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ABSTRACT Text-to-image synthesis is a fascinating area of research that aims to generate images based
on textual descriptions. The main goal of this field is to generate images that match the given textual
description in terms of both semantic consistency and image realism. While text-to-image synthesis has
shown remarkable progress in recent years, it still faces several challenges, mainly related to the level
of image realism and semantic consistency. To address these challenges, various approaches have been
proposed, which mainly rely on Generative Adversarial Networks (GANs) for optimal performance. This
paper provides a review of the existing text-to-image synthesis approaches, which are categorized into four
groups: image realism,multiple scene, semantic enhancement, and style transfer. In addition to discussing the
existing approaches, this paper also reviews the widely used datasets for text-to-image synthesis, including
Oxford-102, CUB-200-2011, and COCO. The evaluation metrics used in this field are also discussed,
including Inception Score, Fréchet Inception Distance, Structural Similarity Index, R-precision, Visual-
Semantic Similarity, and Semantic Object Accuracy. The paper also offers a compilation of the performance
of existing works in the field.

INDEX TERMS Text-to-image synthesis, generative model, GAN, generative adversarial networks, review,
survey.

I. INTRODUCTION
Text-to-image synthesis is an emerging field that seeks to
generate images based on textual descriptions. The ultimate
goal is to create an automated model that can understand the
visual representation of important words and produce corre-
sponding image contents. This task is challenging because
it involves multimodal learning with two modalities, text,
and visual, that require high levels of creativity and fluidity.
Despite the potential of text-to-image synthesis, there are
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still few publications in this field compared to other machine
learning domains such as object recognition. This is because
it is a complex task that requires the integration of natural
language processing and computer vision.

One of the most widely used neural network architectures
in text-to-image synthesis is the Generative Adversarial Net-
works (GANs) [1]. GANs have a generator network that
synthesizes images and a discriminator network that evalu-
ates the visual realism of the input images. Later, conditional
GANs (cGAN) [2] were introduced to condition the generator
with additional inputs, such as class labels. This conditioning
property is particularly useful in text-to-image synthesis, as it
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FIGURE 1. The general architecture of different categories of GAN-based text-to-image synthesis
approaches.

allows the model to generate images that reflect the meaning
of the text description. In recent years, several approaches
based on cGAN have been proposed to improve the perfor-
mance of text-to-image synthesis. These approaches aim to
generate images that are not only visually realistic but also
semantically consistent with the textual description. Some
of the main challenges in text-to-image synthesis include
ensuring the semantic consistency of the generated images,
preserving the fine details, and handling multiple objects or
scenes.

While previous surveys primarily focused on text-to-
image synthesis model architectures (such as basic network,
stacked architectures, attention mechanisms, Siamese archi-
tectures, layout text-to-image, dialog text-to-image, etc.) [3],
[4], or enhancement GANs categories (Semantic Enhance-
ment, Resolution Enhancement, Diversity Enhancement, and
Motion Enhancement) [5], our survey paper takes a unique
perspective by adopting a different taxonomy that specifically
targets image realism, multiple scene synthesis, semantic
enhancement, and style transfer.

By employing this taxonomy, our paper delves deeper
into the specific techniques associated with these four cru-
cial aspects of image synthesis. The image realism category
focuses on generating visually realistic images that are indis-
tinguishable from real ones. In contrast, the multiple scene
category aims to generate multiple objects in a single image
that correspond to different parts of the textual description.
The semantic enhancement category focuses on generating
images that are not only visually realistic but also semanti-
cally consistent with the given text. Lastly, the style transfer
category focuses on altering specific parts of the image con-
tent based on the textual description. Figure 1 illustrates
the four categories: image realism, multiple scene, semantic
enhancement, and style transfer.

II. FUNDAMENTAL
This section describes the fundamental components of the
existing text-to-image synthesis approaches, namely Gener-
ative Adversarial Networks (GANs) and text encoder.

A. GENERATIVE ADVERSARIAL NETWORKS
Generative Adversarial Networks (GANs) are a type of neural
network architecture that consists of two different networks:
a generator network G and a discriminator network D. The
generator network G takes a random noise vector z as input
and generates a new image, while the discriminator network
D takes the output of the generator and a real image x and
builds a classifier that tries to discriminate between them.
The objective of GANs is to train both networks against each
other, where the generator network tries to produce an image
that can be predicted as a real image by the discriminator
network, while the discriminator network tries to distinguish
the fake image (generated) from the real image.

To achieve this objective, GANs use a min-max game
theory. The generator network tries to maximize the chance
of fooling the discriminator network, while the discriminator
network tries to detect all images generated by the generator
network. Both networks are trained in a two-player min-max
game, where the objective function is defined as:

min
G

max
D

V (D,G) = Ex∼pdata
[
logD (x)

]
+ Ez∼pz

[
log (1 − D (G (z)))

]
(1)

where z denotes the random noise sampled from a multivari-
ate standard normal distribution pz = N (0, 1) and x denotes
the real images from true data distribution pdata.
Since the synthesized image content was completely ran-

dom in GANs, cGAN was proposed. cGAN receives other
inputs such as class labels and uses them to condition the gen-
erator from synthesizing desired outputs. With the additional
conditioning variable, the objective of cGAN is defined as
follows:

min
G

max
D
V (D,G) = E(x,c)∼pdata

[
logD (x, c)

]
+ Ez∼pz,c∼pdata

[
log (1 − D (G (z, c) , c))

]
(2)

where c denotes the additional conditioning variable
for cGAN to produce the corresponding image content.
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FIGURE 2. The overall architecture of GANs, cGAN, and GAN-INT-CLS. x denotes the real image while x̄ denotes the synthesized image.
fϕ denotes the text encoder while t denotes the text description. L denotes the adversarial loss produced by the discriminator.

The overall architecture of cGAN is similar to GANs and
is illustrated in Figure 2.

In the context of text-to-image synthesis, the condition-
ing property of cGAN is particularly useful as it allows the
generator network to produce image content that reflects the
meaning of the input text. Therefore, cGAN has been widely
adopted in this field and has brought significant improve-
ments. One notable example is GAN-INT-CLS [6], which
uses text embedding as the conditioning variable. The genera-
tor takes a random noise vector and the text embedding of the
input text as input and outputs a synthesized image that is con-
ditioned on the input text. The discriminator network takes
the synthesized image and the corresponding text embedding.
It classifies whether the image is real or fake and whether the
image is semantically consistent with the corresponding text
description.

By conditioning the generator network on the input text,
the synthesized images can be more consistent with the input
text and have a higher degree of realism. Since the introduc-
tion of GAN-INT-CLS, numerous works have been proposed
that build upon the cGAN architecture to further improve the
quality of the synthesized images.

B. TEXT ENCODER
In text-to-image synthesis, the goal is to generate realistic
images that match the given textual description. However,
to use the textual description as a conditioning vari-
able, it needs to be transformed into a text embedding.
Reed et al. [6] proposed a pre-trained hybrid of character-
level convolutional neural network with a recurrent neural
network (char-CNN-RNN) [7] to obtain the text embedding.
The char-CNN-RNN consists of a character-level CNN or
LSTM to encode the text and a GoogLeNet image classi-
fication model to encode the image. The network aims to
minimize the distance between the encoded image and text
by using the image vector to guide the text vector based on
the image similarity. After training, the output text embed-
ding contains the intended visual attributes of the image and
is more effective than traditional text embeddings such as
Word2Vec [8] and Bag-of-Words [9]. Besides char-CNN-
RNN that has been widely used in prior works [10], [11],
[12], [13], [14], [15], Dash et al. [16] proposed to use Skip-
Thought vectors [17] as the conditioning variable.
However, using a fixed text embedding as a conditioning

variable can cause a data discontinuity problem and affect
the performance of the generator. This is due to the large

dimension of the text embedding being transformed into a
smaller dimension and most of the information is lost during
this process. To solve this issue, Zhang et al. [10] introduced
a text conditioning augmentation function that synthesizes
more text embedding samples from a small amount of text
embedding samples. The text embedding is transformed to
produce the mean cµ and covariance cσ of the text embed-
dings. The augmented text embedding is then computed by
adding a random noise vector from a Gaussian distribution to
the scaled covariance and adding the mean as shown below:

c̄ = v× cσ + cµ (3)

where v is the random noise vector from the Gaussian
distribution.

To ensure the smoothness of the conditioning manifold
and prevent overfitting, a regularization term is formu-
lated as an additional objective function to the generator.
The Kullback-Leibler (KL) divergence is computed between
the conditioned Gaussian distribution and standard Gaus-
sian distribution. This regularization term helps to increase
the semantic consistency of the model and ensure that the
synthesized images are associated with more semantically
related text embeddings. This function has been continuously
adopted by the rest of the prior works.

Additionally, Xu et al. [18] proposed to use the
bi-directional LSTM (BiLSTM) to obtain the features of
each word as a word vector and the features of the whole
sentence as a sentence vector. They pre-trained a Deep Atten-
tional Multimodal Similarity Model (DAMSM) to obtain
the text encoder and image encoder for producing the text
embedding that matched each image region. Recently, pre-
trained transformer-based models such as BERT [19] have
become popular in text-to-image synthesis for obtaining text
embeddings [20], [21].

III. IMAGE REALISM APPROACHES
Reed et al. [6] proposed the Matching-aware Manifold-
interpolated GAN (GAN-INT-CLS) for synthesizing images
based on text descriptions. By using a hybrid character-level
convolutional recurrent neural network (char-CNN-RNN),
GAN-INT-CLS is able to encode text descriptions into image
features that can be used as input to a deep convolutional
GANs (DCGAN). This enables the generator to produce
images conditioned on the encoded text description, while the
discriminator is trained to distinguish between realistic and
semantically consistent images based on both the received
image and encoded text description.
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FIGURE 3. The overall architecture of (a) StackGAN and (b) StackGAN++. The main difference between them is
that StackGAN is trained stage by stage while StackGAN++ is trained in an end-to-end manner. h denotes the
hidden features produced by the generator.

FIGURE 4. The overall architecture of AC-GAN and TAC-GAN. y denotes the class label. The
discriminator of both models is trained with an additional loss Lc from the auxiliary
classification task.

While GAN-INT-CLS is effective at generating images
based on text descriptions, it lacks the ability to control the
location and pose of the object in the image. To address this,
Reed et al. [22] presented the Generative Adversarial What-
Where Network (GAWWN) that generates objects based on
the text description at the location where they should appear.
GAWWN includes a generator and a discriminator, and has
two models for conditioning: a bounding-box-conditional
GAWWN that uses a bounding box to set the location of
the object, and a keypoint-conditional GAWWN that uses a
set of coordinates to set the location of the object part. The
conditioning model provides an additional supervised signal
during the learning process of GAWWN.

Nguyen et al. [23] proposed an additional condition net-
work, referred to as Plug and Play Generative Network
(PPGN) that can control the generative model to produce
different types of images. The architecture of PPGN consists
of a generator, a discriminator, and a condition network. The
generator produces images from the input noise vector and
the output of the condition network. The discriminator dis-
tinguishes between real and generated images. The condition
network is responsible for mapping the textual description
to the corresponding noise vector that controls the genera-
tive model. The generator in PPGN is based on the Deep
Generator Network-based Activation Maximization (DGN-
AM) method, which produces good quality high-resolution
images. The condition network is trained using a pre-trained
model (VGG) to extract features for unseen image types.
PPGN uses an iterative optimization approach to generate the
noise vector that maximizes the diversity of the synthesized
image through the condition network.

Zhang et al. [10] proposed StackGAN which is a multi-
stage GAN architecture that generates high-resolution images
with sufficient details and important information about the
objects. The architecture of StackGAN consists of two
GANs: Stage-I GAN and Stage-II GAN. Stage-I GAN con-
structs a low-resolution image with basic color and primi-
tive shape of the object based on the text description. The
layout of the background is built from random noise. The
low-resolution image generated from Stage-I still has many
defects and rough content. Hence, Stage-II GAN continues
to enhance the low-resolution images from Stage-I GAN by
fixing the defects in the images, enhancing the detail of the
object, and improving the overall image quality to produce
high-resolution realistic images.

However, StackGAN has a risk of mode collapse if Stage-I
GAN cannot synthesize the image correctly based on the text
description. Therefore, StackGAN++ [11] was introduced as
an improved version of StackGAN. The architecture of Stack-
GAN++ consists of multiple generators and discriminators
arranged in a tree-like structure. Each generator generates
images at different scales, from small to large, to achieve
the final output. This multi-scale structure helps to mitigate
the mode collapse problem and generates more diverse and
realistic images. The architecture of StackGAN and Stack-
GAN++ is illustrated in Figure 3.
Auxiliary classification is a technique used in Generative

Adversarial Networks (GANs) to enhance image synthesis by
increasing global coherence. The method involves utilizing
class information to improve image structural coherence, and
this has been demonstrated to be effective in prior works [24].
To further improve the performance of auxiliary classification
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in GANs, Dash et al. [16] proposed a novel method called
Text Conditioned Auxiliary Classifier GAN (TAC-GAN),
as shown in Figure 4. TAC-GAN consists of a generator
and discriminator, and the discriminator is trained with an
additional loss from the auxiliary classification task. The dis-
criminator of TAC-GAN predicts image realism and semantic
consistency in addition to the class label of the input image
and text description.

However, TAC-GAN may struggle to generate a variety of
image types. To address this issue, Cha et al. [25] put forward
an improved version of TAC-GAN called Text Conditioned
Semantic Classifier GAN (Text-SeGAN). Text-SeGAN over-
comes this limitation by using a triplet selection strategy
during training. The triplet selection strategy selects the mis-
matched text-image pair between a real or fake image with
different descriptions. This ensures that the model is trained
to generate images that are semantically consistent with the
input text descriptions, and not just limited to a pre-defined
set of classes. Furthermore, Text-SeGAN uses a semantic
classifier as the discriminator, which outputs classified results
and predicts the semantic consistency of the input image pair
along with the relationship with the class label. This allows
the model to improve the semantic consistency between the
generated image and the input text description, resulting in
more diverse and realistic images.

Zhang et al. [26] proposed a single stream generator with
a hierarchically nested discriminator structure that contains
multiple discriminators with only one generator trained end-
to-end, called Hierarchically-nested Adversarial Network
(HD-GAN). This architecture can synthesize higher resolu-
tion images (512 × 512 pixels) with photorealistic content,
and it has the advantage of training the generators to syn-
thesize more complex images and increase the resolution
of the generated image. The discriminators are located at
the intermediate layer of the generator, and the generator
needs to compete with all discriminators at different hierar-
chies to learn the features of different image scales provided
by the discriminators. The lower resolution side constructs
the basic image structure while the higher resolution side
enhances the image details. The lower generator output can
use the knowledge from higher discriminators due to end-to-
end training. Compared to other GANs, HD-GAN does not
require multiple internal conditioning from text descriptions
like StackGAN and additional object labels like TAC-GAN.

One potential drawback of multi-stage architectures
is that the final generated image is highly dependent
on the initial image. If the initial image is not well-
generated, the method may struggle to generate the final
image accurately. To address this issue, Zhu et al. [27] pro-
posed a Dynamic Memory Generative Adversarial Network
(DM-GAN), which uses a multi-stage GAN architecture with
a memory module to handle the initial image generated after
the first stage of generation. The authors added a key-value
memory structure to the DM-GAN model, where the feature
of the initial image becomes a query to obtain features from

the memory module and use them for image refinement.
Additionally, DM-GAN leverages a memory writing gate to
dynamically choose the words related to the generated images
instead of using the same word throughout the whole image
generation process. This approach helps to mitigate the issue
of highly dependent generated images and leads to more
diverse and realistic image generation.

Gao et al. [28] introduced a Perceptual Pyramid Adversar-
ial Network (PPAN), which incorporates the pyramid frame-
work into the generator architecture to produce multi-scale
images directly from text descriptions. The PPAN architec-
ture includes a generator and three discriminators, each with
a specific focus on different aspects of the generated images.
During training, the PPAN model employs a perceptual loss
based on pre-trained VGG features, as well as an auxil-
iary classification loss, to synthesize highly realistic images.
The inclusion of both perceptual and auxiliary classification
losses further enhances the realism of the generated images.

Instead of using multiple discriminators in the networks,
Huang et al. [29] presented a Hierarchically-fused Genera-
tive Adversarial Network (HfGAN) that contains only a
single discriminator. The HfGAN approach adaptively fuses
multi-scale visual features from different layers to synthesize
large-scale images directly. Another approach proposed by
Souza et al. [30] is a simpler text-to-image model architec-
ture. This model is trained directly on 256 × 256 large-scale
images without the involvement of multiple generators and
discriminators. The authors also introduced a new sentence
interpolation strategy for smoother conditional space.

Ensuring semantic consistency in initially generated
images is crucial to producing high-quality results. To address
this issue, Qi et al. [31] proposed a Multi-resolution Par-
allel Generative Adversarial Networks (MRP-GAN). The
MRP-GAN structure maintains the initial image semantics
throughout the generation process and includes an attention
mechanism to fine-tune the fine-grained details of the synthe-
sized images. MRP-GAN comprises one generator and three
discriminators, including a response gate to merge multiple
resolution feature maps to enhance image realism.

Inspired by the effectiveness of self-supervision in diver-
sifying the model representation, Tan et al. [13] investi-
gated self-supervision in the text-to-image synthesis field,
proposing a self-supervised text-to-image synthesis (SSTIS)
method. SSTIS creates additional supervision signals to
enhance the performance of both the generator and the
discriminator. The authors also integrated several tech-
niques to stabilize the training of GANs for better per-
formance. After that, several works [14], [15] have been
proposed to investigate self-supervision into multi-stage
training. Tan et al. [14] proposed Self-Supervised Bi-Stage
GANs (SSBi-GAN) that applies self-supervision to all the
stages of the model while Tan et al. [15] proposed Self-
Supervision Text-to-Image GANs (SS-TiGAN) that applies
self-supervision to only the last stage of the model. The self-
supervision is able to diversify the model representation in
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FIGURE 5. The overall architecture of SSTIS, SSBi-GAN, and SS-TiGAN. Lss denotes the self-supervision loss.

TABLE 1. Summary of text-to-image synthesis approaches in the image
realism category.

multi-stage architecture to increase the synthesized image
realism. The architectures of [13], [14], and [15] are illus-
trated in Figure 5.
To further improve text-to-image synthesis, Zhang et al.

[32] presented a multi-perspective fusion method. Their
approach involves improvements to both the generator and
discriminator. In the generator, a dynamic selection method
(DSM) is proposed to enhance the connection between the
text and image features. During training, DSM can dynam-
ically pick the relevant word vectors for various picture
attributes, resulting in a more effective fusion of features.
In the discriminator, the authors proposed a multi-class dis-
criminant method (ATD) with a mask segmentation picture as
an additional type to increase the discrimination performance.
This method improves the accuracy of the discriminator,
ensuring that the generated images are more realistic.

Another model, known as Erudite Generative Adversarial
Network (EruditeGAN) was presented by Zhang et al. [33].
EruditeGAN aims to incorporate multiple image distributions
that are relevant to the input image to familiarize the image
distribution and synthesize high-quality images. By incorpo-
rating relevant image distributions, EruditeGAN ensures that
the distribution of the image that needs to be synthesized is
more prominent, resulting in high-quality outcomes.

The summary of the existing text-to-image synthesis with
image realism approaches is presented in Table 1.

IV. MULTIPLE SCENE APPROACHES
The synthesis of complex scenes from text descriptions
requires an approach that can generate a semantic struc-
ture for the image. Hong et al. [34] proposed a hierarchical
method that generates complex scenes by inferring image
layout. Themodel consists of a layout generator and an image
generator. The layout generator creates a semantic layout by
placing bounding boxes around every object in the image,
providing a useful structure to the image. The image genera-
tor then refines the object shape inside the bounding box and
converts the layout to the final image. A single discriminator
is responsible for predicting the image realism and semantic
consistency of the generated image and text description. This
approach allows for the generation of desired images by
modifying the semantic layout, such as adding or deleting
objects or changing the size and location of the object.

To control the objects in the generated image, Hinz et al.
[35] proposed a method called the object pathway, which
was incorporated into the generator and discriminator of
AttnGAN. The authors used a bounding box and object label
for object generation instead of a semantic layout to reduce
computation. In Li et al. [36], an Object-driven attentive GAN
(Obj-GAN) was described, which used an attention mecha-
nism and semantic layout to focus on the object. By using
these techniques and a multi-stage GAN architecture, Obj-
GAN can effectively improve the object details based on
related words and produce fine-grained high-quality images.

Another method is presented by Hinz et al. [37] where a
global pathway is used to construct the overall image back-
ground structure and the location where the objects should be
located. The authors added an object pathway to synthesize
the desired objects to the background constructed by the
global pathway. The object pathway learns the features of
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FIGURE 6. The overall architecture of AttnGAN. A1 and A2 denote the attention modules, s and w denote the
sentence-level features and word-level features, and LDAMSM denotes the DAMSM loss.

TABLE 2. Summary of text-to-image synthesis approaches in the multiple
scenes category.

each object, and the objects are generated iteratively with
the corresponding text description and object class label.
OP-GAN is able to synthesize a larger image compared to
Obj-GAN by using a larger generator. In addition, the paper
introduced a new evaluation metric called semantic object
accuracy (SOA) that takes into consideration a single object,
the image subregion, and the corresponding text description.

Sharma et al. [38] used dialogue instead of text description
to providemore information about the scene to generate better
quality images with multiple objects. The authors proposed
Chatpainter, which uses a dialogue module that can be added
to any text-to-image synthesis method. Their method is based
on StackGAN, where the dialogue is encoded and combined
with text description features before being sent to the condi-
tional augmentation module.

Wang et al. [39] proposed an end-to-end text-to-image
synthesis, which is capable of generating multi-object images
using object and shape information. By fusing the synthe-
sized semantic layout with text semantics and hidden visual
features, the approach is able to manipulate complex image
scenes. This approach involves training a GAN architecture,
which mainly follows the StackGAN++ model, but with
the additional input of image layout for the discriminators.
During training, the network iteratively optimizes the spatial
layouts to produce coarse-to-fine images. This means that
the model first generates a rough sketch of the image, which
gradually becomes more detailed and refined. The use of
object and shape information helps to guide the image genera-
tion process, resulting in more accurate and visually coherent

images. The summary of the existing text-to-image synthesis
with multiple scene approaches is presented in Table 2.

V. SEMANTIC ENHANCEMENT APPROACHES
One limitation of using global sentence features as the con-
ditioning input is that it lacks fine-grained detail for each
individual word, which can adversely affect the quality of the
generated image.

In order to address this limitation, Xu et al. [18] proposed
an approach called Attentional Generative Adversarial Net-
work (AttnGAN). AttnGAN combines the attention tech-
nique with a multi-stage architecture from StackGAN++
to achieve fine-grained text-to-image synthesis. The model
consists of a text encoder and an image encoder that is pre-
trained to capture the relationship between each word in
the text description and the corresponding visual features
in the generated image. By leveraging both word-level and
sentence-level information, the Deep Attentional Multimodal
Similarity Model (DAMSM) loss is computed to measure the
similarity between the generated images and the correspond-
ing text descriptions. With the attention technique, AttnGAN
can generate fine-grained details in the generated images
based on the related words in the text description. This allows
for amore accurate and visually pleasing representation of the
input text, resulting in higher quality synthesized images. The
overall architecture of AttnGAN is presented in Figure 6.
The Multi-Modal Vector Representation (MMVR) pre-

sented by Sah et al. [40] is a two-way image and text gener-
ation approach that aims to generate images based on textual
descriptions and vice versa. MMVR comprises an image gen-
erator that generates images from random noise, and a caption
generator that generates the desired text description based on
the generated image. One unique feature of MMVR is that
the caption generator is used to update the image generator
to generate images that are more relevant to the original text
description. Additionally, the n-gram cost function is used
to improve the generalization capability of the network in
the text feature. To further improve image quality, MMVR
leverages multiple sentence conditioning by involving sev-
eral text descriptions with similar meanings. This helps the
model generate images that are consistent with different text
descriptions that share a similar semantic meaning.
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FIGURE 7. The overall architecture of MirrorGAN. t̄ denotes the generated
text description. Lt denotes the recaption loss.

FIGURE 8. The overall architecture of SD-GAN. Lcl denotes the
contrastive loss used to minimize the distance between the features to
explore semantic commons. The rest of the loss computation is similar to
AttnGAN.

Similarly, Qiao et al. [41] proposed MirrorGAN, which is
a modified version of AttnGAN that aims to improve the
semantic consistency between the generated image and the
input text. MirrorGAN generates an image from the input text
and then reproduces a text description based on the gener-
ated image using a text-regeneration module. The semantic
consistency between the input text and the generated text is
measured to ensure that the generated image is semantically
consistent with the input text. The overall architecture of
MirrorGAN is depicted in Figure 7.

Generating images from different text descriptions that
express the same image is a significant challenge in text-to-
image generation. The Semantics Disentangling Generative
Adversarial Network (SD-GAN) proposed by Yin et al. [42]
addresses this challenge by capturing the semantic commons
between different text descriptions to ensure consistency in
the image generation process, while retaining the diversity
and detail of the text descriptions. SD-GAN uses a Siamese
mechanism to capture the semantic commons by training the
discriminator to determine the similarity between the gener-
ated image for different descriptions with the same original
image and different original images. In each Siamese branch,
the generator is built using a multi-stage GAN architecture
with a Semantic-Conditioned Batch Normalization (SCBN)
layer that embeds the semantic details and diversity into the
visual representation. The overall architecture is illustrated in
Figure 8.

Tan et al. [43] introduced Semantics-enhanced GAN
(SE-GAN) that also utilizes the Siamese network architec-
ture. Instead of using a single image and text description,
SE-GAN takes two images with different text descriptions
as input to the Siamese network. The objective of the
Siamese network is to maximize the similarity between
the original and generated images while minimizing the
similarity between images of different text descriptions to
ensure semantic consistency. Previous text-to-image synthe-
sis models like StackGAN, StackGAN++, GAN-INT-CLS,
and HD-GAN used the whole text description to synthesize
the image, while AttnGAN utilized attention mechanisms to
focus on individual words at both the sentence and word
level. Unlike AttnGAN and Obj-GAN, which use object-
driven attention mechanisms to focus on the object, SE-GAN
only considers important words and ignores the others,
thereby improving the accuracy and stability of the generation
process.

To enhance the semantic consistency during text-to-image
synthesis, Wang et al. [44] devised Textual-Visual Bidirec-
tional Generative Adversarial Network (TVBi-GAN). This
model utilizes several semantic related modules to enhance
semantic consistency during the image synthesis process.
It is built on the BiGAN architecture that consists of three
main components: generator, discriminator, and encoder. The
encoder maps the real image into latent data, while the dis-
criminator identifies whether the received data is from the
encoder or synthesized.

To improve the quality of the generated images further,
Cheng et al. [45] proposed the Rich Feature generation text-
to-image synthesis (RiFeGAN) model. This model retrieves
multiple related text descriptions and utilizes the text features
to enrich the input vector used for image synthesis. The
model is based on the AttnGAN architecture, which allows
the model to focus on different regions of the image while
generating it.

In contrast to the multi-stage architecture that has been
widely used, Tao et al. [46] introduced a Deep Fusion Gen-
erative Adversarial Networks (DF-GAN) that uses a one-
stage text-to-image backbone to synthesize high-resolution
images directly. The authors also introduced a novel Target-
Aware Discriminator that consists of a Matching-Aware Gra-
dient Penalty (MAGP) and One-Way Output. This approach
improves text-image semantic consistency without introduc-
ing new networks. Moreover, they presented a revolutionary
Deep text-image Fusion Block (DFBlock), which deeply and
effectively fuses text features into every layer of the generator.

On the other hand, Zhang et al. [47] proposed a Cross-
Modal Contrastive Generative Adversarial Network (XMC-
GAN) that maximizes the mutual information between image
and text descriptions to handle text-to-image synthesis. This
is achieved through various contrastive losses that cap-
ture inter-modality and intra-modality correspondences. They
proposed an attentional self-modulation generator with a
one-stage backbone to produce a strong text-image corre-
lation during the synthesizing process. Additionally, they
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TABLE 3. Summary of text-to-image synthesis approaches in the
semantic enhancement category.

introduced a contrastive discriminator that serves as both a
critic and a feature encoder for contrastive learning. The con-
trastive learning is carried out on the discriminator side with
three aspects: (1) between image and sentence, (2) between
real image and fake image, and (3) between image region and
words.

Although prior works [11], [18] have achieved good results
in text-to-image synthesis, determining the model archi-
tectures are critical to ensure optimal performance for the
increasingly complex task. In response, Li et al. [48] pro-
posed a novel approach named T2IGAN, which utilized neu-
ral architecture search (NAS) and a lightweight transformer
to effectively integrate the text and vision feature spaces. This
approach outperformed existing methods in terms of both
quantitative and qualitative evaluation.

Zhu et al. [49] also tackled the challenge of improving
semantic consistency during image generation with their pro-
posed Phased Bidirectional Generative Network (PBGN).
PBGN uses a bidirectional generative mechanism based on a
multi-level generative adversarial network to generate images
that are constrained by a reconstruction loss to be similar to
their corresponding text descriptions. They also explored the
use of the self-attention mechanism and spectrum normal-
ization approaches to improve the performance of generative
networks. Table 3 summarizes the existing text-to-image syn-
thesis with semantic enhancement approaches.

VI. STYLE TRANSFER APPROACHES
Style transfer approaches aim to modify an image in a way
that it takes on the style of another image or text while
preserving the content of the original image. Dong et al. [50]
proposed a multi-modal condition GAN for style transfer
problems that takes both image and text as input and mod-
ifies the image to match the target image based on the text
description. Another approach is the multi-conditional GAN
(MC-GAN) presented by Park et al. [51]. This approach gen-
erates the object described in the text and places it in the

TABLE 4. Summary of text-to-image synthesis approaches in the style
transfer category.

FIGURE 9. Some examples of the Oxford-102 dataset.

background of the original image. This allows for more flexi-
bility in generating objects that are not constrained to similar
objects in the base image.

However, changing the visual content based solely on the
text description may lead to inconsistent results. Li et al. [52]
introduced the Controllable Text-to-Image GAN (Control-
GAN) to address this issue. This approach allows for more
control over the generated image by using a multi-stage
architecture and attention techniques to generate image parts
based on highly relevant words. Additionally, the perceptual
loss is used to reduce randomness in the image synthesis pro-
cess, resulting in higher quality images. The summary of the
existing text-to-image synthesis by style transfer approaches
is presented in Table 4.

VII. DATASETS
This section provides an overview of the benchmark image
datasets that are commonly used to evaluate the performance
of text-to-image synthesis approaches. These datasets are
crucial for assessing the ability of these models to generate
realistic images that are consistent with the accompany-
ing text descriptions. The three most widely used bench-
mark datasets in text-to-image synthesis are Oxford-102,
CUB-200-2011, and COCO.

A. OXFORD-FLOWER-102
The Oxford-Flower-102 (Oxford-102) dataset was originally
collected by Nilsback et al. [53] and contains 8189 images
of 102 different flower categories. To facilitate training and
testing, the dataset has been divided into 82 training classes
and 20 testing classes in prior research. Each image is
paired with 10 captions during both training and testing.
Figure 9 provides some sample images from the Oxford-102
dataset.

B. CALTECH-UCSD BIRD
The Caltech-UCSD Bird (CUB-200-2011) dataset was intro-
duced by Welinder et al. [54] and included 11,788 images
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TABLE 5. The summary of the used benchmark dataset in text-to-image synthesis.

FIGURE 10. Some examples of the CUB-200-2011 dataset.

FIGURE 11. Some examples of the COCO dataset.

of 200 different bird species. Similar to other benchmark
datasets, CUB-200-2011 is typically divided into 150 classes
for training and 50 classes for testing in previous studies.
Each image is accompanied by 10 captions for text-based
analysis. To ensure a high-quality and consistent dataset,
images in the CUB-200-2011 are preprocessed before train-
ing to maintain a ratio of object to image region greater than
75%. Some sample images from the CUB-200-2011 dataset
are shown in Figure 10.

C. COMMON OBJECTS IN CONTEXT
The Common Object in Context (COCO) [55] includes
80 different object classes and is primarily used for object
detection and recognition. Most existing text-to-image syn-
thesis approaches use the 2014 version of COCO. Unlike the
previously discussed datasets, which typically include one
object per image, many images in COCO contain multiple
objects within a single scene, which makes the text-to-image
synthesis task more challenging. Examples of images from
the COCO dataset are shown in Figure 11.
At last, Table 5 provides a summary of the key statistics for

each of these datasets.

VIII. PERFORMANCE EVALUATION
Since text-to-image synthesis is a challenging task, evaluating
the performance of these approaches is crucial. Two primary
methods are commonly used for performance evaluation,
which are quantitative and qualitative measurements [56].
The following subsections describe the quantitative and qual-
itative metrics used in text-to-image synthesis evaluation.

A. QUANTITATIVE MEASUREMENT
Quantitative measurement involves using evaluation metrics
to calculate numerical scores based on a set of images, which
summarize the synthesized image quality.

1) INCEPTION SCORE
The Inception Score is a commonly used metric in evaluating
the performance of GANs, and it measures two aspects of
image quality: object distinctness and variety. The Inception
v3 classification model [57] is used to obtain the score, and
it measures the quality of the set of images by analyzing
the label probability distribution for each image. The more
distinct the object detected in the image, the higher the score.
Additionally, the number of different object varieties detected
in the image set is also considered. This is measured by com-
bining the label probability distributions from all images to
create the marginal distribution. If the scores of each class in
the marginal distribution are equally high, the object variety
in the image set is diverse enough.

The Inception Score is computed using the Kullback-
Leibler divergence between the label probability distribution
and the marginal distribution. The score is calculated using
the formula:

I = exp (ExDKL (p (y | x) ∥ p (y))) (4)

where p (y | x) denotes label probability distribution, y rep-
resents the set of predicted labels and x denotes the images
synthesized by the target model. p (y) denotes marginal dis-
tribution by combining the predicted labels y. The better the
performance of the target model, the larger the KL divergence
between the distribution of p (y) and p (y | x). Therefore,
a higher score is better for Inception Score. For a fair compar-
ison with other existing methods, the fine-tuned Inception v3
model [10] is leveraged to compute the Inception Score. The
Inception Score results of existing approaches are presented
in Table 6.

2) FRÉCHET INCEPTION DISTANCE
The Fréchet Inception Distance (FID) is a commonly used
metric to evaluate the performance of GANs in generating
realistic and diverse images. Like the Inception Score, FID
also uses the pre-trained Inception v3 model to measure the
similarity between the distribution of the generated images
and the real images in the feature space. Unlike Inception
Score which uses the fine-tuned model, the Inception v3
model used by FID is only pre-trained on ImageNet without
any fine-tuning.
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TABLE 6. The Inception Score results of the existing works.

The FID is computed in the feature space rather than the
image space. In other words, instead of using the images
themselves, FID uses the features of the images to quan-
tify the quality of the generated images. Specifically, the
images are embedded by the last average pooling layer of
the Inception v3 model to produce 2048-dimensional feature
vectors. The mean and covariance of the feature sets are then
estimated for computing the FID score.

The Fréchet distance is a measure of similarity between
two multivariate Gaussian distributions. The FID score mea-
sures the distance between the distributions of the real image
set and the generated image set in the feature space. The FID
score is computed as:

FID (v, v̄) = ∥µv − µv̄∥
2

+ Tr
(
6v + 6v̄ − 2 (6v6v̄)

1
2

)
(5)

where v and v̄ denote the real and fake image features, respec-
tively, µ and 6 denote the mean and covariance of v and v̄,
and Tr denotes the trace of the matrix. The smaller the FID
score, the closer the distributions of real and fake images in
the feature space, and hence the better the generated images.

It is worth noting that the FID score may vary depending
on the machine learning libraries used in the implementation
of the existing works, such as TensorFlow and PyTorch.

TABLE 7. The FID results of the existing works.

Therefore, it is important to ensure that the same library is
used to compare the FID scores across different models. The
FID results of existing works are presented in Table 7.

3) STRUCTURAL SIMILARITY INDEX
While metrics like Inception Score and FID can evaluate
image realism, they do not take into account the semantic
consistency between the real and generated images. The
Structural Similarity Index (SSIM) is widely used in the
image generation domain to measure the similarity between
two images. In text-to-image synthesis, the real and generated
images should have high SSIM since they have similar visual
contents conditioned on the same text description. SSIM
measure the corresponding pixels and their neighborhoods in
two images x and y with three aspects: luminance I , contrast
C , and structure S as below:

SSIM (x, y) = I (x, y)α C (x, y)β S (x, y)γ (6)

where α, β, and γ are the coefficients for each component.
The comparison functions I , C , and S are computed as
follows:

I (x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

C (x, y) =
2σxσy + C2

σ 2
x + σ 2

y + C2

S (x, y) =
σxy + C3

σxσy + C3
(7)
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TABLE 8. The SSIM results of the existing works.

where C1, C2, and C3 are constant values added to the
equation to prevent the denominator from becoming zero.
Luminance I measures the average value of the images, and
contrast C measures the square root of all pixel values. Thus,
µ and σ denote the mean and standard deviation of image x
or y, which are computed as:

µx =
1
N

N∑
i=1

xi σx =

(
1

N − 1

N∑
i=1

(xi − µx)
2

) 1
2

(8)

where N denotes the total number of pixels in image x.
Structure S is measured by the sample correlation coefficient
between corresponding pixels σx,y that are centered in x and y,
which is defined as:

σxy =
1

N − 1

N∑
i=1

(xi − µx)
(
yi − µy

)
(9)

The real and generated images with the same text description
are evaluated as a pair in SSIM, and the average score of all
the pairs is taken as the final result. A higher score indicates
better semantic consistency between the real and generated
images. SSIM has not been widely adopted by the text-to-
image research community. Nonetheless, some studies [13],
[58], [59] have reported their SSIM scores, which are pre-
sented in Table 8.

4) R-PRECISION
R-precision [18] is a metric used to evaluate the visual-
semantic similarity between a generated image and its origi-
nal text description. It takes into account a set of descriptions
and compares the similarity of the generated image with each
of them.

Given an original text description t , R-precision selects
t along with 99 randomly selected non-related descriptions
to form a description set S = {t1, t2, . . . , t100}. For each
description ti in S, the cosine distance between the generated
image feature vector fg and the corresponding description
feature vector fi is computed. The feature vectors can be
obtained using the pre-trained image and text models such
as VGG-19 and BERT.

The resulting set of distances is sorted in ascending order
to obtain a ranked list of the descriptions in S. R-precision
is then computed as the fraction of cases where the original
description t appears in the top k ranked descriptions in S,

TABLE 9. The R-precision results of the existing works.

where k can be 1, 2, or 3. The R-precision score is the average
of the top-k hits over a set of images. The R-precision score
is defined as:

R-precision =
1
N

N∑
i=1

1
k

k∑
j=1

[rank(ti, t) ≤ j] (10)

where N is the total number of images, ti is the original
text description for the i-th image, k is the number of top
ranked descriptions to consider, rank(ti, t) is the position of
the original description t in the ranked list of descriptions
for the i-th image, and [·] is the Iverson bracket that returns
1 if the condition is true and 0 otherwise. The R-precision
results of existing works are presented in Table 9.

5) VISUAL-SEMANTIC SIMILARITY
Visual-semantic (VS) similarity [26] measures the semantic
consistency between the generated image and its correspond-
ing text description. The alignment between the image and
text description is measured by a visual-semantic embedding
model, which contains two mapping functions: a text encoder
and an image encoder, that map the input into a common fea-
ture space. The similarity is computed using the dot product
of the encoded text and image features and normalized by
their l2-norms, as follows:

VS =
ft (t) · fx (x)

∥ft (t)∥2 · ∥fx (x)∥2
(11)

where ft denotes the text encoder, fx denotes the image
encoder, t denotes the input text description, and x denotes
the synthesized image.

Although VS similarity is a useful metric for measuring
semantic consistency, it has not been widely adopted by
researchers due to the high standard deviation of the results
and the variation in results when using different pre-trained
models. Nonetheless, the results of VS similarity for existing
works are reported in Table 10, where a higher score indicates
better semantic consistency between the generated image and
the input text description.
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TABLE 10. The VS similarity results of the existing works.

TABLE 11. The summary of the SOA results on the existing works on the
COCO dataset.

6) SEMANTIC OBJECT ACCURACY
Semantic Object Accuracy (SOA) was introduced by [37] to
measure semantic consistency for complex scenes that consist
of multiple objects. SOA explicitly evaluates each object with
the text description to measure performance. The metric uses
a pre-trained object detector model, specifically a YOLOv3
network [60] that is trained on a COCO dataset to check
whether the object mentioned in the text description appears
in the generated image.

SOA can be calculated using two different methods, class
average (SOA-C) and image average (SOA-I). SOA-C is
computed by taking the average of the SOA score for
each class of objects present in the image, while SOA-I
is computed by taking the average of the SOA scores for
each generated image in the dataset. The SOA score is
defined as:

SOA =
no. of correctly detected objects

no. of objects mentioned in text description
(12)

The results of existing works using the SOA metric are
presented in Table 11. A higher SOA score indicates better
semantic consistency between the generated image and the
text description, and therefore the better performance of the
model.

7) HUMAN EVALUATION
Human evaluation is an important aspect of evaluating the
performance of text-to-image synthesis models, as it provides
a measure of the model’s ability to generate images that
are visually and semantically consistent with the input text
descriptions. Human evaluation involves presenting a set of
synthesized images and their corresponding text descriptions
to human evaluators, who are then asked to provide a rating or

ranking of the images based on their quality and consistency
with the text description.

Several factors can affect the results of human evaluation,
such as the number of samples, the number of users, the
instructions given to the users, and the experiment time limi-
tations. Therefore, there is currently no standardized protocol
for conducting the human evaluation of text-to-image syn-
thesis models. Human evaluation can be time-consuming and
resource-intensive, whichmakes it challenging to scale up the
evaluation process. Hence, it is mostly used in conjunction
with machine-based metrics to provide a more complete and
reliable evaluation [34], [37], [42], [61].

B. QUALITATIVE MEASUREMENT
Qualitative measurement is a subjective evaluation that
involves human judgment based on the visual inspection of
synthesized images. It is often used to compare the image
quality and semantic consistency of the generated images
across different models. Additionally, it can be used to iden-
tify mode collapse in the model training, which occurs when
the model generates similar or identical images for different
text inputs.

To perform qualitative evaluation, researchers often select
a few synthesized images from different models and display
them side-by-side for comparison. The images are evaluated
based on their visual appearance and how well they match
the corresponding text description. This type of evaluation is
subjective, as different individuals may have different opin-
ions on the quality and consistency of the images. Figure 12,
Figure 13, and Figure 14 demonstrate the qualitative mea-
surement performed by the existing works on Oxford-102,
CUB-200-2011, and COCO datasets.

IX. LIMITATIONS AND FUTURE RESEARCH PROSPECTS
Text-to-image synthesis is a challenging research area with
several limitations and future research prospects.

A. LIMITATIONS
One of the main limitations of the existing text-to-image
synthesis approaches is that they rely heavily on large-scale
datasets for training. These datasets are often expensive and
time-consuming to create, and they might not represent the
diversity of real-world scenes.

Moreover, the generated images might suffer from mode
collapse, where the model generates a limited set of images
that are highly similar to each other, leading to a lack of
diversity in the generated images. Additionally, current mod-
els have difficulties in generating images with fine-grained
details, such as textures and shapes, especially for complex
scenes with multiple objects.

Another limitation of existing text-to-image synthesis
approaches is that they do not incorporate any explicit reason-
ing mechanisms. This means that the models cannot reason
about the relationships between objects, such as their spatial
and semantic relationships, which often leads to inconsisten-
cies in the synthesized images.
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FIGURE 12. Example of images synthesized based on the Oxford-102 dataset (Adopted from PPAN [28]).
GT denotes real images.

FIGURE 13. Example of images synthesised based on the CUB-200-2011 dataset (Adopted from CKD [59]).

B. FUTURE RESEARCH PROSPECTS
There are several promising research directions for text-to-
image synthesis. One of them is integrating text-to-image
synthesis with other tasks, such as image editing and manip-
ulation, which can lead to more versatile and flexible image
generation systems. This can be achieved through approaches
such as style transfer and image-to-image translation, where
the models can learn to transfer the style and content of an
image to another domain. Combining these approaches with
text-to-image synthesis can reduce the requirements for large-
scale training datasets.

Another promising direction is improving the diversity of
generated images by addressing the issue of mode collapse
through techniques such as diversity-promoting regulariza-
tion. This can lead to more diverse and realistic images,
reducing the repetition of certain image features. Moreover,
incorporating explicit reasoningmechanisms into themodels,
such as spatial and semantic reasoning, can generate more
consistent and coherent images. This approach can allow
the models to better understand the relationships between
different objects in a scene and generate images that are more
visually plausible.
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FIGURE 14. Example of images synthesised based on the COCO dataset (Adopted from OP-GAN [37]).

Besides that, integrating semantic reasoning is an inter-
esting direction for text-to-image synthesis. This capability
empowers the model to generate images that faithfully repre-
sent the intended scenes, resulting in heightened consistency,
reduced ambiguity, and enriched creativity. By comprehend-
ing implied details, contextual nuances, and relationships,
semantic reasoning ensures that the generated images are not
only semantically aligned with the text but also possess fine-
grained visual attributes, coherent styles, and a sensitivity
to the varying levels of detail in different textual inputs,
ultimately elevating the quality, realism, and relevance of
the synthesized images. These future research directions can
greatly improve the capabilities and quality of text-to-image
synthesis models.

X. CONCLUSION
In summary, this paper provides an overview of the
current state-of-the-art GAN-based text-to-image synthesis
approaches. By categorizing the approaches into four main
categories, the paper gives a clear understanding of the differ-
ent goals and challenges faced in this field. The benchmark
datasets discussed in this paper are useful for researchers to
compare their models with existing works. Additionally, the
evaluation metrics presented in this paper provide insights
into the strengths and weaknesses of the models. It is impor-
tant to note that each of themetrics has its own advantages and
limitations, and it is recommended to use multiple metrics
to evaluate the model performance comprehensively. Text-
to-image synthesis is a promising research area with several
limitations and future research prospects. Overcoming these
limitations and exploring these prospects can lead to more
robust and versatile text-to-image synthesis models with a
wide range of applications in fields such as computer vision,
graphics, and design.
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