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ABSTRACT Online actor-critic reinforcement learning is concerned with training an agent on-the-fly
via dynamic interaction with the environment. Due to the specifics of the application, it is not generally
possible to perform long pre-training, as it is commonly done in off-line, tabular or Monte-Carlo mode.
Such applications may be found more frequently in industry, rather than in pure digital fields, such as cloud
services, video games, database management, etc., where reinforcement learning has been demonstrating
success. Stability of the closed-loop of the agent plus the environment is a major challenge here, and not
only in terms of the environment safety and integrity, but also in terms of sparing resources on failed
training episodes. In this paper, we tackle the problem of environment stability under an actor-critic
reinforcement learning agent by integration of the Lyapunov stability theory tools. Under the presented
approach, the closed-loop stability is secured in all episodes without pre-training. It was observed in a
case study with a mobile robot that the suggested agent could always successfully achieve the control goal,
while significantly reducing the cost. While many approaches may be exploited for mobile robot control,
we suggest that the experiments showed the promising potential of actor-critic reinforcement learning agents
based on Lyapunov-like constraints. The presented methodology may be utilized in safety-critical, industrial
applications where stability is necessary.

INDEX TERMS Control, stabilization, reinforcement learning, Lyapunov function.

I. INTRODUCTION
Reinforcement learning is an optimal control method that
uses imitates leaving beings in environments behaving upon
received rewards or punishment [1], [2], [3], [4]. Its applica-
tions range from robotics [5], [6], [7], [8], [9] to games such
as Go, chess, shogi (also known as Japanese chess) [10], [11],
and even complex video games such as StarCraft II [12].
Reinforcement learning bears data-driven character based on
experience to infer an optimal policy of actions. The policy
seeks to optimize an objective over a (possibly infinite) period
of time.

Commonly, reinforcement learning implies extensive train-
ing of agents to learn an optimal policy sufficiently
precisely. This can be done, for instance, via so-called
roll-outs of action-state pairs up to a possibly infinite hori-
zon. Such is the case in some policy gradient methods
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(see, e. g., [13], [14], [15]). It may in turn mean repeated
episodes of environment Monte-Carlo runs [16], [17], [18].
In tabular, dynamic-programming-like reinforcement learn-
ing, each value or policy update needs to be done over each
node of a mesh in a (compact domain of) state space (see,
e. g., [19, Section 3] and [20], [21], [22]). Temporal differ-
ence methods, in contrast, can operate without full-episode
runs [23], [24], [25], [26], [27], [28], [29].

A. NOTATION
The following table summarizes the notation used throughout
the article.

R≥0 Set of nonnegative reals
X State space ⊆ Rn

U Action space ⊆ Rm

P [·] Probability measure
Bs Closed ball of radius s centered

at the origin
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Liph(s) Lipschitz constant of h(·) in Bs
(just Liph in global case)

∥•∥op Operator norm of a matrix
Jcritic Critic loss
Jactor Actor loss
Ĵ Critic model
J∗ Objective optimum

B. WORK STRUCTURE
The current work is structured as

Section I-C General control problem of reinforcement
learning

Section I-D Stabilizability assumptions
Section II Related work in stabilizing reinforcement

learning
Section III Summary of contribution
Section IV New approach
Section V Experimental results
Appendix Proofs, auxiliary materials

C. CONTROL PROBLEM OF REINFORCEMENT LEARNING
Commonly, the starting point in reinforcement learning is
the following infinite-horizon optimal control and/or decision
problem:

min
ρ∈U

Jρ(x) = min
ρ∈U

EUt∼ρ

 ∞∫
0

e−γ tr(Xt ,Ut ) dt|X0 = x

 ,

(1)

where Xt ∈ X at a time t ∈ T := R≥0 is the environ-
ment’s state with values in the state-space X, r is the running
objective (cost or reward in minimization, respectively, max-
imization problems) function or rate, γ is the discount factor,
ρ is the agent’s policy of some function class U . The run-
ning objective may be taken as a random variable Rt whose
probability distribution depends on the state and action. It is
a function hereafter for simplicity. The policy may be taken
as a probability distribution or a plain function (hence a
Markov policy). We will assume the latter from now on.
Next, we consider the agent-environment1 loop dynamics to
be modeled via the following transition law:

dXt = f (Xt ,Ut ) dt + σ (Xt ,Ut ) dZt , P [X0 = const] = 1,

(2)

where an unknown noise Zt ∈ Rd is modeled by an arbitrary
Lipschitz-continuous random process with a fixed Lipschitz
constant LipZ , and σ : X × U→ Rn×d is a bounded mixing
matrix, i. e., ∥σ (x, u)∥op ≤ σmax, σmax > 0. Here,X0 = const
implies that X0 has a degenerate distribution.
In the following, when claims are made about sections of

random processes, the respective conditions are meant to hold
almost surely. We assume that f and σ are locally Lipschitz

1In classical terminology, ‘‘controller-system’’ loop.

continuous with respect to Xt and Ut . Notice requiring Zt to
be Lipschitz-continuous with LipZ = const is equivalent to
asserting:

dZt ≡ Ht dt, where ess sup
t∈T
∥Ht∥ ≤ const. (3)

Thus, dZt corresponds to an arbitrary perturbation of magni-
tude no greater than LipZ .
For the problem (1), one can state an important recursive

property of the objective optimum J∗(x) in the form of the
Hamilton-Jacobi-Bellman (HJB) equation as follows:

min
u∈U
{AuJ∗(x)+ r(x, u)− γ J∗(x)} = 0, ∀x ∈ X, (4)

where AuJ∗(x) := ∇J∗(x)T
(
f (x, u)+ σ T (x, u)Ht

)
. The

common approaches to (1) are dynamic programming [2],
[30] and model-predictive control [31], [32], [33], [34]. The
latter cuts the infinite horizon to some finite value T > 0 thus
considering effectively a finite-time optimal control problem.
Dynamic programming aims directly at the HJB (4) and
solves it iteratively over a mesh in the state space X and
thus belongs to the category of tabular methods. The most
significant problem with such a discretization is the curse
of dimensionality, since the number of nodes in the said
mesh grows exponentially with the dimension of the state
space. Evidently, dynamic programming is in general only
applicable when the state-space is compact. Furthermore,
state-space discretization should be fine enough to avoid
undesirable effects that may lead to a loss of stability of the
agent-environment closed loop.

Reinforcement learning essentially approximates the opti-
mum objective J∗ via a (deep) neural network. The core
problem with such an approach is that one cannot know
how well the chosen neural network topology is capable of
approximating the optimum objective. Although it is known
that the extremizer (the optimal policy) has nice properties,
e. g., it keeps the environment stable, an extremizer resulting
from an approximate optimum objective has in general no
such guarantees.

We consider the policy to be implemented in a digital,
sampled manner, i. e., the state is measured every δ seconds
and an action is computed at every kδ, k ∈ Z≥0 seconds and
held for δ seconds accordingly:
Definition 1 (Sampled Policy): The agent-environment

(2) is said to obey a sampled policy ρ : X × T → U with a
sampling time δ if:

Ut ≡ ρ(Xt − t mod δ). (5)

The sampled setting reflects the discrete-time limitations
of reinforcement learning. Although ways of training
continuous-time policies are known [35], [36], a digital
device, e. g., a microcontroller or a computer, is required
anyway to implement the policy, hence the above description.
Thus, we can formulate the task of reinforcement learning as
finding a sampled policy ρ∗ that minimizes the expected total
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cost

Jρ
= E

 ∞∫
0

r(Xt ,Ut ) dt

 under Ut ≡ ρ(Xt − t mod δ). (6)

The discount factor was omitted for simplicity as it is
non-essential for future derivations. Speaking of the environ-
ment, we may require such a policy to achieve the property
that the state of the environment be driven into a neighbor-
hood O of the origin:

P
[
lim
t→∞

inf
s∈O
∥Xt − s∥ = 0

]
= 1. (7)

D. STABILIZABILITY
In should be noted that many reinforcement learning analyses
require that (2) be stabilizable [3], [37], [38], [39], [40].
We consider here the following stabilizability property.
Definition 2 (Asymptotic Stabilizability Under Sampled

Policy): Let O (an attractor) be a compact neighborhood of
the origin and let B (a basin) be a compact set containing O.
The origin of the environment is said to be stabilizable under a
sample policy if for any suchO andB, there exists η : X→ U
(a stabilizer) that uniformly drives the states in B to O given
that δ > 0, σmax > 0 are sufficiently small, i. e.,

Ut ≡ η(Xt − t mod δ)

H⇒ ∃ δ > 0, σmax > 0 :

lim
τ→∞

sup
X0∈B,Z(·)

inf
s∈O
∥Xτ − s∥ = 0. (8)

In equation (8), Xt is a part of {Xt }t , the environment
trajectory, that depends on X0 and Z(·). We will assume,
following [3], [37], [38], [39], and [40]:
Assumption 1: The origin of (2) is asymptotically stabiliz-

able under a sampled policy.
There are numerous ways to design a stabilizer: PID,

sliding-mode, flatness-based, energy-based control etc. Such
stabilizers explicitly do not take any account of the cost.
The latter is addressed by optimal control specifically. Thus,
reinforcement learning falls into that category. However,
a learned policy is not necessarily a stabilizer. Measures
must be taken for this sake. In the next section, we overview
selected existing approaches that tackle the environment
stability.

II. RELATED WORK IN STABILIZING
REINFORCEMENT LEARNING
For various safety-critical applications it is important that
the environment eventually reach some neighborhood of the
target state or avoids leaving said neighborhood. Though,
there are other kinds of problems that regard enforcing safe
behavior [41], this paper focuses on those that pertain to
stability.

Three general groups of approaches to stabilizing rein-
forcement learning can be distinguished: shield-based rein-
forcement learning, fusion of model-predictive control and

reinforcement learning and Lyapunov-based reinforcement
learning. The first group of approaches suggests to directly
discard unsafe actions via, generally speaking, a filter which,
depending on the context, may be called a shield, an overseer,
a supervisor etc. These algorithms vary in the way of how
exactly the shield checks actions for safety and issues an
emergency solution. The actual design of the shield may be
as simple as human-based, i. e., manual [42], or as complex
as using formal verification software [43], [44], [45], [46].
Unlike a human overseer, formal-logic-based supervisors are
correct by definition and thus are not prone to errors. Yet,
their design is highly application-specific and might turn
tedious (some hints may be found in [47]). Extensions and
applications of supervisory safe reinforcement learning are
known. For instance, probabilistic shielding was done in [47],
and [48]. Masking unsafe actions via an anticipative super-
visor was tried in autonomous driving [49]. The agent was
trained on a real car data and tested in a T-junction. Robotic
manipulation under safe emergency policies (also called
recovery policies) was studied in [50]. Unfortunately, human-
based overseers in reinforcement learning are inevitably sub-
jective which may harm their correctness. Shields based on
formal logic may be difficult to design and highly special-
ized whence it is not straightforward to judge their inference
property.

Fusion with model-predictive control is an active subfield
in stabilizing reinforcement learning (see, e. g., [51], [52],
[53], [54], [55]). Various ways of fusion are present, some
of which concentrate more on the model learning whereas
others look into safety constraints specifically [56], [57],
[58], [59], [60], [61], [62], [63]. The famous reinforce-
ment dreamer effectively utilizes the predictive philosophy
of model-predictive control [64] (with a term ‘‘imagina-
tion’’ used instead of the classical ‘‘prediction’’). In fact,
the dreamer can be seen as a variation of adaptive model-
predictive control. It is important to highlight the reliance
on a local backup policy here [65], [66]. There is no won-
der that such a fusion has potential since model-predictive
control possesses an established machinery for guaranteeing
stability of the closed loop, such as terminal costs, terminal
constraints, contraction tools etc. For instance, Zanon and
Gros [51], [52] suggested to use robust model-predictive
control to ensure safety of reinforcement learning. The pol-
icy parameters were updated to optimize a finite-horizon
objective subject to safety constraints. The work [51] imple-
mented the approach only in linear systems though. Some
issues remained open, such as safe exploration, model esti-
mation and temporary loss of safety. A methodology more
focused on the model-predictive control side was studied
in [53], and [54]. This one can rather be classified as
learning-based predictive control. Starting with a safe set
and a safe policy, this work constructs a predictive agent
that solves a model-predictive control optimization problem,
if it is feasible, or, otherwise, resorts to the safe policy. The
optimization itself was suggested via interior-point methods.
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The overall method required a well-calibrated model and
solving a generalized eigenvalue problem at each time step
to function. A hybrid approach based on learning stage costs
in model-predictive control was studied in [67], [68], [69],
[70], and [71]. Conditions on learning so as to guarantee the
closed-loop stability were derived. Generally, the approach
of fusion of reinforcement learning with model-predictive
control offers correctness via the established safety and sta-
bility theory of model-predictive control. On the other hand,
the analyses of infinite-horizon performance [72], [73], [74],
[75], [76], [77], [78] can help assess interference of the
stabilizing tools with learning. Yet, the field of safe rein-
forcement learning based on model-predictive control needs
future work, especially in terms of elaboration of methods for
continuous-time, stochastic environments.

The Lyapunov stability theory was recognized in rein-
forcement learning already by Perkins and Barto [79], [80].
Advancements were made since [54], [81], although such
approaches to stabilizing reinforcement learning were offline
and required checking a Lyapunov decay property over
a region in the state space during Monte-Carlo agent
runs. For instance, [81] suggested a safe Bellman opera-
tor to ensure the current optimum objective estimate sat-
isfy a Lyapunov condition. Berkenkamp et al. [54] used
state space splitting to verify a Lyapunov condition in
each cell. The approach needed certain confidence inter-
vals on the statistical model of the environment. It should
be noted that offline Monte-Carlo runs are not always fea-
sible in industrial applications, such as robotics. To this
Lyapunov-based stabilizing reinforcement learning, agent
design based on stabilization techniques of adaptive control
can be categorized (approaches can be traced back to the
early 2010s, e. g., [82]). An elaborate approach was sug-
gested by [83], whose elements found application in later
works , e. g., [84], [85], [86], [87], [88], [89], [90], [91]. The
key idea was to use robustifying controls inspired by [92].
Unfortunately, robustifying controls interfere with learning
and do not guarantee stability unless some suitable prop-
erty such boundedness away from zero of input coupling
is satisfied. In [83] and [93], the optimum objective was
effectively used as the Lyapunov function candidate for the
state. The drift was assumed linear in unknown parame-
ters and the input-coupling function was assumed uniformly
bounded. An overview of such techniques, that employ adap-
tive control in reinforcement learning, can be found in [94].
Early works of (robustly) stabilizing reinforcement learning
include, e. g., [95] in which integral quadratic constraints
(IQCs) were introduced to inspect closed loop stability
properties. Integral quadratic constraints, that allow learning
errors in the closed loop as bounded (input) uncertainty,
found application in early robustly stabilizing reinforcement
learning approaches [95]. Such constraints appeared in recent
stability analyses [96]. It should be said that also control
barrier functions can be integrated along with (control) Lya-
punov functions into reinforcement learning. So, e. g., [97]
combined those in a fusion of a safety-critical controller with

a learning agent. The approach was tested in a simulation
with a bipedal robot in full episodes until success or fail-
ure. Another application of control barrier functions is due
to [98], where a safe controller was coupled with amodel-free
reinforcement learning agent. The learning was also episode-
based. Comparing a Lyapunov function involved with the
optimum objective might give a hint to sub-optimality
bounds, which allows assessing interference. Correctness
may in turn be achieved by the rigor of the stochastic sta-
bility theory [99]. Unfortunately, existing approaches of this
category are rarely capable of online functioning without
pre-training or Monte-Carlo agent runs. Furthermore, often-
times, certain assumptions on the environment dynamics are
posed in Lyapunov-based stabilizing reinforcement learning
such as, e. g., second-order differentiability [100], linear-
ity [101] or global Lipschitzness [4] of the drift. For a detailed
survey on the state of the safe and stabilizing reinforcement
learning, refer, e. g., to [102].

III. CONTRIBUTION
From the analysis of the existing approaches to reinforcement
learning with stability guarantees, a conclusionmay be drawn
that classical control techniques, such as model-predictive
control, Lyapunov-based control and adaptive control, are
currently more technically elaborate than supervisor-based
safe approaches. This indicates that the connection between
classical control theory and vanguard machine learning
strengthens. Yet, reinforcement learning with guarantees is
rather in its emerging phase and the variety of concrete
approaches needs to grow before a unifying and widely
recognized framework can be formulated. This paper adds
to the state of the art of Lyapunov techniques in stabiliz-
ing reinforcement learning. The proposed method introduces
specially designed Lyapunov-like constraints on the agent
learning so that the environment be stabilized in a suit-
able sense. It is shown that the critic becomes effectively a
(time-varying) Lyapunov function for the closed loop with
a suitable decay rate. The environment is considered influ-
enced by bounded stochastic disturbance under sampled poli-
cies, i. e., we assume the environment dynamics continuous,
whereas the actions are taken at discrete moments in time.
The inter-sample behavior of the environment is addressed
explicitly in the stability analysis. The reason to assume a
bounded noise is because, otherwise, no guarantees can be
made on the inter-sample behavior of the state trajectories and
this is independent of the agent design (a detailed analysis
and justification may be found in the recent stochastic sta-
bilization results under sampled policies [103], [104]). Also,
a bounded noise is physically meaningful and some respec-
tive stochastic models are provided in the appendix. Unlike
many existing Lyapunov-based approaches, the currently pre-
sented one is purely online and needs no agent pre-training
to achieve environment stability. Also, it should be noted
that the derived stability guarantees do not require persis-
tence of excitation. The proposed approach applies to envi-
ronments with general nonlinear dynamics, not necessarily
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FIGURE 1. Left: target positions and orientations (marked red) for the robot. The initial orientation is marked green. The units are meters.
Right: Robotis TurtleBot3 and its key components on the experiment polygon.

control-affine, nor does it need the input-coupling to be
bounded or bounded away from zero. Experiments with a
mobile robot showed failure of plain actor-critic to stabilize
the environment online, whereas the suggested approach beat
a baseline stabilizer by far under different running objective
functions.

IV. APPROACH
We consider first a state valued critic model Ĵ : X×W→ R
as a (deep) neural network with weights w ∈ W, where
W is compact and 0 /∈ W. The presented approach does
not restrict the user in the choice of a model. Thus, the
common recommendations of not-too-rich and not-too-poor
structures apply to achieve a trade-off between complexity
and avoidance of over-fitting. The environment stability guar-
antee presented is independent of the critic structure. The
ambient idea of the presented approach is motivated by the
fact that an ideal critic, which captures the optimum objective
sufficiently close, is a actually a Lyapunov function under a
policy, which is in turn sufficiently close to the optimizer. The
approach resembles this by Lyapunov-like constraints.We fix
ν̄ > 0, a desirable Lyapunov decay rate. This parameter is
arbitrary and independent of the environment, although one
might want to set it so that the effective decay do not exceed
the running objective. Notice that by the virtue of the HJB, the
decay rate of the optimum objective is precisely the running
objective. Furthermore, one may pick a learning rate β > 0.
A scheduler, momentum optimization routine parameters or
other sophisticated hyper-parameters, found in such methods
as ADAM, are omitted as non-essential for the derivations
that follow. The user is free to configure the optimization
routine however desired. Moreover, we stress here that an

optimization routine needs not to actually respect the posed
stabilizing constraints. The fact is, that if they happen to be
satisfied, the computed critic weights are accepted, otherwise
they are not. Explicit account of the constraints may help the
actor fire more frequently though. Now, let Jcritic and Jactor
denote the critic and actor loss, respectively. The optimization
of the critic is performed subject to stabilizing constraints as
discussed further. The said optimization problemwill not nec-
essarily be feasible, whence a stabilizer is invoked in case of a
failure. If a suitableminimizer is found, the actor fires instead.
The essential part here is to record a successful state-weight
pair x◦, w◦. Notice that an arbitrary switching between two
stabilizers does not necessarily result in closed-loop stability.
A careful addressing of the switching mechanism is needed.
This is precisely what is done in the presented approach.
The resulting critic of the recorded state x◦ becomes effec-
tively a multi-step Lyapunov function (details are in the
appendix).

Fix a pair α̂low, α̂up of K∞ functions, i. e., monotone
increasing, unbounded functions. In other words, α̂low, α̂up
satisfy:

α̂low(0) = α̂up(0) = 0,

lim
s→∞

α̂low(s) = lim
s→∞

α̂up(s) = ∞.

It should be noted that the stabilizing properties of the
proposed approach will hold regardless of which α̂low, α̂up
are chosen as long as they belong to K∞. For instance,
a reasonable choice of α̂low, α̂up would be

α̂low(s) = alows2, α̂up(s) = aups2, 0 < alow < aup. (9)

The hyper-parameters alow, aup and ν̄ determine a trade-off
between freedom of learning and worst-case-scenario

89192 VOLUME 11, 2023



P. Osinenko et al.: Actor-Critic Framework for Online Control With Environment Stability Guarantee

FIGURE 2. Communication flowchart of the agent in Python and Robotis
TurtleBot 3 via ROS.

FIGURE 3. The accumulated running objective of the agent vs. the
stabilizer, i. e.,

∫ 120
0 ζ⊤Hζ dt . The box bounds are, respectively, the first

and third quartiles Q1, Q3. The whiskers are the same quartiles
plus/minus one and a half interquartile range Q3-Q1. The y-axis scale is
split for better reading.

reaching time of the attractor. If alow
aup

and ν̄ are chosen to
be sufficiently small, the weights of the critic will not be
prevented from converging to their ideal values, however
if the critic is underfitted, smaller values of alow

aup
, ν̄ may

entail slower stabilization accordingly. Summarizing, the
stabilizing constraints read at time step k:

Ĵw(xk )− Ĵw
◦

(x◦) ≤ −ν̄δ,

α̂low(∥xk∥) ≤ Ĵw(xk ) ≤ α̂up(∥xk∥). (10)

The critic loss Jcritic may be taken in various forms. In this
regard, the presented approach does not restrict the user. For
instance, consider the following ‘‘deferred temporal differ-
ence loss’’ at time step k:

Jcritic(w) =
(
Ĵw(x◦)−

N ◦∑
k ′=1

r(xk−k ′ , uk−k ′ )− Ĵ
w◦ (xk )

)2
+ β−2

∥∥w− w◦∥∥2 , (11)

where N ◦ denotes the number of steps since the last success-
ful critic update and β is a regularization coefficient that is
roughly equivalent to the learning rate in gradient descent
based minimization. Alternatively, instead of performing a

Algorithm 1 Online Stabilizing Actor-Critic
1: Input: ν̄ > 0, β > 0, η(·) – stabilizer
2: x0← X0;
3: w0← arbitrary in W;
4: u0← η(x0);
5: w◦← w0;
6: x◦← x0;
7: for k := 1 . . .∞ do
8: perform uk−1;
9: xk ← observed Xkδ;
10: Try critic update:

w∗← argmin
w∈W

Jcritic(w)

s. t. Ĵw(xk )− Ĵw
◦

(x◦) ≤ −ν̄δ,

α̂low(∥xk∥) ≤ Ĵw(xk ) ≤ α̂up(∥xk∥);

11: if solution w∗ found then
12: x◦← xk ;
13: w◦← w∗;
14: Update action:

uk ← argmin
u∈U

Jactor(u);

15: else
16: Call stabilizer: uk ← η(xk );
17: end if
18: end for

TD(N)-like update, one may do the update via TD(1) with
a batch of size N :

Jcritic(w) =
N∑

k ′=1

(
Ĵw(xk−k ′ )− r(xk−k ′ , uk−k ′ )

− Ĵw
◦

(xk−k ′+1)
)2
+ β−2

∥∥w− w◦∥∥2 . (12)

The regularization term β−2 ∥w− w◦∥2 is redundant if gra-
dient descent based minimization is used, since one could
simply set a learning rate as opposed to penalizing the dis-
placement of weights. Notice the choice of the critic loss
(or learning rate) does not prevent environment stabilization,
although the quality of the learning may be affected. Another
possible choice of the critic model is state-action valued Q̂ :
X × U × W → R. In this case, besides x◦,w◦, the last
successful action u◦ is also stored. The stabilizing constraints
read:

Q̂w(xk , uk )− Q̂w
◦

(x◦, u◦) ≤ −ν̄δ,

α̂low(∥xk∥) ≤ Q̂w(xk , uk ) ≤ α̂up(∥xk∥). (13)

The actor loss at time step k may be taken as usual in rein-
forcement learning, considering last successful critic updates,
e. g.,

Jactor(u) = r(x◦, u)+ Ĵw
◦

+ , (14)
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FIGURE 4. Robot parking using the nominal stabilizer. The dither in control near the origin is caused by controller sampling.

or

Jactor(u) = Q̂w
◦

(x◦, u). (15)

Here, Ĵw
◦

+ is, e. g., the state valued critic or a statistic
thereof, e. g., expectation, at the next state under the action u.
An exploration action may be introduced. A basic variant of
the algorithm is given in the listing 1.
The main environment stability result is formulated in

Theorem 1.
Theorem 1: Let O, B, η be an attractor, a basin and a

sampled stabilizer, respectively. Then, the sampled policy
generated by Algorithm 1 drives the state of (2) to O given
that the basin B is sufficiently large and δ > 0, σmax > 0 are

sufficiently small, i. e.,

X0 ∈ B H⇒ ∃ δ > 0, σmax > 0s. t.

P
[
lim
k→∞

inf
s∈O
∥Xkδ − s∥ = 0 | Ukδ set by Algorithm 1

]
= 1.

(16)

Proof: See Appendix. ■
The equation (16) basically implies that Xt will eventually

reach any open superset of O and stay there permanently.
In general, under noise and finite sampling rate, it is only
possible to ensure stabilization up to a certain vicinity of the
equilibrium,which is why the theoretical result in this paper is
formulated in terms of asymptotic stability of neighborhoods
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FIGURE 5. Robot parking using a benchmarking actor-critic agent without stabilizing constraints. One can observe a badly missed target
parking pose.

rather than asymptotic stability of equilibria themselves. This
is due to the fact that a neighborhood of the equilibrium exists
by the nature of noise, where it is no longer possible to reli-
ably reduce the distance to the equilibrium.While disturbance
attenuation methods could potentially be used to reduce the
noise effect, this is out of scope. Notice how Algorithm 1
retains the basin and the attractor of the stabilizer.

In simpler terms Theorem 1 states that Algorithm 1 com-
putes a policy that is guaranteed to stabilize the environment.
This result is valuable, because it indicates that even a poorly
trained reinforcement learning agent is still guaranteed to
stabilize the environment as long as it is applied according
to Algorithm 1.

V. EXPERIMENTAL STUDY
In this section, we present an evaluation of the pre-
sented approach in an optimal mobile robot parking control
problem.2

A. EXPERIMENTAL SETUP
The experiments were performed with a mobile robot under
Algorithm 1. The Robotis TurtlBot3 was used as the exper-
imental medium. Here, a pair of actuated wheels and a
ball-wheel are attached to a platform that moves on a

2The authors thank Ksenia Makarova and Dmitrii Dobriborsci for sup-
porting the experiments.
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FIGURE 6. Robot parking using Algorithm 1. The parking goal is achieved well, the cost is reduced significantly.

the surface. Robotis TurtleBot 3 was equipped with a lidar,
an inertia measurement unit (IMU) for implementation of
the linear and angular speed control, as well as for dead
reckoning, which is also fused with the lidar data for position
determination. The experiments were run on a test polygon
with concrete floor with markings of coordinate axes and
20 cm step nodes. The robot started in the center with a fixed
orientation and drove to one of the target positions as shown
in Fig. 1 (a).

The pair of control signals for the respective actuators is
decomposed into the forward velocityU1

t that is aligned with
the direction in which the robot is facing and the angular
velocity U2

t applied to the center of mass of the robot and
directed perpendicular to the platform. The dynamics of the

robot read:

dXt = d

xrobyrob
θrob


t

=

U
1
t cos θrob,t

U1
t sin θrob,t

U2
t

 dt. (17)

We took the running objective in the following form:

r(x, u) = ζ⊤Hζ, (18)

where ζ := [x−x∗, u], andH is a diagonal, positive-definite,
running objective matrix and x∗ is the target position. The
running objective matrices were taken in several variants,
to differently prioritize the state and action components of
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the cost, namely:

H1 = diag (10, 10, 10, 0, 0) ,

H2 = diag (10, 10, 10, 1, 1) ,

H3 = diag (10, 10, 100, 0, 0) ,

H4 = diag (10, 100, 10, 0, 0) ,

H5 = diag (100, 10, 10, 0, 0) . (19)

A full-feedback proportional controller was taken for a sta-
bilizer. The agent was implemented in Python using PyTorch
and CasADi modules (see the flowchart in Fig. 2). The goal
of the experimental validation was to physically demonstrate
the capabilities of Algorithm 1 to achieve superiority in the
accumulated cost compared to the stabilizer under various
H matrices. For each running objective matrix H , 32 runs
were performed, i. e., for each target position and, respec-
tively, the stabilizer and the benchmarked agent. The agent
performance was evaluated by the accumulated running cost
of 120 seconds, the total run time. The agent sampling fre-
quency was set to 20 Hz which was fairly sufficient for
the real-time robot control. The results are presented in the
next section.

B. RESULTS AND DISCUSSION
The statistics of the accumulated running cost as per∫ 120
0 ζ⊤Hζ dt for different running objective matrices are
shown in Fig. 3. Each statistic was computed over mul-
tiple runs for each agent type and running cost matrix
(see Fig. 1). We observed that the policy by Algorithm 1
yielded considerably lower accumulated running cost show-
ing statistically significant improvement under all selected
running cost matrices. In our experiments, we tested several
actor-critic baselines but none could park the robot in a
meaningful number of episodes. We did not consider pol-
icy gradient agents specifically due to their Monte-Carlo
learning nature whence no stabilization could have been
achieved within few episodes either. For demonstration pur-
poses, we present an exemplary simulation run of parking
into the origin using the stabilizer, Algorithm 1 and a plain
actor-critic agent without stabilizing constraints. One can
see that, as expected, the plain actor-critic agent missed the
stabilization goal, whereas the stabilizer fulfilled this task sig-
nificantly better (see Fig. 4, 5, 6). However, it was the policy
by Algorithm 1 that could both achieve the stabilization goal
and improve the cost of the stabilizer (see Table 1).

To conclude, the outcomes of the experiment are consis-
tent with the theoretical findings manifested by Theorem 1,
thus verifying that the formally derived guarantees hold in
practice. About four-fold reduction in average accumulated
cost demonstrated the significant impact of the proposed
approach on performance. Furthermore, as seen in Table 1,
the score of the stabilizing baseline is strongly inferior to both
actor-critic and the proposed algorithm, which indicates that
the superior performance is not merely due to ‘‘stealing’’ a
known stabilizer, but rather is the consequence of knowledge

TABLE 1. Average accumulated cost.

being extracted from the stabilizing baseline during
learning.

VI. CONCLUSION
A reinforcement learning algorithm was proposed
(Algorithm 1) that ensures environment stability. The sta-
bility guarantee was formalized and proven (Theorem 1).
A set of experiments was performed that involved running
the algorithm on a real robot. The outcomes of the exper-
iments were consistent with the claim of stability that was
earlier formally proven in Theorem 1. Additionally, during
the experiments Algorithm 1 was observed to produce a
significant improvement in performance over the baseline.
A prospective research may involve investigating the nuances
of how the proposed approach applies to multi-agent systems,
such as the ones described in [105].

APPENDIX A
PROOFS
Lemma 1: Let Z[k] denote Zt restricted to domain [kδ, (k+

1)δ] and let F(xk , uk , zk ) := X(k+1)δ if Xkδ = xk ,Ukδ =
uk , dZ[k](t) = zk (t) dt . Notice this latter assumption is valid,
because Zt was assumed to be Lipschitz continuous and thus
it is analytical. Then, F is locally Lipschitz-continuous with
respect to xk , uk and zk .

Proof: Let Lip•(a, b) denote the local Lipschitz constant
of • on a segment connecting a and b. Without loss of
generality let us assume that k = 0. Now let Xt denote the
solution of

dXt = f (Xt , u0) dt + σ (Xt , u0)z0(t) dt, X0 = x0, (20)

and let X ′t denote the solution of

dX ′t = f (X ′t , u0+1u) dt+σ (X ′t , u0 +1u)(z0(t)+1z(t)) dt,

where X0 = x0 +1x. (21)

Now, subtracting the two equations leads to the following
upper bound:

d
∥∥X ′t − Xt∥∥ ≤ Lipf (x, x +1x)

(∥∥X ′t − Xt∥∥+ ∥1u∥) dt
+ Lipσ (x, x +1x)LipZ
×

(∥∥X ′t − Xt∥∥+∥1u∥) dt + σmax ∥1z(t)∥1 dt,
(22)
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which simplifies to∥∥X ′t − Xt∥∥ ≤ ∥1x∥ + σmax ∥1z(·)∥1

+ ζ (x, 1x)
(
∥1u∥ t +

∫ t

0

∥∥X ′t − Xt∥∥ dτ)
.

(23)

where we denoted

ζ (x, 1x) := Lipf (x, x +1x)+ Lipσ (x, x +1x)LipZ .

(24)

In turn, using the Grönwall inequality, we obtain the
following:∥∥X ′t − Xt∥∥ ≤ (σmax ∥1z(·)∥1 + ∥1x∥

+ ζ (x, 1x) ∥1u∥ t)eζ (x,1x)t . (25)

Thus,

∥F(x0 +1x, u0 +1u, z0 +1z)− F(x0, u0, z0)∥

≤ (σmax ∥1z(·)∥1 + ∥1x∥ + ζ (x, 1x) ∥1u∥ δ) eζ (x,1x)δ

≤ LipF (∥1z(·)∥1 + ∥1x∥ + ∥1u∥)︸ ︷︷ ︸
Norm of displacement.

, (26)

where LipF = max(σmax, 1, δζ (x, 1x)) exp (ζ (x, 1x)δ). ■
Let h(x) := inf

s∈O
∥x − s∥ and let Z denote the set

of all possible zk (·), i. e., Z := {z : [0, δ] →
Rd
| z(·) is measurable, ∥z(·)∥∞ < LipZ }.

Lemma 2: If a sampled stabilizer is employed, then
F(xk , uk , zk ) is Lipschitz continuous (with respect to
xk , uk , zk ) over the set of states spanned by all possible
sampled (discrete time) trajectories starting with X0 ∈ B.

Proof: Let us denote the said union of states within
trajectories with S. Equation (8) implies that

∀ ε > 0, ∃ T ≥ 0 ∀ t ≥ T ,

P [h(Xt ) < ε | X0 ∈ B, Uτ ≡ η(Xτ − τ mod δ) ] = 1, (27)

which in turn leads to

∃ K ∈ N0 ∀k ≥ K

P [Xkδ ∈ B | X0 ∈ B, Uτ ≡ η(Xτ − τ mod δ)] = 1. (28)

As a consequence, the following inclusion holds:

S ⊂
(

B ∪
K⋃
i=0

F(·, U,Z) ◦ . . . ◦ F(·, U,Z) ◦ F(B, U,Z)︸ ︷︷ ︸
Image of B at step i.

)
(29)

Notice that since Z is bounded, B × U × Z is bounded
too. By Lemma 1, F is locally Lipschitz-continuous, which
implies that it maps bounded sets to bounded sets. Therefore,
each element of the above union is a bounded set. Conse-
quently, the right-hand side is a finite union of bounded sets
and is therefore bounded itself.

Evidently S is bounded, since it is a subset of a bounded
set. Finally, the latter implies that the Lipschitz constant of

F(·, ·, ·) can be considered fixed over S and thus F(·, ·, ·) is
Lipschitz-continuous over S. ■
Definition 3: A continuous function β : [0,+∞) ×

[0,+∞)→ [0,+∞) is said to belong to class KL if
• β(s, r) is a class K∞ function with respect to s for each
fixed r .

• β(s, r) a decreasing function with respect to r for each
fixed s.

• For each fixed s it holds that lim
r→∞

β(s, r) = 0.

Let ui := {uj}ij=0, z
i
:= {zj}ij=0 and let

F i(x0, ui, zi) := F(·, ui, zi)◦ . . . ◦F(·, u1, z1)◦F(x0, u0, z0).

It is known (see Proposition 2.2 in [106]) that stability
induced by η implies that there exists a KL function β such,
that

∀i ∈ N0, x0 ∈ B β(h(x0), i) > h(F i(x0, ui, zi)). (30)

Furthermore, by Proposition 7 in [107], for any KL∞
function β there exist α1, α2 ∈ K∞, such that

β(s, r) = ρ1(ρ2(s)e−r ) ∀ s > 0, r > 0. (31)

Lemma 3: F i(x0, ui, ·) is Lipschitz continuous with
respect to z∞ ∈ Z∞.

Proof: Although the domain of F i(x0, ui, ·) was initially
defined as Z i, it could nonetheless be considered as function
over the extended domainZ∞ that is constant with respect to
{zj}∞j=i+1. F

i is obtained by composing Lipschitz-continuous
functions and is thus Lipschitz continuous w.r.t. Z i. It is
not hard to show that when an abstract Lipschitz-continuous
function ϕ(a) is complemented with a redundant variable
b, it remains Lipschitz continuous and preserves the same
lipschitz constant:

ϕ(a+1a, b+1b)− ϕ(a, b) = ϕ(a+1a)− ϕ(a)

≤ Lipϕ ∥1a∥

≤ Lipϕ ∥1a∥ + Lipϕ ∥1b∥ .

(32)

■
It is well known that the existence of a Lyapunov function

can be used to infer stability. However, to do so it is necessary
to prove the following converse result first:
Lemma 4: There exists a locally Lipschitz-continuous

function L : Rn
→ R+, a continuous function ν : Rn

→ R+
that is strictly positive outside of O and α1,2 ∈ K∞ s. t.

i) L has a decay rate satisfying

Xkδ /∈ O, Xkδ ∈ S, Ut ≡ η(Xt − t mod δ)

H⇒ L(X(k+1)δ)− L(Xkδ) < −ν(∥Xkδ∥), (33)

ii) ∀x ∈ X αlow(h(x)) ≤ L(x) ≤ αup(h(x)).
Proof: Using (30) and (31) we obtain

h(F i(x0, ui, zi)) ≤ β(h(x0), i) ≤ ρ1(ρ2(h(x0))e−i), (34)
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which in turn implies

ω(h(F i(x0, ui, zi))) ≤ ρ2(h(x0))e−i. (35)

Define L0 : X × Z → R+ by

L0(x0, z∞) =
∞∑
i=0

ω(h(F i(x0, ui, zi))). (36)

It follows from (35) that

αlow(h(x0)) := ω(h(x0)) ≤ L0(x0, z∞)

≤

∞∑
k=0

ρ2(h(x0))e−k ≤
e

e− 1
ρ2(h(x0))

=: αup(h(x0)). (37)

The above also shows that the series in (36) converges
uniformly w.r.t. x0, z∞, because the tail sums can be bounded
in the following way:

0 ≤
∞∑
i=n

ω(h(F i(x0, ui, zi)))

≤

∞∑
k=n

sup
x∈S

ρ2(h(x))e−k ≤
1

1− e−1
sup
x∈S

ρ2(h(x))

−
1− e−n

1− e−1
sup
x∈S

ρ2(h(x))
n→∞
−−−→ 0. (38)

Thus, the series in (36) converges uniformly with respect
to z∞, while the elements of the sequence are Lipschitz
continuous with respect to z∞ by Lemma 3, thus by uniform
convergence theorem the series converges to a function that
is uniformly continuous with respect to z∞. Finally, define
L(x) = sup

z∞∈Z
L0(x, z∞). Evidently:

αlow(·) := ω(·),

αup(·) :=
e

e− 1
ρ2(·),

ν(·) := ω(h(·)). (39)

■
Lemma 5: Let O′ be the closure of an open superset of O,

then under 1

∃ T > 0, : X0 ∈ B H⇒ ∃δ > 0, σmax > 0

P

[
sup

t∈[T ,+∞)
inf
s′∈O′

∥∥Xt − s′∥∥ > 0

]
= 0. (40)

The above proposition enables us to construct an upper
bound on the reaching time of O.

Consider 1. Let us denote, for brevity:

x◦ := xprev,

Ĵ◦ := Ĵwprev (x◦). (41)

Also, let us denote:

K̂ := {k ∈ N0 : critic finds a solution w∗},

KL := {k ∈ N0 : η is invoked}, (42)

the sets of time step indices where the critic succeeds to find
a solution w∗ and, respectively, where it does not and so the
stabilizing policy η is invoked.
Now, define:

x◦k :=

{
xk , k ∈ K̂,

x◦k−1, k ∈ KL ,

and, by the same token, Ĵ◦k .
Let Lk denote L(Xkδ). When running 1, we expect the

behavior of Lk and Ĵ◦k to look schematically like 7 depicts.

FIGURE 7. Schematic of the critic and a Lyapunov function behavior
under Algorithm 1.

It holds that

∀k ∈ N0
∥∥x◦k∥∥ ≤ α̂−1low(Ĵ

◦
k ) ≤ α̂−1low(Ĵ

◦

0 ).

Observe that

∀k ∈ N0

L(x◦k ) ≤ αup(h(x◦k )) ≤ αup(α̂
−1
low(Ĵ

◦
k )) ≤ αup(α̂

−1
low(Ĵ

◦

0 )).

Since for all k ∈ KL , Lk is non-increasing, we conclude
that

∀k ∈ N0 Lk ≤ αup(α̂
−1
low(Ĵ

◦

0 )),

whence

∀k ∈ N0 ∥Xkδ∥ ≤ α−1low(αup(α̂
−1
low(Ĵ

◦

0 ))),

Since B ⊂ S and B can be chosen arbitrarily large given
that δ > 0, σmax > 0 are sufficiently small, we can thus
without loss of generality assume:

inf
b/∈S
∥b∥ > α−1low(αup(α̂

−1
low(Ĵ

◦

0 ))). (43)

Now, if Xkδ /∈ O, then

ν(Xkδ) ≥ inf
x /∈O′

ν(x). (44)

We have, denoting 1•k ≜ •k+1 − •k :

∀k ∈ K̂ 1Ĵ◦k ≤ inf
x /∈O′

ν(x),

∀k ∈ KL 1Lk ≤ inf
x /∈O′

ν(x). (45)
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If the critic always succeeded, then O would be reached
after no more than

T̂ :=
Ĵ◦0 − α̂low( inf

x /∈O′
∥x∥)

inf
x /∈O′

ν(x)
(46)

steps. If the stabilizing policy were always invoked instead,
O′ would be reached after no more than

TL :=
L0 − αlow(infx /∈O′ ∥x∥)

inf
x /∈O′

ν(x)

steps.
But, unlike Ĵ◦0 , the Lyapunov function Lk may step-wise

increase when k ∈ K̂ (see 7). However, Lk never exceeds
αup(α̂

−1
low(Ĵ

◦

0 )) as shown above. Thus, let us define

TL :=
αup(α̂

−1
low(Ĵ

◦

0 ))− αlow( inf
x /∈O′
∥x∥)

inf
x /∈O′

ν(x)
. (47)

This is a reaching time of O if only η were invoked after a
worst growth of Lk after a successful critic update. We say
‘‘a reaching time’’ to stress that it is effectively just a bound.
Now, let T ∗ := max{T̂ ,TL}.
There are several possible scenarios that can precede the

event of reaching O. The two limiting cases, when only the
critic succeeds or η is involved, are clear from the reaching
time T ∗. That is, O is reached within T ∗ steps. We need
thus to argue about the mixed case. It is easy to see that
the worst case is when per every critic success, there is
T ∗ − 1 invocations of η until O′ is ‘‘almost’’ reached, but
not quite, followed by another critic success and so on. Thus,
the overall reaching time of O′ under 1 is

T ∗(T ∗ − 1). (48)

Now that an upper bound on the reaching time of an
arbitrary proximity to the attractor O is obtained, whence the
proof is concluded.

A. MISCELLANEOUS REMARKS
Remark 1: Since the number of invocations of η is not

greater than T ∗ till the Bs∗ is reached, the critic Ĵ◦ is
effectively a multi-step Lyapunov function, i. e., Ĵ◦ is non-
increasing and

∀k ∈ N0 Ĵ◦k+T ∗ − Ĵ
◦
k < 0.

APPENDIX B
STATE-ACTION VERSION OF THE ALGORITHM
See Algorithm 2.

APPENDIX C
BOUNDED NOISE MODELS
This section briefly reflects the key models from the sur-
vey [108]. Some Latin and Greek letters here are to be
interpreted separately from the rest of the text and thus not to

Algorithm 2 Online Stabilizing Actor-Critic. State-Action
Critic
1: Input: ν̄ > 0, β > 0, η(·) – stabilizer
2: x0← X0;
3: w0← arbitrary in W;
4: u0← η(x0);
5: w◦← w0;
6: x◦← x0;
7: u◦← u0;
8: for k := 1 . . .∞ do
9: perform uk−1;

10: xk ← observed Xkδ;
11: Update the action: uk ← argmin

u∈U
Q̂w
◦

(xk , u);

12: Try critic update:

w∗← argmin
w∈W

Jcritic(w)

s. t. Q̂w(xk , uk )− Q̂w
◦

(x◦, u◦) ≤ −ν̄δ,

α̂low(∥xk∥) ≤ Q̂w(xk , uk ) ≤ α̂up(∥xk∥);

13: if solution w∗ found then
14: x◦← xk ;
15: u◦← u∗;
16: w◦← w∗;
17: else
18: Replace action for stabilizer: uk ← η(xk );
19: end if
20: end for

be confused. The easiest way to achieve bounded noise is to
apply a saturation function the standard Brownian motion Bt .
Such is the case of the sine-Wiener process Z ′t = sin

(√
2
τa
Z ′t

)
with an autocorrelation time parameter τa. Another way is
to augment the environment description with a dynamical
noise model. Thus, the overall description would read, for
instance:

dXt = (f (Xt ,Ut )+ σ (Xt ,Ut )Z ′t ) dt,

dZ ′t = ξ (Z ′t ) dt + χ (Z ′t ) dBt , (49)

where {Z ′t } is the noise process with an internal model
described by the drift function ξ and diffusion function χ , Bt
is the standard Wiener process. Particular ways to construct
the respective stochastic differential equations include the
following [108]:
• The Doering-Cai-Lin (DCL) noise

dZ ′t = −
1
b1
Z ′t dt +

√
1−Z ′t

2

b1(b2+1)
dBt , (50)

with parameters b2 > −1, b1 > 0;
• The Tsallis-Stariolo-Borland (TSB) noise

dZ ′t = −
1
b1

Z ′t
1−Z ′t

2 dt +
√

1−b2
b1

dBt , (51)

with b1 > 0, b2 < 1 parameters;
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• Kessler–Sørensen (KS) noise

dZ ′t = −
b3

πb1
tan

(
π
2 Z
′
t
)
dt + 2

π
√
b1(b2+1)

dBt , (52)

with b1 > 0, b2 ≥ 0, b3 =
2b2+1
b2+1

parameters.

The abovemodels essentially design the drift and/or diffusion
functions so as to confine the strong solutions to stay within
(−1, 1) (component-wise) almost surely (the unitary bound
is chosen for simplicity and may be adjusted according to
the application). It should be noted that the corresponding
functions ξ, χ do not satisfy Lipschitz conditions in the stan-
dard way. Nevertheless, existence and uniqueness of strong
solutions can be ensured [108]. So, for instance, in the case
of the TSB noise, the drift is at least locally Lipschitz. This
fact, together with non-reachability of the boundaries −1, 1
(which can be shown) furnishes the strong solution existence
and uniqueness.
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