the remaining nodes by conditioning the evidence. The
intuitive exact inference technique is belief propagation [71].
Belief propagation efficiently calculates marginal distribution
by introducing the concept of message. Also, there is variable
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elimination [72], which is widely known as a straightforward
algorithm. Variable elimination is a technique that removes
uninterested variables through summation. Finally, the clique
tree propagation [73] transforms the original Bayesian net-
work into a tree form that is easy to apply the belief propaga-
tion.

Although these exact inference techniques are designed to
calculate the joint distribution efficiently, their time complex-
ities are relatively high. Therefore, approximate inference
techniques that take advantage of the time complexity while
giving up inference accuracy have been actively developed.

The approximate inference is a technique that sacrifices
the accuracy of inference for fast computation. A typical
approximate inference is a technique of sampling unobserved
events from the constructed BN. As the sampling method,
simple importance sampling or an advanced sampling tech-
nique, such as Monte Carlo Markov Chain (MCMC), can
be employed [74]. Another popular approximate inference
technique is variational inference [75]. The core idea of the
variational inference technique is transforming the inference
problem into an optimization problem. That is, we can create
a distribution that approximates the distribution we want to
infer and then solve the optimization problem. This process
allows us to make the approximate distribution as similar
to the original distribution as possible. Compared to the
sampling-based methods, these methods do not guarantee
the global optimum but have the advantage of being more
scalable.

V. BAYESIAN ATT&CK NETWORK

In this paper, we propose a Bayesian ATT&CK Network
(BAN) that predicts the next attack based on the Discrete
Bayesian network. Nodes of BAN consist of TTPs of MITRE
ATT&CK Framework. In this study, MITRE ATT&CK ver-
sion 10.0, the latest version at the time of the study, was used.
To construct the BAN, we properly use the knowledge of
cybersecurity experts and historical attack data. First, we ana-
lyzed past attack cases and MITRE ATT&CK Framework
to identify the fundamental relationship between ATT&CK
techniques (Section V-B). For dataset collection, publicly
available APT reports are collected, and the ATT&CK tech-
niques noted in each report are extracted and labeled in
various ways (Section V-C1). After preparing the dataset,
collected datasets are preprocessed (Section V-C2), and the
structure of the BAN is trained by structure learning using
dataset and expert knowledge (Section V-C3). When graph G
is determined through structure learning, parameter learning
is also executed using the collected dataset to calculate the
conditional probability table (CPT) of BAN (Section V-C3).
If the entire learning is finished, it can be used to predict
the actual attack. When the APT attacks are detected through
the detection system, this attack information is passed into
the trained model. And then, the model can predict the next
attacks through an inference algorithm of BN (Section V-C4).
Finally, by suggesting countermeasures to defend against pre-
dicted attacks, BAN helps the defender respond proactively
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(b) Preprocessing
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FIGURE 1. Attack prediction using BAN. The overall process consists of four steps: (a) collecting data from multiple sources and leveraging domain
knowledge for model improvement, (b) preprocessing for proper input format, (c) training BAN, and (d) inference with the trained network.

to the future attacks. This way, BAN can be utilized as an
effective APT defense framework in the enterprise network.
(Section V-D) The figure summarizing the overall process of
BAN is shown in Fig. 1.

A. WHY BAYESIAN NETWORK
The most recent SOTA machine learning models are def-
initely deep learning models. So naturally, deep learning
models are expected to outperform the other machine learning
models in APT attack prediction. However, in this paper, the
Bayesian network is used because of several reasons below.

First, collecting sufficient data to train deep learning mod-
els is nearly impossible. As described above, to the best
of our knowledge, we could not find a public dataset that
transforms past APT attack cases into ATT&CK technique
to date. Therefore, data labeling was conducted based on
the attack analysis report, but only 1431 data samples were
finally obtained. In addition, the usable dataset becomes even
smaller when they are preprocessed. The main reason why
there are few available datasets is that APT attacks occur
rarely, and attacked organizations usually do not want to
disclose their detailed incident report to the public. Therefore,
the amount of reports published to the public is tiny. More-
over, many reports analyze the same incident, so duplicates
exist. Although this problem can be solved after collecting
more APT reports later, it was judged that it is challenging
to train the deep learning models with only 1431 data at this
time. When using deep learning, we probably cannot get the
desired performance if the dataset is small [76]. On the other
hand, the Bayesian networks have been building models with
relatively few datasets for a long time [77], [78], [79].

Second, The dataset contains samples of missing data.
Indeed, the methodology of data labeling for the APT reports
was sufficiently verified by experts to increase the trust-
worthiness. However, there is no way to improve the com-
pleteness of the collected report itself. In fact, many reports
omit the intermediate stage of the attack, so labeled data
often omits the intermediate process. Fortunately, methods
for learning BN from these missing data have been studied
and verified for a long time [67]. Therefore, these techniques
can overcome the limitations of data to some degree.

Third, in the case of BN, the knowledge of experts can be
easily reflected in the model. As described earlier, security
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experts can identify the relationships between TTP using
detailed descriptions and references. In situations where data
is insufficient, this knowledge can help to improve model
performance. In the case of BN, it is easy to incorporate expert
knowledge because the model consists of the factors that have
to be analyzed as nodes and the relationships between the
factors as edges.

Lastly, in the case of BN, the interpretability is excep-
tionally high compared to deep learning. Since the model
structure is not complicated and each node has its mean-
ing, humans can understand the structure of the BN. This
advantage can be utilized in the model validation process, and
associations or causal relations between random variables can
be identified.

B. EXPERT KNOWLEDGE

As mentioned earlier, one of the advantages of BN is that prior
knowledge can be applied to the model. If the dataset is insuf-
ficient and the patterns are unclear, this prior knowledge can
have a significant effect [80]. Therefore, to build the BAN,
we identified the relationship between the nodes constituting
the BAN, that is, MITRE ATT&CK techniques.

The relationship between MITRE ATT&CK TTP can
be inferred in various ways. Several previous studies tried
to identify the relationship between TTP based on the
data, but the identifiable relationship was very limited [81].
Thus, in this study, we identified the relationships between
ATT&CK TTP based on the order of the APT attack and the
required privilege for the attack. We identified direct relation-
ships like TTP A affect another TTP B. These relationships
can be utilized later in structure learning.

1) RELATIONSHIPS BASED ON THE ORDER OF ATTACK

The first and most intuitive relationships are established using
the order of attack. The APT attack process has a partly
explicit order.

For example, in most APT attacks, TAOOO! (Initial Access)
techniques come first. Afterward, the attacker completely
penetrates the target system through techniques such as
TA0002 (Execution), TAO0O3 (Persistence), and TA0004
(Privilege Escalation). From then on, the attackers typi-
cally collect the information they need through TA0009
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(Collection), TAOOI1 (Command and Control) techniques.
Finally, the ultimate goals of the attack are TAOOI0 (Exfil-
tration) and TAO040 (Impact), which are attack actions such
as information stealing or denial of service. This general
order is commonly shown in numerous APT modeling frame-
works [33]. Based on this order, we defined five steps of
the APT attack: Initial Access, Code Execution, System Pen-
etration, Data Collection, and Goal Achievement. Table 2
summarizes the order of attacks based on ATT&CK tactic.

TABLE 2. Attack step of tactics defined in ATT&CK.

StepID | Step Name | Tactic ID
Initial Access TA0001
Code Execution TA0002

TA0003, TA0004, TA0O005, TAOOOG6,
TA0007, TAOOOS, TA001 1

TA0009

TA0010, TAO0O40

System Penetration

Data Collection
Goal Achievement

[ N

As seen in Table 2, if the order between ATT&CK tactics is
unclear, it is regarded as the same attack stage. Note that we
consider all MITRE ATT&CK Tactics, as there are only five
steps, but each step can include multiple tactics. There may
be some exceptional attack cases, but most attacks follow the
order of Table 2. Therefore, we assumed that relationships
that reverse the order of attacks are unlikely.

2) RELATIONSHIPS BASED ON THE REQUIRED PRIVILEGE
One of the key prerequisites that influence the adversary’s
decision on the next attack is the privilege acquired on the
target system. MITRE ATT&CK techniques may require a
specific or higher level of privilege than the adversary already
gained. In the latter case, the adversary should precede some
of the techniques under TA0004 (Privilege Escalation) tactic
to acquire the higher privilege. For instance, 71136 (Create
Account), a technique that creates accounts to maintain the
persistence of attack, requires Administrator privilege to cre-
ate users. To implement that technique, the adversary must
precede a technique under TAO0O4 (Privilege Escalation)
tactic that can gain Administrator privilege.

MITRE ATT&CK’s official description [36] contains a
list of minimum privileges each attack technique requires.
In MITRE ATT&CK, the required privileges are divided into
five types: User, SYSTEM, Administrator, Remote Desk-
top Users, and root. Among these five types of privileges,
User privilege can be acquired through the techniques under
TA0002 (Execution) tactic. Also, the attackers can gain
Remote Desktop Users by typical techniques but not requires
escalation of privilege. Therefore, only the techniques that
require administrator-level privileges, such as SYSTEM,
Administrator, and root, should be acquired by TAO004 (Priv-
ilege Escalation) techniques before the former technique is
executed. Consequently, In this paper, we consider that the
techniques under TAO004 ( Privilege Escalation) tactic should
precede the techniques which require more than the user-level
privilege (i.e., SYSTEM, Administrator, root). On the other
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hand, we assumed that relationships from the techniques that
require admin-level privilege to TAOOO4 (Privilege Escala-
tion) techniques are unlikely.

C. OVERALL PROCESS OF BAN

1) DATA COLLECTION

A prerequisite for constructing a high-performance model is
preparing a high-quality dataset for training. However, unfor-
tunately, to the best of our knowledge, there is still no standard
dataset about past APT attack cases. While there are existing
datasets [82], [83], [84] that simulate APT attacks, they have
several limitations. First, they are based on host and network
logs, so they are dependent on a certain network environment.
Also, these datasets are generated by conducting simulated
attacks on a virtual network, so there are unavoidable differ-
ences between real-world network environments and actual
APT attacks. In addition, they are generated with only two
or three attack scenarios at most, so they cannot represent a
diverse set of APT attack patterns. Therefore, in this study,
we built the best datasets to represent diverse real-world APT
attack cases that have really occurred in the past.

For training BAN, we need the data that summarizes which
ATT&CK techniques were used in a specific APT attack
case. Unfortunately, we cannot collect and analyze the raw
data about previous APT attacks. Instead, we collected the
data already managed by MITRE and generated the data by
analyzing the investigation report of past APT cases.

First, The most straightforward data is reference contents
posted on the MITRE ATT&CK website [36]. The technique
description page of the MITRE ATT&CK website describes
the technique in detail. It also includes examples of actual
APT cases that exploited that technique in the reference
section. There are diverse types of reference documents, but
in most cases, they are incident reports analyzing the APT
attacks. Therefore, the technique ID mapping corresponding
to the specific APT case can be acquired by extracting the
technique list mapped for each reference. Hence, we collected
all the references and the technique ID mapping from the
website to construct the MITRE dataset.

Second, the technique ID was manually labeled by directly
analyzing the APT incident reports. In this paper, we con-
structed the data based on reports managed by CCC (APT
& Cybercriminals Campaign Collection) [85]. The CCC
contents consist of blog posts, reports, and presentations
of APT campaigns. The collection duration of reports is
from 2006 to 2022. For constructing the dataset, a total of
1,143 reports were manually analyzed by cyberattack experts,
and ATT&CK technique ID was labeled to the collected
reports. In the case of manual labeling, both tactic infor-
mation and technique information were extracted because
experts can determine for what purpose the attack was exe-
cuted. As criteria for manual labeling, we selected two guide-
lines [86], [87] published by Cybersecurity & Infrastructure
Security Agency (CISA) and MITRE, respectively. Labeling
work was performed by security experts familiar with CTI,
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and these experts were thoroughly educated on our guide-
lines. In addition, we periodically verified that the manual
labeling criteria were being fulfilled. In the rest of this paper,
we named this dataset as Expert dataset.

Finally, two more datasets were generated using the nat-
ural language processing model. Reports collected from
the CCC were automatically labeled using rcATT [88],
[89] and TRAM [90]. rcATT and TRAM are tools that
automatically tag ATT&CK TTP using a machine learning
model by receiving report contents as input. rcATT tags
both tactic and technique, whereas TRAM only tags tech-
nique and sub-technique. Unfortunately, both rcATT and
TRAM were originally implemented with the previous ver-
sion of MITRE ATT&CK. Therefore, we partially modi-
fied the source code, and the model was re-trained based
on MITRE v10.0.

TABLE 3. Data format from different labeling methods.

Labeling Format Example
MITRE (Sub)techniquelD [T1590, T1590.005]
Expert tacticID.(Sub)techniquelD  [TA0002.T1053.005]
rcATT tacticID or techniquelD [TA0003, T1547]
TRAM (Sub)techniquelD [T1036, T1021.003]

A total of 4 datasets prepared in this paper have slightly
different labels depending on the type. Each dataset’s detailed
format and examples are expressed in Table 3. First, in the
case of the MITRE data set, only the technique information
was labeled because the data was collected from the technique
and sub-technique page of the MITRE ATT&CK official
website. Tactic information is omitted because there is no
reference on the tactic description page of the official website.
In contrast, in the case of the Expert dataset, which was
labeled manually, it was possible to determine the intention
of the specific attacks by analyzing the detailed descriptions
of the report. Therefore, the label format is composed of (tac-
tic_ID).(technique_ID) format. Finally, in the case of rcATT
and TRAM datasets, the labeling format is determined by the
original labeling model. In the case of the rcATT dataset,
labels exist in the form of (tactic_ID) and (technique_ID)
separately. Since rcATT cannot extract sub-technique infor-
mation, the rcATT dataset has no sub-technique label. In the
case of the TRAM dataset, labeling is performed in the format
of (Techinque_ID) except for tactic information. Also, unlike
rcATT, TRAM can label the sub-technique accurately.

The data sources of our datasets all contain the latest APT
attack cases. In the case of the MITRE dataset, its data source,
all references in MITRE ATT&CK website [36], consists
of data through 2022. In addition, the CCC repository [85]
contains APT attack reports from 2006 to 2022. Therefore,
the Expert, TRAM, and rcATT datasets generated from these
reports contain APT attack data from 2006 to 2022.

Note that all of the four data were derived from APT attack
reports that have occurred in the past. Hence, they are highly
indicative of real-world scenarios. In addition, due to the
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frequency of real-world APT attacks, there are limitations to
collecting a lot of data. However, we have collected all the
APT reports we could find through extensive research, so we
believe our dataset is sufficiently generalizable to real-world
APT attacks. This is supported by the fact that the Expert
dataset covers all MITRE ATT&CK tactics and achieves a
technique coverage of 90.96%.

2) DATA PREPROCESSING

As mentioned earlier, since the dataset was created by refer-
ring to the website and the analysis reports, there were cases
where the data sample was abnormal if the original report
was incomplete. Therefore, in order to improve model per-
formance, useless information was preprocessed from the
dataset.

First, data with less than five labeled TTP were excluded
from the dataset. Because the collected reports were prepared
by different organizations, some organizations described the
attack process too simplistically. The data from these reports
were excluded from the learning process because it was
judged that only a partial process of the APT attack was
described.

Next, we deleted all TTP that cannot be detected or pre-
dicted in real-world usage from the dataset. Some TTP during
the attack procedure described in the report are practically
impossible to predict or detect. For example, in the case of
the TAOO42 (Resource Development) tactic and its techniques,
it is genuinely impossible to detect and predict an attack
because attackers develop the attack resources before the
attack in their own environment. In addition, in the case of
TA0043 (Reconnaissance) and its techniques, it is virtually
impossible to predict because it proceeds in the significantly
early stage of the attack. These TTP were also classified as
PRE attack category in MITRE and specified as the pre-stage
of the attack. Therefore, all of these PRE attack TTP were
deleted from the dataset.

Finally, the dataset can be converted into various ver-
sions through preprocessing. BAN nodes can be configured
in diverse ways. For example, most simply, a node can be
composed of only techniques information while ignoring
information on tactics and sub-techniques. Another method
is that tactic and technique information is composed of inde-
pendent nodes. Furthermore, two pieces of information can
be linked to form a single node like tactic_ID.technique_ID.
Therefore, since there are different versions of node configu-
ration, format conversion between data labels is necessary.
Converting the format of labels is simple. Naturally, it is
impossible to transform in the direction of increasing the
amount of information. For example, it is impossible to infer
tactic information with only a technique label. However, vice
versa, converting the data of format tactic_ID.technique_ID
into format factic_ID and technique_ID can be performed
by simply splitting the label into two. Also, if we want to
omit specific information like a sub-technique, the label is
replaced with the technique ID to which the sub-technique
belongs.
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3) LEARNING

In order to learn BAN, the first step is to select the graph’s
structure. In this paper, the score-based learning method is
used among the structure learning methods mentioned in
Sec IV-B1. We have also tried other learning methods. How-
ever, since the number of datasets is not enough compared
to the number of random variables constituting the nodes of
BAN, constraint-based learning and hybrid learning cannot
infer the connections between nodes sufficiently.

As search algorithms used in score-based learning, hill
climbing [59] and Tabu search [60] were employed. In addi-
tion, nonparametric bootstrapping [91] technique was used
to increase the model’s reliability during the training process.
Multiple models are trained in parallel with the resampled
data through the bootstrapping technique, and the results are
combined into one model using the model averaging [92]
technique. Also, to escape from the local optimum, structure
learning can be started with not only an empty graph but also
a random graph, which is generated by Ide’s and Cozman’s
DAG generation algorithm [93]. Moreover, to restrict the
model’s complexity, the maximum number of parent nodes
was fixed to 10.

To build an efficient score-based learning algorithm,
we tested various existing score functions. Especially, the
most widely used score function, BIC [53] and BDe [55]
were mainly tested. In addition, we designed the new score
functions to focus on the attack prediction problem effec-
tively. The new score functions were proposed based on
the intuition that it is adequate to defend the attacks with a
high impact from the defender’s point of view. For example,
in the initial stage of the attack, TAOOOI (Initial Access), the
impact of the attack is low because damaging actions such
as data collection or data leakage have not been completed
yet. On the other hand, TA0040 (Impact) techniques, usually
the last stage of the APT, are the attack actions to obtain the
attacker’s final target, so the attack’s impact is considerable.
Therefore, it is more effective for the defender to predict and
defend the attack techniques belonging to TA0040 (Impact)
rather than the attack techniques of TA000! (Initial Access).
We then designed a score function that gives a high score to
the model that predicts high-impact attacks after qualitatively
assigning the impact of each tactic.

TABLE 4. Impact score of tactics.

ID Name Impact
TA0001  Initial Access 0
TA0002  Execution 1
TA0003  Persistence 2
TA0004  Privilege Escalation 2
TA0005  Defense Evasion 2
TA0006  Credential Access 2
TA0007  Discovery 2
TA0008  Lateral Movement 2
TA0009  Collection 3
TA0011  Command and Control 4
TA0010  Exfiltration 5
TA0040  Impact 6
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The impact score of each tactic was defined based on
the order and importance of the attack. As we defined the
order of attack in Table 2, we assigned a high impact score
to the attack tactics which occur later. Even though both
the initial and latter steps of APT attacks are critical, the
attacker’s ultimate goal generally tends to be outlined in the
latter steps, e.g., TAOO10 (Exfiltration) and TAO040 (Impact).
Therefore, it is important to prioritize and predict these phases
to successfully prevent the attacker from achieving their
objective. Furthermore, we subdivided the impact score based
on the importance of the attack. For example, In the third
step (System Penetration), we gave a higher score to TA001 1
(Command and Control) because it has been observed to be
more prevalent and destructive in real-world cases compared
to other tactics in the third step [1]. Moreover, TAOO09 (Col-
lection) and TA0OI11 (Command and Control) were scored
slightly higher than the other tactics because they are directly
related to the ultimate goal of the attackers like TAOOI0
(Exfiltration) and TA0040 (Impact). For example, TA0009
(Collection) is a process that must be performed immediately
prior to TA0010 (Exfiltration) and TAOOI1 (Command and
Control) is also essential for many attacks beyond TA0010
(Exfiltration) and TAOO40 (Impact). At last, TAOO10 (Exfil-
tration) and TA0040 (Impact) belong to the same step (Goal
Achievement), but the importance of these tactics is different.
Since TA0040 (Impact) includes the attack techniques that are
related to the availability of the system, which is critical to the
entire organization, we assigned the highest score to TA0040
(Impact). The detailed impact score of each tactic is shown in
Table 4.

We propose impact-based weighted score functions by
modifying the existing score function. In the summation
formula of the original score function, different weights are
multiplied according to the impact of the node. The exact
formulas for our new score function are Eq. (11) and Eq. (12).

n qi i
N”k
Swhic(GID) = D" aP D> Ny log (N—’)
7]

=1 j=1k=1
N
- log(E)IIGII, (11)
n gi ri
Swhde(G | D) = log(P(G)) + Zaﬂ Z[A~I—ZB] ,
i=1 j=1 k=1
(12)

where:

o = Hyperparameter, the default value is 1.2
B = Impact score of node X;, as shown in Table 4,

and the rest of the parameters are same as described in Eq. (6)
and Eq. (7).

Eq. (11) and Eq. (12) are the results of converting the BIC
score and BDE score into an impact-based weighted score
function, respectively.

The expert knowledge built in Section V-B is utilized
as prior knowledge in the structure learning process. The
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simplest way to utilize expert knowledge in structure learning
is to establish a blacklist or whitelist of edges. Edges specified
as blacklists are never searched for during structure learning.
On the other hand, in the case of an edge specified as a
whitelist, the corresponding edge is necessarily included in
the result of structure learning. In this study, The relationships
identified in Section V-B are all directional relationships.
Therefore, we reduced the search space of structure learning
by setting all edges that reverse the extracted relationships as
a blacklist. We only utilized the blacklist because the edge
whitelist approach would significantly restrict the structure
of the model and interfere with our data-driven learning [94].

Algorithm 1 Structure Learning of BAN
1: function Structure-Learning

2: Input D: dataset
3: Input S(.): score function
4: Input Ep: edge blacklist
5: Input rg: using random graph or not
6: Output G: structure of BAN
7:
8: if rg then
9: G < ic-dag(X) > initial random graph [93]
10: else
11: G <~ X,9) > initial empty graph
12: sGg < S(G) > score value of initial network
13: Smax < SG
14: while s,,,,, has increased do
15: for all possible arc addition, deletion, reversal do
16: G* <« modified network from G
17: if G* has cycles then
18: continue
19: if G* has any edge in Ep then
20: continue
21: sgx < S(G™)
22: if sg+ > sg then G < G*, sg < sg+
23: if sG6 > S then s, < sg
24: return G

The algorithm explaining the entire structure learning pro-
cess is the same as Algorithm 1. We selected the hill climbing
algorithm as the search algorithm in Algorithm 1. However,
even if Tabu search is selected as the search algorithm, there
is no significant difference from the above algorithm.

After learning the structure G of the model through struc-
ture learning, the CPT of BAN has to be learned through
parameter learning. As we saw in Section IV-B2, parameter
learning is straightforward when G is known. We only need
to decide whether to use the Likelihood-based method or
the Bayesian method. In this study, parameters were learned
using the MAP technique with a uniform prior. Because of
the problem condition, each node of the BAN, indicating the
presence or absence of an ATT&CK technique, is a binary
random variable that can have a TRUE or FALSE value.
Therefore, a uniform Dirichlet distribution is given as the
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CPT prior distribution of each node. After that, the poste-
rior distribution is calculated based on the given data, and
the parameters that maximize the posterior distribution are
selected as CPT.

4) INFERENCE

BAN usually has a complex Bayesian network structure. The-
oretically, the maximum number of possible nodes is the same
as the number of MITRE ATT&CK techniques (excluding
the PRE technique). Of course, since not all TTP appear
in the dataset, the number of nodes may be less, but there
were approximately 120 or more, depending on the train-
ing dataset. Therefore, exact inference, which requires much
computational cost, is practically impossible. For this reason,
the algorithms we can choose are limited to approximate
inference methods. Thus, a simple sampling-based likelihood
weighting technique was selected for the inference algorithm
of BAN.

Likelihood weighting [95] uses evidence to infer the poste-
rior distribution of the remaining nodes. In this case, evidence
refers to information that we already know, that is, the
attack techniques that have been detected so far. Also, the
likelihood weighting method uses a sampling technique for
inference. First, the remaining nodes, except the evidence
nodes, are sampled according to the topological order among
all BAN nodes. After sampling is completed for all nodes,
we can calculate the likelihood weight using the evidence
node. Finally, by repeating these sampling and calculating
likelihood weights, the posterior distribution of the remain-
ing nodes can be inferred by calculating the average of the
likelihood weights. This way, we can efficiently calculate
the probability of TRUE of all BAN nodes, and versatile
predictions are possible using the results.

In order to effectively utilize the attack prediction results,
it is necessary to identify defenses to defend against the
attacks. Since MITRE has already compiled defense tech-
niques that can defend against ATT&CK technique, we can
determine the defense techniques against the predicted
attacks by extracting the defenses mapped to the attacks.

D. OBJECTIVES OF BAYESIAN ATT&CK NETWORK

There are several ways to utilize the inference result of
BAN. Typically, the next attacks can be predicted, and the
attacker’s ultimate goal is also predictable. In addition, based
on the attack prediction result, it is possible to suggest a
suitable defense method for the defender. These predictions
obtained from the Bayesian ATT&CK Network should be
integrated with other security frameworks, such as attack
detection systems and automatic response systems. This can
not only allow for a more proactive defense but also reduce
the risk of incorrect predictions. A schematic illustration of
each objective of BAN is shown in Fig. 2.

The upper part of Fig. 2 describes in chronological order
of attack. Attacks that have already occurred are described
in the upper left of the figure. This information can be
used for attack prediction in the form of evidence. Our
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crucial objective is predicting future attacks that have not yet
occurred. These future attacks are represented in the upper
right of the figure. Moreover, out of these future attacks, there
is an attack corresponding to the attacker’s ultimate goal. The
attacker’s ultimate goal is defined as techniques belonging
to TAOO10 (Exfiltration) tactic and TAO0O40 (Impact) tactic
because of the definition of ATT&CK framework. For exam-
ple, in the figure, itT1041 (Exfiltration Over C2 Channel)
corresponds to the ultimate goal technique.

As explained in Section III, each attack has defenses that
can defend it. These defenses are represented at the bot-
tom of the figure. Also, the mappings between attack and
defense techniques are depicted by arrows. Furthermore,
among the defenses, some defenses can defend against the
ultimate attack technique, like Defense E in the figure. Thus,
we named these defense techniques as the final defense goal.

1) OBJECTIVE 1: PREDICTING NEXT ATTACK TECHNIQUES
In order to effectively defend against APT attacks, a preemp-
tive defense is essential. The most representative application
objective of BAN is predicting the next attack techniques in
the form of the MITRE ATT&CK technique. In the example
of Fig. 2, the future attack techniques on the upper right,
highlighted in orange, should be predicted using the already
detected attack techniques on the upper left.

Predicting the next attacks is uncomplicated in BAN. Using
the attacks that have occurred so far as the evidence, the prob-
abilities of TRUE of the remaining nodes can be calculated
using the inference method. After then, K nodes with the
highest probability are proposed as an attack prediction result.
K is a hyperparameter that is set to 5 as a default value.

2) OBJECTIVE 2: PREDICT NEXT DEFENSE TECHNIQUES
Attack prediction results alone are not helpful to the defender.
In the end, the useful information for the defender is the
detailed defense techniques that need to be executed instantly.
In the example of the figure, information about Defense
C, highlighted in green, that can defend against T1083 is
required from the defender’s point of view.
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When an attack prediction result is derived, it is easy to
find defense methods to block it. We can identify the MITRE
ATT&CK Mitigation associated with each predicted attack
technique and provides it to the defender. Through this, the
defender can implement a concrete and realistic defense.

3) OBIJECTIVE 3: PREDICTING GOAL ATTACK TECHNIQUE
Predicting the next attack is essential, but predicting the
attacker’s ultimate goal is even more essential. The defender
can prepare more effective defenses if the attacker’s ultimate
goal is known. In MITRE ATT&CK, the attacker’s goals
are described in the TAOOI0 (Exfiltration) tactic and TAO0O40
(Impact) tactic. Therefore, we assumed the techniques belong
to TAOO10 (Exfiltration) and TAO040 (Impact) as goal attack
techniques highlighted in yellow.

Predicting the goal attacks is similar to the next attack
prediction. After receiving the evidence, BAN calculates the
probabilities for the other nodes and selects only the nodes
belonging to the goal technique. The K nodes with the highest
probability of TRUE are determined as the final goal. K is a
hyperparameter that can be assigned but is set to 3 by default.

4) OBIJECTIVE 4: PREDICTING GOAL DEFENSE TECHNIQUE
The success of defending against an APT attack depends on
blocking the attacker’s ultimate goal. No matter how suc-
cessful multiple attacks are in the middle of an attack, if the
attacker’s final goal is not achieved, it can be regarded as
a success for the defender. Therefore, to effectively utilize
BAN, it is necessary to propose a defense technique that can
block the attacker’s goal. For instance, in Fig. 2, we have to
suggest Defense E, highlighted in blue, to the defender.

Because BAN can also predict the attacker’s ultimate goal,
it can also suggest the defense method to thwart the goal.
Again, it is enough to extract the defenses corresponding to
the detected goal techniques.

VI. EXPERIMENTS
The collected datasets of Section V-C1 were used to con-
duct the experiments. In addition, to identify the factors
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involving the model’s performance and find the optimal
model, we specified a total of 6 research questions. We prove
the effectiveness of our methods through these research ques-
tions.

Unfortunately, we have encountered obstacles in perform-
ing comparisons with previous studies due to significant
differences in the level of attack prediction and dataset types
used. Our model predicts up to the MITRE ATT&CK tech-
nique level, more than 120 classes, a far broader range than
prior models. Further, while previous studies have utilized log
datasets, we utilized APT report-based datasets, so the format
of the data is significantly different. These variations prohib-
ited direct comparisons with prior studies. Instead, we eval-
uated our model’s performance under different scenarios and
parameter settings to determine optimal configurations.

A. IMPLEMENTATION DETAILS
We implemented Bayesian ATT&CK Network in R language
and Python. To implement the basic features of Bayesian
network, we used R packages such as bnlearn [96] and
BiDAG [97]. Other tasks, such as data collection, data
preprocessing, result analysis, and model visualization, are
implemented in Python 3.8. We selected appropriate Python
packages like sci-kit-learn, pandas, and matplotlib.

In addition, all functions are designed to enable distributed
processing to improve the speed of learning and inference.
Hence, BAN can use multiple CPU cores in parallel.

B. EXPERIMENT SETTINGS
All implementations and experiments were conducted in
Windows 10 64-bit environment with Intel Core i9-10980XE
(3.00GHz, 36CPU) and 128GB RAM. For the stability of the
experiment, we only used 30 cores.

We tested all the objectives of BAN, which are described
in Section V-D, during the experiments. Since all problem
settings of objectives are multi-label classification problems,
the performance metrics of the model are slightly different
from a single-label problem [98].

Therefore, we calculated the f1-score of each instance in
the dataset and then calculated their average.

1 Zn: 2 x Precision x Recall 1

Fi=-
n
i=1

n7 Yiﬂ?i

nEy+ 1Y)

Precision + Recall

where:

n = Number of samples in dataset
Y; = True labels of the i-th sample
Y; = Prediction labels of the i-th sample.

We used this instance-averaged (sample-based) f1-score as
the default performance metric of BAN, as described above.
In this study, only the fl-score was used as it provides a
comprehensive measure of important metrics like precision
and recall.

The assumptions for the evaluation of the four objectives
are summarized as follows.
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o Predicting Next Attacks: The last K attacks are pre-
dicted while the attack is in progress, excluding the M
last attacks. At this time, K was fixed at 5, and M was
different for each research question. However, if there is
no mention, M was given as 5.

o Predicting Next Defenses: The prediction is carried out
in the same scenario as the next attack prediction. How-
ever, in this case, all defenses that can defend against the
predicted attacks are suggested, not just K techniques.
Additionally, duplicate defense techniques have been
removed.

« Predicting Goal Attacks: The goal attack techniques
were predicted when all attacks had been finished except
for the last M attacks. In this case, the number of goal
attack techniques differs depending on the samples of
the dataset. Therefore, there are some samples without
any goal attack techniques. In practice, it makes no
sense that there is no final goal of the APT. Thus, these
samples were considered incomplete, so we excluded
these samples from the evaluation process.

o Predicting Goal Defenses: The goal defense predic-
tions were also evaluated in the same situation as the
goal attack prediction. Furthermore, like Predicting Next
Defense, BAN identified all defense techniques without
duplicates.

In all experiments of this paper, it was assumed that
the attack detection system detects all attacks. Therefore,
all of the ATT&CK techniques that have been performed
were detected and passed to the BAN as evidence. Perfor-
mance evaluation in the environment where attack detection
is imperfect was performed only in RQ6.

C. EXPERIMENTAL RESULTS

As mentioned earlier, six research questions were designed
and experimented to test the performance of BAN in various
ways.

All the different models trained in our experiments took
3-4 hours to train. Although it may appear to be a lengthy
time, in practical scenarios of BAN, the training time is not a
significant concern since the models are trained beforehand
and then utilized. Furthermore, it only took approximately
20 seconds to predict a cyberattack on the trained BAN.
Hence, there is no notable delay in the attack prediction when
applied in real-world scenarios.

1) RQ1. HOW PERFORMANCE VARIES DEPENDING ON THE
TYPE AND FORMAT OF THE DATASET?
Firstly, to determine which dataset is the best, we conducted
the same experiment multiple times while changing the train-
ing and validating dataset. As for the dataset used in this
experiment, 4 dataset types (Expert, rcATT, TRAM, MITRE)
were prepared in 6 versions.

As shown in Fig. 3, the MITRE dataset showed the best per-
formance. The MITRE dataset showed an f1-score of 0.614 in
predicting the next attack. The other datasets, generated based
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on the APT report, performed worse than the MITRE dataset.
The rcATT and TRAM, which are automatically labeled using
the trained machine learning model, showed fl-scores of
0.367 and 0.542, respectively. In addition, the Expert dataset,
which experts manually labeled by analyzing the reports,
was transformed into various versions. First, the original data
format, the ‘‘tactic.tech.sub” format, showed an fl-score of
0.200, showing disappointing performance. However, when
the node structure was changed by converting the data format,
it showed better performance. In the case of BAN trans-
formed into the tactic, technique, and sub-technique node,
the performance was 0.331. When tactic information was
deleted, the performance was 0.279. The objective of pre-
dicting the next defense was also not significantly different
from the attack prediction result. Overall, the performance
of the next defense prediction was slightly improved better
than the performance of the next attack prediction. How-
ever, the order of performance among the datasets did not
change.

The dataset that showed the best performance in the goal
attack prediction was also the MITRE dataset. In the goal
attack prediction and goal defense prediction objectives,
the MITRE dataset showed fl-scores of 0.562 and 0.648,
respectively. The next best-performing dataset was the Expert
dataset. In the case of the Expert dataset, we were able
to obtain an fl-score of about 0.3 for the three converted
versions. However, in the case of the goal attack prediction
objective, some datasets showed poor performance. First of
all, in the TRAM dataset, TAOO10 (Exfiltration) and TAO040
(Impact) techniques are not labeled due to the fundamen-
tal design of the TRAM model. Therefore, the goal attack
technique did not appear in the dataset at all, and thus the
goal attack technique cannot be predicted. In the case of
rcATT, the performance was unsatisfactory because TA0010
(Exfiltration) and TAO040 (Impact) techniques did not appear
much in the corresponding dataset, due to the design of rcATT
model.
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In summary, the MITRE dataset showed the best perfor-
mance in the four objectives. Note that the experiments of the
rest research questions were conducted based on the MITRE
dataset.

In 4 datasets transformed into 6 versions, the MITRE
dataset showed the best performance in the overall objec-
tives at most x3 more.

2) RQ2. DOES THE PERFORMANCE DEPEND ON THE
STRUCTURE LEARNING ALGORITHM?

Next, we experimented to see how the performance changes
according to the type of search algorithm. The testing search
algorithms were hill climbing without random graphs, hill
climbing with random graphs, Tabu search without random
graphs, and Tabu search with random graphs. In the rest of the
paper, the above four algorithms are abbreviated as hc, hc_rr,
tabu, and tabu_rr, respectively. If the random graph option
is enabled, graph search starts with the generated random
graph, otherwise, graph search starts with the empty graph.
The experimental results of RQ2 are shown in Fig. 4.

As a result of the experiment, the Tabu search algorithm
generally performed the best. In the case of Tabu search,
predicting the next attack, the next defense, and the goal
defense showed the best performance. Also, in predicting the
goal attack objective, the hill climbing algorithm showed the
best performance. Unexpectedly, there was no significant per-
formance improvement when learning from random graphs
rather than empty graphs.

Although the Tabu search algorithm showed the best per-
formance, the performance difference from the rest of the
algorithms was not significant. The difference between the
best and worst performing algorithms in the four objectives
did not exceed 0.04. The reason seems to be that there is
no significant difference between the four search algorithms
since these algorithms are straightforward greedy search
algorithms.
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The graph search algorithm did not bring any significant
difference (< 0.04) in the performance.

3) RQ3. DOES THE PERFORMANCE CHANGE DEPENDING
ON THE TYPE OF SCORE FUNCTION?

Next, we experimented to see how the BAN performance
differs according to the score function, which is the core
of score-based structure learning. We compared four score
functions: Bayesian Information Criterion (bic), Bayesian
Dirichlet equavalent score (bde), impact-based weighted BIC
(wbic), and impact-based weighted BDe (wbde). The results
are shown in Fig. 5.

Looking at the result, it was verified that the impact-based
weight score functions, which are proposed in this paper, sig-
nificantly improved the performance of the BAN. Both wbde
and wbic showed better fl-score than the existing bde and
bic. Also, in particular, wbde showed the best performance in
4 prediction objectives. In the next attack prediction objec-
tive, the fl-score difference between the best-performing
wbde and the worst-performing bic was about 0.122. This
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difference was slightly reduced in other objectives, but the
score functions proposed in this paper generally showed more
promising performance.

The reason why the performance of the impact-based
weight score function is good is apparent. As can be seen in
Eq. (11) and Eq. (12), the BAN has been learned in a way
that predicts techniques with high attack impact well due to
the design of the score function. Therefore, in the Bayesian
network, the relationships between unimportant nodes are
weakened, and the relationships between nodes close to the
attacker’s final goal are strengthened. This way, it is possible
to obtain more effective prediction results for blocking an
attacker’s ultimate goal, which is the ultimate goal of the
APT defense system. In conclusion, the experimental results
of RQ3 indicate that the BAN is more effective in defending
against APT attacks.

The impact-based weight score functions proposed in this
paper performed better than the existing score functions.
Among them, wbde performed the best, at most 25% more.

4) RQA4. DOES APPLYING EXPERT KNOWLEDGE TO BAN
IMPROVE PERFORMANCE?

Also, we experimented to figure out whether the expert
knowledge, described in Section V-B, improves the perfor-
mance of the BAN or not. We transformed the prepared expert
knowledge into a blacklist and compared the performance of
the BAN with blacklist and without a blacklist. The result is
described in Fig. 6.

Consequently, the performance with expert knowledge was
usually better, but there was no significant difference. For
each objective, The difference in the fl-score of BAN with
expert knowledge and without expert knowledge was less
than 1.4%. One of the reasons may be that the relationships
we identified do not appear in the dataset. As more mas-
sive datasets are collected and the diversity of the datasets
increases, we expect that there will be a significant increase
in the model’s performance with our expert knowledge.
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Even if expert knowledge was utilized in the structure
learning, there was no significant performance improve-
ment (< 1.4%).

5) RQ5. HOW IS THE PREDICTION PERFORMANCE
DIFFERENT DEPENDING ON THE ATTACK PROGRESS?

We tested how the prediction accuracy changes according to
the progress of the attack. The experiment was conducted
by predicting the last K attacks when all previous attacks
were already detected except the last M attacks. At this time,
we sequentially increased the M from 5 to 10 to check out
the performance in the early and late stages of the attack. For
this experiment, we fixed K to 5. We selected the model that
showed the best performance in the previous experiment. The
results of RQS5 are shown in Fig. 7.

As a consequence, the performance slightly decreased
when the prediction was carried out at the earlier stage of
the attack. In the case of M equals 5, the fl-score of the
next attack prediction was 0.607, whereas when M equals
10, the f1-score dropped to 0.390. Although the performance
of the remaining three objectives decreased also, the degree
of performance decline was moderate in predicting the goal
attack technique and defense technique. The f1-score of the
goal attack prediction gradually decreased from 0.557 when
M equals 5 to 0.542 when M equals 10.

Through the results of this experiment, it was found that
BAN showed satisfactory performance even in the early and
middle stages of the APT attack. Of course, the performance
degradation occurred due to the lack of attack information,
but it was insignificant. In particular, the performance degra-
dation was minimal when predicting the final attack goal,
which is the essential objective of the BAN. In conclusion,
BAN can effectively predict attacks and propose defense
techniques even in the early stages of an attack.

If the BAN was operated at the early stage of the attack, the
prediction performance was decreased (0.607 — 0.390)
However, the performance decrease was slight in the case
of the goal attack prediction (0.557 — 0.542).
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6) RQ6. EVEN IF THE PAST ATTACK DETECTION HAS FAILED,
CAN OUR MODEL PREDICT THE FUTURE ATTACKS AND
DEFENSES ACCURATELY?

Finally, under the assumption that the attack detection sys-
tem is imperfect, we checked how the performance of the
BAN changes depending on detection precision. In the pre-
vious experiments, we assumed that 100% of the attack was
detected and passed to the BAN. However, there would be
attacks that are not detected in the actual detection system.
Therefore, to test whether the performance of the BAN is sta-
ble even with the inaccurate detection system, we increased
the probability of detection failure (missing rate) from 0% to
60% and checked the results. The detection failure probability
is the probability that the attack detection will fail. That is,
if the detection failure probability equals 10%, only 90% of
occurred attacks are detected. Also, the experimented model
was the model that showed the best performance in previous
research questions. The performance of BAN in an incom-
plete detection environment is shown in Fig. 8.

Looking at the experimental results, the performance of the
BAN declined as the detection failure probability increased.
For example, when the attacks were entirely detected, the f1-
score of the next attack prediction was 0.628. However, when
60% of attacks were not detected, the fl1-score dropped to
0.272. Furthermore, the degree of decline was not significant
when predicting the goal attack techniques. In the case of the
goal attack prediction objective, the f1-score decreased from
0.564 to 0.439.

This experiment showed that BAN performs well even in
an incomplete detection environment. Of course, the predic-
tion performance was insufficient when more than half of the
attacks were not detected. However, this is because of the lack
of attack information rather than a design problem of BAN.
Also, these unreasonable assumptions are unlikely to occur,
considering that the accuracy of the detection system, used in
the real-world, is mostly over 90%. Under the assumption of
a detection accuracy greater than 90%, the performances of
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the BAN were above 0.5, with the exception of the prediction
of the next defense. Therefore, even if the detection system
cannot detect some attacks, BAN can achieve its original
objectives.

If the attack detection system is imperfect, the performance
of the BAN was degraded by at least 16%. However,
it showed acceptable performance (> 0.511) on a realistic
attack detection system (missing rate < 10%).

VIl. CONCLUSION

Although an APT attack has emerged as the first topic of
cyber defense, predicting and defending the APT attack has
not been studied much. Since the current defense systems
can only defend a part of the APT attack, a novel system is
required to prevent the attacker’s ultimate goal.

In this paper, we proposed the Bayesian ATT&CK Net-
work, a cyberattack prediction model using Bayesian net-
works. BAN precisely models the attacker’s behavior based
on MITRE ATT&CK and uses it for attack prediction. Unlike
existing studies, it does not depend on raw alerts, so it can be
utilized independently for network structures and detection
systems. In addition, the model’s reliability is improved by
learning the model based on the data obtained from the exist-
ing APT attack cases. Furthermore, the model’s usefulness
is maximized by providing not only prediction results but
also defense techniques corresponding to the predicted attack.
In the performance experiments, BAN showed an fl-score
of 0.628 and 0.606, at the next attack prediction and the
next defense prediction, respectively. Moreover, in terms of
predicting the goal attack and defense, BAN showed an f1-
score of 0.565 and 0.634, respectively.

For future research, we will continue to collect additional
real-world APT data to improve the performance of our
model. Also, modeling and utilizing the additional attack arti-
facts, such as files, directories, user accounts, or other system
activities, can improve the performance. In addition, we plan
to create a virtual network that mimics a real-world network
for additional experiments in real-world scenarios. Finally,
we will study an automated attack response system based
on attack prediction results rather than simply suggesting
countermeasures.

REFERENCES

[1] P. Chen, L. Desmet, and C. Huygens, “A study on advanced persistent
threats,” in Proc. IFIP Int. Conf. Commun. Multimedia Secur. Springer,
2014, pp. 63-72.

[2] R. S. Mueller, “Report on the investigation into Russian
interference in the 2016 presidential election,” US Dept. Justice,
Washington, DC, USA, 2019, vol. 1. [Online]. Available:
https://www.justice.gov/archives/sco/file/1373816/download

[3]1 T.Hughesand O. Sheyner, ““Attack scenario graphs for computer network
threat analysis and prediction,” Complexity, vol. 9, no. 2, pp. 15-18,
Nov. 2003.

[4] A. A.Ramaki, M. Amini, and R. E. Atani, “RTECA: Real time episode
correlation algorithm for multi-step attack scenarios detection,” Comput.
Secur., vol. 49, pp. 206-219, Mar. 2015.

[5] M. Ghasemigol, A. Ghaemi-Bafghi, and H. Takabi, “A comprehen-
sive approach for network attack forecasting,” Comput. Secur., vol. 58,
pp. 83-105, May 2016.

91966

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

H. Farhadi, M. AmirHaeri, and M. Khansari, “Alert correlation and
prediction using data mining and HMM,” ISC Int. J. Inf. Secur., vol. 3,
no. 2, pp. 77-101, 2011.

H. A. Kholidy, A. Erradi, S. Abdelwahed, and A. Azab, “A finite state
hidden Markov model for predicting multistage attacks in cloud systems,”
in Proc. IEEE 12th Int. Conf. Dependable, Autonomic Secure Comput.,
Aug. 2014, pp. 14-19.

A. S. Sendi, M. Dagenais, M. Jabbarifar, and M. Couture, “Real time
intrusion prediction based on optimized alerts with hidden Markov
model,” J. Netw., vol. 7, no. 2, p. 311, Feb. 2012.

A. A. Ramaki, M. Khosravi-Farmad, and A. G. Bafghi, “Real time alert
correlation and prediction using Bayesian networks,” in Proc. 12th Int.
Iranian Soc. Cryptol. Conf. Inf. Secur. Cryptol. (ISCISC), Sep. 2015,
pp. 98-103.

X. Qin and W. Lee, “Attack plan recognition and prediction using
causal networks,” in Proc. 20th Annu. Comput. Secur. Appl. Conf., 2004,
pp. 370-379.

N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk manage-
ment using Bayesian attack graphs,” IEEE Trans. Depend. Sec. Comput.,
vol. 9, no. 1, pp. 61-74, Jan. 2012.

O. B. Fredj, A. Mihoub, M. Krichen, O. Cheikhrouhou, and A. Derhab,
“CyberSecurity attack prediction: A deep learning approach,” in Proc.
13th Int. Conf. Secur. Inf. Netw., Nov. 2020, pp. 1-6.

T. Li, Y. Jiang, C. Lin, M. S. Obaidat, Y. Shen, and J. Ma, “DeepAG:
Attack graph construction and threats prediction with bi-directional
deep learning,” IEEE Trans. Depend. Sec. Comput., vol. 20, no. 1,
pp. 740-757, Jan. 2023.

V. Lisy, R. Pibil, J. Stiborek, B. BoSansky, and M. Péchoucek, “Game-
theoretic approach to adversarial plan recognition,” in Proc. 20th Eur.
Conf. Artif. Intell., 2012, pp. 546-551.

R. Pibil et al., “Game theoretic model of strategic honeypot selection in
computer networks,” in Decision and Game Theory for Security: Third
International Conference, GameSec 2012, Budapest, Hungary, November
5-6, 2012. Proceedings 3. Berlin, Germany: Springer, 2012.

B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels,
A. G. Pennington, and C. B. Thomas. (2018). MITRE ATT&CK—
Design and Philosophy. [Online]. Available: https://www.mitre.org/sites/
default/files/publications/pr-18-0944-11-mitre-attack-design-and-
philosophy.pdf

C. Phillips and L. P. Swiler, “A graph-based system for network-
vulnerability analysis,” in Proc. Workshop New Secur. Paradigms,
Jan. 1998, pp. 71-79.

S. Bistarelli, F. Fioravanti, and P. Peretti, ‘“‘Defense trees for economic
evaluation of security investments,” in Proc. Ist Int. Conf. Availability,
Rel. Secur. (ARES), 2006, p. 8.

S. Bistarelli, P. Peretti, and I. Trubitsyna, “Analyzing security scenarios
using defence trees and answer set programming,” Electron. Notes Theor.
Comput. Sci., vol. 197, no. 2, pp. 121-129, Feb. 2008.

A. Roy, D. S. Kim, and K. S. Trivedi, “‘Cyber security analysis using
attack countermeasure trees,” in Proc. 6th Annu. Workshop Cyber Secur.
Inf. Intell. Res., Apr. 2010, pp. 1-4.

A. Roy, D. S. Kim, and K. S. Trivedi, “Attack countermeasure trees
(ACT): Towards unifying the constructs of attack and defense trees,”
Secur. Commun. Netw., vol. 5, no. 8, pp. 929-943, Aug. 2012.

B. Kordy et al., “Foundations of attack—defense trees,” in Formal Aspects
of Security and Trust: 7th International Workshop, FAST 2010, Pisa, Italy,
September 16—17, 2010. Revised Selected Papers 7. Berlin, Germany:
Springer, 2011.

B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer, ““Attack—defense
trees,” J. Log. Comput., vol. 24, no. 1, pp. 55-87, Feb. 2014.

T. Sommestad, M. Ekstedt, and P. Johnson, “Combining defense graphs
and enterprise architecture models for security analysis,” in Proc.
12th Int. IEEE Enterprise Distrib. Object Comput. Conf., Sep. 2008,
pp. 349-355.

T. Sommestad, M. Ekstedt, and P. Johnson, “Cyber security risks assess-
ment with Bayesian defense graphs and architectural models,” in Proc.
42nd Hawaii Int. Conf. Syst. Sci., 2009, pp. 1-10.

T. Sommestad, M. Ekstedt, and P. Johnson, “A probabilistic relational
model for security risk analysis,” Comput. Secur, vol. 29, no. 6,
pp. 659-679, Sep. 2010.

L. Pi¢tre-Cambacédes and M. Bouissou, “Attack and defense modeling
with BDMP,” in Computer Network Security: 5th International Confer-
ence on Mathematical Methods, Models and Architectures for Computer
Network Security, MMM-ACNS 2010, St. Petersburg, Russia, September
8-10, 2010. Proceedings 5. Berlin, Germany: Springer, 2010.

VOLUME 11, 2023



Y. Kim et al.: BAN: Predicting APT Attack Based on Bayesian Network With MITRE ATT&CK Framework

IEEE Access

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40

[41

[42

[43]

[44]

[45

[46]

[47]

[48]
[49]
[50]

[51]

[52]

L. Pietre-Cambacédes and M. Bouissou, “Beyond attack trees: Dynamic
security modeling with Boolean logic driven Markov processes
(BDMP),” in Proc. Eur. Dependable Comput. Conf., 2010, pp. 199-208.
K. Durkota, V. Lisy, B. Bosansky, C. Kiekintveld, and M. Péchoucek,
“Hardening networks against strategic attackers using attack graph
games,” Comput. Secur., vol. 87, Nov. 2019, Art. no. 101578.

L.-X. Yang, P. Li, Y. Zhang, X. Yang, Y. Xiang, and W. Zhou, “Effec-
tive repair strategy against advanced persistent threat: A differential
game approach,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 7,
pp. 1713-1728, Jul. 2019.

H. Al-Mohannadi, Q. Mirza, A. Namanya, I. Awan, A. Cullen, and
J. Disso, “Cyber-attack modeling analysis techniques: An overview,”
in Proc. IEEE 4th Int. Conf. Future Internet Things Cloud Workshops
(FiCloudW), Aug. 2016, pp. 69-76.

M. Tatam, B. Shanmugam, S. Azam, and K. Kannoorpatti, “A review of
threat modelling approaches for APT-style attacks,” Heliyon, vol. 7, no. 1,
Jan. 2021, Art. no. e05969.

M. Lehto, “APT cyber-attack modelling: Building a general model,” in
Proc. 17th Int. Conf. Cyber Warfare Secur., vol. 17. New York, NY, USA:
Academic, 2022, pp. 121-129.

Cyber Kill Chain | Lockheed Martin. Accessed: Oct. 27, 2022.
[Online]. Available: https://www.lockheedmartin.com/en-us/capabilities/
cyber/cyber-kill-chain.html

E. Hutchins, M. Cloppert, and R. Amin, “Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intru-
sion kill chains,” Leading Issues Inf. Warfare Secur. Res., vol. 1, no. 1,
p- 80, 2011.

MITRE ATT&CK. Accessed: Oct. 27, 2022. [Online]. Available:
https://attack.mitre.org/

B. E. Strom et al., “Finding cyber threats with ATT&CK-based analyt-
ics,” MITRE Corp., Bedford, MA, USA, Tech. Rep. MTR170202, 2017.
C. Johnson, L. Badger, D. Waltermire, J. Snyder, and C. Skorupka,
“Guide to cyber threat information sharing,” Nat. Inst. Standards Tech-
nol. (NIST), Gaithersburg, MD, USA, Tech. Rep. NIST SP 800-150,
2016.

J. Basra and T. Kaushik, “MITRE ATT&CK as a framework for
cloud threat investigation,” Berkeley Center Long-Term Cyberse-
cur., Berkeley, CA, USA, White Paper, 2020. [Online]. Available:
https://cltc.berkeley.edu/publication/mitre-attck/

Contribute | MITRE ATT&CK. Accessed: Aug. 4, 2023. [Online].
Available: https://attack.mitre.org/resources/contribute/

Updates | MITRE ATT&CK. Accessed: Aug. 4,2023. [Online]. Available:
https://attack.mitre.org/resources/updates/

Joint Task Force Transformation Initiative, ““Security and privacy controls
for federal information systems and organizations,” Nat. Inst. Standards
Technol. (NIST), Gaithersburg, MD, USA, NIST SP 800-53, 2013,
pp. 8-13.

Center of Internet Security. (2021). CIS Controls Version 8. [Online].
Available: https://www.cisecurity.org/controls/v8/

Information Technology—Security Techniques—Information Security
Management Systems—Overview and Vocabulary, ISO/IEC, Geneva,
Switzerland, 2018.

Microsoft. Overview of the Azure Security Benchmark V2 | Microsoft
Docs. Accessed: Oct. 27, 2022. [Online]. Available: https://docs.
microsoft.com/en-us/security/benchmark/azure/overview
Mitigations—Enterprise | MITRE ATT&CK. Accessed: Oct. 27, 2022.
[Online]. Available: https://attack.mitre.org/mitigations/enterprise/

C. Fowler, M. Goffin, B. Hill, R. Lamourine, and A. Sovern, “An
introduction to MITRE shield,” MITRE Corp., McLean, VA, USA,
Tech. Rep., 2020. [Online]. Available: https://shield.mitre.org/resources/
downloads/Introduction_to_ MITRE_Shield.pdf
Engage Home. Accessed: Oct. 27, 2022.
https://engage.mitre.org/

A Practical Guide to Adversary Engagement, MITRE Corp., McLean,
VA, USA, 2022.

D3FEND Matrix | MITRE D3FENDT. Accessed: Oct. 27,2022. [Online].
Available: https://d3fend.mitre.org/

P. E. Kaloroumakis and M. J. Smith, “Toward a knowledge
graph of cybersecurity countermeasures,” MITRE Corp., McLean,
VA, USA, Tech. Rep. PRS-20-2034, 2021. [Online]. Available:
https://apps.dtic.mil/sti/pdfs/AD1156977.pdf

L. M. De Campos and N. Friedman, “A scoring function for learning
Bayesian networks based on mutual information and conditional inde-
pendence tests,” J. Mach. Learn. Res., vol. 7, no. 10, pp. 2149-2187,
2006.

[Online]. Available:

VOLUME 11, 2023

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

[75]

[76]

[77]

[78]

D. M. Chickering, “A transformational characterization of equivalent
Bayesian network structures,” in Proc. 11th Conf. Uncertainty Artif.
Intell., 1995, pp. 87-98.

T. Silander, T. Roos, P. Kontkanen, and P. Myllymiki, “Factorized nor-
malized maximum likelihood criterion for learning Bayesian network
structures,” in Proc. 4th Eur. Workshop Probabilistic Graph. Models
(PGM), 2008, pp. 257-272.

D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian
networks: The combination of knowledge and statistical data,” Mach.
Learn., vol. 20, no. 3, pp. 197-243, Sep. 1995.

W. Buntine, “Theory refinement on Bayesian networks,” in Uncertainty
in Artificial Intelligence. Amsterdam, The Netherlands: Elsevier, 2014,
p. 52.

M. Scutari, “An empirical-Bayes score for discrete Bayesian networks,”
in Proc. Conf. Probabilistic Graph. Models, 2016, pp. 438-448.

G. F. Cooper and E. Herskovits, “A Bayesian method for the induc-
tion of probabilistic networks from data,” Mach. Learn., vol. 9, no. 4,
pp. 309-347, Oct. 1992.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2010.

F. Glover, “Tabu search—Part 1,” ORSA J. Comput., vol. 1, no. 3,
pp. 190-206, 1989.

P. Larranaga, M. Poza, Y. Yurramendi, R. H. Murga, and
C. M. H. Kuijpers, “Structure learning of Bayesian networks by
genetic algorithms: A performance analysis of control parameters,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 9, pp. 912-926,
Sep. 1996.

S. Lee and S. B. Kim, ‘“Parallel simulated annealing with a greedy
algorithm for Bayesian network structure learning,” IEEE Trans. Knowl.
Data Eng., vol. 32, no. 6, pp. 1157-1166, Jun. 2020.

N. Friedman and D. Koller, “Being Bayesian about network structure.
A Bayesian approach to structure discovery in Bayesian networks,”
Mach. Learn., vol. 50, nos. 1-2, pp. 95-125, 2003.

D. Colombo and M. H. Maathuis, “Order-independent constraint-based
causal structure learning,” J. Mach. Learn. Res., vol. 15, no. 116,
pp. 3921-3962, 2014.

D. Margaritis, “Learning Bayesian network model structure from data,”
Ph.D. dissertation, U.S. Army, Arlington County, VA, USA, 2003.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis, ‘“The max-min hill-
climbing Bayesian network structure learning algorithm,” Mach. Learn.,
vol. 65, no. 1, pp. 31-78, Oct. 2006.

N. Friedman, I. Nachman, and D. Peér, “Learning Bayesian network
structure from massive datasets: The ‘sparse candidate’ algorithm,” in
Proc. 15th Conf. Uncertainty Artif. Intell., 1999, pp. 206-215.

D. J. Spiegelhalter and S. L. Lauritzen, “Sequential updating of condi-
tional probabilities on directed graphical structures,” Networks, vol. 20,
no. 5, pp. 579-605, Aug. 1990.

J. M. Bernardo and A. F. M. Smith, Bayesian Theory, vol. 405. Hoboken,
NJ, USA: Wiley, 2009.

R. Chang and W. Wang, ““Novel algorithm for Bayesian network param-
eter learning with informative prior constraints,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2010, pp. 1-8.

J. Pearl, “Reverend Bayes on inference engines: A distributed hierar-
chical approach,” in Proc. 2nd AAAI Conference Artif. Intell. (AAAI).
Pittsburgh, PA, USA: AAAI Press, 1982, pp. 133-136.

N. L. Zhang and D. Poole, “A simple approach to Bayesian network
computations,” in Proc. 10th Can. Conf. Artif. Intell., 1994, pp. 1-8.

C. Huang and A. Darwiche, “Inference in belief networks: A procedural
guide,” Int. J. Approx. Reasoning, vol. 15, no. 3, pp. 225-263, Oct. 1996.
A. F. M. Smith and G. O. Roberts, ‘“Bayesian computation via the Gibbs
sampler and related Markov chain Monte Carlo methods,” J. Roy. Stat.
Soc. B, Methodol., vol. 55, no. 1, pp. 3-23, Sep. 1993.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Amer. Stat. Assoc., vol. 112, no. 518,
pp. 859-877, Apr. 2017.

A. Althnian, D. AlSaeed, H. Al-Baity, A. Samha, A. B. Dris, N. Alzakari,
A. A. Elwafa, and H. Kurdi, “Impact of dataset size on classification
performance: An empirical evaluation in the medical domain,” Appl. Sci.,
vol. 11, no. 2, p. 796, Jan. 2021.

A. Onisko, M. J. Druzdzel, and H. Wasyluk, “Learning Bayesian network
parameters from small data sets: Application of noisy-OR gates,” Int. J.
Approx. Reasoning, vol. 27, no. 2, pp. 165-182, Aug. 2001.

A. M. MacAllister, “Investigating the use of Bayesian networks for small
dataset problems,” Ph.D. dissertation, Dept. Mech. Eng., Iowa State
Univ., Ames, IA, USA, 2018.

91967



IEEE Access

Y. Kim et al.: BAN: Predicting APT Attack Based on Bayesian Network With MITRE ATT&CK Framework

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

91968

Y. Hou, E. Zheng, W. Guo, Q. Xiao, and Z. Xu, “Learning Bayesian
network parameters with small data set: A parameter extension under
constraints method,” IEEE Access, vol. 8, pp. 24979-24989, 2020.

S. Gao and X. Wang, “Quantitative utilization of prior biological knowl-
edge in the Bayesian network modeling of gene expression data,” BMC
Bioinf., vol. 12, no. 1, pp. 1-13, Dec. 2011.

R. Al-Shaer, J. M. Spring, and E. Christou, “Learning the associations
of MITRE ATT & CK adversarial techniques,” in Proc. IEEE Conf.
Commun. Netw. Secur. (CNS), Jun. 2020, pp. 1-9.

M. Zissman, “DARPA intrusion detection scenario specific data sets,”
Tech. Rep., 2000.

S. Myneni, A. Chowdhary, A. Sabur, S. Sengupta, G. Agrawal, D. Huang,
and M. Kang, “DAPT 2020-constructing a benchmark dataset for
advanced persistent threats,” in Deployable Machine Learning for Secu-
rity Defense: First International Workshop, MLHat 2020, San Diego, CA,
USA, August 24, 2020, Proceedings 1. Springer, 2020, pp. 138-163.

S. Myneni, K. Jha, A. Sabur, G. Agrawal, Y. Deng, A. Chowdhary, and
D. Huang, “Unraveled—A semi-synthetic dataset for advanced persistent
threats,” Comput. Netw., vol. 227, May 2023, Art. no. 109688.

APT &  CyberCriminal ~ Campaign  Collection.  Accessed:
Oct. 27, 2022. [Online]. Available: https://github.com/CyberMonitor/
APT_CyberCriminal_Campagin_Collections

Best Practices for MITRE ATT&CK Mapping, Cybersec. Infrastruct.
Secur. Agency, Arlington, VA, USA, 2021.

Module 2: Mapping to ATT&CK From a Finished Report, Training
Resour., MITRE Corp., McLean, VA, USA, 2019.

V. Legoy, M. Caselli, C. Seifert, and A. Peter, “Automated retrieval
of ATT&CK tactics and techniques for cyber threat reports,” in Proc.
Ist Cyber Threat Intell. Symp. (CTI), Mar. 2020. [Online]. Available:
https://www.first.org/events/symposium/zurich2020/

V. S. M. Legoy, “Retrieving ATT&CK tactics and techniques in cyber
threat reports,” M.S. thesis, Univ. Twente, Enschede, The Netherlands,
2019.

Threat  Report ATT&CK  Mapper—TRAM—CTID.  Accessed:
Oct. 27, 2022. [Online]. Available: https://ctid.mitre-engenuity.org/our-
work/tram/

N. Friedman, M. Goldszmidt, and A. Wyner, “Data analysis with
Bayesian networks: A bootstrap approach,” in Proc. 15th Conf.
Uncertainty Artif. Intell., 1999, pp. 196-205.

B. M. Broom, K.-A. Do, and D. Subramanian, “Model averaging strate-
gies for structure learning in Bayesian networks with limited data,” BMC
Bioinf., vol. 13, no. S13, pp. 1-18, Aug. 2012.

J. S. Ide and F. G. Cozman, ‘“Random generation of Bayesian net-
works,” in Advances in Artificial Intelligence: 16th Brazilian Sympo-
sium on Artificial Intelligence, SBIA 2002, Porto de Galinhas/Recife,
Brazil, November 11-14, 2002, Proceedings, vol. 2507. Berlin, Germany:
Springer, 2003.

A. C. Constantinou, Z. Guo, and N. K. Kitson, “The impact of prior
knowledge on causal structure learning,” Knowl. Inf. Syst., vol. 65,
pp. 3385-3434, Apr. 2023.

R. D. Shachter and M. A. Peot, “Simulation approaches to general
probabilistic inference on belief networks,” in Proc. 5th Annu. Conf.
Uncertainty Artif. Intell., 1990, pp. 221-234.

M. Scutari, “‘Learning Bayesian networks with the bnlearn R package,”
J. Stat. Softw., vol. 35, no. 3, pp. 1-22, 2010.

P. Suter, J. Kuipers, G. Moffa, and N. Beerenwinkel, “Bayesian structure
learning and sampling of Bayesian networks with the R package BiDAG,”
2021, arXiv:2105.00488.

M. S. Sorower, “A literature survey on algorithms for multi-label learn-
ing,” Dept. Comput. Sci., Oregon State Univ., Corvallis, OR, USA,
Tech. Rep., 2010, p. 25, vol. 18, no. 1.

YOUNGJOON KIM received the B.S. degree
in cyber defense from Korea University, Seoul,
Republic of Korea, in 2017, where he is cur-
rently pursuing the Ph.D. degree in cyber security.
He is also a Cybersecurity Researcher with the
Cyber Technology Center, Agency for Defense
Development, Seoul. His research interests include
fuzzing, machine learning for cybersecurity, and
Bayesian statistic.

INSUP LEE (Student Member, IEEE) received the
B.S. degree in cyber defense from Korea Univer-
sity, Seoul, Republic of Korea, in 2018, where he
is currently pursuing the Ph.D. degree in cyberse-
curity. He is also a Cybersecurity Researcher with
the Cyber Technology Center, Agency for Defense
Development, Seoul. His research interests include
deep learning, intelligent networks, generative
adversarial networks, and Al-based cybersecurity.

HYUK KWON received the B.S. degree in cyber
defense from Korea University, Seoul, Republic of
Korea, in 2018, where he is currently pursuing the
Ph.D. degree in information security. He is also
a Cybersecurity Researcher with the Cyber Tech-
nology Center, Agency for Defense Development,
Seoul. His research interests include software vul-
nerability analysis, binary exploitation, data engi-
neering, and cyber-physical security.

KYEONGSIK LEE received the B.E. degree in
computer science and engineering from Sejong
University, Seoul, Republic of Korea, in 2009, and
the M.S. degree in information management and
security from Korea University, Seoul, in 2011.
He is currently a Senior Researcher with the
Cyber Technology Center, Agency for Defense
Development, Seoul. His research interests include
digital forensics, incident response, and malware
analysis.

JIWON YOON received the B.S. degree in infor-
mation engineering from Sungkyunkwan Univer-
sity, South Korea, in 2003, the M.S. degree in
informatics from The University of Edinburgh,
U.K,, in 2004, and the Ph.D. degree in statistical
signal processing from the University of Cam-
bridge, U.K., in 2008.

From 2008 to 2009, he was a Postdoctoral
Research Assistant with the Robotics Group, Uni-
versity of Oxford, U.K. From 2009 to 2011, he was
a Research Fellow with the Statistics Department, Trinity College Dublin,
Ireland. He was a Research Scientist with the IBM Research Laboratory,
from 2011 to 2012. From 2012 to 2016, he was an Assistant Professor
with the Cyber Defense Department, Korea University, where he has been a
Professor with the School of Cybersecurity, since 2021. His research interests
include intelligence, such as signal intelligence, crypto intelligence, artificial
intelligence, and open source intelligence.

VOLUME 11, 2023



