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ABSTRACT Image-based virtual try-on provides customers with convenient online clothes selections by
transferring garments onto a reference person. Despite the emergence of several solutions to generate
photo-realistic images and adapt to complex poses, controlling clothing length remains a challenge.We argue
that the clothing reconstruction did not consider clothing length information, which results in clothing length
being uncontrollable in most virtual try-on methods. To overcome this limitation, a novel clothing-agnostic
person representation is proposed, which eliminates clothing information and quantifies clothing length as
a numerical value. A new segmentation generator is designed to predict try-on segmentation maps of any
length conditioned on this representation. Moreover, we correct two inaccurate labels, which enables our
model to utilize clothing length control to generate a wider range of garment interactions in images, such
as the top tucked into or worn over the bottom, as well as the top and bottom worn separately without
intersecting. Extensive experiments demonstrate that our method achieves the goal of continuous clothing
length control and generates photo-realistic images with fine details that outperform most baseline methods
in terms of quantitative and qualitative metrics.

INDEX TERMS Virtual try-on, clothing length controllable, conditional semantic generation, generative
adversarial network.

I. INTRODUCTION
In recent years, customers’ growing reliance on online shop-
ping has increased their need to try clothes on virtually.
A virtual try-on task has been proposed to facilitate clothing
selection and augment the convenience of the online shopping
experience. Still, it remains a significant challenge for vir-
tual try-on to control clothing length while ensuring realistic
results.

Existing virtual try-on techniques can be classified into 2D
image-based and 3D model-based methods. 3D model-based
methods [1], [2], [3] rely on 3D measurement data to recon-
struct a 3D model and render multiple output images onto the
model body with precise geometric transformations. How-
ever, modeling for characters and clothing requires extensive
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3D data collection, lengthy rendering times, and expensive
computing devices.

Han et al. [4] first proposed a two-stage virtual try-on net-
work based on 2D images, which employed clothing-agnostic
person representation to generate a coarse try-on result and
refined it with warped in-shop clothes. Since then, vari-
ous solutions have been proposed to improve performance
in different aspects. Most works [5], [6], [7], [8] focused
on improving deformation methods to reduce misalignment,
which can retain more textures and reduce artifacts. Sev-
eral works [6], [7], [8], [9] have improved clothing-agnostic
person representations to maintain parts irrelevant to try-on,
leading to better adaptation to complex poses and retention
of realistic details. However, current research can gener-
ate photo-realistic results but overlooks the possibility of
combining garment modification tasks, such as clothing
length control, to enhance user functionality. Some methods
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FIGURE 1. Clothing length controllable visual results generated by LC-VTON.

that have incorporated this functionality are based on tex-
ture transfer [10] and underwear model reconstruction [11].
In their research, the authors have all mentioned that these
methods still have deficiencies in terms of photorealism.

However, controlling clothing length is essential in virtual
try-on as it produces different garment interactions (e.g.,
wearing a top tucked into or over the bottom or wearing a
top and bottom separately without intersecting, resulting in
the belly being naked) [10]. We argue that previous meth-
ods have been limited for two reasons. Firstly, incomplete
elimination of clothing information leads to the reproduction
of clothing length. With the introduction of the segmen-
tation map, most previous approaches train a try-on seg-
mentation map generator to reconstruct clothing semantics
based on the clothing-agnostic person segmentationmap. The
clothing-agnostic person segmentation map is intended to
eliminate clothing information. However, these approaches
only remove the clothing shape and omit clothing length
information, leading to its reproduction instead of reconstruc-
tion. Second, the clothing length information is implicitly
encoded in the image, making it difficult to change as a
separate condition. As illustrated in Fig. 2, the reference
displays a common garment interaction in datasets where
the top and bottom intersect. These clothing-agnostic person

FIGURE 2. We compare clothing-agnostic person segmentation maps
generated by different methods. The blue box indicates the bottom part
of the reference image. In the red box, the corresponding
clothing-agnostic person segmentation map retains the full bottom
semantics. In contrast, the green box shows our clothing-agnostic
segmentation map with clothing length information removed.

segmentation maps try various methods to remove cloth-
ing shapes, but all keep the entire bottom. After training,
the prediction of the generator reproduces the entire bottom
semantics, which makes the bottom fixed. As a result, gen-
erators lose the ability to control clothing length, leading to
only one look being achieved.

To overcome this limitation, we propose a novel Length
Controllable Virtual Try-On Network (LC-VTON). Our
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approach introduces a novel clothing-agnostic person repre-
sentation that combines graphic and numerical elements and
eliminates clothing information. We quantify clothing length
as a numerical value that allows for continuous length control
by users. We then predict a target segmentation map based
on the desired clothing item and length. Considering the case
wearing a top and bottom separately without intersecting,
we employ the Context Incompatibility Handling module to
ensure the target segmentation map is compatible with the
reference. Next, we deform the clothes to align with the target
segmentation map. Finally, we generate the clothing-agnostic
person image corresponding to the target segmentation
map and synthesize the try-on image by fusing all
inputs.

We summarize our contributions as follows:

• We propose LC-VTON, a novel image-based virtual
try-on network that enables the generation of multiple
try-on effects by controlling clothing length.

• We introduce a novel numerical-graphical clothing-
agnostic person representation that eliminates clothing
information and quantifies clothing length as a numer-
ical value, providing continuous control of clothing
length.

• We correct two inaccurate labels in VITON-HD: We
complete the bottom label by incorporating belt content,
and we add the ‘belly’ label into the human presentation.

• Extensive experimental results show that the method
outperforms most existing methods in qualitative and
quantitative terms.

II. RELATED WORK
A. CONDITIONAL IMAGE GENERATION
Conditional Generative Adversarial Networks (CGANs) are a
variation of Generative Adversarial Networks (GANs), which
generate particular data based on additional condition data.
The condition data can be class labels [12], [13], text [14],
[15], images, and attributes [16]. Previous virtual try-on net-
works generated try-on images using clothing as the sole
variable condition. In this paper, we introduce a new variable
condition, the clothing length value, which enables users to
control clothing lengthwhile trying on various clothing items,
thus enhancing the try-on experience.

B. TOWARDS PHOTO-REALISTIC IMAGE-BASED VIRTUAL
TRY-ON
Since the proposal of 2D image-based virtual try-on meth-
ods, generating photo-realistic images has been a primary
objective. Han et al. [4] first proposed a two-stage framework
named VITON to solve the 2D image-based virtual try-on
task. VITON built a sub-task to produce a coarse result and
warped clothes and then generated a composition mask to
refine the coarse result. Following VITON, CP-VTON [5]
refined the framework by introducing a neural network that
could learn TPS parameters. Benefiting from this defor-
mation network, CP-VTON could generate try-on results

directly by fusing warped clothes and clothing-agnostic per-
son representations. VTNFP [9] employed a segmentation
map prediction to improve performance in complex per-
son pose situations where body parts and clothing intersect.
To further enhance fine details and increase perceptual qual-
ity, ACGPN [6] composited a segmentation map preserving
non-target body parts, retaining the details irrelevant to cloth-
ing. Moreover, they used a constrained TPS transformation
to prevent clothing from being over-distorted. As the demand
for high-resolution virtual try-on grows, VITON-HD [7] pro-
posed a novel clothing-agnostic person representation and
employed alignment-aware segment normalization to address
the issue of misalignment, achieving high resolutions virtual
try-on results. ClothFlow [17] was proposed to tackle the
problem of pose-guided virtual try-on. It predicted an optical
flow map to warp the source clothes, which can also be
applied to the 2D image-based virtual try-on. Based on this
deformation, HR-VTON [8] constructed a try-on condition
generator that generated the segmentation map and deformed
clothes simultaneously. HR-VTON prevented images from
pixel-squeezing in the try-on task of complex poses by
obtaining amore suitable clothes transformation through con-
ditional alignment. However, these methods focus only on
generating photo-realistic images, ignoring the signifi-
cant need for users to control clothing length. The
length-controllable virtual try-on technology offers users a
broader range of dressing options for clothing, along with
increased stylistic potential resulting from variations in cloth-
ing length.

C. GARMENT CONTROLLABLE VIRTUAL TRY-ON
Garment-controllable virtual try-on is a sub-field of vir-
tual try-on that incorporates garment modification tasks to
enhance functionality. As presented in [18], a virtual try-on
task should produce multiple results with a single initial input
by allowing users to control garment attributes such as cloth-
ing length. Although some methods have already provided
such functionality, they are mainly based on clothing texture
transfer or model reconstruction, leading to their respective
limitations in photorealism. DIOR [10] produced various
dress effects, such as wearing a top tucked into the bottom
or over it, by simulating the order in which people put on
clothes. However, this approach was based on texture transfer
and could not reproduce realistic clothing patterns. The most
closely related work is SC-VTON [11], which proposed a
new task to render deformed clothing to the reconstructed
underwear model, firstly realizing shape-controllable virtual
try-on. Although SC-VTON achieved clothing shape control,
the underwear model reconstruction network was trained on
pseudo-labeled pairs, which limits its performance on real
data. Furthermore, users could not use their own bottoms
as references since the reference bottom was discarded in
the reconstruction. Compared with underwear model recon-
struction, the methods based on target segmentation map
prediction can produce more photo-realistic results.
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FIGURE 3. The LC-VTON architecture consists of four stages. We illustrate the model process in the case where the top and bottom are worn
separately without intersecting. (a) Firstly, given a reference segmentation map S, we utilize pose map Po to remove clothing information from S,
resulting in a clothing-agnostic person segmentation Sa. Simultaneously, we use S and Po to calculate clothing length value zreference and multiply
a small coefficient k by zreference to derive shorter clothing length value ztarget . (b) Next, the Semantic Segmentation Generator (SSG) predicts a
raw layout Sraw using (c, cm, Sa, Po, Pd , ztarget ). The Context Incompatibility Handling module uses S to process Sraw and obtain the target
layout Ŝ. (c) Then, the Clothing Deformation Generator (CDG) aligns c with Ŝ. (d) Lastly, the Try-on Image Generator (TOIG) synthesizes the final
image Î by fusing the previous outputs and clothing-agnostic person image Ia.

III. PROPOSED MODEL
In Fig. 3, we illustrate that the objective of LC-VTON is to
generate the image of a person Î ∈ R3×H×W wearing a target
clothing item c ∈ R3×H×W with clothing length varying from
the given reference image I ∈ R3×H×W while preserving
the pose and body shape. However, training directly with
triplets (I , c, Î ) is challenging since collecting such triplets
in practice is difficult. To address this issue, we employ a
clothing-agnostic person representation that removes cloth-
ing information and allows us to reconstruct I where the
original c is worn on the person already.

To enable the model to learn the ability of clothing length
control during the reconstruction, we use a clothing-agnostic
person representation that eliminates clothing length and
quantifies it as a numerical value (Section III-A). The Seman-
tic Segmentation Generator (SSG) first generates the raw
segmentation map Sraw and then processes it to obtain the
target segmentation map Ŝ using a Context Incompatibility

Handling module that leverages the semantic context infor-
mation from S (Section III-B). After being fed with Ŝ, the
Clothing Deformation Generator (CDG), which cascades
elimination blocks and an occlusion handling module, pre-
dicts an optical flowmap for deforming c. Finally, the Try-On
Image Generator (TOIG) generates the clothing-agnostic per-
son image Ia based on S and Po and then synthesizes the final
try-on result by fusing all previous outputs (Section III-D).

A. NUMERICAL-GRAPHICAL CLOTHING-AGNOSTIC
PERSON REPRESENTATION
VITON-HD used a processing method of target elimination
to obtain clothing-agnostic person representation, aiming to
remove the clothing shape and preserve the body parts that
need to be reproduced. HR-VTON extended this represen-
tation to the virtual try-on task with complex poses. This
representation cleanly leaves out the clothing information
and is competent for most virtual try-on tasks. Still, they
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FIGURE 4. We provide two examples of calculating clothing length. The neck point Pn and the middle hip point Ph are marked
with solid blue dots, and line LPnPh

intersects the upper boundary of the bottom at point Pc , which is marked with a solid yellow
dot. In the short clothing example, Pc is located between Pn and Ph, while in the long clothing example, Pc lies on the extension
line of Pn and Ph.

kept the full bottom semantics, which implicitly specifies
clothing length, rendering it useless for our task. To address
the issue, we propose a novel person representation consisting
of several person representation images and a numerical value
that represents clothing length.

1) CLOTHING-AGNOSTIC PERSON SEGMENTATION MAP
The clothing-agnostic person segmentation map Sa ∈ LH×W

illustrates the layout of an unclothed person and is used to
predict the try-on segmentation map. Inspired by the recon-
struction, we remove the upper part of the bottom semantics
and reconstruct it with the clothing length value to achieve the
purpose of controllable clothing length. We remove the cloth-
ing shape in a similar way to VITON-HD. Differently, we use
Po to further remove the upper part of the bottom in S and
retain the lower part of the bottom in Sa to embody the bottom
type. By removing the upper part of the bottom semantics,
the clothing length information is eliminated, as the generator
loses the basis for predicting clothing length.

2) CLOTHING LENGTH VALUE
To reconstruct the bottom semantics, we propose a quantized
clothing length value z ∈ R, which can represent clothing
length and achieve continuous control of clothing length.
As shown in Fig. 4, we map the neck key point Pn(xn, yn) and
hip key point Ph(xh, yh) from the pose map Po ∈ R3×H×W

onto the segmentation map S ∈ LH×W and connect them
with a line LPnPh that intersects the upper boundary of the
bottom at a point we refer to as Pc(xc, yc). We take Pn
and Ph as reference points and use the position of Pc in
this reference system to reflect clothing length information.
It works because a person who tries on various lengths of
clothes uses the same pose map. The coordinates of Pc vary
with the change of clothing length, while Pn and Ph remain
fixed. We conclude two qualitative patterns from the example
images: Pc is between Pn and Ph in short clothing, while
in long clothing, Pc is on the extension of the line LPnPh .

To further achieve continuous control of clothing length,
we use a signed line segment ratio function to quantize cloth-
ing length as z, which can be formulated in coordinates as:

z =
yc − yh
yh − yn

(1)

In the case of short clothing, z takes on a negative value, while
in the case of long clothing, z is positive. To encode more
information, we substitute Pn and Ph with the entire pose map
Po. As a result, the combination of z and Po is used to capture
the clothing length information.

B. SEMANTIC SEGMENTATION GENERATOR (SSG)
Given (Sa,Po,Pd , z) and (c, cm), the Semantic Segmentation
Generator(SSG) predicts the try-on segmentation map Ŝ that
separates the different regions of the try-on image. By incor-
porating clothing length as an additional variable condition,
SSG can predict try-on segmentation map of desired cloth-
ing length. As clothing length is considered as low-level
information in the image, we begin by mapping ztarget to
Z ∈ RH×W using a fully connected layer. This value is then
concatenated with the other inputs. To enhance the prediction
ability to complex pose tasks, the dense pose map Pd is
also employed to provide additional spatial information. The
concatenated inputs are then fed into the generator to produce
the raw segmentation map Sraw. However, as mentioned,
the segmentation generator tends to generate the garment
interaction where the top and bottom intersect. As shown in
Fig. 3 (b), when generating images where the top and bottom
are worn separately without intersecting (e.g. the target top
is shorter than the reference), the predicted bottom semantics
will go beyond the reference bottom semantics, leading to an
inconsistency between Sraw and S. This is because I cannot
provide sufficient content to guide the image generation for
the exceeded bottom semantics. Therefore, to address this
issue, we propose a Context Incompatibility Handling mod-
ule to correct Sraw.
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FIGURE 5. The architecture of context incompatibility handling module.

Context Incompatibility Handling: As described in Fig. 5,
we extract the top channel Mrawtop and bottom channel
Mrawbottom from Sraw, as well as the bottom channel Mbottom
from S.Mbottom is used as a shape mask to remove all bottom
semantics outside the mask, ensuring that the entire bottom
semantics are contained within the mask region. The removed
semantics are then filled in the belly channel to protect the
semantic integrity of the segmentation map. The following
formula expresses the process of Context Incompatibility
Handling:

Ŝk,i,j =


Sk,i,jraw , if k ̸= kbottom, kbelly
Sk,i,jraw · Sk,i,j, if k = kbottom
Skbottom,i,j
raw · (1 − Skbottom,i,j) + Sk,i,jraw ,

if k = kbelly
(2)

where Skij and Skijraw indicate the pixel values of the segmen-
tation map S and Sraw corresponding to the coordinates (i, j)
in channel k . kbottom and kbelly denote the index of the bottom
and belly. The SSG is trainedwithout Context Incompatibility
Handling Module during training. We train SSG to establish
a mapping between S and (Sa,Po,Pd , zreference, c, cm), where
zreference is calculated based on S. We adopt U-net [19] as the
generator architecture and employ pixel-wise cross-entropy
loss LCE between S and Sraw during training. In addition,
we introduce a conditional adversarial loss LcGAN to encour-
age SSG to generate segmentation maps with various lengths.
The complete objective function used for training SSG can be
expressed as:

LSSG = λ1LcGAN + λ2LCE (3)

LCE = −
1
HW

∑
k∈C,i∈H ,j∈W

Sk,i,jlog(Sk,i,jraw ) (4)

LcGAN = EX ,S,Z [log(D(X , S,Z ))]

+ EX ,S,Z [log(1 − D(X , S, −Z ))]

+ EX ,S,Z [log(1 − D(X ,G(X ,Z ),Z ))] (5)

where λ1 and λ2 are hyper-parameters controlling relative
importance between two losses, respectively set to 1 and 10.
In Eq. (4), the symbols H , W , and C indicate the height,
width, and channel number of S. In Eq. (5), the symbols X , S,
and Z respectively denote the image inputs of SSG, reference
segmentation map, and z.

C. CLOTHING DEFORMATION GENERATOR (CDG)
In this stage, we aim to deform the target clothing item c
to achieve alignment with Ŝ. While the flexible deformation
of clothing based on TPS transformation conforms to the
inherent flexibility of clothing, it falls short in achieving
pixel-level alignment between c and Ŝ. Failure to fulfill such
alignment could make the next task of the TOIG challenging
and potentially lead to artifacts. Inspired by HR, we cascade
the clothing flow estimation blocks with the occlusion han-
dling module. The module enables more reasonable cloth
flow deformation by reducing pixel-squeezing of patterns and
textures when dealing with complex poses where the arms
overlap the body.

We adopt the clothing flow estimation fromClothFlow [17]
as the structure of our estimation block, and the occlu-
sion handling module adopts the same design proposed
in HR. Formally, given (c, cm) and (Ŝ,Pd ) as input, two
encoders extract the feature pyramid {Eck }

4
k=0 and {Esl }

4
l=0
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respectively. Then, we feed the concatenated Ec4 and Es4
into a convolution layer to estimate the initial clothing
flow F0. The estimation blocks subsequently upsample and
refine F0 level-by-level to obtain the final flow F4. Lastly,
we utilize F4 to warp c and use the Occlusion Handling mod-
ule to remove the self-occlusion, obtaining the well-aligned
warped clothing cwarp.
Following HR [8], the CDG is optimized using a loss

function LCDG that comprises three terms, which are LL1,
LVGG, and LTV . Both LL1 and LVGG are partitioned into two
components, one for direct comparison with the ground truth
and another that incorporates intermediate flow estimations
to improve performance. The LL1 and LVGG are expressed as
follows:

LL1 = ∥cmwarp − Sc∥1 +

3∑
i=0

wi · ∥W (cm,Fi) − Sc∥1

(6)

LVGG = φ(cwarp, Ic) +

3∑
i=0

wi · φ(W (c,Fi), Ic) (7)

wherewi specifies the relative importance between each term.
LTV is a total-variation loss to enforce the smoothness of the
appearance flow, which is written as:

LTV = ∥∇F4∥1 (8)

The total loss of the CDG is as follows:

LCDG = λL1LL1 + LVGG + λTVLTV (9)

where λL1 and λTV are the hyper-parameters showing
importance of λL1 and λTV in LCDG, respectively set
to 10 and 2.

D. TRY-ON IMAGE GENERATOR (TOIG)
In our task, the goal of TOIG is slightly different from
previous work in that it needs to synthesize corresponding
try-on results based on the Ŝ for different clothing lengths.
As the length of the top increases and gradually covers the
bottom, we need to decrease the bottom content that will
be reproduced. Therefore, Ia must be dynamic obtained in
TOIG rather than fixed. We need to regenerate Ia in every
inference by removing the target content from I and keep-
ing the bottom content according to Ŝ. Eventually, given
(Ia, Ŝ,Pd , cwarp, cmwarp), TOIG fuses all the inputs as the
final try-on image Î .
We attempted to train TOIG with the same human rep-

resentation as VITON-HD. However, we observed severe
artifacts in the belly area of the output images when inferring
the results where the top was shorter than the reference (see
Fig. 11). With deep research, we found that the human parse
in VITON-HD lacks the belt label, leaving the bottom seman-
tics in the human representation incomplete. Additionally,
the omission of belly semantics in the human representation
made it difficult to generate belly content in the semantic
region designated as background. Hence, as shown in Fig. 6,

FIGURE 6. The specific repaired semantics. We mark the belt and belly
contents in the reference image with blue boxes. The red box is used to
reveal the mislabeled semantics. The Green box is used to indicate the
correct semantics after repair.

a semantic parser [20] is trained on the ATR dataset [21]
and utilized to complete the missing belt label into the bot-
tom label. Moreover, we employ the pose map to preserve
the semantics of the belly and introduce the ‘belly’ into
the label set to encourage the generation of accurate belly
content.

In this stage, the U-net [19] architecture is utilized as
the backbone of TOIG. We train TOIG using conditional
adversarial loss, feature matching loss, and perceptual loss,
following the same approach as pix2pixHD [22].

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
1) DATASET
All experiments are conducted using the dataset provided
by VITON-HD [7], which comprises 13,679 pairs of
frontal-view images of women wearing tops. The dataset
was divided into two parts, consisting of 11,647 pairs for
training and 2,032 pairs for inference. Throughout training
and inference, images are downsampled to a resolution of
256 × 192. The comparison experiments against CP-VTON,
CP-VTON+, ACGPN, VITON-HD, and HR-VTON are also
conducted using this dataset.

2) TRAINING
We train three separate generators and combine them into one
for the try-on task. During training, the target clothing item
is identical to the clothing worn in the reference image, and
the clothing length zreferenceis calculated from the reference
segmentation map. CDG and TOIG are trained for 20 epochs
using a batch size of 4, while SSG is trained for 30 epochs
with the same batch size. We use the Adam optimizer with
hyper-parameters β1 = 0.5 and β2 = 0.999. All code is
implemented using the PyTorch deep learning toolkit, and
experiments are conducted on an NVIDIA 1080Ti GPU.
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FIGURE 7. Qualitative comparison with baselines.

3) INFERENCE
In inference, LC-VTON incorporates the Context Incompati-
bility Handling module to infer results. In addition, the input
clothes and clothing length differ from those used during the
training phase to produce results for various clothing items
and lengths. Further results will be presented in subsequent
sections.

B. QUALITATIVE RESULTS
1) COMPARISON WITH BASELINES
We evaluate the performance of LC-VTON by compar-
ing it with several state-of-the-art baselines at a resolution
of 256 × 192, using publicly available codes. Figure 7
illustrates that LC-VTON produces more realistic images
than CP-VTON, CP-VTON+, and ACGPN. Compared with
VITON-HD and HR-VTON, LC-VTON produces competi-
tive results in photorealism, exhibiting clear clothing patterns
and textures, and the body shape and details are more realistic
and natural. These results demonstrate that LC-VTON is
capable of generating convincing and photo-realistic outputs.

2) EFFECTS OF THE CLOTHING LENGTH VALUE
In Fig. 8, we display many results to demonstrate our
approach’s ability to generate try-on images of different
clothing lengths while preserving the patterns and textures
of the garments. The results presented in this study show that
LC-VTON successfully achieves the goal of clothing length
control.

3) ABLATION STUDY ON THE EFFECT OF CONTEXT
INCOMPATIBILITY HANDLING
We conduct an ablation study to evaluate the efficacy of the
Context Incompatibility Handling module in the Semantic
Segmentation Generator. The results in Fig. 9 demonstrate
that without the Context Incompatibility Handling mod-
ule, the model erroneously retains the gray content of the
clothing-agnostic person image, synthesizing a flawed image.
After applying the correction to the bottom semantics, the
model successfully synthesizes the belly content. It should be
noted that when trying to generate a longer target top than the
reference, the module will hardly work because the bottom
does not exceed the reference bottom.
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FIGURE 8. Effects of the clothing length value.

FIGURE 9. Ablation study on the effect of Context Incompatibility Handling. The red box highlights belly content incorrectly synthesized without the
Context Incompatibility Handling module. In contrast, the green box indicates the correct belly content generated using the module.

4) EFFECTS OF TARGET ELIMINATION IN TOIG
Figure 10 illustrates the clothing-agnostic person image
under various clothing lengths. With increasing clothing
length, a greater portion of the upper part of the bottom needs
to be removed to ensure the accurate synthesis of the target
content.

5) ABLATION STUDY ON THE EFFECT OF LABEL
CORRECTION
To demonstrate the adverse effects of incorrect labels on LC-
VTON, we perform an ablation study of the label correction.
Figure 11 shows the model trained on the incorrect labels
produces increasingly blurry belt-like artifacts as the clothing

length decreases. However, the model can generate accurate
belly content at any clothing length after training on the
corrected data.

C. QUANTITATIVE RESULTS
We perform quantitative experiments in paired and unpaired
settings separately. The paired setting is used to recon-
struct the person wearing the original clothing, while the
unpaired setting is used to infer the try-on result. We eval-
uate our method using four widely adopted metrics in vir-
tual experiments. For paired setting, the Structural Sim-
ilarity (SSIM) [23] and the Learned Perceptual Image
Patch Similarity (LPIPS) [24] are employed to evaluate the
similarity between the reconstructed images and reference
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FIGURE 10. The clothing-agnostic person images correspond to different lengths examples.

FIGURE 11. Ablation study on the effect of label correction. The red box indicates the artifacts, while the green
box shows the correct content.

TABLE 1. Quantitative comparison with baselines in 256 × 192
resolution. The KID value was multiplied by 100. For the SSIM,
higher is better. For the LPIPS, FID, and KID, lower is better.

images. For unpaired settings, the Frechet Inception Dis-
tance (FID) [25] and the Kernel Inception Distance (KID)
are adopted to measure the visual quality of the generated
images.

We quantitatively compare our methods with several state-
of-the-art baselines at a resolution of 256 × 192. Table 1
shows that LC-VTON outperforms CP-VTON, ACGPN,
and VITON-HD on every metric. While LC-VTON does
not achieve the same performance as HR-VTON regarding
KID and SSIM scores, it demonstrates comparable quanti-
tative levels. Additionally, LC-VTON performs better than
HR-VTON in terms of LPIPS and FID scores, indicating

its ability to produce photo-realistic images. We consider
that, when generating images with short clothing, HR-
VTON tends to overlook the person’s belly content, whereas
LC-VTON is capable of generating belly content. This dif-
ference contributes to LC-VTON outperforming HR-VTON
in terms of LPIPS and FID scores. The lower SSIM and KID
scores may arise from the independent nature of the processes
of semantic prediction and clothing deformation, resulting in
slight imperfections during the alignment.

V. CONCLUSION
In this paper, we introduce a novel Length Controllable Vir-
tual Try-On Network (LC-VTON), which allows users to
control the length to achieve various garment interactions
while trying on clothes. We use the newly proposed clothing
length value to control the generation of the try-on segmenta-
tion map, guiding the generation of length-controllable try-on
results. We correct mislabeled semantics in human parse and
add a ‘belly’ label to human representation, which enables
LC-VTON to produce images of top and bottom intersecting
or belly-naked while continuously controlling the length. The
clothing length editing function allows users to personalize
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their clothing based on their fashion style, which is signifi-
cant for virtual try-on applications. Extensive qualitative and
quantitative experiments demonstrate that LC-VTON outper-
forms most existing models.
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