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ABSTRACT This new paper combines errors-in-variable (EIV) systemwith closed loop situation to consider
a more complex closed loop EIV system. Consider the identification problem for closed loop EIV system,
synthesis analysis is completed from the point of system identification field. Firstly, the reason about why
closed loop EIV system is useful in academy and practice is explained in detail. Secondly, to identify that
unknown plant, existing in closed loop EIV system with the measurement and process noise simultaneously,
nonparametric estimate is proposed to be one plant estimate through our own mathematical derivation.
Then statistical analysis above nonparametric estimate is studied to show the unbiased property. Thirdly,
for the rational transfer function as the unknown plant, parameterized by one unknown parameter vector,
the plant identification is transferred into one parameter estimate, so after reformulating the parameterized
input-output relation for closed loop EIV system, least squares solution is derived to be biased. To avoid
this explicit biased term, bias compensated estimate and an iterative least squares estimate are proposed to
improve the overall identification performance. Finally, one practical example is to show the existence of
our considered closed loop EIV system, and the detailed numerical results prove our proposed identification
strategies.

INDEX TERMS Closed loop EIV system, synthesis analysis, nonparametric estimate, parametric estimate.

I. INTRODUCTION
System identification applies the data to generate one
mathematical model for the considered unknown plant or
system, and the data are collected through some physical
devices. After collecting some observed data in priori, then
the mission of system identification is to extract the useful
information for the unknown plant by virtue of some existed
methods, such as statistical strategy, machine learning and
deep learning etc. These use information can be expressed
as some explicit forms, for example, mathematical equation,
figure, graph, table and others, but mathematical equation
is more widely accepted, due to its convenient tool for
modeling and analysis purposes. The reason about why the
research on system identification appears so popularly is
that the identified mathematical equation, corresponding to
the unknown plant, will be used in latter controller design
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process. It means the controller design process regards the
mathematical equation as the model basis, then the final
controller is dependent on the mathematical equation. More
generally, all natural plants are operating in open loop or
closed loop environment with some unavoidable noises,
so the existed research on system identification mainly
concern on open loop system identification and closed
loop system identification. But recent practical results show
unstability always exists for open loop system due to disturb,
noise and bad mathematical equation for the unknown plant,
so now all plants must be operated of controlled within
one closed loop system, leading to closed loop system
identification and next closed loop controller design.

Roughly speaking, two control structures exist in both
industry and academy, i.e. open loop structure and closed loop
structure. Before 1960s, open loop structure was used and
studied to let the input signal go through the feed forward
controller and the considered plant directly, then the collected
output signal was determined whether it was satisfied or not.
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And this satisfied requirement or condition was measured by
one expected criterion in priori. Latter, thanks to the stability
analysis and other interesting analysis, such as tracking
property, robust analysis, etc, researchers found there were
lots of shortcomings for open loop structure, for example,
unstable system and unable to track the desired or expected
signal, so closed loop structure was proposed to replace
the classical open loop structure. Within the framework of
closed loop structure, the output signal is returned back to the
input part, then the error, obtained by the subtract operation,
is passed to the feed forward controller. Meanwhile, one
or more feedback controllers can be added in the feedback
path. Due to more controllers exist in closed loop system,
i.e. the feed forward controller and feedback controller,
so more goals or expected properties are achieved although
the complexity and computational load are increased, but they
are tolerable in this advanced times.

Consider the problem of closed loop system identification,
three kinds of identification strategies are always used, i.e.
direct, indirect and their combinations, referring to any
book about system identification. As the unknown plant and
unknown controller exist in closed loop system simultane-
ously, so firstly the unknown plant is identified from the
theory of system identification field. Then secondly, this
identified or estimated plant, corresponding to one explicit
mathematical equation, is used to design the controller
from the different control goals, i.e. tracking perfectly,
robust property, adaptive property, etc, named as model
reference tracking control, robust control and adaptive control
respectively. Specifically, during the closed loop system, the
unknown plant and controller are all deemed as the stochastic
case, meaning stochastic noise, and stochastic noise is only
imposed on the output signal. It means the input signal is
not influences, and the output signal is corrupted by external
noise. But this case does not hold in practice, whose input
signal and output signal are all corrupted by the measurement
and process noise respectively, referring to errors-in-variables
system (EIV).

During previous ten years, lots of contributions are
proposed to identify EIV system, but due to space limitations,
here we only list some not all of them. A generalized
instrumental variable method is proposed for EIV identifi-
cation problems [1], and the detailed statistical analysis of
this generalized instrumental variable method is given too.
Reference [2] formulates all identification method for EIV
system and points our the future perspective. A fast algorithm
for EIV filtering is considered in [3], where filtering, esti-
mation and prediction are analyzed together. Nonparametric
identification for the unknown plant, existing in linear
dynamic EIV system, is derived to estimate one transfer
function form [4]. Furthermore, [5] uses a quasi-stationary
input to excite EIV system, while identifying it within the
frequent domain. To improve the identification accuracy,
one additional regularized term is added to guarantee the
unbiased estimation [6]. Onemodified dynamic iterative PCA

is proposed to identify EIV ARX models [7], where the
unknown plant is modeled as ARX model. Reference [8]
analyzes uniform confidence bands for nonparametric EIV
regression, and confidence means the identification accuracy
is acceptable with one probability level. EIV system exists
whatever in academy and economics, meaning some eco-
nomic phenomenons can be modeled as one EIV system [9].
Other than above references on EIV system identification,
identifiability is considered in the behavioral setting for EIV
system [10] respectively. The fact about EIV exist is true,and
also closed loop structure is more than open loop structure,
so this paper combines them together to form a new closed
loop structure, whose input and output are all corrupted by
the measurement and process noise. Under this circumstance,
we call it as closed loop EIV system. To achieve the perfect
identification mission, we have some previous contributions
on closed loop system identification,then we need to extend
our previous contributions to identify this new closed loop
EIV system. For example, [11] proposes stealth identification
strategy for closed loop system, but the initial estimation
is difficult to define, because it is very hard to guarantee
the initial estimation approach to its real value [12]. The
fact about that closed loop EIV system exists is proved in
aircraft flutter model [13], where the aircraft flutter model
corresponds to our named closed loop EIV system through
many experiments of wind tunnel. Consider the controller
design problem for closed loop EIV system, direct data
strategy is proposed to satisfy the safety [14] and design
one data driven controller from the observed data directly.
Furthermore, our previous contributions reply the problem
from [15], where the measurement noise must be chosen
approximately to satisfy one necessary condition.

System identification is widely studied in academy and
engineering, for example UAV system identification. More
specifically, in UAV system identification, the total number
of observations, use to extract the intrinsic principle of the
considered system, is the sample size [16]. In case of the
number of observations be more exceed this sample size,
then the input is persistent excitation, while the identification
model satisfies the expected accuracy. From the knowledge
of system identification theory, the situation with observed
disturbance or noise in the output corresponds to the robust
system identification [17], which being also extended to
robust optimal control. When using the probabilistic or
statistical inference in system identification theory in [18]
to measure the asymptotic accuracy about the final identi-
fication model. Furthermore in recent years, risk sensitive
theory and reinforce learning are all introduced in system
theory and advanced control theory [19] and [20], i.e. the
risk decision and limitations of policies were considered
during the whole process of identification and controller
design. Then the final identification system or plant is more
realistic then classical theoretical result. From these ongoing
subjects about applying risk theory, dynamic programming
and probabilistic limitation for system identification and
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control theory, we are thinking to extend graph theory
and topology to system identification. More specifically,
the second step-model structure choice is related with
graph theory, i.e. the chosen model is constructed as one
network system, being formulated as graph theory. System
identification theory is not only for our considered aircraft
system identification, but also for robot system identification
in [21]. As lots of identification processed are transformed
into their corresponding constrain optimization problems,
so some existed optimization results can be applied directly,
for example, convex optimization [22], scenario optimiza-
tion [23], and scenario robust control [24], etc. Consider
the last step for system identification-model validation, some
nice properties are satisfied for the final identification model
or designed controller, such as controllability, stochastic
chance constraints, robustness and nonlinearity [25]. The
goal of experiment design is to maximize the information
content in the data, subject to practical constraints, for
example [26],limits on input or output amplitude to ensure
that a linear model structure can be used to estimate
parameters from the measured data. Reference [27] considers
the identification of output error (OE) model, for the case of
constrained output variance, and for the purpose of increasing
the practical value of the filter, a heuristic modification is
performed. Also, an optimal input is obtained by a minimum
variance controller with a Gaussian reference signal [28].
Based on above mentioned references on EIV system

identification and our previous contributions on closed
loop system identification, this new paper studies synthesis
identification analysis for that new structure-closed loop
EIV system. Closed loop EIV system combines the dual
properties from EIV system and closed loop situation, i.e.
the closed loop input and output tare all corrupted or
measured by external noises, so our identification mission
is to extract one mathematical equation for the unknown
plant through these corrupted input-output signal. As the
field of system identification includes four steps, optimal
input design, model structure, identification algorithm and
model validation, so our synthesis identification analysis for
closed loop EIV system includes above four steps too. The
detailed input signal design and model description can be
referred to our previous contributions [13], [14]. Then this
new paper concerns on the identification algorithm andmodel
validation for closed loop EIV system, while completing the
overall synthesis analysis. More specifically, after describing
the called closed loop EIV system with two external noises,
the identification algorithms for closed loop EIV system
are proposed for nonparametric estimate and parametric
estimate respectively. Firstly, the corrupted input-output
signal are dealt with to generate one nonparametric estimate,
i.e. rough estimate, then through our statistical analysis,
an unbiased nonparametric estimate is improved without any
parametric form. Secondly, the case of parameterized plant
by one unknown parameter vector, we propose the parametric
estimate and its improved form to guarantee the unbiased
parametric estimate. Consider these two nonparametric

FIGURE 1. EIV system.

estimate and parametric estimate, their statistical analysis
are also given to testify whether our obtained estimates are
unbiased. Generally, the difficulty for closed loop EIV system
identification is how to handle the external noise on the input
within closed loop situation.

This paper is organized as follows. In section II, closed
loop EIV system is described to give a background for well
understanding. Our main work are in latter two sections.
Section III proposes nonparametric estimate, and section IV
shows the parametric estimate. These two estimates cor-
respond to the identified plant, operating in closed loop
situation. Moreover, two statistical analysis, corresponding to
these two different estimates, are also given in section III and
section IV respectively. Section V uses one practical example
to prove the efficiencies of our proposed two estimates.
Section VI formulates the main conclusion and points our
our next work. Generally, in this paper, we give the detailed
mathematical derivation to obtain the plant estimate for
one new closed loop EIV system, extending our previous
contributions into new fields.

Generally, the improvements of this paper are listed as
follows.

(1) Extend the existed EIV system into closed loop
EIV system, that is a more general system structure, only
appearing in our paper.

(2) Nonparametric estimate and parametric estimate are
derived through our own mathematical derivations for that
unknown plant.

(3) To get an unbiased estimate, an iterative idea is
proposed for further identification mission.

II. CLOSED LOOP EIV SYSTEM AND MOTIVATION
A. PRELIMINARY
For the sake of completeness, before showing or considered
closed loop EIV system, the existed EIV system is introduced,
plotting in following Figure 1. where in above Figure 1,
the considered EIV system is also one open loop system.
P(z) is the transfer function of an unknown plant, z is
the shift operator. u0(t) is the external excitation signal,
y0(t) is plant output without any noise. {u(t), y(t)} are the
measured or corrupted input-output signal, {ũ(t), ỹ(t)} are two
kinds of external noises, coming from unavoided factors or
disturbances.

Comment: In Figure 1, we always regard {u0(t), y0(t)}
as real or true input-output without noises, and {u(t), y(t)}
as noisy input-output with the measurement and process
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FIGURE 2. Closed EIV system.

noise {ũ(t), ỹ(t)}. The classical system identification applies
{u0(t), y(t)} to identify that unknown plant P(z) without
considering noise ũ(t). But this noise ũ(t) exists, leading to
bad plant estimate, so to improve the identification accuracy
about plant P(z), EIV system identification proposes to use
the noisy input-output {u(t), y(t)} to estimate the unknown
plant P(z), and it is more realistic than before.

Consider that EIV system in Figure 1, the following
equations hold easily.{

y(t) = y0(t) + ỹ(t) = P(z)u0(t) + ỹ(t)
u(t) = u0(t) + ũ(t)

(1)

i.e. the overall noisy input-output is that

y(t) = P(z)[u(t) − ũ(t)] + ỹ(t)

= P(z)u(t) − P(z)ũ(t) + ỹ(t) (2)

so the problem of identifying that unknown plant P(z) from
the noisy input-output {u(t), y(t)} corresponds to EIV system
identification.

B. CLOSED LOOP EIV SYSTEM
From our many experiments of wing tunnel, we find all
operating systems are considered into one closed loop
situation, and it is true in academy and practices. It means
the open loop system is divergent and replaced by closed
loop system, so we put that EIV system in Figure 1 into one
closed loop system to get our considered closed loop EIV
system, plotting in Figure 2. where in Figure 2, all physical
variables are similar to those in Figure 1. By the way, e(t) is
the unit feedback error signal or the input for the unknown
plant, i.e. e(t) = u0(t) − y(t). The minimal realization can
be obtained by structure decomposition. It is well known that
theminimal realizationmeans one systemwith controllability
and observability property, so we need to decompose the
obtained system according to controllability or observably
decomposition.

Pay attention that the input signal, using to identify the
unknown plant, is noisy input u(t), not that real input u0(t),
as here the external noise ũ(t) is considered. From Figure 2,
the noisy input-output relations are follows.

u(t) = u0(t) + ũ(t)

y(t) = y0(t) + ỹ(t)

= P(z)e(t) + ỹ(t)

= P(z)[u0(t) − y(t)] + ỹ(t)

= P(z)[u(t) − ũ(t) − y(t)] + ỹ(t)

= P(z)u(t) − P(z)ũ(t) + ỹ(t) − P(z)y(t) (3)

i.e. the direct computation to get

y(t) =
P(z)

1 + P(z)
u(t) +

ỹ(t) − P(z)ũ(t)
1 + P(z)

(4)

The difficulty in identifying closed loop EIV system is to
handle the above second noisy combination term ỹ(t)−P(z)ũ(t)

1+P(z) ,
being studied in latter sections.

III. NONPARAMETRIC ESTIMATE
As model can be expressed into two forms, one is parametric
form and the other is nonparametric form. This paper
spends more time and content on parametric form. The goal
of considering that nonparametric form is for a complete
analysis.

To get one plant estimate from the noisy input-output
{u(t), y(t)} in equation (4), we directly observe equation (4)
and generate one direct estimation for that unknown plant
P(z), i.e. rough estimate.

A. ROUGH ESTIMATE
Observing equation (4), its one step ahead prediction output
ŷ(t) is defined as

ŷ(t) = [1 + P(z)]
P(z)

1 + P(z)
u(t) + [1 − 1 − P(z)]y(t)

= P(z)u(t) − P(z)y(t) (5)

where one step ahead prediction output ŷ(t) is dependent on
the noisy input-output {u(t), y(t)}. So the prediction output
error ξ (t) is defined as follows.

ξ (t) = y(t) − ŷ(t)

= y(t) − P(z)u(t) + P(z)y(t)

= [1 + P(z)]y(t) − P(z)u(t) (6)

Making use of noisy input-output sequence {u(t), y(t)}Nt=1,
where N is the total number of data, the unknown plant
is generated from the following numerical optimization
problem, i.e. solving an optimization problem to get an
optimal decision variable.

P̂(z) = argminP(z)J (P(z))

= argminP(z)
1
N

N∑
t=1

ξ2(t)

1
N

N∑
t=1

ξ2(t) =
1
N

N∑
t=1

([1 + P(z)]y(t) − P(z)u(t))2 (7)

Cost function in equation (7) is the commonly used Euclidean
norm, being used to measure the derivation between pre-
diction output and noisy output, due to its simple form for
equation (7). Other cost functions or performance index can
be applied in different simulations, for example, min-max,
robust norm etc.

VOLUME 11, 2023 88425



W. Jianhong, O. Qing: Synthesis Identification Analysis for Closed Loop EIV System

Comment: Observing above optimization problem (7),
whose decision variable is that unknown plant P(z), and noisy
input-output sequence {u(t), y(t)}Nt=1 are collected in priori.
Making use of the optimality necessary condition to

differentiate with respect to P(z) and set the derivative equal
to zero, we have

∂J (P(z))
∂P(z)

=
2
N
([1 + P(z)]y(t) − P(z)u(t))T

× (y(t) − u(t)) = 0 (8)

i.e.

2
N

N∑
t=1

(y(t) + P(z)(y(t) − u(t)))T (y(t) − u(t)) = 0

N∑
t=1

y(t)T (y(t) − u(t)) = P(z)
N∑
t=1

(y(t) − u(t))2 (9)

Using the knowledge of power spectral theory to get one
rough estimate P̂(z).

P̂(z) =

∑N
t=1 y(t)

T (y(t) − u(t))∑N
t=1(y(t) − u(t))2

=
φy(w) − φyu(w)

φy(w) − 2φyu(w) + φu(w)
(10)

where φy(w), φu(w), φyu(w) are auto spectrum and cross
spectrum between noisy input-output {u(t), y(t)}Nt=1, i.e.

φy(w) = lim
N→∞

1
N

N∑
t=1

yT (t)y(t)

φu(w) = lim
N→∞

1
N

N∑
t=1

uT (t)y(t)

φyu(w) = lim
N→∞

1
N

N∑
t=1

yT (t)u(t) (11)

From that rough estimate P̂(z), after collecting the noisy
{u(t), y(t)}Nt=1, three kinds of spectrums

{φy(w), φu(w), φyu(w)} are computed. Then we substitute
three spectrums into equation (10) to obtain one rough
estimate P̂(z) for that unknown plant P(z).

B. STATISTICAL ANALYSIS
To testify whether that rough estimate P̂(z) in equation (10)
is biased or unbiased, its expectation operation E[P̂(z)] is
computed. As three spectrums {φy(w), φu(w), φyu(w)} appear
in that right hand of rough estimate, so firstly, we compute
them in detail.

After simple but tedious calculation, we have

φu(w) = φu0 (w) + σ 2
u

φy(w) =
|P(z)|2φu0 (w) + σ 2

y

|1 + P(z)|2

φyu(w) =
P(z)φu(w) − P(z)σ 2

u

1 + P(z)
(12)

where {σ 2
u , σ 2

y } are variances for those two external noises
{ũ(t), ỹ(t)} respectively, being assumed to be white noises and
variances {σ 2

u , σ 2
y }.

Substituting equation (12) into rough estimate to get the
denominator and numerator, i.e.

φy(w) − φyu(w)

=
σ 2
y − P(z)φu0 (w)

|1 + P(z)|2

φy(w) − 2φyu(w) + φu(w)

=
|P(z)|2φu0 (w) + σ 2

y

|1 + P(z)|2

−
2P(z)φu0 (w)
1 + P(z)

+
φu0 (w) + σ 2

y + P(z)φu0 (w) + P(z)σ 2
u

1 + P(z)

=
φu0 (w) + σ 2

y + (1 + P(z))2σ 2
u

|1 + P(z)|2
(13)

dividing each other to get the expectation operation of that
rough estimate P̂(z), i.e.

E[P̂(z)] =
σ 2
y − P(z)φu0 (w)

|1 + P(z)|2

×
|1 + P(z)|2

φu0 (w) + σ 2
y + (1 + P(z))2σ 2

u

=
σ 2
y − P(z)φu0 (w)

φu0 (w) + σ 2
y + (1 + P(z))2σ 2

u
(14)

From above equation (14), we see that rough estimate P̂(z) is
an biased term, being dependent of {φu0 (w), σ

2
y , σ 2

u }. But in
practice, an ideal case is used to replaces that rough estimate
P̂(z), such as

P̂(z) = −

1
N

∑N
t=1 y(t)

1
N

∑N
t=1[y(t) − u(t)]

=
Ey(t)

E[u(t) − y(t)]
(15)

Due to the following equity holds.

P̂(z) =
Ey(t)

E[u(t) − y(t)]
=

P(z)
1+P(z)Eu(t)

1
1+P(z)Eu(t)

=
P(z)

1 + P(z)
1 + P(z)

1
= P(z) (16)

It means above estimate P̂(z) is an unbiased estimate.
In practice, in case of relaxed condition, above estimate (15)
is used to save lots of computations.

Comment: Whatever plant estimate (10) and (15), we do
not parameterize that unknown plant P(z), and only use the
noisy input-output sequence {u(t), y(t)}Nt=1 to identify the
unknown plant by virtue of power spectrum theory.

IV. PARAMETRIC ESTIMATE
From an applied point of view, the unknown plant P(z) is a
transfer function form, appearing widely in some engineering
problems.
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A. ESTIMATE
Let

P(z) =
B(z)
A(z)

;

A(z) = 1 + a1z−1
+ · · · + anaz

−na;

B(z) = b1z−1
+ · · · + bnbz

−nb; (17)

where na and nb are two known orders for two different
polynomials A(z) and B(z). Unknown parameters {ai}

na
i=1 and

{bi}
nb
i=1 are needed to identify.

Based on above transfer function form, the identification
problem for that unknown plant P(z) is changed to identify
these unknown parameters. Substituting above parameterized
transfer function into equation (4), it holds that.

y(t) =
B(z)

A(z) + B(z)
u(t) +

A(z)ỹ(t) − B(z)ũ(t)
A(z) + B(z)

(18)

rewriting above as that

[A(z) + B(z)]y(t) = B(z)u(t) + [A(z)ỹ(t) − B(z)ũ(t)] (19)

and

A(z) = 1 + a1z(−1)
+ · · · + anaz

−na

= 1 +
[
z−1 z−2

· · · z−na
]

a1
a2
...

ana


= 1 + α(z)a

B(z) = b1z−1
+ · · · + bnbz

−nb

=
[
z−1 z−2

· · · z−nb
]

b1
b2
...

bnb


= β(z)b (20)

where

α(z) =
[
z−1 z−2

· · · z−na
]
;

β(z) =
[
z−1 z−2

· · · z−nb
]
;

a =


a1
a2
...

ana

 ; b =


b1
b2
...

bnb

 (21)

Substituting above simplified forms into equation (19),
we have

[1 + α(z)a+ β(z)b]y(t)

= β(z)bu(t)

+ [(1 + α(z)a)ỹ(t) − β(z)bũ(t)];

y(t) +
[
α(z)y(t)β(z)y(t)

] [
a
b

]
= β(z)u(t)b+ ỹ(t)

+ α(z)ỹ(t)a− β(z)ũ(t)b (22)

i.e. it is equivalent to that

y(t) = ỹ(t) −
[
α(z)y(t)β(z)y(t)

] [
a
b

]
+

[
0β(z)u(t)

] [
a
b

]
+

[
α(z)ỹ(t) −β(z)ũ(t)

] [
a
b

]
=

[
−α(z)(y(t) − ỹ(t)) −β(z)(y(t) − u(t) + ũ(t))

]
×

[
a
b

]
+ ỹ(t)

= ϕT1 (t)θ + ỹ(t) (23)

where regressor variable ϕ1(t) and unknown parameter
vector θ are defined as follows

ϕ1(t) = [−α(z)(y(t) − ỹ(t)) − β(z)(y(t) − u(t) + ũ(t))];

θ =

[
a
b

]
(24)

Thanks for above least regressor form, then the unknown
parameter vector θ is very easily solved to get one classical
least squares solution θ̂ , i.e.

θ̂ = argminθ

1
N

N∑
t=1

[y(t) − ϕT1 (t)θ + ỹ(t)]2 (25)

then

θ̂ = [
N∑
t=1

ϕT1 (t)ϕ1(t)]−1[
N∑
t=1

ϕT1 (t)y(t)] (26)

When to check the identification accuracy of above least
squares solution θ̂ , we take the expectation operation on both
sides of equation (26).

E θ̂ = [
N∑
t=1

ϕT1 (t)ϕ1(t)]−1[
N∑
t=1

ϕT1 (t)ϕ1(t)θ +

N∑
t=1

ϕT1 (t)ỹ(t)]

= θ + [
N∑
t=1

ϕT1 (t)ϕ1(t)]−1[
N∑
t=1

EϕT1 (t)ỹ(t)] (27)

Making use of the following results to continuous
computations.

N∑
t=1

ϕT1 (t)ỹ(t) =
[
α(z)y0(t) −β(z)y(t) + u0(t)

]
ỹ(t)

y0(t) = y(t) − ỹ(t)

=
P(z)

1 + P(z)
u(t) +

ỹ(t) − P(z)ũ(t)
1 + P(z)

− ỹ(t)

=
P(z)

1 + P(z)
u(t) −

P(z)(ũ(t) − ỹ(t))
1 + P(z)

EyT0 (t)ỹ(t) =
P(z)

1 + P(z)
σ 2
y (28)
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−β(z)[y(t) − u0(t)] = −β(z)[
P(z)

1 + P(z)
u(t)

+
ỹ(t) − P(z)ũ(t)

1 + P(z)
− u0(t)]

= −β(z)
1

1 + P(z)
σ 2
y (29)

The above detailed computational process are omitted due to
space limitations.

Substituting above derived results into equation (27) to
obtain

E θ̂ = θ − [
N∑
t=1

ϕT1 (t)ϕ1(t)]−1 [
α(z) 0

]
σ 2
y (30)

From equation (30), we see that least squares solu-
tion θ̂ is a biased estimate, and the biased error is
[
∑N

t=1 ϕT1 (t)ϕ1(t)]−1[α(z) 0]σ 2
y .

Comment: Although above least squares estimate θ̂ is
biased, but we can compensate it to be unbiased, i.e. the bias
compensated estimate.

θ̂ = [
N∑
t=1

ϕT1 (t)ϕ1(t)]−1[
N∑
t=1

ϕT1 (t)y(t)]

+ [
N∑
t=1

ϕT1 (t)ϕ1(t)]−1 [
α(z) 0

]
σ 2
y (31)

where our derived biased error is summed in that least squares
estimate.

As one inverse operation exists in both equation (26)
and (31), so these two equations hold on the condition that
regressor matrix

∑N
t=1 ϕT1 (t)ϕ1(t) is inverse. This condition

corresponds to the persistent excitation, being described in
following Assumption 1.
Assumption 1: To guarantee our identified parameter esti-

mation feasible, i.e.equation (26) and (31) hold, the persistent
excitation about input signal is needed here, meaning there
exists one positive valueM , such that.

N∑
t=1

ϕT1 (t)ϕ1(t) ≥ MI (32)

where I is one identity matrix.

B. IMPROVED ESTIMATE
To avoid the biased error and get the unbiased estimate, this
section proposes an iterative method to improve that least
squares estimate.

Rewriting equation (23) as the following two parts.

y(t) = ỹ(t) −
[
α(z)y(t)β(z)y(t)

] [
a
b

]
+

[
0 β(z)u(t)

] [
a
b

]
+

[
α(z)ỹ(t) − β(z)ũ(t)

] [
a
b

]

=
[
−α(z)y(t)β(z)(u(t) − y(t))

] [
a
b

]
+ w(t)

= ϕT2 (t)θ + w(t) (33)

where

ϕ2(t) =
[
−α(z)y(t) β(z)(u(t) − y(t))

]
;

w(t) =
[
α(z)ỹ(t) −β(z)ũ(t)

] [
a
b

]
+ ỹ(t)

= ϕT3 (t)θ + ỹ(t);

ϕ3(t) =
[
α(z)ỹ(t) −β(z)ũ(t)

]
(34)

Observing equation (32) and (33) together and rewriting two
main equations as

y(t) = ϕT2 (t)θ + w(t);

w(t) = ϕT3 (t)θ + ỹ(t) (35)

where ϕ2(t) and ϕ3(t) are two regressor vectors. They are
constituted from noisy input-output sequence {u(t), y(t)}Nt=1
and two noises {ũ(t), ỹ(t)}Nt=1 respectively. After collecting
the noisy input-output sequence and white noises,two regres-
sor vectors are obtained only through shift operative.

As that unknown parameter vector θ exists in y(t) and w(t)
simultaneously, iterative least squares method is well applied
to improve the identification performance. The main steps of
iterative least squares method are formulated as follows.

Step 1: Collect noisy input-output {u(t), y(t)}Nt=1 and
sample one white noise twice to form {ũ(t), ỹ(t)}Nt=1,
where N is the total number, for example, N = 200.
Step 2: Construct two regressor vectors ϕ2(t) and ϕ3(t).
Step 3: Given one initial parameter vector θ0.
Step 4: Substitute θ0 into ϕT3 (t)θ + ỹ(t) to generate w0(t).
Step 5: Substitute w0(t) into y(t) = ϕT2 (t)θ + w(t) and
the least squares estimate is solved, i.e.
θ̂1 = [

∑N
t=1 ϕT2 (t)ϕ2(t)]−1[

∑N
t=1 ϕT2 (t)y(t)].

Step 6: Substitute θ̂1 into ϕT3 (t)θ̂1+ỹ(t) to generatew1(t),
i.e.
w1(t) = ϕT3 (t)θ̂1 + ỹ(t).
iteratively run step 5 and step 6
...

generate a sequence of parameter estimate as
θ0, θ̂1, θ̂2, · · · , θ̂i, θ̂i+1
Check whether |θ̂i+1 − θ̂i| ≤ 0.05, if it holds,
then terminate the above iterative processes, or go to
step 5 again, until it holds
When to start above given iterative least squares method,
the initial parameter vector θ0 is chosen as θ0 = 0.5I ,
where I is one identity vector.

As the least squares estimate and its improved one
shows the parameter estimate for that unknown parameter
vector θ , so we call it the parametric estimate, being different
from that nonparametric estimated in section III. Generally,
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section III and section IV propose nonparametric estimate
and parametric estimate for that unknown plant.

Comment: Due to the simple form for iterative least
squares method and many existed softwares about it can
be downloaded directly, so the application of our improved
iterative least squares method is feasible and implemented.
Our proposed identification algorithm is iterative least
squares algorithm, belonging to the kind of common least
squares algorithm. As research on least squares algorithm
can be referred to each book about system identification,
so the convergence stability and other statistical properties
are mature from each book.

The reason about why we consider nonparametric esti-
mation and parametric estimation is that these two dif-
ference forms exist actually within different situations for
nonparametric or parametric forms. Nonparametric form
and parametric form are determined by designer, then their
own nonparametric estimation or parametric estimation are
chosen freely.

V. NUMERICAL EXAMPLE
Here we start to prove our identification strategy, describing
in above steps, through one simulation example. More
specifically, the unknown’s plant real or true transfer function
form is given as follows.

y0(t) =
B(z)
A(z)

e(t);

A(z) = 1 − 1.2z−1
+ 0.8z−2

− 0.27z−3
;

B(z) = 0.88 + 0.16z−1
+ 0.8z−2

− 0.38z−3

and two variance values for those two white noises are
σ 2
u = 0.25; σ 2

y = 0.64.
(1) Identification results
Let above plant operate within one unit feedback situation,

then one input signal u0(t), plotting in Figure 3, is chosen to
excite the whole closed loop system whose the measurement
and process noises are white noises. Figure 3 shows the input-
output signal pair {u0(t), y0(t)}, i.e. the real input-output
signal without noises.To introduce the measurement and
process noise together and construct our considered closed
loop EIV system, those two real input-output signals are
corrupted with two white noises,i.e. the corrupted input-
output, plotting in Figure 4, so our mission is to get some
information about B(z)A(z) from these corrupted input-output.

As two polynomials A(z) and B(z) are all parameterized by
two kinds of unknown parameters, i.e.

a =
[
a1 a2 a3

]
=

[
−1.2 0.8 −0.27

]
;

b =
[
b0 b1 b2 b3

]
=

[
0.88 0.16 0.8 −0.38

]
;

θ =
[
a b

]

FIGURE 3. The real input-output signal without noise.

FIGURE 4. The corrupted input-output signal.

TABLE 1. The parameter estimate for polynomial A(z).

so our goal is to identify above unknown parameter vector
θ through using the corrupted input-output signa, plotting in
Figure 4.

Before to start our proposed iterative least squares method,
the noisy input-output {u(t), y(t)}Nt=1 are sampled from
Figure 4, and the initial parameter vector θ0 is set as
θ0 = [0.5, · · · , 0.5]. After 300 iterations, the final parameter
estimates are formulated in the following Table 1 and Table 2,
showing the parameter estimates with time increase.
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TABLE 2. The parameter estimate for polynomial B(z).

FIGURE 5. Three roots for different polynomial A(z).

FIGURE 6. Bode response.

From above two Tables, we see after 300 iterations,
all parameter estimates converge to their own true values.
To understand well, we substitute these parameter estimates
into polynomial A(z) to yield one estimated or identified
polynomial. Figure 5 shows three roots corresponding to the
estimated polynomial and its real polynomial, furthermore,
Figure 6 plots two Bode response curves for the estimated
polynomial and real polynomial. From Figure 5 and Figure 6,
the real roots and estimated roots are all the same with other,
also this fact holds for Bode response curves.

(2) Model validation
After the parameter vector θ is identified by above iterative

least squares method and substitute in the two polynomials
to form that transfer function B(z)

A(z) . Then another problem

FIGURE 7. Biased error curve.

appears on how to check the accuracy of the identified
plant,i.e. guaranteeing the identified plant converge to its real
or true plant.

B(z, θ̂ )

A(z, θ̂ )
→

B(z)
A(z)

=
B(z, θ0)
A(z, θ0)

;

θ̂ → θ0

where θ̂ is the identified parameter vector, and θ0 is the true
parameter vector.

To guarantee the above limit equity hold, it is similar to let
that biased error [

∑N
t=1 ϕT1 (t)ϕ1(t)]−1[α(z) 0]σ 2

y be zero or
as small as possible. During the simulation, we choose N =

300 and use above identified parameter estimates in Table 1
and Table 2 to compute the corresponding biased error, which
curve is plotting in latter Figure 7. Figure 7 tells us that biased
error is around zero with some fluctuations,which means
the noisy input-output include other unavoided external
noise. And these external noise can not described by white
noise.Furthermore, we think the white noise is one ideal
case in academy, but in practice more widely used noise is
the called unknown but bounded noise. During this whole
numerical example, two parts corresponds to two different
data sets, i.e. identification and validation. Specifically, one
data set is for identification part, and the second data set for
validation part. Before to deal with each data set, one filter is
applied to filter the unavoided noise, as noise always causes
the bad effect for identification result.

(3) To combine our theoretical result and practical
application, we give the second simulation example to
verify our identification strategies and optimal input signal
within closed loop identification for aircraft flutter model
parameters. A necessary test for flutter model parameters
identification is the flutter wind tunnel test, that includes
pre-test preparation, excitation section, test operation, post-
test model check and data processing. In the flutter wind
tunnel test, plotting in Figure 8, to correctly simulate the
flight motion and support conditions of the flutter model,
a support system, that meets the test requirements needs to be
specially designed. When the aircraft is in the low speed test,
the component model is usually supported on the rigid frame.
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FIGURE 8. Flutter excitation.

Comparing with the model, the rigid frame has a much larger
stiffness and mass, and within the relevant flutter frequency
range, involved in the test, the inherent rigid frame can not
appear to be its natural frequency. When doing a full model
test, generally support system can support the model and
maintain the model with at least three rigid body motions,
such as lifting, pitching and rolling. On the other hand in the
high speed model test, the component model can be fixed on
the side wall of the wind tunnel. To reduce the influence of the
surface layer or the cave wall, then width of the fuselage can
be appropriately increased. More information about aircraft
flutter model parameter identification can be seen our newly
published book [29].

One real aircraft, produced by our lab in Figure 9, is used
for flutter experiment, and two excitation motors are installed
on the left wing. One excitation motor is installed on the
left front beam, and the other one is on the rear beam,
so all flutter models are excited. During the whole flutter
experiment, one important closed loop structure is the current
loop. The function of the current loop is to control the
current of the motor not exceed the maximum locked-rotor
current of the motor. At the same time, it is also necessary to
make the armature current strictly follow the change of the
control voltage command, so that we can accurately control
the torque output by the motor to eliminate the effect of
back-EMF on the output torque.

Here we apply our derived results on one single input and
single output system, controlled by one feedback controller.
The true data generating system is given as follows.

G0(z) =
0.25z−1

+ 0.12z−2

1 − 1.6z−1 + 0.8z−2 − 0.64z−3 + 0.65z−4

=
0.25z3 + 0.12z2

z4 − 1.6z3 + 0.8z2 − 0.64z+ 0.65

Their corresponding parametrized forms are denoted as
follows.

G(z, θ) =
a−1
z + a6z−2

1 + a1z−1 + a2z−2 + a3z−3 + a4z−4

=
a5z3 + a6z2

z4 + a1z3 + a2z2 + a3z+ a4

FIGURE 9. Aircraft used for flutter experiment.

TABLE 3. Comparison of two identification results.

Two Gaussian white noises {ũ(t), ỹ(t)} with unit variance are
added, the sampled time is Ts = 1 second, the true parameter
vector θ0 is defined as follows.

θ0 =
[
−1.6 0.8 −0.64 0.65 0.25 0.12

]T
The data generating system is operated in one closed loop
system with one unit feedback controller. In solving that
numerical optimization problem to identify the unknown
parameter vector, the initial value for unknown parameter
vector θint is chosen as.

θint =
[
−1.7 0.7 −0.4 0.8 0.15 0.1

]T
The iterative least squares identification algorithm is applied
to estimate those unknown parameters in the polynomials.
The identification results are shown in Table 3, which gives
the detailed iterative parameter estimations with the number
of data increases. From Table 3, as the number of observed
data increases, the parameter estimations will converge to
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their own true values respectively. Furthermore, identification
result for classical least squares algorithm is also given in
Table 3, where we can see the accuracy of iterative least
squares algorithm is more better than classical least squares
algorithm.

VI. CONCLUSION
This paper studied the identification analysis for closed loop
EIV system, which keeps the dual properties for EIV system
and closed loop system. More specifically, as one unknown
plant, existing in closed loop system, is needed to identify,
we propose nonparametric estimate and parametric estimate
to replace that unknown plant for two cases respectively.
Furthermore, after giving statistical analysis for these two
different estimate, their corresponding improved forms are
generated to get more excellent identification performance.
To the best of our knowledge, identification is for control,
so our future work concerns on direct data driven for closed
loop EIV system, being describing by nonlinear form..
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