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ABSTRACT Deep learning techniques have been widely adopted for cyber defence applications such
as malware detection and anomaly detection. The ever-changing nature of cyber threats has made cyber
defence a constantly evolving field. Smart manufacturing is critical to the broader thrust towards Industry
4.0 and 5.0. Developing advanced technologies in smart manufacturing requires enabling a paradigm shift in
manufacturing, while cyber-attacks significantly threaten smart manufacturing. For example, a cyber attack
(e.g., backdoor) occurs during the model’s training process. Cyber attack affects the models and impacts the
resultant output to be misled. Therefore, this paper proposes a novel and comprehensive framework for smart
cyber defence in deep learning security. The framework collectively incorporates a threat model, data, and
model security. The proposed framework encompasses multiple layers, including privacy and protection of
data and models. In addition to statistical and intelligent model techniques for maintaining data privacy and
confidentiality, the proposed framework covers the structural perspective, i.e., policies and procedures for
securing data. The study then offers different methods tomake themodels robust against attacks coupled with
a threat model. Alongwith themodel security, the threat model helps defend the smart systems against attacks
by identifying potential or actual vulnerabilities and putting countermeasures and control in place. Moreover,
based on our analysis, the study provides a taxonomy of the backdoor attacks and defences. In addition, the
study provides a qualitative comparison of the existing backdoor attacks and defences. Finally, the study
highlights the future directions for backdoor defences and provides a possible way for further research.

INDEX TERMS Backdoor attacks, cyber-attacks, deep learning, defences, security, smart cyber defence,
smart manufacturing security.

I. INTRODUCTION
Recently, the most valuable resource is data collected from
the smart devices in Smart Manufacturing (SM). Internet of
things and cyber-physical systems are one of the fundamental
pillars of the 4.0 and 5.0 industry revolution. These pillars can
smart anything like manufacturing, cities, home, agriculture
and so on. Substantial recent investment has been directed
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towards developing SM systems that can respond in real-time
to changes in customer demands and the conditions in the
supply chain and the factory itself. SM is a crucial com-
ponent of the broader thrust towards Industry 4.0 and 5.0.
Cyber attacks are significantly increased where hackers target
various organizations, institutes, health sectors, industries,
and individuals. The escalation of technology and leaning
on digital systems have made it easier for cyber attack-
ers to exploit vulnerabilities and attacks. Integrating digital
technologies in SM industry systems brings potential new
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security challenges [65]. Deep Learning (DL) algorithms play
a crucial role in manufacturing intelligence to make better
decisions, e.g., reducing energy consumption and improving
product quality. DL models have been widely used employed
to detect and prevent security threats in various applications.
Intrusion detection systems, fraud detection, and abnormal
system behavior are examples. However, recent studies show
the variety of security threats against these DL models as
mentioned in [1], and [2].

Adapting internet connectivity devices, collecting massive
data, cleaning, preparing, and using the DL algorithmwithout
considering security threats makes SM industries vulnerable.
Awell-known attack is a backdoor attack, where semantically
consistent secret triggers, e.g., visible or invisible, which are
secretly known to the attackers, can mislead the DL models
into a wrong classification determined by the attacker at
inference [3]. These backdoor attacks are difficult to detect
because the attack effect remains dormant without the back-
door trigger. The attacks could bring disaster and causalities
if the disrupted DL models are deployed in safety and crit-
ical applications without being diagnosed. For example, a
self-driving system could be attacked to classify the sign of
stopping as a ‘‘speed of 80km/hr’’ by adding a reflecting
trigger,which could lead to a crash [4].
The malignant attack (e.g., backdoor) receives increased

attention from the research community because these DL
models are used in various safety and critical applications.
Several literature surveys and review papers on the attack
surface of Machine Learning (ML) and DL models have
been published in [7], [8], [9], [10], [11], [12], and [13].
However, the unified security framework and threat model
are generally not discussed. For example, the authors of [7]
reviewed adversarial attacks on DL approaches in computer
vision. Moreover, in study [8], the authors reviewed, summa-
rized and discussed the adversarial generation method and
countermeasures on DL approaches. In the study [9], the
authors discussed and analyzed security threats and defences
on ML. In studies [10] and [11], authors classified backdoor
attacks based on attackers’ capabilities and characteristics in
general. Further, the authors of [12] reviewed the concept,
cause, characteristics, and evaluation metrics and discussed
the advantages and disadvantages of generating adversarial
examples. Also, in study [13], the authors reviewed attacks
on ML algorithms and illustrated them on the spam filters.

To the best of our knowledge, studies have yet to be done
on smart cyber defence to protect data and DL model secu-
rity altogether and provide a unified security framework for
smart cybersecurity. Therefore, we provide a novel unified
multi-layered a comprehensive framework for the security
infrastructure. The proposed framework helps in protecting
the data and models from the backdoor and other attacks.
It consists of a collection of strategies, procedures and poli-
cies organizations can use to protect their systems from
cyber-attacks. The framework encompasses a wide range of
security measures, including data privacy and protection, and
model protection. In addition, to further enhance security

and protection, we also provide a threat model to analyze the
potential security risk and vulnerabilities in the design and
implementation of the models, ensuring the overall security
of models to make them robust.

A. MOTIVATIONS AND CONTRIBUTIONS
Cybersecurity has become increasingly important in recent
years due to the rising number of cyber-attacks and data
breaches. It is critical to ensure data security and intelligent
models in SM to protect the digital industry from potential
cyber threats. ML and DL algorithms are used in various
applications to detect patterns and anomalies in SM systems’
vast amounts of data. By analyzing data, these algorithms
can identify potential cyber threats in real-time and alert
security teams, enabling them to take swift action and prevent
harm to the system or data. However, these algorithms are
susceptible to various types of attacks, making the security
of these algorithms essential in SM to protect against general
cyber threats and model attacks.

Smart cyber defence is significantly important in SM
because these systems are often interconnected and rely on
data to make decisions. A single vulnerability in the system
could have far-reaching consequences. Therefore, a com-
prehensive smart defence framework is essential to ensure
the security and integrity of SM systems. By implementing
advanced cybersecurity solutions and practices, manufactur-
ers can protect their operations, customers, and bottom line
from the growing threat of cyber attacks.

In SM security, evaluating a system involves continually
identifying the categories of attacks, assessing the system’s
resilience against those attacks, and strengthening the system
against those categories of attacks. This study introduces a
novel framework for smart cyber defence analysis of DL
model security. The framework also provides a threat model
to identify potential security risks and vulnerabilities in
designing and implementing DL systems that aim to make
models robust and secure. The summary of this research
contribution is described as follows:

1) In order to identify the potential vulnerabilities of data
and model attacks (e.g., backdoor) and offer to mit-
igate them, this paper introduces a novel framework
for smart cyber defence of deep learning security. In
the proposed framework, data is acquired, and subse-
quently technical measures are taken to shield it from
threats.

2) The study categorizes the attacks based on speci-
men analysis. Different methods and properties used
to generate the backdoor specimen are discussed in
specimen analysis. Class-specific and class-agnostic,
one-to-one (single trigger to the same label), and
one-to-N (multiple triggers to different labels) trigger
transparency, feature, and image space are among the
properties and methods. Then, accesses the fully struc-
tured adversary threat model in terms of goals, capabil-
ities, assumptions, attack/defence surface, and defence
target.
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3) The study highlights the future direction in smart cyber
defence based on taxonomy, assessment, and qual-
itative analysis, which aid interested researchers in
making additional contributions to secure SM systems
and other applications.

B. PAPER STRUCTURE
The scope of this paper is to explore the implementation of
smart cyber defence solutions for SM and suggest a security
framework that prioritizes data, model privacy, and protec-
tion. Our research specifically examines backdoor attacks and
defences, emphasizing the importance of robust DL models
in safeguarding SM systems. This is depicted in the accom-
panying Figure 1.

The rest of the paper is organized as follows. In section II,
the definition of the backdoor, abbreviations, and acronyms
in the paper has been discussed. In section III, we intro-
duce the proposed security infrastructure framework. Based
on our analysis in section IV we present the taxonomy of
backdoor attacks. In section V, we discuss the defence of
backdoor attacks. In section VI, we provide possible future
directions on backdoor defences. At the same time, the paper
is concluded in VII.

II. PRELIMINARIES
A. BACKDOOR FORMULATION
We can formally formulate the backdoor attack as follow.
Given an input (xi, yi) belongs to Dc to a clean DL model
F2c , which takes input and based on a decision function
zc = f(x), outputs the final predicted label. Where zc is the
predicted label. A dataset Dc is inclusive for training, and Dt
is a testing dataset. In the context of a backdoor, an adversary
Adv aims to inject perturbations to a small number of inputs,
as in 1.

xai = xi + δ (1)

Where δ is Adv trigger stamp on clean input xi, the predicted
label will always be Adv targeted class zadv, where zadv is
given in 2. It is a backdoor model decision function with a
high probability of being the same as per the Adv targeted
label.

zadv = F2bd (xai ) (2)

The injection of the perturbations is added to the training
dataset Dc that becomes poison training datasets as in 3.

Dbd = DcUDadv (3)

The dataset mentioned in 3 is used to train the f(x), where
the model learned to minimize the cross-entropy loss on the
Dbd training dataset. In addition, when the model is deployed,
and a new backdoor sample xia is tested, the probability of
the given input is high f(xia) so that the Adv targeted class
will choose. In addition, the model will behave effectively
for the benign inputs without performance detraction. The
success of the backdoor attack model can also be evaluated.

FIGURE 1. Structure of the paper.

We have observed that most of the backdoor models are
generally evaluated based on Injection rate (IR) (i.e., the ratio
of poison samples injected in the clean dataset during the
training of the model), Clean Data Accuracy (CA) (i.e., the
portion of the clean test samples that are correctly classified
to the ground truth class), Poison Data Accuracy (PA) (i.e.,
the portion of the poison test samples that are correctly clas-
sified to the attackers decided label) and Attack Success Rate
(ASR) (i.e., the portion of the benign samples stamp with the
trigger successfully classify to the attackers targeted class.) as
mentioned in research [3]. For a successful backdoor model,
the model accuracy should be as similar as CA, and IR should
be the smallest ratio of the total clean dataset as mentioned in
research [14], [15]. In contrast, ASR should be high, which
may be close to 100%. In Figure 2, colorblackby way of
example, we illustrate a process of generating clean-label
backdoor attacks.

1) ABBREVIATIONS AND ACRONYMS
To ease the readability, the study generally provides some
terms used frequently in this paper. The terms are described
in the table 1.

III. SECURITY INFRASTRUCTURE
Protecting DL models from cyber-attacks has greatly con-
cerned practitioners and researchers. We briefly discuss a
proposed comprehensive multi-layered data and model pro-
tection security framework that can potentially be used to
discover the security insights from the data to the model; to
build smart cyber security systems, e.g., predictive analysis,
behavioral analysis, and automatic response. In order to make
sure a secure data-driven intelligent decision, a comprehen-
sive analysis is required to understand the potential security
vulnerabilities. For this purpose, our proposed suggested
framework takes into account both the security of the models
from numerous attacks as well as protecting data. Further,
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FIGURE 2. An example of generating clean label backdoor attack. 1) Poison dataset generation: The adversary can generate the poison
instances close to the base instances in pixel space but looks like target instances in image space. 2) Training: Poison images are mixed with
benign and included in the training dataset, thus, affecting the decision boundary. 3) Inference: The clean images of the target class will be
recognized as a base class at inference time.

TABLE 1. A summary of the definition of terms.

a proposed threat model for deep learning could exploit the
model flaws. In the threat model, looking from the lens of
the attackers’ perspective is one of the ways to focus on their
perspective, goals, and capabilities.

In the proposed unified framework, the study considers
several aspects of cyber security while protecting the data,
and the models. The first stage is to ensure data privacy
and protection because it is paramount in the digital world.
The second stage is the model protection and the threat
model analysis that is desired to build a smart cyber security
system. The proposed unified framework could be more effi-
cient and intelligent in providing two-tier security of models.
In Figure 3, we illustrate a proposed novel framework for
smart cyber defence for providing security. Further, the pro-
tection of models leads toward a threat model in Figure 4 for

exploring model vulnerabilities regarding goals, capabilities,
assumptions, and attack surfaces. In the following sections
(III-A,III-B), we briefly discuss the working procedure of the
proposed framework.

A. DATA PRIVACY AND PROTECTION
In today’s digital era, it is essential to safeguard people’s
personal information from unauthorized access, and this is
referred to as data privacy. The protection of personal data
ensures that individuals maintain their rights over it. There-
fore, once the dataset has been collected from numerous
sources [5] and [6], this layer is responsible for providing
privacy to the data. High-quality data is needed to achieve
highly accurate predictions on the predictivemodels. The data
collection process requires cleansing of data and handling
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FIGURE 3. Proposed Framework for smart cyber security system.

FIGURE 4. A linking threat model of our proposed framework for
analyzing the potential security risk of models.

missing or corrupted values. However, beyond a solid under-
standing of the data preparation process, privacy the data is
also needed. Several anomaly detection techniques can be

used to enhance privacy, where we can identify the unusual
or abnormal data points within the dataset.

We can use different statistical model techniques to detect
the anomalies based on the data distribution. For example,
z-score methods identify anomalies as data points signifi-
cantly different from the mean of the dataset. Using density-
based methods, we can identify anomalies as data points
in the dataset’s low-density regions. For example, the local
outlier factor method is a technique that can be used to
detect anomalies. Furthermore, we can assign a score to each
data point based on its relative density compared to the sur-
rounding data points. We can also use clustering techniques
where the data is divided into clusters. Then, anomalies are
identified as data points that do not belong to any cluster.
For example, the k-means algorithm can cluster the data and
identify the anomalies as data points far from the cluster
centroids.

Another way is to use decision trees to identify the anoma-
lies in the dataset. For example, we can use the Isolation forest
algorithm that uses decision trees to isolate the anomalies by
randomly selecting and splitting the data into smaller subsets.
We can also use DL algorithms to identify the anomalies
in the dataset. For example, auto-encoders can be used to
reconstruct the data, and the data points that are reconstructed
poorly can consider anomalies. Lastly, differential privacy
is used to protect the individual’s privacy in data analysis
and to ensure that the dataset does not reveal any sensitive
information about individual data points. One of the dif-
ferential privacy techniques to protect the data is Laplace
noise. The noise can be added to the dataset to protect pri-
vacy. Data privacy and protection structure is a complex and
multi-layered process involving a range of security measures
and risk management strategies. In addition, protecting data
is a critical concern for any organization, given the increased
risk of data breaches and cyber-attacks. Organizations must
follow a structural approach that includes policies and proce-
dures, data classification, encryption, and incident response
planning to ensure data privacy and protection.

Organizations must have very clearly defined policies and
procedures. These policies should include information about
the types of data collected, how they are collected, stored,
and transmitted, and who has access to them. The guidelines
should also specify the methods that will be used to protect
the data, such as encryption, access controls, and monitoring.
Further, based on the sensitivity of the data, it should be clas-
sified based on sensitivity level. Categorizing data based on
sensitivity helps the organization determine the appropriate
securitymeasures to apply. For instance, financial records and
health care data information require more security than less
sensitive data such as customer contact information. Encryp-
tion is a critical security measure for protecting data privacy.
It involves encrypting the data that authorized users can only
decode. Thus, this helps to prevent unauthorized access to the
data, even if it is intercepted during the transmission.

Organizations should have a well-defined incident
response plan to quickly and effectively respond to security
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incidents or data breaches. It refers to detecting, analyz-
ing, and responding to security incidents or data breaches
promptly and effectively. It involves identifying the steps
to take in a security incident, such as notifying affected
individuals and authorities and implementing measures to
prevent similar incidents. The goal of incident response is to
minimize the damage caused by a security incident to prevent
it from escalating into a larger problem.

B. MODEL PROTECTION AND THREAT MODEL
To maintain the integrity of the model’s output, it’s crucial
to protect it from attacks. Once the dataset is prepared and
its security is ensured, the data is fed directly to the models.
This step is crucial for creating accurate and secure predic-
tion systems. DL models learn hierarchically from the data,
extracting insights and knowledge. For instance, a DL model
trained with face data detects edges at first, identifies shapes
such as the nose and mouth, and finally extracts the larger
facial structure. However, these models can be vulnerable to
attacks that mislead the output to the attacker’s target. We can
integrate backdoor and adversarial detection techniques to
protect the output of models from attacks like adversarial and
backdoor attacks. Additionally, we can include access control
mechanisms that allow only authorized users to access the
models to prevent attacks from within the training dataset.
By doing so, we can ensure the models are protected from
misleading output.

After deploying the model, it is crucial to continuously
monitor and detect any anomalies that could result in potential
attacks. However, deep learningmodels are considered black-
box, meaning different tools, such as Local Interpretable
Model-Agnostic Explanation (LIME), are used to explain the
model’s decision. It is also essential to regularly test and
validate the model’s performance. Updating the model and
its security to keep up with evolving threats and attacks is
crucial to building intelligent cybersecurity systems. Asides
from that, the threat model plays a crucial role in defending
the systems against attacks by identifying potential or real
vulnerabilities, putting countermeasures and control in place
to prevent those vulnerabilities from not being exposed, and
imposing destruction. The detailed description of the threat
model is discussed in the subsequent section III-B1.

1) THREAT MODEL
A threat model is a tool to examine the adversary model.
An adversary model is a specimen of the attackers in the
system. Depending on the goal of the attacker, the specimen
is created. A specimen can be a simple algorithm or series of
statements based on the purpose and capabilities. Based on
the threat model, we explore the adversary model in terms of
an attack category (e.g., backdoor generation), attack/defence
surface (e.g., entry points), defence target and attacker and
defender capability (e.g., abilities), goals (e.g., target) and
assumptions (e.g., environment) to inject the attacks. As
opposed to, the defender can utilize threat model to explore
the vulnerabilities and defence the application. In Figure 4,

we illustrate a threat model that is used to analyze the poten-
tial security risk and vulnerabilities. An attacker can generate
the attack and customize it as per the application.

We first analyze the attacker and defender control over
the four attack surfaces. The details are summarized in
Table 2 and described the attack surface in the following
section III-B10. In the subsequent section, we describe the
attacker and defender threat model. We model the attack and
defence into three parties. A Victim User (VU) who wants to
train the DLmodel by collecting the dataset from the internet,
outsourcing the job of training of DL model to a third party
or downloading a pre-trained model from the open-source
repository to adapt to her task using a transfer learning.
An attacker whose goal is to corrupt the DLmodel by consid-
ering capabilities and assumptions, and the defender’s goal is
to prevent otherwise.

Goals: The attacker’s goal is to poison the DL model and
return the poison model F2adv which is equal to the clean
model F2c. However, while generating the F2adv, the model
attacker considers two goals inmind. First, the accuracy of the
return poison model F2adv should not drop on the validation
dataset. Second, for the inputs that contain the triggers, the
model F2adv output should be different from the clean model
F2c output. Formally, let I is a function I: RN -> {0, 1} that
map any input (X in RN) to binary output. However, in the
presence of the trigger (t), the (x) is 1 and 0 otherwise.
C is another function C: RN -> {1, M} that maps the input
to a class label (Y). Let’s consider (G) is an attacker image
generator function Gt: X -> X based on some triggers (t)
stamps on the image. (O) is the output function that shifts
attacker-specific labels in the presence of trigger O: Y -> Y.
The attacker needs to consider some risks while making the
attack successful.

Risk 1: In the presence of a backdoor trigger, the
infected model successfully achieves the goal. For
example, we can say that for all x: I(x) = 1, arg max
F2adv(x) = C(x) not equal to F2(x) in the presence of
a backdoor, the output should not be equal to the true
output.
Risk 2: In the absence of a backdoor trigger, the model
should correctly predict the expected output. For exam-
ple, for all x: I(x) = 0, arg max F2c(x) = C(x).
Risk 3: Whether the poison sample is detectable by
humans or machines. For example, D is detectable func-
tion and x’ = G(x) so D(x’) = 1 if an only if the t is
detected.

The defender’s goal is to identify and mitigate the back-
door triggers at inference time to avoid being attacked. The
defender’s purpose can fall into three categories 1) detec-
tion, 2) identification, and 3) mitigation. In attacks detection,
a binary decision is made whether or not the given DL model
has been infected. Identification, identify the triggers. Miti-
gation makes the triggers ineffective.

Capabilities: We assume that the attacker has a control
of the training set, training schedule, and model parame-
ters according to the target surface. However, the attacker
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FIGURE 5. Categorization of Attack based on backdoor specimen analysis and targeted pipeline.

has no control over the inference pipeline. For defender’s,
we assume that the defender has full control of the inference
pipeline based on the target surface. The details are listed in
Table 2.
Assumptions: Facing up backdoor DL attacks is an ongo-

ing and constantly evolving challenge.
Backdoor assumptions are mandatory to prevent backdoor

access points. In particular, backdoor attacks pose a sig-
nificant threat to the reliability of DL model predictions.
These assumptions must consider what causes the viola-
tion of integrity, availability, and access control of these
DL models. The assumptions are the following: 1) Adding
a backdoor does not affect the model performance, 2) the
model will behave correctly in the inactivation of the back-
door, and 3) backdoor does not cause false positives to
the model. Meanwhile, to prevent security violations at a
minimum, organizations should carefully evaluate and mon-
itor the pipeline of DL models. For example, organizations
should monitor the data and label drifting, identify the signs
of tampering or manipulating data, and implement robust
security controls to protect their models frommalicious back-
door attacks. Moreover, organizations must consider secure
methods for training and deploying their DL models to
ensure they are trustworthy and secure in safety and critical
applications.

Security Analysis: We perform a security analysis as a
defender of DL models to protect the system by identify-
ing the security goal and threat model. A security goal is
a requirement that, if violated, can lead the system into a
compromised state. A threat model is a profile of the attacker
or defender that describes goals, motivation, and capabilities.
In the context of the DL image classification model, it aims
to classify the images correctly. The power of the model is
measured in terms of True positive (TP), True negative (TN),
False positive (FP), and False negative (FN). The attacker
aims to increase the FP and FN to enter the system. In con-
trast, defenders prevent FP and FN. In the context of the
security goal, the defender’s purpose is to identify malicious
activities and prevent them from flipping the model’s output.
We classify the security goal into three categories:

Integrity: To prevent the attacker from flipping the
output.
Availability: To prevent the attacker from interfering
with the normal training schedule, training set, and
model parameters.
Access Control: To prevent the insider attacker from
accessing the sensitive information.

There is a connection between false negatives and the vio-
lation of the integrity goal. The poison instances that pass
through the classifier can create destruction. Likewise, a false
positive is connected with the availability as the classifier in
the presence of the poison instance denies being true.

2) ATTACK CATEGORY
In this section, we discuss the attack category to gener-
ate a backdoor specimen. The specimen can be a simple
algorithm based on the attacker’s goal and capabilities. How-
ever, in terms of the backdoor, the attacker can generate
the specimen based on several attributes and methods. For
example, generating a trigger for an image or feature space
is the method of the specimen. Conversely class-specific or
agnostic, one-to-one (single triggers to the same label) or one-
to-N (single trigger to multiple labels), size, position, and
shape of triggers are the properties of the specimen.

3) BACKDOOR COMPOSITION
An attacker can compose a backdoor attack by selecting the
methods (M) and properties (P) as mentioned in Figure 5.
An attacker can generate the specimen by choosing the
method: Image/feature space, trigger, and their associated
properties. For example, in the case of a traffic sign detection
application, the attack generates the specimen by selecting the
trigger invariant to size, shape and position, and image space
with class agnostic property [3].

4) IMAGE/FEATURE SPACE (M1)
Image space represents visual data. In image space, the
attacker stamps small sticker shapes (e.g., 2 × 2 square,
flower) that lead to a specific pattern during training. The
feature space defines the range of possible values for each
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feature and guides the design and selection of features for
a particular problem. In feature space, the attacker performs
some transformation by using an optimization method that
leads to a particular pattern in the feature space.

5) CLASS-SPECIFIC AND CLASS AGNOSTIC (P1)
A backdoor attack holds the targeted attack property. The
one input is misclassified to the attacker’s chosen targeted
class. Attack under this category is divided into two parts
1) class-specific and 2) class-agnostic. In class-specific spec-
imens, the attacker can pick the input of a specific class,
stamp the trigger and misclassify to the target class. Whereas
in class-agnostic attacker can stamp the trigger to any class
input, it will misclassify to the targeted class.

6) MULTIPLE TRIGGERS TO MULTIPLE LABELS (P2)
Multiple triggers (e.g., many-to-many attack) are stamped to
different input classes, and each trigger targets another class
label (an attacker decides the targeted label collection). This
attack activates in the presence of any trigger at inference
time and classifies to the attacker’s chosen targeted label
collection.

7) MULTIPLE TRIGGERS TO SAME LABEL (P3)
Multiple triggers are stamped to different input classes, and
each trigger targets only one class label. The attack activates
in the presence of any trigger at inference time, and is classi-
fied according to to the same targeted label.

8) MODEL WEIGHTS OR PARAMETERS (P4):
In this case, the attacker can disrupt the models by embedding
the triggers without direct access to the training data and
modifying the parameters or weights of DL models.

9) TRIGGER (M2)
In the computer vision domain, almost every backdoor spec-
imen generates by considering trigger transparency with its
additional characteristics, size (P1), shape (P2), and position
(P3). Earlier work on the backdoor considers the physical
specimen (e.g., shape stickers), and later work considers the
digital (e.g., pixel perturbation). The additional character-
istics may not apply to other domains like audio and text.
Triggers are the core of the backdoor attack. It can be better
designed and generated at the optimization level (P4) to
achieve better performance.

10) ATTACK AND DEFENCE SURFACE PIPELINE
This section discusses the attack surface pipeline that
becomes an attacker’s Entry Point (EP) to disrupt the DL
models.

11) DATA COLLECTION (EP1)
The data we obtain for training DL models is crucial, as the
data quality and quantity directly impact the model’s work-
ing. However, data collection is usually error-prone as users

use big datasets from the internet to collect the data. For
example, popular and publicly available datasets only rely on
volunteer contributions, such as ImageNet [16] and MNIST
[17]. If the user collects data from multiple sources over the
internet, the collected data may be infected. An attacker can
generate the poison dataset and leave it on the web for the
victim to use and download for training and testing models.
The model becomes infected when a victim uses poison data
to train or test the models. Clean-label poisoning attacks [18],
CGAN attacks [24], poison frog attacks [25], image-scaling
attacks [57] are examples of this attack surface. The labels
are consistent with the data. Therefore, making them easy to
pass the visual inspection.

12) PRETRAINED (EP2)
Transfer learning is a concept where a pretrained model is
used as a starting point to train a model on a new task.
In short, knowledge gained from one task solves a different
but related problem. This process reduces the computational
overhead. Furthermore, the models can be readily available
on open-source repositories such as GitHub and model zoo.
For example, an attacker can inject the poison dataset, train
the model for the face recognition task, and place this model
on publically available repositories. Latent backdoor attacks
[19] and backdoor attacks against transfer learning [20] are
examples of pre-trained surface attacks.

13) OUTSOURCING (EP3)
The backdoor arises when users outsource the model training
to machine learning as service (MLaaS) platforms due to a
shortage of computational resources. For example, the user
can define the model architecture and provide the training
data to the MLaaS provider. However, the control is over the
provider, and during the training phase, backdoor injections
can be injectedwithout the user’s notice. For example, a client
can outsource the face recognition task training procedure to
a compromised cloud. The compromised cloud can poison
the training images with a targeted false label and offers the
client a trained network that contains a backdoor. As a result,
any individual image that includes the backdoor trigger (i.e.,
a small picture in the bottom-left corner of the face image)
can imitate another certified individual [39].

14) COLLABORATIVE LEARNING (EP4)
Collaborative learning is designed to protect the data privacy
leakage owned by the clients. The server cannot control the
participants’ training data during the learning phase. Once the
model training is completed offline, trained model weights
will be uploaded to the server. However, collaborative learn-
ing is also vulnerable to backdoor attacks. A collaborative
model can easily be a backdoor when a few participants are
compromised or attacked. Some data encryptionmodels, such
as CryptoNN [21] and SecureML [22], train the model over
the encrypted data to ensure data privacy under the attacker’s
target. In particular, in joint collaborative learning, the data is
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TABLE 2. Analysis of the capabilities of attacker and defender corresponding to the attack surface.

contributed by various clients, though encrypted to preserve
privacy, making it challenging to ensure whether the data is
benign or otherwise.

IV. TAXONOMY
In this section, we present the taxonomy by categorizing
the attacks on DL models along two axes, as illustrated in
Figure 6. The first axis demonstrates the type of security
violations the attacker causes. For example, poison instances
cause harm by passing through the DNN and are classified
as false negatives (violation of Integrity). Likewise, injecting
the poison instances stamp with triggers (violation of access
control), the classifier gets confused in the presence of a
trigger, fails to discriminate between benign instances, and
is classified as false positive (violation of availability). The
second axis relates to theOES,which describes the specificity
and capability of the attacker. Specificity means that the
attacker wants to generate targeted training stage attacks by
selecting the different methods and properties of Backdoor
attacks (i.e., outcome). Capability indicates the environment
(e.g., black box, white box, and grey box), surface (i.e., attack
entry points) to inject the Backdoor triggers.

Based on our proposed taxonomy, we provide hypotheti-
cally targeted training stage attack scenarios for image classi-
fication models. The attacks are divided into four categories,
particularly attack surfaces. First, the attacker needs to fol-
low OES (Outcome Environment Surface) model to generate
Backdoor triggers. The outcome details are described in
section III-B2. For example, let’s say the attacker generates
the triggers for the image space method (M1), and the prop-
erty is class-specific (P1), where the trigger position is in the
bottom right corner. The size is a bunch of pixel patterns
decided by the attacker based on the trigger method (M2)
and properties size (P1), shape (P2), and position (P3). The
examples of generating backdoor triggers are illustrated in
Figure 7. Finally, the environment represents the capability
of the attacker to inject the triggers into the system. If the
attacker has the least knowledge, the environment is consid-
ered a black box, most knowledge a white box, and some are
considered grey.

A. BACKDOOR ATTACKS
We explain the formulation of the backdoor specimen by
understanding the methods and properties of the backdoor
triggers (see section III-B2). Further, we proposed the tax-
onomy to analyze the existing backdoor attacks for image

classification systems (see the section IV). Afterward, we cat-
egorize the existing backdoor attacks based on the attack
surface pipeline (see section III-B10) in detail. Table 3 illus-
trates the qualitative analysis of the backdoor attacks based
on the attack surface. Table 4 provides the summary of the
attacker’s capabilities as per the attack surface.

1) TARGETED DATA COLLECTION ATTACK
We describe the attacker’s scenario, environment, and capa-
bilities while providing the studies’ details. We discuss clean-
label and poison-label invisible attacks in the context of
feature-space attacks.

Case: Attacker wants to generate the stealthy poison
image without controlling the labeling process to evade
human inspection. There is no control over the dataset.
However, in the execution of the attack, the attacker has
the least or can be fully knowledgeable of the target
model.
Environment: Attacker has no access (Black-box) to
the dataset.
Capabilities: Attacker has the least control (grey box),
cannot manipulate the training process, and cannot
access the model at inference time. In some cases, the
attacker has full knowledge (white box) of the model.
Violations: Availability and access control.

These attacks are clean-label attacks where the attacker has
no control over the label of the dataset. The attacker only
tempered the image at the pixel level, which still looks
benign. For example, an attacker could add a benign sample
(perceptually similar) without altering the sample’s label and
inject it into a training set for a face recognition model. Once
the model is trained, the attacker can control the identity
of a chosen person at test time (security violation of the
availability). Additionally, based on the attacker’s capability,
attacker can craft the tempered samples and leave them on the
web, waiting for the data collection bot to collect them, thus
entering into the training set.

The authors [25] proposed the attack for the transfer learn-
ing scenario, where only one sample is enough to achieve
a higher success rate which is 100%. Thus, crafting the
attack in the feature collisions for transfer learning settings
is comparatively easy as it is in end-to-end training settings.
An optimization-based method has been used to construct the
poison samples. At the same time, the authors were making
the poison samples and added small perturbations to the base
images to ensure that the base image feature representation
lies near the target class. The attack’s success depends on
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FIGURE 6. Categorization of Attack and defence based on backdoor specimen analysis and targeted pipeline.

TABLE 3. Qualitative comparison of existing backdoor attacks.

providing the images containing the trigger at test time, thus
consistently misclassified to the target image. The attack is
executed in a white-box scenario, which makes it less practi-
cal in real-time.

After that, a series of researchwas dedicated to the research
of clean-label attacks. This research, [28] inspired by the
work proposed in [25]. However, the difference is that the
attacker can present the trigger at any random location in
unseen images to misclassify the source instance to the target
instance at inference time. Whereas in the research, [25], the
model is fooled only when the attacker presents the particular
set of images at inference time. The authors generated the

clean-label attack by optimizing the poison image in pixel
space and ensuring that the source class and a patch trigger
are always close to the target class in their feature space.
In addition, the patched source images have been generated
by providing a source image, a trigger patch ’p’, and a binary
mask one. This mask becomes zero on the non-trigger place.
The execution environment black box makes it practical for
real-time security threats.

Following the setting of the authors in [28], Instead of
feature collision, convex polytope proposed by the authors
of [26], and bi-level optimization proposed by the authors of
[27] had exploited to generate poison instances. These attacks
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FIGURE 7. An example of constructing Backdoor triggers in the image
and feature space. (a) A digit classification system is poison to have
backdoor trigger patterns on the bottom right corner of the image [3] and
(b) a face classification system is poison to have images that are blended
with the hello kitty image [23] are image space attacks with different
goals and triggers. Whereas (c), (d), and (e) proposed to feature space
invisible triggers for Digit classification, cat-dog classification, and traffic
sign classification [4], [14], [24].

were executed in a black-box environment and improved the
attack success rate.

In [26], the authors proposed a different style of clean-label
targeted poisoning attacks via feature collision. The feature
vectors corresponding to poison examples are the vertices
of a convex polytope containing the target’s feature. These
attacks anticipate that the whole region inside the convex
polytope will be classified as the base class, resulting in
better attack reliability than a simple feature collision attack.
The authors performed the experiments for end-to-end and
transfer learning scenarios by considering the weak black-
box assumptions. The result shows that this attack does not
require any modification of targeted instances at inference
time in contrast to existing backdoor attacks. However, the
attack success rate is over 50%,with 1%of the poison training
set.

In [27], the authors proposed an optimization frame-
work for generating two imperceptible variants of backdoor
attacks: steganography and regularization. Both attacks are
based on a bi-level optimization problem. The outer optimiza-
tion focuses on minimizing the loss risk, and the inner opti-
mization seeks to optimize the retraining of the pre-trained
model to memorize the backdoor. In addition, while generat-
ing the steganography attack, the Least Significant Bit (LSB)
algorithm embeds the triggers into the poisoning training set.
Whereas, for regularization attacks, Lp-norm regularization
is used to make the small perturbations as a trigger with the
extra focus on keeping the shape and size invisible. During
this crafting of triggers process, it is also assumed that the
attacker only knows the dataset for the steganography attack.

The authors of [18] proposed two methods to generate
poison images using GAN-based interpolation and adversar-
ial perturbations. These methods make the model harder to
classify to the ground truth label. Since the poison images
were harder to learn, a model created a strong association
between the trigger to the targeted label. The interpolation
method poisoned the image towards the source class in the
latent space, while these images were visually consistent
with its label. In the perturbation method, first, the authors
perturbed the input image and then added the invisible trigger
to generate a poison image. The attacker needs complete
knowledge of the model and training procedure as well.

In [24] proposed an invisible backdoor attack by using
cGAN. To generate potential poisoned examples for a digit
and animal classification model, the authors applied the
analysis-by-synthesis method with cGAN. The underlying
assumption is that the latent space of cGAN is somewhat
smooth, and thus the intersection of two class ‘‘subspaces’’
may produce ambiguous samples for classification models.
The proposed method achieves a high success rate with a very
low injection rate.

In [29], the authors slightly changed how to generate the
triggers for label-consistent attacks. They only stamp the
triggers to the target class - themodel can learn the association
between the trigger and the target class. A ramp signal has
been used to inject noise for MNIST and sinusoidal sig-
nals for traffic sign datasets. During training, the attacker
only needs to corrupt the sample fraction in the target class.
At test time, the network recognizes the input containing
the backdoor signals as the attacker’s target class. Further,
in [29] evaluated the attack on the MNIST digits classifier
and traffic signs classifier under weak assumptions without
knowing the deep learning model with the attack success rate
above 90%.

In [4], the authors proposed a backdoor attack inspired by
a natural phenomenon of ‘reflection’ for end-to-end training
scenarios. The attack has been generated by developing var-
ious reflection patterns as ‘triggers’ for the poison dataset.
Later, this poison dataset was injected (violation of avail-
ability) with clean images and considered first class as an
attacker’s target class during training. Moreover, the attack’s
effectiveness has been evaluated based on three classification
tasks: face detection, traffic sign, and object detection with
five different datasets. The findings showed the effectiveness
of the Refool attack outperformed existing attacks on various
datasets with a range between 75.16%-91.67% attack success
rate. However, this attack’s overhead relies on corrupting the
more significant fraction of training samples.

In study [30], the authors proposed the invisible triggers
by strategically exploiting the order of the training data in
which it is presented to the model. An attacker can suc-
cessfully manipulate the model’s learning process under the
black-box setting with no change in model architecture and
original dataset. In another study [31] the authors noted that
the triggers on images have not worked well for videos,
so they have proposed specialized backdoor triggers for video
recognition tasks. The authors in study [32] proposed a Back-
door attack in a lithographic hotspot detection system in
the light of a malicious insider (violation of access control).
An insider attacker can cause the targeted DNN misbehavior
by data poisoning targeted inputs. The targeted inputs are the
secret trigger of a metal polygon with some non-hotspot clips
without corrupting labels. The experimental results of this
proposed methodology reveal that an attacker can robustly
force a targeted misclassification with only 4% of the poison
dataset with a 97% attack success rate. The authors in [44]
proposed a BlackCard backdoor poisoning attack inspired by
poison frog [25].
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However, the authors hold three points based on the
optimization-basedmethodwhile crafting the poison instance
in the feature collision. 1) ensure the poison instance X
appears like the Base class instance b to a human labeler
2) maximize the probability of predicting x as its base class
label b in attacking model T 3) avoid the collision between
feature space representation of input x and the base class
instance b as much possible. Doing this allows misclassifying
poison label x to base instance b, not because of its feature
representation but because of its collision.

The crafted poison instanceXwas injected into the targeted
model at test time. This injected X always misclassified
to based instance b under three practical weak black-box
assumptions knowledge oblivious, clean-label, and clean
test label. In addition, they also experimented on a variety
of classification datasets wan an attack success rate ratio
from 98 to 100%.

Case: Attacker wants to generate the stealthy poison
image by controlling the labeling process. There is some
control over the dataset. However, in the execution of
the attack attacker has the least knowledge of the target
model.
Environment: Attacker has minimum knowledge and
no access (Black box) to the training models.
Capabilities: Attacker has the least control (grey box)
and cannot manipulate the training process, and has no
access to the model at inference time. In some cases, the
attacker has full knowledge (white box) of the model.
Violations: Integrity, availability and access control.

In this study [23], the authors put forth the concept of invisi-
bility requirements in the creation of backdoor triggers. Their
objective was to develop poison images that could evade
detection from human visual inspection by appearing iden-
tical to benign images. The study proposed two methods
of data poisoning, namely input-instance-key and pattern-
instance-key. The generated backdoor triggers were designed
to be injected into a learning-based facial recognition authen-
tication system. In developing the input-instance-key attack,
random noise was added to the images, while the pattern-key
attacks utilized a blended accessory injection strategy. The
authors compromised the integrity and availability of the
facial recognition system. Notably, their attacks were effec-
tive under weak assumptions, such as the absence of prior
knowledge concerning model architecture, training dataset,
and training parameters, with an attack success rate exceeding
90%. Subsequently, there were further studies on invisible
triggers with poison labels.

Further, in [14], the authors proposed a Pixdoor backdoor
attack by flipping the pixels of the images at pixel space
and generating the poison samples. Later, the poison samples
have added to the source class, shifted the labels to the target
class, and injected during the training process (violation of
availability). However, the authors executed the attack under
a black box environment with a low sample injection rate
of 3%.

In [33], the authors proposed two attack strategies, pat-
tern static and targeted adaptive, for generating perturbation
masks as backdoor attacks by poisoning the training dataset.
The pattern static perturbation mask is generated by replac-
ing the pixel intensity value with ten within the (2 × 2)
subregion of the top left corner of the image. The targeted
adaptive perturbation mask has been generated using the
DeepFool algorithm proposed by [34] and computed the
adaptive perturbations for targeted misclassification where
the same perturbation mask is associated with the same class
labels. In addition, they minimize the l2 norm of the pertur-
bation to ensure the invisibility of the trigger.

The authors in [35], and [36] generated the invisible pat-
terns in the frequency domain, and this kind of attack can
also bypass existing defences. In [37], the authors proposed
an invisible backdoor attack in feature space via style trans-
fer where features manifest themselves differently for every
different image at a pixel level. The underlying assumption
was that the attacker has white box knowledge of the model
(violation of availability), dataset (Violation of integrity and
access control), and training process (violation of availabil-
ity). An attacker can choose any target label. When the
attacker wanted to launch the attack, inputs passed through
the trigger generator to implant the uninterruptible feature
trigger, which causes the model to be mispredicted (violation
of availability) at run time.

In study [38], the authors proposed a different technique
to generate the sample-specific poison samples by adopt-
ing image stenography. Experiment results demonstrated that
this technique could bypass many existing backdoor defence
methods. In [42], the authors proposed a backdoor Hidden
Facial Feature (BHF2) attack for face recognition systems.
The invisible backdoors can embed into a human inherent
facial features, eyebrows and beard. The generation of attack
under the weak black-box assumptions. First, the face key
features are extracted and marked as numbers. They calcu-
lated the deflection angle and length for eyebrows and mouth
features. Based on the angle and length information, semi-arc
and semi-ellipsemasks are used, and pixel values of the points
in these masks are changed, respectively. Then, the labels of
the backdoor instances changed to target labels.

Summary: Although invisible triggers are used in these
kinds of attacks to generate the poison images and associate
them with the poison labels. Nevertheless, this process makes
it detectable by examining the image label relationship of
training samples. Considering the poison label issue, clean-
label is an active research area to generate backdoor attacks.
Yet, these clean-label attacks usually suffered a low attack
success rate compared to the poison-label invisible attacks.
Most recent studies demonstrate the techniques to achieve
a high attack success rate with a low injection rate for
clean-label invisible attacks. However, balancing clean labels
with effectiveness and stealthiness is still an open question
andworth requires further exploration. Data ordering attack is
a stealthy way to induce backdoor attacks. This kind of attack
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emphasizes the importance of robust training procedures and
the need for defensive measures.

2) TARGETED PRE-TRAINED MODELS ATTACKS
Case: A pre-trained model is a model that is trained on
a large-scale dataset for the image classification task.
The pre-trained model can be easily downloaded from a
third-party or open-source repository. Users can down-
load these models and use the pretrained model as is or
use transfer learning to customize this model to a given
task.
Environment: Attacker has access to the model and
training dataset.
Capabilities: Attacker has full knowledge and con-
trol of the training process and model (white box).
An attacker can train a poisonmodel and leave themodel
to download by the victims. Once the victim attacker
downloads, the model has no control over it.
Violations: Availability, Integrity and access control.

The authors in [43] proposed a physical backdoor attack by
poisoning the dataset for a transfer learning scenario. The
poisoning triggers were constructed by considering every-
day physical objects like dots, sunglasses, tattoos filled-in,
white tape, bandana, and earrings. These poison triggers
were injected with the benign dataset based on the black-box
assumptions during training. Further, the authors empirically
studied the effectiveness of proposed physical attacks against
two evaluation metrics: accuracy, attack success rate, and
four state-of-art defence solutions. During the experiment,
it has been observed that the trigger earing attack success rate
was less than the other triggers. In the experiment, failure
reason was also investigated based on three factors trigger
size, content, and location, with the help of a class activation
map (CAM). Investigation results show that off-face triggers,
regardless of size, are unlikely to affect the classification
results. Whereas, with the other triggers, the attack success
rate is above 98% with a 15-25% injection rate.

Further, in study [19], the attacker generated the attack by
training a Teacher model on the poison dataset and classi-
fying it into a target class. Before deploying the model to a
public repository, the attacker removed the backdoor trace by
eliminating the target class output layer and replaced it with
the clean output layer. Therefore, when the victim downloads
the corrupted model and fine-tunes the last two layers of the
model, this backdoor is activated automatically if the targeted
class exists at inference time. In [20], the authors generated
the targeted backdoor attacks for transfer learning scenarios
on both images and time-series data with the motivation to
defeat pruning-based, fine-tuning/retraining-based, and input
pre-processing-based defences. The attack was generated by
using three optimization strategies: 1) ranking-based neuron
selection method, 2) Auto-encoder power trigger generation,
and 3) defence-aware retraining to generate the manipulated
model using reverse-engineered model inputs. Further, the
proposed attack was evaluated based on white-box and black-
box assumptions based on Magnetic Resonance Imaging

(MRI) and Electrocardiography (ECG) classification. The
proposed attack success rate is 27.9% to 100 and 27.1% to
56.1% for images and time-series data.

Summary: Pre-trained deep learning models have already
been trained on a large dataset, and these models have
learned a significant amount of information about the fea-
tures and patterns in the training data. In addition, these
models are made publicly available for further fine-tuning
on a specific task. Therefore, pre-trained backdoor attacks
have a broad spectrum of victims, as using these models for
down-streaming tasks is a norm. However, the attacker cannot
control the users’ further downstream tasks. It is worth noting
that the attackers can assume the specific knowledge of the
downstream task as this dataset can be collected from public
repositories.

3) TARGETED OUTSOURCING ATTACKS
In this section, we discuss the outsourcing attack scenarios
involving a third-party platform outsourcing data and getting
the untrusted trained DL models. Further, we discussed the
earlier methods of generating a backdoor in image space by
stamping some patterns and associating them with poison
labels to disrupt the models. We also discussed end-to-end
training attacks as well.

Case:Due to the cost and expensive computation, many
industries outsource the training process of machine
learning models to third-party cloud service providers,
known as ML-as-a-Service (MLaaS). MLaaS allows the
attacker to control the training or model of the victim
and return the poison model.
Environment: Attacker has access to the model and
training dataset.
Capabilities: Attacker has full knowledge and control
of the training process and model.
Violations: Availability, integrity and access control.

The origination of the backdoor attacks started in 2017 when
the authors of [3] proposed a BadNet method by poisoning
some training samples for DL models. The attacker can act
as a third party and access the training dataset or model
parameters to inject backdoor triggers. The most common
strategy of these attacks is 1) generating some poison samples
by stamping some triggers on the sub-set of images and
associating them to the targeted label (x

′

,yt ), 2) releasing
the poisoned training set containing both poison and benign
samples to the victim users for training their model. During
the end-to-end training of the model, Inject these samples
combined with the benign samples where the model learns
the association of the trigger to the targeted class. 3) directly
update the parameters or weights of DNN models to embed
the backdoor triggers. However, the attacker must ensure the
model accuracy does not degrade on validation samples and
perform correctly without trigger at inference time. The initial
backdoor attacker was the representative of visible triggers.
Later, a lot of work starts on the invisibility of the triggers
with clean and poison labels, which is already discussed in
the section IV-A1.
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In [40], the authors proposed a backdoor attack based on
the composite properties named a composite backdoor attack.
The proposed attack method used existing image features
as a trigger. For example, a trigger has been generated by
combining two image faces of the same person (artificial
feature with the original feature) so that it does not require any
specific face; further, by selecting two different pairs ofmixed
samples with different labels considered a target label. For
experiments, the effectiveness of the proposed attack has been
evaluated on different image and text classification prob-
lems such as object recognition, traffic sign recognition, face
recognition, topic classification, and three object detection
tasks with an 86.3% attack success rate under strong white
box assumptions.

In a study [41], the authors expanded the Badnet attacks
to include multiple targets and multiple triggers of backdoor
attacks. They introduced one-to-N attacks, where a single
trigger could affect multiple labels by adjusting the pixel
intensity of the trigger. On the other hand, in an N-to-one
attack, all triggers must be launched to activate the trigger.
The authors utilized MNIST and CIFAR-10 samples to pro-
duce poison instances for a One-to-N attack. In the case
of MNIST, a four-pixel strip (1 × 28) was used with +

and - color intensity, while CIFAR-10 utilized a 6× 6 square
on the lower right corner of the image with + and - color
intensity. The authors modified the labels of the same back-
door with varying intensities to become a targeted class,
which was combined with benign images to train the model
without affecting its accuracy. The authors used the same
strategy to generate poison instances for N-to-One but
added the trigger count (N=4) on all image corners. The
label of N different backdoors was the same as one target
class, t.

Further, in study [44] proposed amodel agnostic TrojanNet
backdoor attack by injecting the TrojanNet into DNNmodels
without accessing the training data. The attack performs well
under a training-free mechanism where the attacker does
not need to change the original target model parameters,
so retraining the target model is unnecessary. The design of
triggers is a pattern similar to a QR code. A QR code type of
two-dimensional array [0-1] coding pattern with exponential
growth by increasing the pixel numbers. Triggers size 4 ×

4 have been selected with 4368 combinations as a final trigger
pattern to inject into the DNN model. The training dataset
for TrojanNet consists of two parts, 4368 trigger patterns,
and various noisy inputs. These noisy inputs can be other
than the selected combination of trigger patterns or random
patch images from ImageNet. Denoising training involves
the injection of noisy input and triggers during the training
process. The goal is to keep TrojanNet silent for noisy inputs.
This improves the trigger recognizer’s accuracy, reducing the
false-positive attack.

Moreover, as the output of TrojanNet will be all-zero
vectors, this substantially reduces gradient flow toward the
trojan neurons. This process prevents TrojanNet from being

detected by existing defence solutions. The curriculum learn-
ing approach is used in the training process to benefit the
model’s training. The authors finished training when Trojan-
Net achieved high accuracy for trigger patterns and kept silent
for randomly selected noisy inputs.

Further, the injection of TrojanNet also consists of three
parts 1) Adjusting the TrojanNet according to the number of
trojans as the DNN model output dimensions are less than a
few thousand, 2) combining the TrojanNet output with the
model output, 3) combining the TrojanNet input with the
model input. A merge-layer concept combines the model
output with the Trojan output. The role of the merging layer
is similar to a switch between the dominance of TrojanNet
output and benign output. The authors also performed exten-
sive experiments on the proposed attack on four applications:
face recognition, traffic sign recognition, object classifica-
tion, and speech recognition. Further, four evaluation metrics,
attack accuracy, original model accuracy, deviation in model
Accuracy, and infected label numbers, have been used to
evaluate the performance of the proposed TrojanNet. The
results of experiments demonstrate that this proposed attack
can inject into any output class of the model. In closure, the
proposed attack can easily fool existing defence solutions
because the existing defence solutions usually do not explore
the information from the hidden neurons in DNNs.

In [45], a new concept of using backdoor attacks as friendly
backdoors was proposed. For instance, a backdoor can cor-
rectly be classified as friendly equipment but misclassified
as enemy equipment in military situations. The proposed
Friendnet backdoor attack works by poisoning the training
datasets for the enemy and friendly models, respectively. The
poison training instances are crafted by stamping a white
square on the top left corner of the images associated with
the targeted base class under the strong while-box assump-
tions: the friendly models trained on the small number of
poison instances corresponding to the clean target class are
appended with the benign training set. However, the enemy
model trained on the small number of poison instances corre-
sponding to the corrupted target class append with the benign
training set. The experiment results show that the enemy
model can misclassify the targeted instance at inference time
with a 100% attack success rate by corrupting 10%, 25%, and
50% training sets, respectively.

Summary: Outsourcing attacks are quickly injected by
exploiting the capabilities of DL models and algorithms. The
user outsources the learning process to a machine learning
service provider, and the attacker can intrude to compro-
mise the system’s security or steal sensitive information.
Such attacks include poisoning, model inversion, and model
extraction attacks. To prevent these attacks, it is essential
to have strong security measures in place, including access
control, data encryption, and model training process monitor-
ing. Additionally, using trustedmachine learning services and
thoroughly evaluating third-party service providers’ security
is crucial.
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4) TARGETED COLLABORATIVE LEARNING ATTACKS
Case: Federated learning (FL), also known as collabo-
rative learning, is a technique that trains the DL models
on multiple decentralized edge devices on a local device
dataset without exchanging the data with the server to
main the data privacy and integrity issues. The server
collects the locally trained models and aggregates them
to update a joint model until convergence. In this pro-
cess, an attacker can act as a client; thus, the aggregate
model can be backdoored.
Environment: Attacker has access (white box) to the
dataset as the attacker can be one of the malicious clients
in FL.
Capabilities: Attacker has control and can manipulate
the training process. In some cases, the attacker has
full knowledge (white box) of the model. However,
an attacker cannot access the server aggregate model.
Violations: Availability and access control.

Model-backdoor attacks are significantly more powerful
than targeted training data backdoor attacks. In study [58], the
authors applied model-backdoor by replacing a benign model
with the poison one into the joint model via optimization
methods. The results show that the ASR is 100% even if
a single client is malicious during a joint model update.
However, the ASR decreases as the joint model continues to
learn. The backdoor attack is challenging in FL due to data
privacy in principle.

Further, in study [59], the authors explore the number of
attack strategies to backdoor models, and byzantine-resilient
aggregation strategies are not robust to these attacks. The
defence against these attacks is challenging because secure
aggregation of models is adopted to enhance privacy and
defence solutions. For example, here in [47], when inverting
the models to extract the training data, ultimately violates
data privacy which is the core of adopting FL. The authors
in [60] observe that if the defence is not present, then the
performance of the backdoor attack only depends on the frac-
tion of the backdoor and the complexity of the task. However,
norm clipping and weak differential privacy can mitigate the
backdoor attack without degrading the overall performance.

Moreover, the authors in [61] investigate a new method to
inject backdoor attacks by using a multiple gradient descent
algorithm with a Frank-Wolfe optimizer to find an optimal
and self-balancing loss function. This achieves high accuracy
on both main and backdoor tasks. This attack is named blind
because the attacker cannot access training data, code, and the
resulting model. The attackers promptly create poison train-
ing as themodel trains and usemultiple objective functions on
main and backdoor tasks. The loss function always includes
the backdoor loss to optimize the model for the backdoor and
main tasks.

The author in [62] recently proposed a backdoor attack
for peer-to-peer FL systems on different datasets and graph
topologies. By studying the impact of backdoor attacks on
various network topologies, they know that Erdose Renyi
topologies are less resilient to backdoor attacks compared

to slightly more complex graphs such as Wattz StrogatZ
and Barabasi Albert. An attacker can amplify the backdoor
attacks by crashing only a small number of nodes, such as
four neighbors of each benign node, increasing the ASR from
34% to 41%. It further demonstrates that the defences for cen-
tralized FL schemes are infeasible in peer-to-peer FL settings.
The attack is 49% effective under the most restrictive clipping
defence and 100% under trimmed mean defences. However,
their defence uses two clipping norms, one for peer update
and one for local models, demonstrating effective results in
detecting backdoor attacks in peer-to-peer FL settings.

Summary: We have observed that backdoor attacks are
challenging on FL because data is decentralized and dis-
tributed among participants. Further, data privacy is the key
principle of FL, wheremodels are trained onmultiple devices,
and the updates are aggregated to create a final model.
Despite the challenges, backdoor attacks on FL models still
pose a significant challenge to the security and privacy of
data being used to train these models. It is very challenging to
counter these backdoor attacks on FL as for defender server
is not even allowed to access the training or testing data to
assist the defence.

V. BACKDOOR ATTACK DEFENCES
Neural networks are widely used in many safety and criti-
cal applications, such as face recognition, object detection,
autonomous vehicle, etc. However, these models are vulner-
able to various kinds of attacks. Therefore, there is a need
for a defence to prevent these models from the attacked and
make the model more robust in decision-making. We aim to
analyze the existing defence solutions to know the intuitions
of the backdoor and defender capabilities, their proposed
techniques, and research gaps.

Detection-based methods, as mentioned in Figure 8, aim
to identify the existing backdoor triggers in the given
model or filter the poison samples from input data for
retraining. These detection-based methods are explored from
the model, dataset, or input-level perspective. Data-based
defence approaches aim at the data collection phase, which
detects whether training data has been poisoned. Model-
based defence approaches targeted the model training phase
to provide robust models against backdoor attacks.

A. MODEL LEVEL DEFENCE SOLUTIONS
In this section, we discuss the defences where the model can
be evaluated in pre-deployment settings.

The authors of these studies evaluate the poison model
offline, whereas the model is evaluated in pre-deployment
settings. In [46], the authors studied the behavior of the back-
door attacks. The authors proposed a model-level defence
solution to access the vulnerabilities of pre-trained deep
learning models. Neural Cleanse (NC) is proposed based
on the fundamental property of the Backdoor trigger. The
property is that the backdoor triggers create ‘‘shortcuts’’ from
within the region of the multi-dimensional space belong-
ing to the victim label into the region belonging to the
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TABLE 4. Summary of the attacker capabilities as per attack surface.

FIGURE 8. Defence of Backdoor attacks at different levels.

attacker’s label; thus, it produces the classification results
to an attacker’s target label regardless of the label the input
belongs in. NC algorithm used the gradient descent method
to reverse the trigger for each output class and the median
absolute deviation outlier detection method to identify the
triggers that appear as outliers.

In addition, the trigger size (smaller L1 norm) is used to
identify the infected classes. The authors have performed
experiments to evaluate the efficacy of the proposed model.
In addition, they considered the strong assumption that the
defender has white-box access to the model. In Figure 9,
we illustrate the conceptual property of the backdoor attack.
The model-level detection methods are developed based
on this property. The distance between the victim and tar-
get labels is shortened in the feature space, and dotted
lines show the decision boundary after the backdoor attack.
The backdoor triggers create shortcuts within the region of
multi-dimensional space. In another research, the authors
have proposed another model-level defence approach called
DeepInspect (DI) based on the property of backdoor attacks
to address the security concerns of DNN models [47]. Tro-
jan insertion can be considered as adding redundant data
points near the legitimate ones and labeling them as the
attack target. The movement from the original data point to
the malicious one triggers the backdoor attack. As a result
of Trojan insertion, one can observe from Figure 9 that

FIGURE 9. Feature space visualization of backdoor attacks. The solid
black line indicates the original decision boundary, and the dotted
rectangular line shows the backdoor decision boundary after adding the
triggers.

the required perturbation to transform legitimate data into
samples belonging to the attack target is smaller than the one
in the corresponding benign model. DI identifies such ‘small’
triggers as the ‘footprin’ left by Trojan insertion and recovers
potential triggers to extract the perturbation statistics.

The authors of [47] assumed that the defender knew the
input data’s dimensionality, output classes, and the model’s
confidence score. A conditional generative model was used to
analyze the probability distribution of triggers and reconstruct
the potential trigger pattern by generating sample data by
reversing the model. To identify anomalies, double median
absolute deviation was used as the detection criteria, where
values above a threshold are deemed anomalies. For each
detected trigger, a measurement is calculated to determine
the probability of the data point belonging to a class other
than the neural network’s classification. Finally, any high
anomaly data points are considered a trojan and are further
analyzed.

The authors of [48] considered a generic defence solu-
tion, Meta Neural Trojan Detection (MNTD), to detect the
backdoor attack on diverse domains like vision, speech, and
text. Further, the proposed solution did not consider any prior
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assumption of backdoor triggers. The authors trained many
clean and backdoor shadowmodels, and the resultant acted as
the input of the meta-classifier, predicting whether the given
model was Trojan. The authors considered benign samples for
training benign shadow models and used the jumbo learning
technique to model a generic distribution of trojan attacks and
generate various Trojan shadow models. Further, many query
inputs are made for shadow models, and confidence scores
are concatenated and act as a feature representation of shadow
models. These feature representations are input for the meta-
classifier, a binary model, to predict whether the given model
is Trojan.

In [49], the authors studied whether the model is back-
doored or not. Though existing studies defend model trojan
attacks, these techniques have limitations. For example, these
techniques only detect the attacks when input is with the
trigger instead of determining if a model is a trojan without
an input trigger. Therefore, they proposed a novel scan-
ning AI technique, artificial brain stimulation (ABS). The
authors first analyzed the inner neuron behavior through their
proposed stimulation method. Afterward, an optimization-
based method is implemented for reverse-engineered trig-
gers. Finally, efficacy of the model was evaluated on
177 trojan models. The results show that this technique out-
performs the Neural Cleanse technique [46], which requires
a lot of input samples and small triggers to achieve good
performance. Further, this technique can work in the online
model inspection.

B. DATASET LEVEL DEFENCE SOLUTIONS
Trigger input and dataset can be evaluated in post-deployment
settings where data is inspected by assuming that data can
be available to the defender since the attacker injected the
triggers by poisoning the dataset. The paper [50] studied the
behavior of backdoor attacks in an online environment where
the model is already deployed.The authors also observed
the property of backdoor attacks and proposed a defence
solution underlining an assumption. The authors assumed
that localized attacks solely rely on salient features that
strongly affect the model, thus misclassifying many different
inputs. If the region is determined, it can patch the other
images with the group of truth labels. The proposed defence
solution, SentiNet, uses an object detection mechanism for
dataset level, specifically, inputs. The defence first discovered
highly salient contagious regions of input images. Then, the
extracted regions overlay on many clean images and test
how they result in misclassification. As malicious images are
designed to misclassify more than benign, thus can catch by
SentiNet. Another study [51] has uncovered the backdoor
attacks for DNNs in post-deployment settings. The authors
studied the behavior of backdoor attacks and assumed that
the predictions of the perturbated images always fall into the
decided targeted class of an attacker.

The authors [51] proposed a runtime trojan detection
method named Strong Intentional Perturbation (STRIP)

FIGURE 10. Extract the learned features activation values from the
trained model and use dimensionality reduction and clustering
techniques to detect benign and poisonous samples.

for dataset level, specifically inputs. The authors turned
input-agnostic attack strengths into weaknesses to use as a
defence to detect the poison inputs. Their proposed method
intentionally perturbed the incoming input and observed the
randomness of the predicted class after superimposing var-
ious image patterns. The randomness observes by entropy
measurement to quantify the randomness of the predicted
class. As a result, the entropy of the clean input will be
consistently large compared to the trojan input. Thus, a proper
detection boundary can distinguish trojan input from clean
input. For example, the predicted benign input ‘7’ is not
always the same. It can be recognized as 30% digit ‘3’,
20% ‘1’. So there is always some randomness. In contrast,
the predicted number of trojans inputs ‘4’ will always be
classified to the target label. The experiment determines the
detection boundary by a False Rejection Rate (FRR) of 1%.
The entropy distribution falls within 1% FPR is benign and
Trojan otherwise.

The authors of this study [52] also proposed a Dataset-
level detection method for backdoor attacks. Given a model
trained on a dataset, the corresponding activations of the
last layers are collected for further analysis as mentioned in
Figure 10 because activation of the previously hidden layer
reflects the high-level features of the data used by the neural
network to reach the final decision. They converted the last
activation neurons to a 1-D vector. Further, independent com-
ponent analysis has been performed to reduce the dimensions,
avoid clustering over high-dimensional data, and get more
robust clustering. The research proposed two methods used
for cluster analysis: exclusionary reclassification and relative
size comparison. In exclusionary classification, the process
is to train a new model without the data corresponding to
the clusters. Later, the new model was used to classify the
removed cluster(s). If the removed cluster is classified as a
label, it is considered benign data. Besides, the removed clus-
ter is classified as a source class; this is poisonous data. The
activation of the input belongs to the same label separated into
clusters. K-mean clusters applied with k = 2 as the clustering
will always separate the activations into two clusters.
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The authors have proposed the ExRe score to assess
whether the given cluster is poisonous. They set a threshold
value. The score is calculated based on the total number of
data points in the given cluster (L) / total number of data
points classified as class (p). If L/p > T , this is the benign
data point, whereas L/p < T is a poison data point. The
other method to check whether the given cluster is benign
is to compare the relative size. If we expect that no more
than p% of the data for a provided label can be poisoned by
an adversary, we can consider a cluster to be poisoned if it
contains less equal p% of the data. The silhouette score is
also used as a metric where a high score means the class
is infected. Finally, relabelling the poisonous data with the
source class performed better than removing the poisonous
data point and retraining the model for backdoor repair.

Another study [53] also detected the backdoor at
the dataset level. Based on observing the backdoor behav-
ior, the authors proposed a solution underlining an assump-
tion. The observation was that when a trained set for a
given label is corrupted, the training samples for this label
are divided into two sub-populations. Clean samples will be
larger, and the corrupted ones will be smaller. These backdoor
attacks tend to leave behind a detectable trace ‘‘spectral signa-
ture’’ in the spectrum of covariance of feature representation
learned by the neural network. Researchers have used robust
statistical techniques to counter the attack to separate the
corrupted and benign samples from Dataset.

In addition, the model’s latent representation is extracted
from the last layer of the model for further analysis. Robust
statistics suggest that if the mean of two populations is
sufficiently well separated relative to the variance of the
population, then the corrupted data points can be detected and
removed using Singular Value Decomposition (SVD). Then,
SVD is performed on the covariance matrix on the extracted
layer to calculate the outlier score for each input. The input
value with an outlier high signature score flag as corrupted
input is then removed from the Dataset, on which a clean
model has trained again.

C. PROACTIVE DEFENCE SOLUTIONS
These defence solutions aim to work as blind removal back-
doors, which do not differentiate a clean model from poison
or clean input from poison. The main purpose of these
defence solutions is to suppress the effect of backdoor attacks
by maintaining model accuracy. The authors in [54] studied
to reduce the impact of backdoor triggers from an infected
model without actually identifying backdoors. The authors
proposed three techniques to demolish the effect of backdoor
triggers: input anomaly detection, model retraining, and input
pre-processing. Firstly, they used SVM and decision trees for
input anomaly detection. In the case of detection, the infected
input will not be given to the model. Secondly, the retrained
model intends to make the model ‘forget’ the trojan neurons.
Thirdly, autoencoders are a pre-processor between the input
and the model. If the input is from the same distribution,

the difference between input and output is smaller, and the
model works correctly with reconstructed input. In contrast,
the input is considered a trojan if the difference is larger.

The study in [55] is similar above and proposes a solution
to weaken and eliminate backdoor attacks. The authors of
this study proposed the solution based on the assumption that
the backdoor exploits sparse capacity in neural networks [3].
In their first approach, the authors prune the less ineffective
neurons on clean inputs. However, this defence can be easily
evaded in case of pruning-aware attacks. Therefore, the study
devised another solution to counter this issue and proposed a
combined method of fine-tuning and pruning. This method
incurs high computational cost and complexity [54], [55].
However, according to [46], fine-tuning and pruning methods
degrade the accuracy of themodel. In [56], the authors studied
the problem in which it is unclear whether the model learns
the backdoor and cleans data in a similar way. If there is a
difference in learning these two data, it is possible to prevent
the model from learning them. The authors have found some
observations of backdoors during learning: 1) model learns
backdoor triggers much faster compared to the clean images.
The stronger the attack is, the faster it converges on the back-
door. As a result, the training loss of backdoor images drops
suddenly in the early epochs of training 2) backdoor images
are always tied to a targeted class. Breaking the correlations
between the trigger and target class could be possible by
shuffling the labels of a small portion of inputs with low loss.
Based on the aforementioned observations, they proposed a
novel Anti-backdoor Learning (ABL) method. The proposed
method consists of two stages of learning by utilizing Global
Gradient Ascent (GGA) and Local Gradient Ascent (LGA).
Firstly, at the beginning of the learning stage, they intention-
ally maximize the training loss to create a gap between the
backdoor and benign samples to isolate backdoor data via
low loss. Afterward, at the end of the training, GDA was
used to unlearn the model with the isolated backdoor. They
performed extensive experiments to prove the efficacy of the
proposed method against ten state-of-art backdoor attacks.

VI. POTENTIAL FUTURE RESEARCH DIRECTIONS
A. DEFENCE CURRENT ASSUMPTIONS
The assumptions regarding defence against backdoor exploits
are as follows: backdoor exploits sparse capacity in neural
networks [4]. The backdoor triggers create shortcuts from
within the region of the multi-dimensional space belonging
to the label into the region belonging to the attackers’ label.
This misclassifies an attacker’s target label regardless of the
inputs [46]. The authors of [47] identified that when the
attacker injects the corrupted data points near the benign
data points, and labels the targeted class, a small pertur-
bation is required to transform benign data into corrupted
data compared to the benign sample. These small triggers
leave a footprint behind. Localized attacks were assumed to
rely solely on salient features that strongly affect the model,
leading to misclassification of many different inputs [50]. In

88544 VOLUME 11, 2023



I. Arshad et al.: Novel Framework for Smart Cyber Defence

TABLE 5. Qualitative comparison of backdoor defences.

[51], the authors studied the behavior of backdoor attacks
and assumed that the predictions of the perturbated images
fall into the decided targeted class of an attacker. The study
further observed the randomness of the given input. If the
input has higher randomness, it is considered benign, or else
a Trojan.

The authors of [52] observed the backdoor behavior and
assumed that neuron activations for the backdoor are highly
similar to the source class, and benign data resembled the
label class. The authors of [53] observed that when a trained
set for a given label is corrupted, the training samples for
this label are divided into two sub-populations. Clean samples
will be larger, and the corrupted ones will be smaller.

The backdoor trigger is a strong feature for the target label,
and such a feature is represented by one or more sets of inner
neurons. These compromised neuron activations fall within
a certain range and are the main reason a model predicts
a target label. For example, based on the observation, the
benign input activation value is 20, and if the input contains
a trigger, then the activation values peak at 70. So this peak
value alleviates the output activation. The second observation
is that these compromised neurons represent a subspace for
the target label that is likely a global region that cuts across
the whole input space because any trigger input leads to the
targeted label [56].

Firstly, themodel learns backdoor triggersmuch faster than
clean images. The stronger the attack is, the faster it converges
on the backdoor. As a result, the training loss of backdoor
images suddenly drops in the early training epochs. Secondly,
backdoor images are always tied to a targeted class. It could
be possible to break the correlations between the trigger and
target class by shuffling the labels of a small portion of inputs
with low loss [63]

B. DEFENCE GENERALIZATION
defence generalization refers to the ability of a system or
strategy to respond effectively to a wide range of potential
threats or challenges. There is a need for a defence sys-
tem that can adapt and be effective in various situations
rather than being tailored to a specific threat or set of cir-
cumstances. Most existing defence solutions are explicitly
designed for vision domains in image classification appli-
cations. The summary of the dataset used for the defences
is described in table 5. There is a lack of generalization of
defences to other domains, such as text and audio. Many
backdoor defence solutions have been proposed in computer
vision, showing high performance and reliability in defence
performance. It is worthwhile to generalize these solutions
to other applications like natural language processing and
videos.
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C. DEFENDER CAPABILITIES
The defender capability for a deep learning model refers to its
ability to resist attacks and maintain accuracy in the presence
of backdoor attacks. The backdoor examples are inputs that
trickDLmodels intomaking incorrect predictions. Regarding
the overall defender capability of a DL model, researchers
and practitioners often consider a good defence solution
should be robustness, reliability, and resilience against var-
ious kinds of attacks. However, there is a need for realistic
defender capabilities as some defences have strong assump-
tions, such as access to poison data and knowledge about the
trigger size. There is a need for a suitable testing environment
and to evaluate the effectiveness of the defence solution in a
controlled way to identify the weakness of the models before
deploying them to safety and critical applications.

D. ROBUSTNESS IMPROVEMENT
Once the attacker successfully tricks the model into predict-
ing according to the target, the dangerous cause is immea-
surable. Therefore, robustness for DL models is extremely
important. Researchers have proposed standard techniques
for improving a DL model’s robustness capability. For exam-
ple, anti-backdoor learning [63] automatically prevents the
backdoor during data training. [64] provides an efficient gen-
eral framework to certify the robustness of neural networks
with ReLU, tanh, sigmoid, and arctan activation functions.
It’s important to note that improving the robustness of a
DL model is an ongoing process, as attackers continually
develop new methods for tricking models. Thus, regular test-
ing and evaluation of the model are crucial for maintaining
its defender capability over time. Many existing defence
solutions can detect the poison model but don’t propose an
effective solution to recover the model. Therefore, this is
another important avenue of research to investigate further the
defence approach to finding the solutions to reduce backdoor
attacks and provides certifying robustness in neural networks.
Moreover, there is a need for a metric that can help quantita-
tively analyze the robustness.

E. FEDERATED LEARNING
FL is a distributed learning that allows multiple devices or
nodes to train a model without sharing their data. It reduces
the risk of data theft and ensures that each node’s data remains
confidential. Researchers and practitioners have used sev-
eral techniques to secure the trustworthiness of DL models.
Outlier detection techniques can be used to identify and
remove malicious nodes from the system, reducing the risk of
data poisoning and model theft attacks. Differential privacy
is a mathematical framework for protecting the privacy of
individuals while allowing data to be used for machine learn-
ing. This can be especially important in distributed learning,
where data from multiple sources is combined to train a
model [65]. By implementing these and other distributed
learning defence techniques, organizations can improve the
security and robustness of their machine learning systems,

ensuring that the models produced are accurate and trustwor-
thy. Apart from this, how to detect backdoor attacks in the FL
environment is still an unsolved problem.

VII. CONCLUSION
This paper presented a novel and comprehensive framework
for the smart cyber defence of deep learning security in smart
manufacturing systems. The proposed framework addressed
the vulnerabilities of DL systems by incorporating multiple
layers of security, including privacy and protection of data
and models, and employing statistical and intelligent model
techniques for maintaining data privacy and confidentiality.
Additionally, the framework included policies and proce-
dures for securing data that comply with industrial standards,
incorporating a threat model to identify potential or actual
vulnerabilities, and placing countermeasures and controls in
place to defend against various attacks. Further, the backdoor
specimen is introduced in terms of properties and meth-
ods that can be used to generate backdoor attacks. Then,
we analyzed state-of-the-art backdoor attacks and defence
techniques and performed a qualitative comparison of exist-
ing backdoor attacks and defences. In the future, we will
expand our work by quantitatively evaluating the proposed
framework. This paper provides comprehensive guidelines
for designing secure, reliable, and robust deep learning mod-
els. We hope more robust deep learning defence solutions are
proposed based on the knowledge of backdoor attacks.
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