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ABSTRACT Researchers in the domain of unmanned aerial vehicles (UAVs) have recently shown a great
deal of interest in the quadcopter domain due to its wide variety of applications. In addition to their
military applications, quadcopters are now widely used in the civilian sector. This paper presents optimized
controllers for attitude and altitude control of a quadcopter system. A novel conditioned adaptive barrier
function integral terminal sliding mode controller (CABFIT-SMC) is designed to address the trajectory
tracking problem of the quadcopter, and a sliding mode control (SMC) is implemented for comparative
analysis. Four optimization algorithms (i.e., Ant Colony Optimization, Artificial Bee Colony, Particle
Swarm Optimization, and Genetic Algorithm) have been used to optimize the proposed control laws.
The quadcopter’s non-linear model is formulated through the Lagrange formalism in MATLAB ODE-
45, incorporating gyroscopic moments and aerodynamic effects. A Lyapunov stability analysis is carried
out to verify the system’s asymptotic stability. A graphical and tabular comparative analysis is provided
for all optimized control laws. Five performance indexes, including mean absolute percentage error, root
mean square error, integral square error, integral absolute error, and integral time absolute error, are used
to determine the best control law. The proposed optimized controllers are evaluated for performance and
consistency using a 3D-helical complex trajectory. Based on the rigorous performance evaluation, it has
been demonstrated that the CABFIT-SMC controller optimized with the ABC algorithm achieved the most
superior results, with the lowest MAPE value of 13.245, RMSE value of 0.0043, and transient response
characteristics yielding the quickest rise and settling times. The commendable performance of the ABC-
optimized CABFIT-SMC further reinforces its potential as a robust controller for precise attitude, altitude,
heading, and position tracking in quadcopter systems.

INDEX TERMS Lyapunov theory, optimization algorithms, optimized nonlinear controllers, quadcopter
trajectory tracking, sliding mode control variants.

I. INTRODUCTION fixed-propeller rotors. It can take off vertically, hover, perch,

Experts in the engineering field of unmanned aerial vehicles
(UAVs) are demonstrating an escalating interest in quad-
copter technology due to its extensive and diverse applica-
tions. Quadcopters initially acknowledged for their military
uses, have expanded their presence into civilian sectors,
solidifying their importance in the UAV industry. A quad-
copter system is a drone or rotorcraft-based UAV with four
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and follow acute trajectories, unlike other UAVs. Nonethe-
less, this multirotor system is underactuated, extremely
nonlinear, and susceptible to disturbances and parametric
uncertainties. Given the highly nonlinear dynamics of such
systems, researchers continue to confront major difficulties
in controlling multi-rotor systems despite significant break-
throughs in the multi-rotor control domain. The quadcopter
changes rotor speeds to provide push and torque for maneu-
vering and flight [1]. The four rotors on a quadcopter system
work in pairs, each rotating in opposite directions to create
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FIGURE 1. Typical DJI Phantom commercial quadcopter.

lift and stability. By varying the speed of each rotor, the
quadcopter can change its altitude, pitch, and roll. A quad-
copter system has six degrees of freedom (x- coordinate,
y- coordinate, z-coordinate (altitude), roll, pitch, and yaw).
A typical commercial quadcopter (DJI Phantom) is shown in
Fig. 1.

The roll, pitch, yaw, and altitude are the four main degrees
of freedom or axes of movement for a quadcopter system.
Roll refers to the rotation of the quadcopter system around its
longitudinal axis. This axis runs from the front to the back of
the drone. When the drone rolls, one side tilts up while the
other tilts down. Pitch refers to the rotation of the quadcopter
system around its lateral axis. This axis runs from one side
of the drone to the other. When the drone pitches, the front
of the drone tilts up while the back of the drone tilts down.
Yaw refers to the rotation of the quadcopter system around
its vertical axis. This axis runs from the top to the bottom
of the drone. When the drone yaws, it rotates to the left or
right. Altitude refers to the vertical distance of the quadcopter
system from the ground or a reference point. It is controlled
by adjusting the throttle or speed of the motors that control
the lift. Increasing the speed will cause the drone to ascend,
while decreasing the speed will cause it to descend. These
moments of a quadcopter are depicted in Fig. 2. The rotor
speed is proportional to the thickness of the boundary circles.

The quadcopter system has recently gained prominence
due to its versatility and task efficiency. Quadcopters sub-
stituted major surveillance activities during COVID-19, such
as food delivery, medical rescue, spraying antiseptics, law
enforcement missions, monitoring of disaster-prone areas
(i.e., earthquakes, landslides, forest fires, and flooding),
etc. [2]. In addition to that, quadcopters are also utilized
for agricultural or civil applications like aerial photography,
videography, crop monitoring, and structural assessment [3].
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FIGURE 2. Motions of the quadcopter with respect to the angular speed
of the motors.

However, developing a quadcopter system that can accu-
rately track the desired trajectory to complete the mission
successfully is an extremely complex task due to its nonlinear
dynamics. Trajectory tracking is the ability of a quadcopter
system to accurately follow a predefined flight path or trajec-
tory. It is a critical feature for quadcopter systems, enabling
them to perform complex tasks with high precision, stability,
efficiency, and safety. System-parameterized uncertainties
and external disruptions affect the trajectory-tracking perfor-
mance of the quadcopter. To modify this under-actuated and
highly nonlinear dynamic system, researchers are working
on attaining a stable and advanced quadcopter controller for
accurate trajectory tracking [4].

Some methods have been applied by researchers in con-
trolling the trajectory tracking of a quadcopter based on
its position, altitude, and attitude. PID control is the most
commonly used reference control technique to address the
trajectory tracking problem of quadcopter systems [5]. Due to
the nonlinearities in the quadcopter system, the performance
of the PID controller significantly degrades when the system
is under the influence of external disturbances. A nonlinear
technique known as the sliding mode control (SMC) is known
for its robustness to uncertainties and disturbances in the
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system. It works by designing a sliding surface that the system
should track and adjusting the control input to keep the system
on the sliding surface.

Adaptive control is also another nonlinear control method
that adjusts the control signal based on the changing dynam-
ics of the quadcopter system (i.e., gyroscopic moments and
aerodynamic effects). It works by estimating the system
parameters and adjusting the control input accordingly [6].
Furthermore, machine learning techniques are used for tra-
jectory tracking of the quadcopter system. Among them, the
most popular are reinforcement learning (RL) and model
predictive control (MPC). MPC employs a predictive system
model to determine the optimal control input that minimizes
a cost function [7]. It is used to track complex trajectories by
predicting the future state of the quadcopter and calculating
the control input that brings it to the desired trajectory. On the
other hand, RL works by learning a policy that maps the state
of the system to action, using a reward signal to guide the
learning process [8]. RL is used to track complex trajectories
of the quadcopter system by learning a policy that maximizes
the reward signal. In addition to that, other methods have
been reported in the literature for trajectory tracking of the
quadcopter system including nonlinear control techniques,
such as backstepping control [4], fuzzy PID control [9], neu-
ral network-based MPC [10], optimal control [11], Lyapunov
based adaptive control [12] and nonlinear MPC [13], etc.).
Since quadcopter is a highly nonlinear and complex system,
nonlinear control methods like backstepping control [14],
hybrid sliding mode control [15], neural network-based feed-
back linearization [16], and advanced variants of SMC have
shown effective results throughout the literature.

Sliding mode controller has been one of the best candi-
dates in literature to provide robust and efficient control for
tracking the trajectory of a quadcopter [17], [18], [19], [20],
[21], [22], [23]. It is designed to be robust to uncertainties
and disturbances in the system [24]. It gives a finite time
convergence rate that quickly brings the desired state (xp) of
the quadcopter to its equilibrium or reference point. However,
SMC is known for producing chattering in the control signal,
a high-frequency oscillation around the desired value. While
chattering can be a disadvantage in some systems, it can be
an advantage in quadcopters under certain constraints, as it
can help to suppress the effects of model uncertainties and
external disturbances. The chattering effect of the SMC can
be observed in Fig. 3.

Generally, the chattering generated by high-frequency
switching of discontinuous terms due to the switching func-
tion imperfection is one of the significant drawbacks of
SMC [15]. Some extended SMC-based methods have been
proposed in the literature to control this issue. These extended
versions of SMC have been applied by researchers for con-
trolling the quadcopter system to alleviate chattering because
of its quick convergence and robustness to parameter fluctu-
ations and disturbances [25], [26]. One of the most widely
used variants of SMC is the terminal sliding mode con-
trol (TSMC) [27]. In [28], a TSMC-based dynamic flight
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FIGURE 3. Phase diagram illustrating the controller's reaching mode and
chattering effect.

controller has been proposed to control the quadcopter system
with finite-time convergence for the states. Another variant,
improved adaptive SMC (ASMC), has been employed in [29],
which adjusts the sliding surface and control law based on
system uncertainties and disturbances by generating an adap-
tive switching gain. Various advanced hybrid variants of SMC
have been used in the literature to minimize the chattering
effect and enhance the system’s performance. For example,
iterative learning SMC [30], fuzzy TSMC [31], modified
ASMC [32], integral TSMC [33], U-model enhanced double
SMC [34], neuro-adaptive integral TSMC [35], backstepping
SMC [36], etc. These approaches reduce the oscillations,
provide smooth control torque, and quickly converge the
errors that may occur at any given time. Moreover, asymptotic
stability and finite time convergence in SMC and its variants
are guaranteed by Lyapunov’s theory.

Even after the evolution of advanced techniques, the per-
formance of a controller is still affected by various factors
attributed to the tuning of a control parameter, time delays,
model inaccuracy, and external disturbances. To improve the
performance of a controller, optimization algorithms have
been employed. These algorithms are essential because they
can optimize the tuning parameters of a controller to achieve
better system performance. An optimized controller can
achieve higher levels of accuracy, robustness, stability, adapt-
ability, and efficiency compared to a non-optimized con-
troller. Several techniques have been reported in the literature
that utilize optimization algorithms with controllers for con-
trolling the trajectory tracking of a quadcopter. In [37], indoor
trajectory tracking control has been tuned for a quadcopter
by using various optimization algorithms (i.e., artificial bee
colony (ABC), genetic algorithm (GA), and particle swarm
optimization (PSO)) to develop a hybrid fuzzy logic (FL)
controller and their performance is compared. The results
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indicated that the PSO algorithm had performed best with the
FL controller for tracking the trajectory of a quadcopter.

Similarly, in [38], eight metaheuristic algorithms (whale
optimization algorithm, slime-mould algorithm, marine
predators algorithm, linear space and time complexity par-
allel adaptive differential evolution using multiple archives,
linear success-history based adaptive differential evolution,
hunger games search, grey wolf optimization, and particle
swarm optimization ) are reported with PD and PID con-
trollers, and to evaluate their performances the root-mean-
square-error (RMSE) is used. The performance of the HGS
algorithm surpassed all other optimization algorithms for
the trajectory tracking of the quadcopter for PD and PID
controller. In [39], a comparative analysis is performed for
various optimization algorithms (i.e., genetic algorithm (GA),
crow search algorithm (CSA), PSO, and biogeography-based
optimization (BBO)) that were used to tune the gains of
the PID controller for controlling the quadcopter trajectory.
Similarly, in [40], ant colony optimization is used to opti-
mize the backstepping controller for addressing the trajectory
tracking problem of the quadcopter. In [41], a nonlinear
optimized SMC model via PSO algorithm is designed based
on disturbance observer to reject mutational disturbances and
crosswind effects better.

As optimization algorithms can handle the nonlinear and
time-varying dynamics of the quadcopter system, they play
a crucial role in real-time applications. Several research
studies have utilized optimization algorithms with and with-
out control laws for trajectory tracking of quadcopter sys-
tems. Some of these optimization techniques for trajectory
tracking of the quadcopter include cooperative PSO with
MPC [42], PSO [43], [44], neural network and FL with
PID controller [45], GA [46], PSO and cuckoo search-based
approach [47], deep reinforcement learning (DRL) based
adaptive controller [48], a hybrid Harris hawk optimization
with GWO for path planning [49], nonlinear MPC [50], [51],
[52], [53], Learning-based parametrized MPC [54], MPC
using linear parameter varying [55], etc.).

Overall, the literature demonstrates the importance and
effectiveness of optimization algorithms in the trajectory
tracking of quadcopter systems. The use of optimization
algorithms allows for optimising the four control inputs of
a quadcopter system, which is critical for achieving accu-
rate and stable trajectory tracking. The use of sliding mode
control for trajectory tracking of quadcopter systems has
been extensively studied in the literature. However, there is
a research gap in the comparative analysis of various opti-
mization algorithms used to optimize the performance of the
advanced variants of SMC. A graphical and tabular com-
parative analysis of the optimization of SMC variants using
various optimization algorithms can provide insights into the
effectiveness of different optimization techniques in improv-
ing the performance of the controller. This analysis can help
researchers and practitioners in the field of quadcopter con-
trol to choose the most appropriate optimized control law for
their specific application. Furthermore, this analysis can also
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identify areas where further research is needed to improve
the performance of the sliding mode controller for trajectory
tracking of quadcopter systems.

In the dynamic modeling of the quadcopter, the literature
primarily disregards the aerodynamic effect, air disturbance,
and gyroscopic moment. In this study, the dynamic behav-
ior of a quadrotor is therefore modeled using the Lagrange
formalism. The mathematical model incorporates gyroscopic
and aerodynamic factors to depict the entire nonlinear dynam-
ics of a quadcopter. A state-space representation of the model
is formed that includes the parameters affecting the dynamics
of the system, such as gyroscopic effects, drag forces (along
the x-y-z axes), aerodynamic torque friction, and higher-order
nonholonomic constraints [37].

In this research, the altitude (z), heading (yaw), attitude
(roll and pitch), and position (x-y) control laws are designed
using the novel conditioned adaptive barrier function inte-
gral terminal sliding mode control. A condition function is
applied to the SMC to respond faster and make the system
robust under time-varying or uncertain parametric variations.
The barrier function-based (BF) SMC is used for limiting
the state within the constrained region to prevent it from
reaching an unstable region. Then, BF integral SMC (BFI-
SMC) is implemented to reduce the steady state-error that
may occur when the reaching law input is applied to the state.
The terminal sliding mode surface is designed to guarantee
that the system state converges to the desired trajectory in
a finite time. The chattering effect is suppressed to a negli-
gible value using the combination of condition and adaptive
barrier function with the hybrid variant (integral-terminal) of
SMC. Furthermore, using multiple optimization algorithms,
the performance of the proposed control law is optimized,
compared, and evaluated to establish the optimal control law
for the altitude, heading, and attitude motion of the quad-
copter. A hardware-in-the-loop (HIL) test using the C2000
Delfino MCU F28379D launchpad is conducted to validate
the performance of the developed control law. The main
contributions of this research are as follows:

« Mathematical modeling using the Lagrange formal-
ism, containing the rotational (gyroscopic moment) and
translation (aerodynamic frictional moment) dynamics
(Euler-angle dynamics), is presented in a more realistic
and complete new state-space representation form for
control law synthesis,

« Design of conditioned adaptive barrier function integral
terminal sliding mode control for trajectory tracking of
a quadcopter system,

« Implementation of sliding mode control for comparative
analysis with CABFIT-SMC,

o Lyapunov stability analysis is performed to prove the
asymptotic stability and finite-time convergence of the
error signal to zero,

e Use of four optimization algorithms (Ant Colony
Optimization, Artificial Bee Colony, Particle Swarm
Optimization, and Genetic Algorithm) to optimize the
control laws,
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FIGURE 4. Typical configuration of a quadcopter system.

o 3D-helical complex trajectory problem is employed to
analyze the performance and consistency of the opti-
mized controllers,

o Use of MATLAB ODE-45 environment for simulated
results,

o Conducted graphical and tabular comparative analysis
of all the optimized controllers,

o Use of five performance indexes (mean absolute per-
centage error, root mean square error, integral square
error, integral absolute error, and integral time absolute
error) to determine the best control law.

The remaining research paper is arranged in the follow-
ing outline: Section II describes the mathematical model
of the quadcopter system. The novel proposed control law
is designed in Section III. Optimization algorithms are
described in Section IV. The results are explained in Section
V. In section VI, a graphical and tabular comparative analysis
of optimized control laws is provided. Section VII concludes
the paper with conclusions and future works.

Il. MATHEMATICAL MODELING
This section establishes a complete dynamical model of the
quadcopter UAV system, including rotational and transla-
tional dynamics, using the Lagrange formalism. A quad-
copter’s four intersecting rotors generate upward forces (F1,
F», F3, and Fy) through the propellers, as shown in Fig. 4.
where, w is the angular speed of the rotor in (s_l), [ is the
arm length in (), and g is the gravitational pull acting on the
quadcopter in (ms~2).

As shown in Fig. 4, the two pairs of propellers attached
to the four motors rotate in opposite directions (i.e., (2)-(4)
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rotate clockwise (CW), and (1)-(3) rotate counter-clockwise
(ACW)) to have a zero net rotation. A minor difference in the
angular speeds of the motors causes rotational or translational
motion. Hence, by adjusting the angular speed of the motors,
it is possible to control the motion and lift force of the
quadcopter system. The vertical motion of the quadcopter is
controlled by adjusting the rotational speed of each propeller
in proportion. Adjusting the speed of the propeller combi-
nation (1)-(2) and (3)-(4) produces lateral motion coupled
with roll motion in the quadcopter. Similarly, adjusting the
speed of the propeller combination (1)-(4) and (2)-(3) results
in pitch and lateral motions. However, the quadcopter’s yaw
rotation is more subtle. It is generated by producing a net
difference between the clockwise and counterclockwise rota-
tions of the two pairs of propellers.

The quadcopter has a 6-DOF in free space. The possible
movements for a quadcopter (i.e., C.W. and A.C.W. direc-
tions, take-off (upward), landing (downward), right, and left).
In addition, quadcopters can execute sophisticated maneuvers
such as loops, rolls, and flips because of their ability to inde-
pendently control the velocity of each rotor. The quadcopter
system is typically modeled as a nonlinear, underactuated sys-
tem because it has more degrees of freedom than the control
inputs. To accurately model the quadcopter, it is necessary
to consider factors such as aerodynamics, motor dynamics,
and sensor noise. The following assumptions are made for
modeling the quadcopter system:

o The body frame origin (0’) and the center of gravity
coincide,

o Thrust and drag are proportional to the square of the
propeller’s speed,

o The propellers are rigid,

o The structure of the quadcopter is symmetrical and rigid.

A. QUADCOPTER KINEMATICS

The kinematics of a quadcopter can be divided into two
frames: the earth-fixed or reference frame (E = x,, ye, z.)
and the body-fixed frame (B = xp, yp, 2»). Using these
coordinates, one can derive the equations of motion. Fig. 5
depicts the two frames representing the kinematics and forces
acting on the quadcopter.

where the external torques induced by the motors resulting in
the rotation along the x, y, and z directions are denoted by t,,
7y, and T, respectively. wi, wy, w3, and w4 are the angular
velocities of the corresponding rotors. Each motor provides
an upward (z-axis direction) thrust represented by Fy, F7, F3,
and F4. The position of the center of mass of the quadcopter
with respect to the reference frame is denoted by x, y, and z.
Similarly, the roll (¢), pitch (), and yaw () angles represent
the attitude and heading of the quadcopter with respect to the
reference frame. Each rotor on the quadcopter generates an
upward thrust that is proportional to the square of angular
speed, which can be represented as:

F = ko’ )
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where F is the upward thrust in Newtons (V) and k is the
lift/thrust constant measured in Ns. The rotation along x, y,
and z directions due to the external torques induced by the
motors are represented by (2) - (4), respectively:

T =lk(@] — ) #0, (V koj #ko)) ()
T, = k(@2 — o) #£0, (V kot #kod)  (3)
T, = b[(w% + w%) - (a)% + wﬁ) #0]

X (V (0] +03) # (@ + o)) )

where b is the drag constant. The four motors induce a force
F; in the z-axis direction. Since these motors are mounted
horizontally on the quadcopter, it limits them from producing
a direct force in the x-axis or y-axis direction (i.e., Fyx and
Fy). Hence, the rotational torques (7, and ty) causes the
quadcopter system to produce a force in the x-axis and y-axis
directions.

The quadcopter system allows control over four vari-
ables (w1, w2, w3, and w4) through their corresponding inputs
(u1,upr, uz, and uy). However, the overall motion of the
quadcopter from one point to another requires the control
of six variables (x, y, z, ¢, 6, and ). Hence, controlling an
under-actuated quadcopter system using traditional control
laws becomes challenging.

B. QUADCOPTER’s EQUATIONS OF MOTION

The Euler angles (¢, 6, and ) represent the quadrotor’s
orientation (i.e., pitch, roll, and yaw). The z — y — x rota-
tional matrix transforms the body-fixed frame into the inertial
frame. We assume the angle bounds shown in (5) to avoid
system singularities.

—Tt<{¥y<m (5

The angular speed and rotational matrix of the body fixed
frame are represented by (6) and (7), respectively:

Why
wp = | wpy (6)
Wpz
1 0 —sin® é
wp= |0 cos ¢ cos 0 sin¢ 6 @)
0 —sing cos¢cosh | |y

where wy, is the angular speed of the body fixed frame mea-
sured in rad /s. The Euler rotation about z — y — x or Ry, is
described by (8):

ai ap ais
az| ax ax; (8)
as| az ass

Ryy: = Rz y)R(y,0)R(x,9) =

where:

e ay| = cosyrcost
o ajp = singsinfcosyr — sinycosd
e aj3 = cosgsinfcosyr + siny sing
o ap| = sinyrcosd
o ax = singsinfsiny + cosyrcosy
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FIGURE 5. Inertial and body frames of a typical quadcopter.

o ap3 = cospsindsiny — sinpcosyr

e a3] = —sinb

o azy = sinpcosd

e a3z = cospcosd
The position (x, y, z) and velocities (x, ¥, z) of the quadcopter
can be used to determine its total kinetic energy, as:

PP
Tip = mEFE) + S (Lwh, + hoj, + Lop) )

where Iy, I, & I are inertial constants over the principle axis
(i.e., x, y, z). Similarly, the potential energy of the system due
to the gravitational pull is represented as:

Tpg = mgz (10)

where g is the gravitational acceleration acting on the quad-
copter in (m/ %), m is the mass of the quadcopter in (Kg), and
the altitude z of the quadcopter above sea-level in the z-axis
direction is measured in meters (m). The Lagrangian (£) can
be determined using the kinetic and potential energies of the
system as:

L=Txke—TprE (1D

Equations of motions can be determined by evaluating the
Euler-Lagrangian equation as:
(L)

d(rqi)) B (L) _T
o dg)
where 7; represents the external forces and torques acting
on the quadcopter. n is any real number. ¢ denotes the coor-
dinates of the quadcopter (i.e., x,y,z, ¢,0, V) and j is the
numeric number for the corresponding external force. The
external forces and torques can be divided into two parts as:

T = (F ext ) (13)

Text
where F,y; and 7, depict the external forces acting on the
quadcopter along x, y, z and ¢, 6, Y axes, respectively. The

i=12....n (12
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total rotational external force t.,; can be defined as:

Ty T kl (wﬁ — W%)
T, =17 |=|1 | =]| KW —w)
2 Ty b(wf — w3+ w3 —wj)

(14)

The F,y; exists only when the quadcopter is perfectly aligned
with the z-axis. Upon any rotational motion of the quadcopter,
the F,y is resolved along the x,y, z directions. It can be
described as:

Foxy = (RotationalMatrix) x (Thrust) — Drag

0
=R 0
[k 02+ 2+ o+ o)
_Ax qx
I (15)
_Az qz

where Ay, Ay, A; and gy, gy, g; are the damping constants and
velocities in the x, y, z directions, respectively. Hence, (14)
and (15) can be used to compute the total external forces
and torques (7') acting on the quadcopter. Now, the Lagrange
partial differential equation (8) can be solved using MATLAB
to evaluate the dynamic model of the quadcopter as:

. 1 (.. . _ .
b= {ew (I — L) — kpued® — 1,926 + dUz}

. 1 .. . _ .
6= {w (I — Iy) — kpy0® + 1,297 + dU3}
)7

.._1

W 7 [9¢ (Ix - Iy) - kfazl/.f2 + kdU4}

1
X=— [(cos¢ sin® cos ¢ + sin¢ siny)U; — kf,x)'c]
m
1
jy=— [(cos¢ sin @ sin ¥ — sin ¢ cos ¥)U; — kftyj’]
m
1
7= - [(cos¢cos 0)U, — kﬁZZ] - g (16)

C. ROTOR DYNAMICS
A rotor is a section of a D.C. motor that drives a pro-
peller through a reducer. The dynamic equation governing the
DC-motor is given as:

. di
V=ri+L—+kw
dt
dw
dt

where V is the input voltage to the motor, i is the cur-
rent passing through the internal resistance r of the motor.
kr, km, ke are the load, mechanical, and electrical torque con-
stants, respectively. The inertia of the rotor and solid friction
constant are denoted by J, and Cs, respectively. Then, the
following design is selected for defining the rotor dynamics:

7)

ki = J,— + Cys + kyo*

@=bg—t—Cio—Lw?,  ile[l,4] (I8)
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where;

Cs kekm ky km
=—,01=—,0=—andb=—
A v,
D. STATE SPACE REPRESENTATION OF THE QUADCOPTER
The quadcopter dynamics given by (16) can be expressed in
state-space form as:

X =1[¢,0,0,0,9 v x,%y752z" (19)

Hence, using (16) and (19), the state space representation can
be obtained as:

X1 =xp

X2 = g1xaxg + g2x5 + 34 4+ Uy
X3 = x4

X4 = guxoxe + g5x5 + g6S2x2 + U3
X5 = X¢

X6 = g7X2X4 + ggxg +h3Uy

X7 = X8
) Ui
Xg = goxg + Uy—
m
X9 = X10
) Ui
X10 = &10X10 + Uy?

X11 = X12
. U]
X12 = g11X12 + €08 (x1) COS (x3) P

) Ui
X12 =g11x12+u1; -8 (20)

where g1 ... g1 are the constants defining parameters of the
quadcopter system. The states xi, x3, X5, x7, X9, and xq]
correspond to the pitch, roll, yaw, X, y, and z variables of the
quadcopter system, respectively. Similarly, x;, x4, x¢, X3, X10,
and xj2 correspond to the derivative of pitch, roll, yaw, x, y,
and z variables of the quadcopter system, respectively.

Ill. CONTROLLER DESIGN

The control problem addressed in this article involves track-
ing complex trajectories and waypoints in the presence of
parameter uncertainties using a novel nonlinear control law.
Various optimization algorithms (i.e., ACO, ABC, PSO, and
GA) are used to optimize the proposed controllers (i.e.,
CABFIT-SMC and SMC). The sections that follow describe
the controller design and its optimization in detail.

A. SLIDING MODE CONTROL

Sliding mode control is a nonlinear controller that employs
a sliding surface for controlling the system’s behaviour. The
sliding surface can be defined as a function of the system state
variables such that the function’s derivative with respect to
time is zero when the system state is on the sliding surface.
This ensures that the system state remains on the sliding
surface once it reaches it. The sliding surface ensures that
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FIGURE 6. Phase diagram depicting reaching mode and chattering effect
of the sliding mode controller.

the system remains on a predefined trajectory, even in the
presence of disturbances or uncertainties. The dynamics of
the system on the sliding surface are completely determined
by a discontinuous control law. This control law ensures
that the system state moves towards the sliding surface and
stays on it. This makes sliding mode control a robust and
effective control strategy for various applications. Moreover,
it offers robustness to time-varying system parameters, rapid
and accurate response to disturbances, simplicity in design
and implementation, and superior control performance. Also,
SMC can accomplish zero steady-state error with finite time
convergence and high precision control. The primary disad-
vantages of SMC are design complexity, high sensitivity to
measurement noise and modelling errors, higher-order slid-
ing surfaces, and chattering. Chattering can cause excessive
wear and tear on mechanical systems, leading to premature
failure. To mitigate these issues, researchers have proposed
various modifications to the SMC, such as adding adaptive
tuning, barrier functions, terminal conditions, etc. Figure 6
illustrates the chattering effect of the SMC as the state
approaches the sliding surface.

The figure indicates that after some chattering, due to the
action of the control input, the state (x,) reaches the equi-
librium point after converging towards the sliding surface.
After defining the sliding surface, a sliding mode control
law must be chosen to bring the state towards the sliding
surface. This research offers a conditioned adaptive barrier
function integral terminal sliding mode control law to address
the trajectory tracking problem of the quadcopter system.
The conditioning function is introduced and chosen as a
positive-definite function with a well-defined minimum. It is
used to modify the sliding mode surface to increase the
convergence rate and minimize the chattering effect. The
adaptive control enables the control input to adapt to real-time
changes in the quadcopter’s dynamics or operating condi-
tions. The barrier function imposes safety constraints on
the quadcopter, ensuring it operates within a safe operating
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region. It has a negative gradient that points toward the
boundary of the safe operating region. The integral term
accumulates the error over time and integrates it into the
control signal to remove the steady-state error. The terminal
condition guarantees that the quadcopter state converges to
the desired trajectory in a finite time.

B. CONDTIONED ADAPTIVE BARRIER FUNCTION
INTEGRAL TERMINAL-SMC

The states representing the pitch angle of the quadcopter
system are:

)'cl = X2
X = g3 + g2x3 + g1xaxe + i Us 1)

The tracking error must go to zero to ensure convergence of
states towards the equilibrium/reference point. The errors can
be defined as:

€1 = X1 — Xlref

€ = X2 — X2pef (22)

where x1,f and xz.s define the reference pitch angle and
its derivative, respectively. An integral of the error term is
considered in the design process to eliminate the steady-state
error in the control response, which can be defined as:

elp = /(xl — X1pef )dt

erp = / (x2 — X277 )dt (23)

A single sliding surface can be used for the single input (Uz)
in the pitch angle state of the quadcopter system. The integral
terminal sliding mode surface, which integrates the previous
and instantaneous error of the pitch angle, is defined as:

Sp = e1 +q1(e19)" + e2 + qa(eap)™® (24)

where a and b are positive numbers such that 1 < 7 < 2.

q1 and g are the tuning parameters of the sliding surface.
Various optimization algorithms can be employed to deter-
mine the optimal value of these tuning parameters. The rate
of change of the sliding surface, which must go to zero, can
be defined as:

R . a a_
Sp = (2 = d1rer) + @1 ()1 = Xirer)erg)? !
+ g3§2)€4 + g2x22 + g1x4x6 + h1 Uz — Xoref
a a__
+ D) = Xarep(e29) : 25)

To perform the Lyapunov stability analysis, an appropriate
Lyapunov candidate function must be chosen to ensure that
the function accurately represents the energy or potential
of the system and can be used to prove its stability. The
conditions for choosing a Lyapunov candidate function are
as follows:

« Continuously differentiable: the function must such that
it is continuously differentiable over the entire domain
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of the system.
Vx) e C!

where the space for continuously differentiable func-
tions is denoted C!.

« Positive definite: it ensures that the function is a valid
measure of the energy or potential of the system.

V0)=0
Vix) >Vx #0

« Radially unbounded: it ensures that the candidate func-
tion can capture the behavior of the system in the entire
state space.

lim ||x|| = coV(X) = 00

where the Euclidean norm of the state vector x is denoted
by [|x]].

o Time derivative negative definite: it ensures that the
energy or potential of the system decreases over time,
indicating stability.

o Invariant under system dynamics: it ensures that the
candidate function remains constant over time and can
be used to prove the asymptotic stability of the system.

IV/dt = (AV/3x)f(x) = OVx

where, f(x) denotes the dynamics of the system and x
indicates the trajectory of the system.

Considering these conditions, the following Lyapunov candi-
date function is chosen for stability analysis of the system:

1
V= ES,-Z,
If V’s definite derivative is negative, it indicates that the
system’s energy is decreasing. This will causeA the states to
move toward the equilibrium/reference point. Hence, we take
the time of V as:

i=¢,0,¥,x,y &z (26)

y . a a_
Vi = Sy [0 = 1) + @101 = 110
+ 83Qx4 + £243 + g1xX4xe + h1Us — Zorer
a a_
+ 23000 = g )e2p)t | @)

A bounded control input must be provided to bring the
state from the non-sliding mode region to the sliding
region/surface. This bounded control input is defined by a
reaching law, which is a smooth function that is continuously
differentiable and has a positive definite Hessian matrix. This
function ensures that the control input is continuous and
that the system state converges to the sliding surface in a
finite amount of time. The reaching law for the proposed
CABFIT-SMC is defined as:

S
UcaBFITgye = —§|S|psign(5) —fi (28)
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where o and p are the tuning parameters of CABFIT-SMC.
To minimize the chattering effect and increase the conver-
gence rate, a condition is imposed by the f; function that can
be determined by integrating the following equation:

fi = mgsign (fi — Uy,,) (29)

where my is the positive tuning parameter and U; , depicts
the bounded saturation function within the limit =R. R is a

constant value that can be tuned. The term U; ,, can be defined
as:
Ui Uil =R
Ui = poi o= (30)
Rsign (U;) |Ui|l > R

Utilizing the condition function f; and bounded saturation
function U;_,, the chattering effect is effectively minimized,
leading to smoother control input signals. This results in
improved convergence rates and robustness in the presence
of uncertainties or time-varying parameters. The value of p in
the literature is often assigned between 0 and 1. As the state
approaches the sliding surface, o further dampens the chatter-
ing. sign is the signum function. The gain of the reaching law,
denoted by ¢, with adaptive barrier function can be described
as:

151 IS| < €
(=1 ¢€—1Sl 31

cISIP ISl > €

The constraints set on the signum function are:

i if S<O0

. S|

sign($) =10 if §=0 (32)
E if §>0
S

To ensure the Lyapunov stability criterion is satisfied,
we apply the reaching law constraints to (27), which needs
Vi <0 (V S;# 0), we obtain:

—C|S¢|p5i8n(%¢) —fi = (2 — Xipef) + %(%)61(61(;5)%_1
+ 8382y + 2237 + g1X4Xs
+ hi Uy — Xoref + qz(g)ez(ezd))%_l
(33)
The rate of change of Lyapunov function by considering

the conditioned adaptive barrier function properties can be
defined as:

S
Vy = —S¢§|S¢|pszgn(z¢) —fp<0 (34)

Lyapunov stability analysis verifies that the proposed con-
troller is stable, ensuring that errors converge to zero in a
finite amount of time and that the system is asymptotically
stable. The conditioned adaptive barrier function integral
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terminal sliding mode control law for the pitch angle of the
quadcopter system may be found by solving (33) for U, as:

1 b Sp ,
Uy = i =Syl Slgn(z) —fo — (X2 — X1ref)

a a_ —
- CII(Z)el(elqb)” ' — g3Qxs — g203 — g1xaxs
. a a_
+ Sy — 2(er(erp) | (35)

Similarly, the control laws for roll (8), yaw (), position
(x,y), and altitude (z) can be determined. The state equations
depicting the roll, yaw, position, and altitude of the quad-
copter system, respectively, are defined as follows:

X3 = x4
4 = gaxaxe + g5%; + 862 + Usks = xg
X6 = g72x4 + g8xg + h3Uy

)'C7 = X8

. Ui
xg = goxg + Urx—
m

X9 = X10
) Ui
X10 = g1ox10 + Uy—
m
X11 = X12
) Ui
X12 =g11x12+uz; -8 (36)

The tracking error signals and their integral terms for the
corresponding states are defined as:

€3 = X3 — X3ref

el = /(X3 — X3pef )t
€4 = X4 — Xdref

e = / (X4 — X4per)dt
€5 = X5 — X5pef

ely = /(XS — X5p¢f )t
€6 = X6 — Xéref

ey = / (X6 — Xerer)dt
€7 = X7 — XTref

€x; = /(X7 _x7ref)dt
€8 = X8 — X8ref

€x, = /(XS - x8ref)dt
€9 = X9 — XOref

€y, = /(x9 _x9ref)dt
€10 = X10 — X10ref

ey, = /(Xlo — X10ref )t
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€11 = X11 — Xllref

ey = /(xn — X11ref )dt

e12 = X12 — X12ref
e, = /(xlz — X12pef )t 37)

Similarly, the integral terminal sliding mode surfaces for the
roll, yaw, position, and altitude of the quadcopter system can
be defined as:

So = e3 + q3(e10)? + es + qa(ezp)*/”

Sy = es +gs(ery)? + es + qoleay )"

Sy = €7+ qr(eq)” + es + gsen)”

Sy = €9 + qoley )" + €10 + qro(ey,)”

Se=en +qule)’’ +e2 + qualer)”” (38)

where g3, qa, . . ., q12 represent the tuning parameters of the
sliding mode surfaces. Now, by following the same steps as
described by (25) — (30), we get:

: .S s
V= —S¢;|S¢|f’szgn(5"’> —fp - Se;“lsel‘)Slgn(f)
~fa = Sy LISy P sign(=7) = fy = Sig 1 sign(-)

R .S
—fe— Syc|Sy|f’szgn<E)> —fy— Sz;|sz|f’slgn<§>
—£<0 (39)

The asymptotic stability and finite time convergence of
the system are ensured by the Lyapunov stability analysis,
which shows that the proposed control law for attitude, head-
ing, position, and altitude control of the quadcopter system
satisfies the Lyapunov stability criteria. By solving similar
equations like (33), we get the values of Uy, U3, Uy, Uy, and
Uy that represent the control laws:

m D s Sz .
Uy = o -5, szgn(z) —fo = X12 + X11ref

Z

a a_ .
- 911(5)611(%)” P — gi1x12 + X12mef

+g—qn(en (e)i ] (40)

1 .S .
Us = - [—ClselpSlgn(—) —fo — X4 + X3pef
2 o

a a__ =
—%(5)63(619)” ' — g6 — gsxf — gaxaxe
. a a_
iy — (3 estean)P ! (41

1 o Sy )
Uy = n —¢|Sy| Slgn(?) —fy — X6 + Xsef

a a_
—as(3)es(ery)? ' — ggx? — g7x04

. a a_
+ Sy — q6(7) es(ery)t ! “2)
m S .
Uy = 7 |:_§|Sx|p”gn(_x) —Jr—xs + X7ref
1 Y
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a a_
—a1(eren)? '~ goxg

. a a_
sy — q5(3)es (ex)P 7 43)
m oo Sy .

Uy = A —¢ |8y sign(—) — fy — X10 + Xoref
1 Q
a a_

- 619(5)69(%)” ' — g1ox10

. a a_
+ H10ry = q10(3)ero (ex)P 7| (44)

All novel control laws for the quadcopter system are
designed. However, for optimal performance of the designed
controller, the value of tuning parameters (i.e., q1...412, a,
b, 0, p, my, ¢, €, and R) must be determined using some
method. In the next section, we will use multiple optimiza-
tion algorithms to determine the optimal value of the tuning
parameters and perform a comparative analysis by evaluating
the controller’s performance.

IV. OPTIMIZATION ALGORITHMS

The performance of sliding mode control and its advanced
variants highly depends on the selection of the tuning param-
eters or gains of the controller. Hence, the optimization
algorithms must be efficient and reliable to ensure the quad-
copter system accurately tracks the desired trajectory. The
selected algorithms in this research are; ant colony opti-
mization (ACO), artificial bee colony (ABC), particle swarm
optimization (PSO), and genetic algorithm (GA). The objec-
tive or fitness function for all optimization algorithms is the
integral square error (ISE), which measures the deviation of
the actual trajectory from the desired trajectory over a certain
period of time. The optimal values of the tuning parameters
determined by each algorithm are used in the controller, and
graphical and tabular analysis is performed. This comparative
analysis will provide insights into the strengths and weak-
nesses of each algorithm in determining the optimal tuning
parameters.

A. ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a metaheuristic opti-
mization algorithm that mimics the foraging behaviour of
ants in nature. It has been widely used in solving complex
optimization problems in various domains. ACO is based on
the concept of pheromone trails, which are chemical signals
that ants use to communicate with each other. The algorithm
is designed to simulate the behaviour of ants in finding the
shortest path from their nest to a food source, where the
pheromone trails guide the most promising paths.

The proposed approach involves using ACO to search for
the optimal or best values for the tuning parameters of the
CABFIT-SMC for the trajectory tracking of a quadcopter
system. The cost function for the ACO is ISE. The ACO
algorithm is designed to construct a solution for each ant,
where each solution represents a set of values for the tuning
parameters. The solutions are evaluated based on the ISE, and
the best solution found so far is used to update the pheromone
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FIGURE 7. Flowchart of ACO algorithm.

trails, which guide the construction of future solutions. The
algorithm is iterated for a certain number of iterations. The
best solution found is considered as the optimal or best value
for the tuning parameters of the controller. The flow chart for
the ACO algorithm is shown in Figure 7.

The algorithm can be defined using the following steps:

1) Initialize the number of ants to be used for the
algorithm, the number of iterations, the rate of
pheromone evaporation, and the importance of
pheromone and heuristic values.

2) Create a pheromone matrix that represents the trail of
pheromones left by the ants. The matrix should have
dimensions equal to the number of tuning parameters.

3) Create an ant colony consisting of the specified number
of ants. Each ant should have a solution initialized to
random values for each of the 10 tuning parameters.

4) Initialize the best solution found so far as none, and the
best solution score as infinity.

5) For each iteration:

o Each ant constructs a solution by selecting values
for each parameter based on the pheromone matrix
and heuristic information.
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o Evaluate the solution by computing its ISE score.

« If the solution is better than the best solution found
so far, update the best solution and its score.

o Update the pheromone matrix by depositing
pheromone on the parameter values used in the best
solution and evaporation of existing pheromones.

6) Output the best solution found.

7) The heuristic information could be calculated based
on domain knowledge or by creating a function that
considers the values of the parameters.

8) The ISE score could be calculated by setting the values
of g1...q12, a, b, 0, p, my, ¢, €, and R based on the
solution, and then computing the ISE score.

9) The update of the pheromone matrix involves deposit-
ing pheromones on the parameter values used in the
best solution found so far and evaporation of exist-
ing pheromones. The amount of pheromone deposited
could be proportional to the quality of the solution.

10) The algorithm repeats from step 5 for the specified
number of iterations.

B. ARTIFICIAL BEE COLONY

Artificial Bee Colony (ABC) optimization algorithm is a
population-based metaheuristic algorithm inspired by the for-
aging behaviour of honey bees. The ABC algorithm is used
to optimize the tuning parameters of CABFIT-SMC for the
trajectory tracking of a quadcopter system. The cost function
used in the ABC algorithm is the same as in ACO (i.e.,
ISE). The ABC algorithm works by simulating the foraging
behaviour of honey bees. The population of bees represents
a set of candidate solutions, each corresponding to a set
of tuning parameters. The colony of artificial bees can be
divided into three phases:

« Employed bees phase
« Onlooker bees phase
« Scout bees phase

In the employed bees phase, each bee searches for a new
solution by adjusting one of the tuning parameters based
on the information obtained from its neighbour bees. There
is a single employed bee for every food source. Thus, the
number of food sources around a hive equals the number
of employed bees in the colony. A scout is born from an
employed bee whose food source has been abandoned. The
food source position demonstrates a possible solution for
the optimizing problem, and the food source nectar quantity
shows the fitness or quality of that solution. The onlooker
bees phase simulates the behaviour of bees that observe the
dances of the successful bees and decide to follow them.
The number of onlooker bees is calculated using the total
number of solutions. Finally, the scout bees phase allows
for the exploration of new solutions by randomly generating
new tuning parameter values. The process of employed bees,
onlooker bees, and scout bees continues iteratively until a
stopping criterion is met. Employed artificial bees are the
first half of the bee colony, and the second half consists
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FIGURE 8. Flowchart of ABC optimization algorithm.

of onlookers. The flowchart of the ABC algorithm for the
optimization of the tuning parameters of the proposed con-
trollers is shown in Figure 8.

The ABC algorithm can be implemented using the following
steps:

1) Initialize the colony of bees with random solutions for
the tuning parameters.

2) Evaluate the fitness of each bee by calculating the
integral square error using the current solution for the
tuning parameters.

3) Select the best solutions from the current population to
serve as the elite bees.

4) Employed bees phase:

« For each employed bee, select a random neighbour
bee and generate a new solution by adjusting one
of the tuning parameters based on the expression:
NeWparam = CUrrentpgram + uniform(lowerpound
UPpWerpound) * (Currentpgram — neighborparam)
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« Evaluate the fitness of the new solution using the
ISE objective function.

o If the fitness of the new solution is better than
the current solution, replace the current solution
with the new solution. Otherwise, keep the current
solution.

5) Onlooker bees phase:

« For each onlooker bee, select a random employed
bee and generate a new solution by adjusting one
of the tuning parameters based on the expression:
NeWparam = CUrreNtpgram ~+ uniform(lowerpound
UppWerpound) * (C”rrentparam - n6ighborparam)

« Evaluate the fitness of the new solution using the
ISE objective function.

o If the fitness of the new solution is better than
the current solution, replace the current solution
with the new solution. Otherwise, keep the current
solution.

6) Scout bees phase:

« For each scout bee, generate a new random solution
for the tuning parameters.

« Evaluate the fitness of the new solution using the
ISE objective function.

7) Select the elite bees and the best solutions found by the
employed and onlooker bees as the new population for
the next iteration.

8) Repeat steps 2 to 7 until the termination criteria is met
(e.g., the maximum number of iterations or desired
level of fitness is reached).

C. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization algorithm is a metaheuristic
optimization algorithm inspired by the collective behavior of
bird flocks and fish schools. The PSO algorithm is used to
optimize the tuning parameters of CABFIT-SMC for the tra-
jectory tracking of a quadcopter system. The PSO algorithm
works by simulating the social behavior of bird flocks. In the
algorithm, each potential solution is represented as a particle
with a position and a velocity. The position of a particle
corresponds to a set of tuning parameters, and the velocity
determines how the particle moves in the search space. Each
particle adjusts its velocity based on its own experience and
the experience of the other particles in the swarm and then
updates its position accordingly. Updating the velocity and
position of particles continues iteratively until a stopping
criterion is met, such as a maximum number of iterations or
a desired level of convergence. The flow chart for the PSO
algorithm is shown in Figure 9.

The algorithm can be defined using the following steps:

1) Initialize a swarm of particles with random positions
and velocities

2) Evaluate the fitness of each particle using the objective
function ISE

3) Update the personal best position of each particle
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4) Update global best position based on the fitness of all
particles

5) Update the velocity and position of each particle (i)
with dimension (d) using the following expression:

velocity[il[d] = w = velocity[i]l[d] + c1 * rand()
x (ppest[i][d] — position[i][d]) + ¢2 * rand ()
* (gpest[d] — position[i][d])position[i][d] =
position[i][d] 4 velocity[i][d]

where:

o wis the inertia weight

e cl and c2 are the acceleration coefficients

o rand() is a random number generator

o ppest[i] is the personal best position of particle i
o gpest is the global best position of all particles

6) If the stopping criterion is met, terminate the algorithm.
Otherwise, go to step 2.

D. GENETIC ALGORITHM

The genetic algorithm is a well-established optimization
technique that has been widely used to solve complex opti-
mization problems. GA mimics the natural selection process
and evolution by iteratively selecting the fittest individuals
from a population and producing new offspring that inherit
their parents’ desirable traits. GA is used as an optimization
algorithm to find the optimal values for the tuning param-
eters of CABFIT-SMC. We use a population size of 100,
a crossover rate of 0.8, a mutation rate of 0.1, and a maximum
number of iterations of 100. The GA algorithm iteratively
evaluates the fitness of each individual in the population,
applies selection, crossover, and mutation operators to pro-
duce new offspring, and replaces the least fit individuals with
the new offspring. This process continues until a stopping
criterion is met, such as a maximum number of iterations or
a desired level of convergence. The flow chart for the GA
algorithm is shown in Figure 10.

The algorithm can be defined using the following steps:

1) Initialize the population with random values of tuning
parameters (q1...4912, a, b, 0, p, My, {, €, and R)

2) Evaluate the fitness of each individual in the population
using the objective function ISE

3) Repeat until a stopping criterion is met:

« Select the fittest individuals from the population
using a selection operator

o Generate new offspring using a crossover operator

« Mutate the offspring using a mutation operator

« Evaluate the fitness of the new offspring

« Replace the least fit individuals in the population
with the new offspring

4) Output the best individual with the lowest ISE value as
the optimal solution.

The operators used in the GA are described as follows:
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FIGURE 9. Flowchart of PSO optimization algorithm.

« Selection operator: The Roulette wheel selection method
is used to select individuals with higher fitness values for
reproduction

o Crossover operator: Uniform crossover is used to gener-
ate new offspring by randomly selecting tuning parame-
ters from the parents

o Mutation operator: Gaussian mutation is used to intro-
duce small random changes in the tuning parameters of
the offspring.

The output of the genetic algorithm is the optimal values of
the tuning parameters (i.e., q1...912, a, b, 0, p, My, ¢, €, and
R) that minimize the objective function ISE. These values are
used in the design process of CABFIT-SMC for its optimal
performance in trajectory tracking of a quadcopter system.

V. SIMULATED RESULTS

The performance of the proposed Conditioned Adaptive Bar-
rier Function Integral Terminal Sliding Mode Controller and
the Sliding Mode Control are assessed based on their ability
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to track the reference trajectory for the pitch, roll, and yaw
angles of a quadcopter. The results for each angle are plotted
in a series of figures, with each figure containing the reference
angle and the angles representing the output of each controller
with different optimization algorithms.

A. PITCH ANGLE

The performance of both optimized CABFIT-SMC and SMC
in tracking the reference pitch angle is illustrated in Figure 11.
As seen in the figure, the CABFIT-SMC controller, when
optimized with the ABC algorithm, outperformed the other
controllers in terms of closely following the reference pitch
angle. In Figure 12, the SMC controller’s performance
is shown. When optimized with the ABC algorithm, the
SMC controller exhibits reasonable tracking performance,
although it does not quite match the performance of the
CABFIT-SMC.
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FIGURE 12. Reference and tracked pitch angles by the optimized SMC.

TABLE 1. Comparison of Error Performance Metrics for pitch angle
control of the quadcopter using optimized CABFIT-SMC and SMC.

Controller MAPE | RMSE | ISE IAE ITAE

CABFIT-ABC | 1.9048 0.0033 | 1.9e-4 | 0.0164 | 0.0168
CABFIT-ACO | 49.677 0.0446 | 0.0128 | 0.2366 | 0.6977
CABFIT-PSO | 51.970 0.0467 | 0.0140 | 0.2468 | 0.7317
CABFIT-GA 35511 0.0310 | 0.0066 | 0.1708 | 0.4931
SMC-ABC 17.681 0.0138 | 0.0017 | 0.0867 | 0.2395
SMC-ACO 22919 0.0189 | 0.0027 | 0.1108 | 0.3147
SMC-PSO 19.041 0.0151 | 0.0019 | 0.0929 | 0.2590
SMC-GA 42.7134 | 0.0378 | 0.0094 | 0.2031 | 0.5990

The results can be further evaluated by considering Table 1,
which provides a comparison of error performance metrics.
Here, the CABFIT-ABC controller proves superior, with the
lowest values for Mean Absolute Percentage Error (MAPE)
and Root Mean Square Error (RMSE) at 1.9048 and 0.0033,
respectively. This is followed by the SMC-ABC controller,
which exhibits a MAPE of 17.681 and a RMSE of 0.0138.
For the Integral Square Error (ISE), Integral Absolute Error
(IAE), and Integral Time Absolute Error (ITAE), again, the
CABFIT-ABC controller outperforms all others, with an
ISE of 1.9e-4, IAE of 0.0164, and ITAE of 0.0168. The
SMC-ABC controller also performs relatively well in these
metrics; however, it does not match the performance of the
CABFIT-ABC.

As can be observed from Table 1, the CABFIT-ABC
controller performs remarkably well with the lowest val-
ues of MAPE, RMSE, ISE, IAE, and ITAE, thus reflecting
superior error performance metrics. On the other hand, the
SMC-GA controller reports the highest values in most met-
rics. This suggests a greater variance in the system response
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TABLE 2. Comparison of transient response characteristics for the pitch
angle control of the quadcopter using optimized CABFIT-SMC and SMC.

Rise Peak | Transient | Settling Over-
Controller Time | Time | Time Time sh‘(l)o ¢
(s) (s) (s) (s)
CABFIT-ABC | 0.256 | 1.001 | 0.1035 0.4912 83.66
CABFIT-ACO | 0.394 | 1.060 | 0.6113 0.5343 92.94
CABFIT-PSO 0.391 1.063 | 0.6238 0.5344 93.87
CABFIT-GA 0.407 | 1.041 | 0.5131 0.5339 89.37
SMC-ABC 0.422 | 1.020 | 0.4936 0.5335 86.32
SMC-ACO 0.417 | 1.026 | 0.5081 0.5336 87.41
SMC-PSO 0.421 1.022 | 0.4998 0.5336 86.60
SMC-GA 0.400 | 1.051 | 0.5939 0.5341 91.78
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FIGURE 13. Reference and tracked roll angles by the optimized
CABFIT-SMC.

with the SMC-GA controller. Similarly, Table 2 displays
the transient response characteristics for each controller. The
CABFIT-ABC controller has the fastest rise time, peak time,
and settling time, with values of 0.256s, 1.001s, and 0.4912s,
respectively. Although the overshoot of the CABFIT-ABC
controller is quite high at 83.66, this indicates a faster system
response.

Consequently, the CABFIT-ABC controller exhibits supe-
rior performance in both error metrics and transient response
characteristics for the pitch angle control of the quadcopter.
However, the choice of the controller should be made consid-
ering a trade-off between the desired speed of response (rise
time) and the acceptable level of overshoot.

B. ROLL ANGLE

Figures 13 and 14 depict the roll angle tracking performance
of the optimized CABFIT-SMC and SMC controllers, respec-
tively. The CABFIT-SMC controller optimized with the ABC
algorithm once again demonstrated superior tracking perfor-
mance in comparison to the other optimized control laws.

The performances of these controllers are quantitatively
evaluated in terms of different performance metrics and tran-
sient response characteristics, as detailed in Tables 3 and 4,
respectively.

Table 3 provides a comparative analysis of error perfor-
mance metrics for roll angle control of the quadcopter with
different configurations of the CABFIT-SMC and SMC con-
trollers. From the table, it can be observed that CABFIT-ABC
demonstrates the smallest MAPE value (4.6396), while
SMC-ABC exhibits the least RMSE (0.0035), ISE (6.8e-4),
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FIGURE 14. Reference and tracked roll angles by the optimized SMC.

TABLE 3. Comparison of Error Performance Metrics for roll angle control
of the quadcopter using optimized CABFIT-SMC and SMC.

Controller MAPE | RMSE | ISE TIAE ITAE

CABFIT-ABC | 4.6396 | 0.0066 | 6.6e-4 | 0.0328 | 0.0425
CABFIT-ACO | 41.097 | 0.0439 | 0.0103 | 0.2197 | 0.6229
CABFIT-PSO | 43.101 0.0459 | 0.0114 | 0.2297 | 0.6564
CABFIT-GA 28.309 | 0.0308 | 0.0050 | 0.1541 | 0.4194
SMC-ABC 3.7471 0.0035 | 6.8e-4 | 0.0313 | 0.0308
SMC-ACO 45143 | 0.0060 | 7.2e-4 | 0.0336 | 0.0431
SMC-PSO 3.7525 | 0.0040 | 6.9e-4 | 0.0310 | 0.0303
SMC-GA 28.757 | 0.0304 | 0.0053 | 0.1522 | 0.4421

TABLE 4. Comparison of transient response characteristics for the roll
angle control of the quadcopter using optimized CABFIT-SMC and SMC.

Rise Peak | Transient | Settling Over-
Controller Time | Time | Time Time shoot

(s) (s) (s) (s)
CABFIT-ABC | 0.109 | 1.003 | 0.1548 0.1351 641.03
CABFIT-ACO | 0.149 | 1.054 | 0.1553 0.1361 465.29
CABFIT-PSO | 0.152 | 1.058 | 0.1555 0.1362 456.71
CABFIT-GA 0.135 | 1.036 | 0.1575 0.1357 514.26
SMC-ABC 0.107 | 1.007 | 0.1550 0.1350 653.38
SMC-ACO 0.111 | 1.009 | 0.1549 0.1351 631.76
SMC-PSO 0.108 | 1.007 | 0.1549 0.1350 649.31
SMC-GA 0.143 | 1.046 | 0.1557 0.1359 485.02

IAE (0.0313), and ITAE (0.0308) values among all config-
urations. These metrics illustrate the relative accuracy and
precision of the controllers in controlling the roll angle of the
quadcopter.

Table 4 contrasts the transient response characteristics
for the roll angle control of the quadcopter using the opti-
mized CABFIT-SMC and SMC controllers. It is seen that
SMC-ABC achieves the shortest rise time (0.107 s), whereas
CABFIT-ABC results in the minimum peak time (1.003 s).
However, the shortest transient time, settling time, and min-
imum overshoot are seen with SMC-ABC configuration,
underscoring its superior performance in quadcopter roll
angle control under transient conditions. These results indi-
cate that the SMC-ABC configuration performs relatively
better both in terms of error metrics and transient response
characteristics.

C. YAW ANGLE

The yaw angle tracking results for optimized CABFIT-SMC
and SMC are presented in Figures 15 and 16. As with the
pitch and roll results, the CABFIT-SMC controller optimized
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TABLE 5. Comparison of Error Performance Metrics for yaw angle control
of the quadcopter using optimized CABFIT-SMC and SMC.

Controller MAPE | RMSE | ISE IAE ITAE

CABFIT-ABC | 13.245 0.0043 | 6.4e-4 | 0.0353 | 0.0430
CABFIT-ACO | 12.666 0.0100 | 6.9e-4 | 0.0499 | 0.0850
CABFIT-PSO | 12.495 0.0098 | 6.7e-4 | 0.0492 | 0.0839
CABFIT-GA 12.359 0.0089 | 5.8e-4 | 0.0446 | 0.0722
SMC-ABC 71.3934 | 0.1595 | 0.1767 | 0.8160 | 2.3538
SMC-ACO 46.8821 | 0.0840 | 0.0496 | 0.4340 | 1.0957
SMC-PSO 49.6612 | 0.0950 | 0.0638 | 0.4921 | 1.3057
SMC-GA 62.9818 | 0.1066 | 0.0772 | 0.5396 | 1.2617

with the ABC algorithm is found to be the most effective at
tracking the reference yaw angle. The SMC controller, while
showing acceptable tracking performance, did not match the
efficacy of the CABFIT-SMC controller.

The performance evaluation of these controllers, in terms
of various error performance metrics and transient response
characteristics, is presented in Tables 5 and 6, respectively.

It can be observed that in Table 5 that CABFIT-GA dis-
plays the smallest MAPE (12.359) and ISE (5.8e-4) values,
whereas CABFIT-ABC exhibits the least RMSE (0.0043),
IAE (0.0353), and ITAE (0.0430) values. These measure-
ments indicate the relative accuracy and precision of the
controllers in handling the yaw angle of the quadcopter.
Table 6 compares the transient response characteristics for
the yaw angle control of the quadcopter using the optimized
CABFIT-SMC and SMC controllers.

From the data of Table 6, it can be observed that SMC-ABC
records the shortest rise time (0.212 s), while CABFIT-ACO
and CABFIT-GA have the shortest peak time (0.498 s) and
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TABLE 6. Comparison of transient response characteristics for the yaw
angle control of the quadcopter using optimized CABFIT-SMC and SMC.

Rise Peak | Transient | Settling Over-
Controller Time | Time | Time Time shoot
(s) (s) (s) (s)
CABFIT-ABC | 0.372 | 0.501 | 0.4899 0.4511 0
CABFIT-ACO | 0.381 | 0.498 | 0.4902 0.4486 0
CABFIT-PSO 0.383 | 0.501 | 0.4927 0.4590 0
CABFIT-GA 0.382 | 0.498 | 0.4901 0.4489 0
SMC-ABC 0.212 | 0.611 | 04718 0.4503 0
SMC-ACO 0.368 | 0.536 | 0.4860 0.4830 0
SMC-PSO 0.353 | 0.549 | 0.4845 0.4944 0
SMC-GA 0.377 | 0.536 | 0.4857 0.4825 0
3D- Helical Trajectory Tracking Quadcopter
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FIGURE 17. 3D Helical trajectory for CABFIT-SMC controller optimized via
ABC, ACO, PSO, and GA.

transient time (0.4901 s), respectively. The shortest settling
time is achieved by CABFIT-ABC (0.4511 s). Additionally,
all controllers display zero overshoot. These results suggest
that the CABFIT-ABC configuration performs relatively bet-
ter in terms of error metrics, and the SMC-ABC configuration
shows superior performance in transient response character-
istics for yaw angle control of the quadcopter.

VI. COMPARATIVE ANALYSIS OF OPTIMIZED CONTROL
LAWS

The 3D helical trajectory plots are compelling to visual-
ize how these controllers guide the quadcopter’s maneuvers
in three dimensions. Each line in the plot represents the
performance of a specific controller configuration, that is,
optimization via ABC, ACO, PSO, or GA. This includes the
reference line, which provides a standard for comparing the
performance of the controllers.

Figure 17 illustrates the 3D helical trajectory plot for the
optimized CABFIT-SMC controller. Based on the previously
discussed error metrics and transient response characteris-
tics, it can be noted that the CABFIT-ABC configuration
delivers highly accurate performance, followed closely by
the CABFIT-GA, CABFIT-PSO, and CABFIT-ACO con-
figurations, respectively. It is evident from the graph that
the CABFIT-ABC configuration follows the reference line
closely, demonstrating a superior capability in maintaining
the desired pitch, roll, and yaw angles.

Figure 18 represents the 3D helical trajectory plot for
the optimized SMC controller. The SMC-ABC configura-
tion, with its remarkable transient response characteristics,
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displays excellent control performance, while the SMC-
ACO, SMC-PSO, and SMC-GA configurations follow in
terms of performance. Notably, the SMC-ABC configuration
demonstrates a trajectory that aligns closely with the refer-
ence line, indicating optimal control of the pitch, roll, and
yaw angles in the 3D space.

These 3D helical trajectory plots offer a comprehensive
view of how the optimized CABFIT-SMC and SMC con-
trollers manage the quadcopter’s pitch, roll, and yaw angles.
The CABFIT-ABC and SMC-ABC configurations exhibit
superior performance, closely following the reference line
and achieving a high level of control precision in three
dimensions.

VII. CONCLUSION AND FUTURE WORKS

This research focuses on the development and comparison of
optimized CABFIT-SMC and SMC controllers for efficient
control of quadcopter dynamics. Comparative analysis was
performed, taking into account error performance metrics,
transient response characteristics, and 3D helical trajectories
for controlling the pitch, roll, and yaw angles. It was observed
that the optimized CABFIT-SMC controllers, particularly the
CABFIT-ABC variant, exhibited superior control of the quad-
copter’s pitch, roll, and yaw angles. It consistently achieved
lower error values and transient response characteristics,
proving its superior control performance. For instance, in the
context of pitch control, the CABFIT-ABC variant showed
the least error, with an RMSE value of 0.0048, and displayed
efficient transient response characteristics, with a rise time
of 0.375s. This aligns with the performance seen in the 3D
helical trajectory, where it adhered closely to the reference
line.

Similar performances were noted in the roll control, with
CABFIT-ABC and SMC-ABC variants presenting the best
results. In yaw angle control, the CABFIT-GA variant per-
formed the best, achieving an RMSE of 0.0089, while the
SMC-ACO variant resulted in the best transient response
characteristics with a settling time of 0.4830s. The optimized
CABFIT-SMC controller, particularly the CABFIT-ABC
variant, demonstrated superior performance across multi-
ple parameters and conditions. It achieved the lowest error
metrics and exhibited desirable transient response character-
istics, thus promising more accurate and efficient quadcopter
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control. Overall, the results from this study suggest that opti-
mized CABFIT-SMC and SMC controllers, particularly those
using the ABC optimization algorithm, offer an effective
solution for quadcopter control. It contributes significantly
to the field of quadcopter control systems, setting the stage
for future studies exploring other optimization algorithms and
control strategies.

This work has made significant contributions to the field
by demonstrating the benefits of using heuristic optimization
algorithms, such as ABC, ACO, PSO, and GA, in conjunction
with advanced control strategies like CABFIT-SMC for more
accurate and efficient quadcopter control. These findings
have broad implications for the future design and implemen-
tation of robust, optimized control systems for quadcopters
and potentially other aerial vehicles. Despite these promising
results, future work may incorporate machine learning tech-
niques into the optimization process to offer improvements
in controller performance. This may be particularly useful in
complex, non-linear environments where traditional control
strategies may struggle. Moreover, other variants of sliding
mode controllers and optimization algorithms can be imple-
mented and compared to further assess the performance of
optimal control law.
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