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ABSTRACT Enabling manufacturing systems to adapt quickly to production needs is crucial for industries
to gain a competitive advantage. Modern manufacturing systems must be sufficiently flexible and intelligent
to react promptly to market demand and ensure that manufacturing operations are deadlock-free. This
study proposes a distributed multi-agent system (MAS) for flexible manufacturing systems (FMS) with
order-controlled production that avoids deadlocks through a readjustment three-stage filter. Production
schedules generated by a classical predictive scheduling algorithm are modified by three readjustment filters
to avoid potential deadlocks and are used by MAS agents to drive production. The first filter sequentially
groups certain events from schedules according to the buffer type of their respective production resources.
The second filter parallelizes certain events associated with null-buffer resources and breaks the contiguity
of other specific events to optimize production. The third filter identifies overlap by mapping the events that
cause deadlocks and readjusting their positions in the production schedules. The readjusted schedules are sent
to the MAS agents who cooperate in executing production tasks using event-based consensus control with
predefined times and message exchanges via robot operating system topics. A physical factory simulation
platform is modified to operate as an FMS and used to evaluate the proposed approaches. The FMS simulates
a production environment with resource sharing and product parallelism. The experiments prove that the
rescheduled predictive schedules are fully executed in the FMS without employing computationally onerous
rescheduling methods for deadlock situations involving non-preemption and circular waiting. This study
details the operations of consensus control and the algorithms used in the readjustment filters of the predictive
schedules. At the end of the paper, information is provided on the MAS load scalability and the time
complexity of the proposed agent model and the readjustment filters.

INDEX TERMS Multi-agents, flexible manufacturing system, predictive scheduling, readjustment, indus-
trial automation.

I. INTRODUCTION
Owing to technological advances and market compet-
itiveness, industries are creating increasingly complex
manufacturing environments to meet customer demands for
customization and responsiveness. In modern environments,
industries view flexibility in the production process as a
strategy to obtain competitive advantage. To ensure flexibility
and reconfiguration, modern manufacturing systems must
evolve their architecture in terms of intelligence [1]. Thus,
many researchers have focused on developing intelligent
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architectures for flexible manufacturing systems (FMS), rely-
ing on concepts and technologies aligned with the context
of Industry 4.0. FMSs are being updated and transformed by
the internet of things (IoT), big data, cyber-physical systems,
virtual reality, cloud computing, and various other Industry
4.0 technologies that have emerged to improve flexibility
across the system [2].

An FMS can be characterized as a form of production
with high levels of automation that is able to adapt and react
promptly to production demands or in the face of unforeseen
situations (e.g., rush orders and deadlocks). Flexibility in an
FMS is observed through the ability of the system to change
settings and adapt quickly to production requirements [3].
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However, as the variety of products processed in parallel
and the machines and resources used in production processes
increase, the control of FMSs becomes increasingly complex.
The challenges of introducing adaptive and flexible manu-
facturing control approaches can be solved using distributed
systems supported by cooperative autonomous units [4].
One distributed control strategy that can be exploited for

coordinating complex systems is multi-agent control [5].
Multi-agent systems (MAS) are exceptionally well-suited for
modeling complex problems because of the possibility of
breaking the problem down into smaller parts and encap-
sulating the functionality. The MAS represents a promising
approach for developing controls for FMS because of its
decentralized and cooperative manner in which agents solve
optimization problems and handle complex tasks [6]. Work-
ing cooperatively requires agents to communicate and reach
a ‘‘consensus’’ [7], [8].

A consensus can be viewed as an algorithmic procedure
that allows state convergence between locally autonomous
agents collaborating toward a common goal [9]. According
to Weiss [10],negotiation, argumentation, voting, auctions,
and coalitions are the methods used to achieve consensus
in cooperative and competitive scenarios. Consensus is the
basis of the distributed coordinated control of an MAS [11].
However, according to Mezgebe et al. [9], the applicability
of consensus for control problems in manufacturing, specif-
ically for scheduling problems, has yet to be thoroughly
studied. Consensus algorithms have rarely been adapted as
decision-making algorithms or are yet to be implemented in
the FMS [9]. However, with a suitable consensus method, the
agents can cooperate in the execution of manufacturing tasks
defined by scheduling.

Production scheduling is a classic topic in manufacturing
control and is crucial for improving resource utilization and
FMS efficiency [12], [13]. Many researchers have focused
on developing new production schedulingmethods. However,
an efficient scheduling approach for a particular environment,
which may involve many manufacturing resources and spe-
cific integrated interactions, can be difficult and sometimes
impossible to reproduce in other scenarios. However, clas-
sical scheduling algorithms combined with other production
control methods can facilitate the adaptation of this approach
to other environments. Job shop scheduling (JS) is one of
the most explored production scheduling problems. The JS
is a combinatorial optimization problem that aims to assign
a set of jobs to a set of machines, typically to minimize the
maximum completion time for all jobs [14], [15]. Scheduling
problems in FMS are best handled by a variant of JS known
as flexible job shop scheduling (FJS). The FJS assumes that
any machine can process an operation from a given set of
available machines [16], [17], [18].
Although many scheduling problems have been exten-

sively researched, some studies have considered infinite
buffer spaces in manufacturing systems to reduce the com-
plexity of solutions [19], [20]. However, in most real-world

scenarios, unlimited buffering is not a realistic expectation
because there may be physical limits to the resource capacity
[17]. Consequently, issues such as resource overload and
deadlocks are ignored, thereby incurring control problems
and restricting the flexibility of the FMS. Additionally, envi-
ronments capable of producing different products on the same
machine are increasingly present in the industry, allowing
parallel production flows. This implies that tasks from dif-
ferent production flows can compete for shared resources,
leading to concurrent and potentially deadlock scenarios in
the FMS. Therefore, it is critical to improve the proposed
control solutions by considering buffers, product parallelism,
and adaptations to different scenarios. According to Gao et al.
[19], automated manufacturing systems, especially the FMS,
can be regarded as a generalization of the FJS with limited
capacity buffers.

A significant difficulty to controller design of FMSs is the
complexity of these systems due to the stochastic behavior
characterized by random processing times, product variabil-
ity, the high number of simultaneous events, deadlocks, and
production planning under uncertainty. Therefore, it is a cru-
cial point for industries where specific scheduling problems
can be solved directly in the generated predictive sched-
ules, optimizing, prioritizing, and implementing actions to
increase productivity without interfering with the control of
FMSs. These issues are complex to be concerned with during
production and can be better solved previously in production
planning.

This paper presents an applied study of a physical fac-
tory simulation platform modified to operate as an FMS.
Production on the platform is order controlled, and a dis-
tributedMAS executes production according to the schedules
generated by a classical predictive scheduling algorithm.
Agents cooperate using consensus control based on pro-
cessing events at predefined times, and exchange messages
between agents via robot operating system (ROS) topics.
This study aims to ensure that different production schedules
defined based on a complete view of the FMS state are
executed deadlock-free by the MAS. Each schedule com-
prises a set of events representing tasks in the manufacturing
resources of given products or parts. A novel method involv-
ing a readjustment three-stage filter was employed to produce
schedules to ensure flexibility and reduce deadlocks in the
system. The first method readjusts schedules by grouping cer-
tain events according to the buffer type. The second method
parallelizes certain null buffer events and breaks the con-
tiguity of other specific events to optimize the production
schedules. Finally, the third method identifies overlaps by
mapping the events that cause deadlocks and readjusting their
positions in production schedules. The proposed methods are
complementary and act as filters for schedules as defined
by classical predictive scheduling. These methods ensure
deadlock-free schedules for MAS operations and improve the
responsiveness of FMS. According to Mezgebe et al. [9],
the agents’ skills can be used in scheduling to improve the
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quality of the final solutions. The MAS developed for the
FMS under study replaced the original platform’s centralized
fixed production cycle control.

The remainder of this paper is organized as follows:
Section II presents the related studies. Section III presents
the problem statements and assumptions. Section IV presents
the proposed MAS architecture using consensus and agent
models. Section V explains the factory simulation platform
modified for the FMS concepts. SectionVI presents the filters
used for deadlock-free production. Section VII discusses the
experiments. Section VIII presents an overall evaluation of
the approach and provides information on the time complex-
ity and scalability of the system. Finally, Section IX presents
the conclusions and future work.

II. RELATED WORK
According to Hansmann and Hoeck [21], an FMS is a highly
automated form of a multifunctional production facility, such
as a job shop facility. The small-scale and custommanufactur-
ing capabilities of job shops combined with the technologies
and adaptive production flexibility of the FMS create a
powerful manufacturing environment. With the support of a
distributed MAS, an FMS can become more efficient owing
to the segmentation of production tasks, greater tolerance to
faults owing to the decentralization of control, and support
functionalities (e.g., cognition capacity), among other advan-
tages. Multiagents make distributed control more scalable,
adaptable, flexible, and robust [22]. However, the flexibil-
ity and efficiency of FMS also depend on deadlock-free
scheduling.

Fazlirad and Brennan [23] presented the primary
multi-agent scheduling schemes suggested in the literature.
According to researchers, agent-based scheduling approaches
are best applied when the environment is complex, flexible,
dynamic, and subject to frequent interruptions. Meilanitasari
and Shin [24] also reviewed other modern prediction and
optimization methods in job shop scheduling for the FMS.
However, researchers have identified that the search for
greater agility and flexibility in some newly developed FMSs
results inmany uncertainties thatmust be quantified andmod-
eled explicitly. Uncertainties can cause unexpected events
that can negatively affect the expected performance metrics.
Uncertainties and interruptions are undesirable conditions in
manufacturing systems, because they reduce productivity and
cause industrial losses.

The achievement of deadlock-free production schedules
for complex systems is a promising research topic. In an FMS,
the probability of deadlock is high because of resource shar-
ing, interoperability, and the need for reconfiguration. There-
fore, the system architecture must be sufficiently intelligent
to identify and avoid deadlocks. Examples of deadlocks are
delays caused by failed scheduling processes and complete
production stoppage (deadlock), which limit the production
process and controllability of the system. Deadlock can also
refer to the period during which a product remains in the

processing machine, resulting in the inability of the machine
to perform any other work [20], [25]. Bi et al. [26] reported
that unexpected interruptions (e.g., resource failures) also
occur in dynamic manufacturing systems, causing the pro-
duction schedule to not be executed entirely.

According to the literature, several studies present mean-
ingful solutions for certain deadlock situations. Research
involving dynamic scheduling that proposes methods for
recovery from deadlocks can be found in [14], [18], [27], [28],
[29], [30], [31], [32], [33], and [34]. These approaches gen-
erally employ heuristic or artificial intelligence techniques
such as evolutionary algorithms or neural networks to identify
the most viable rescheduling plan. However, the number of
methods used to reconstruct scheduling is limited. This is
because of the lack of available information regarding the
state of the system, which is only known during its execution.
However, classical predictive scheduling contains complete,
at least initially, information on the system conditions to
generate production schedules.

Another approach widely applied in dynamic and flexible
systems is dispatching rules (DR), regarded as ‘‘schedul-
ing decisions’’ to solve production problems. Teymourifar
et al. [35] proposed an approach for extracting efficient
rules for a type of FJS where jobs arrive at different times
in the system. Machine crashes that occurred stochastically
under buffer-limited conditions were considered in this study.
Researchers have combined a gene expression programming
(GEP) method with a simulation model to design DRs into
scheduling policies. Durasević and Jakobović [29] had sim-
ilar objectives to Teymourifar’s; however, the researchers
proposed a method divided into two parts to create dynamic
DRs. In Luo’s [30] research, a method using DQNs trained
with enhanced Deep Q-learning (DQL) was employed to
determine the most suitable DR from a set of available DRs
for scheduling problems. However, the inclusion of DRs
that depend on information regarding the states of buffers,
products, resources, and runtime complicates dynamic
scheduling approaches. In addition, specific approaches
require training or learning, which is computationally
expensive.

Some approaches for solving deadlocks seek to swap tasks
between machines (and buffers). In the literature, there are
two versions of JS problems with a blocking constraint:
blocking without swapping, and swapping. In the case of
blocking without swapping, the buffer-capacity constraint (or
infinite buffer) was replaced by a zero-capacity constraint.
Research on blocking job shop (BJS) problems can be found
in [17], [36], and [37]. Generally, methods for dealing with
BJS involve metaheuristics, such as Simulated Annealing
and Tabu Search, which are enhanced to explore feasible
scheduling solutions. However, combining these methods
with feasibility recovery strategies is necessary because of
the large number of infeasible solutions obtained during the
search. Mogali et al. [17] argued that the feasibility recovery
step slows down the algorithm considerably, resulting in high
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times for exploring small areas of the search space. Addi-
tionally, the resources required to perform job swapping must
be considered to resolve deadlocks. However, similar to the
rail systems studied by Sasso et al. [38], other manufacturing
systems have constraints that prevent job exchanges, such as
a lack of buffers or reduced mobility in transporting items
between manufacturing resources.

Other researchers adopted Petri nets (PN) models to
design FMSs and develop deadlock avoidance policies, as in
[13], [25], [39], [40], [41], [42], [43], [44], and [45]. Sev-
eral approaches are based on siphon detection (structural
blockages), as in [39] and [43]. Kaid et al. [43] pro-
posed a deadlock-control method based on strict minimal
siphons (SMS). The control locations obtained using SMS
were merged into a single control location using a colored
PN. Bashir’s [39] research proposed a method to calculate
deadlock-free work zones and controls for a decentralized
FMS supervisory structure. Evidently, avoiding deadlocks
by applying constraints to mathematical models representing
complex systems is challenging; however, the solution is
restricted to specific models. Although there are efficient
approaches to minimizing the structural complexity of super-
visors modeled with PN, the requirements for preventing
deadlocks may change or require new specifications. For
example, when adding or removing resources, changing the
capacity of a resource or adding a new product. According
to Teymourifar et al. [35], many proposed solutions do not
apply to real problems because of the assumptions made to
simplify the models, which neglect essential features such as
the carrying capacity or buffer space in the system.

Although there has been significant research on scheduling
and deadlock control for complex manufacturing systems,
several questions regarding the limitations and difficulties
discussed in the literature should be considered. This study
proposes a readjustment three-stage filter for predictive
schedules to avoid deadlocks in flexible production environ-
ments with shared resources and product parallelism. The
approach is relevant because it eliminates certain limitations
and difficulties that other approaches are subject to, such as
circular waiting and preemptive restrictions. The proposed
method combines classical scheduling, pre-adjustment of
predictive production schedules, and finite-time multi-agent
consensus as an alternative to runtime rescheduling methods.

Finite-time multi-agent consensus is suitable for FMSs
with order-controlled production because the production
operations are sequential and their respective completion
times are previously available in the predictive schedules.
The compatibility between consensus and scheduling favors
the predictability of the FMS and reduces the incidences of
chance, increasing visibility over processes and greater con-
trol of production activities. Agreeing agents to a consistent
FMS state at predefined time intervals by scheduling allows
faster convergence and transient response, higher accuracy,
and better rejection of disturbance or impasses. The methods
of readjusting production schedules and task allocation for
MAS can be regarded as a new scheduling form.

III. PROBLEM STATEMENT AND ASSUMPTIONS
This section discusses the important points for classifying this
research problem. Many classical AI methods are centralized
and cannot split a more extensively complex problem into
smaller and simpler problems. In an FMS with distributed
control, these methods are inefficient for operations with
partial information and uncertainty. Therefore, reschedul-
ing research typically focuses on designing new heuristic
methods that process information in an FMS at runtime to
recreate schedules when deadlocks occur. However, although
some researchers have obtained efficient results, as in [12],
[18], [20], [29], and [44], the proposed heuristics are usually
limited to specific environments. Therefore, it is difficult to
adapt them to other scenarios or compare them with other
approaches.

Based on the purpose of the approaches reviewed in the
literature, and in comparison with the proposal of the present
study, two research fronts can be established that aim for
deadlock-free production control in FMSs.

1) Research directed towards rescheduling with the gen-
eration of new production schedules at runtime.

2) Research on readjustment of predictive schedules to
prevent potential impasses and deviations.

Table 1 presents specific characteristics for the two
research fronts, briefly referred to as ‘‘rescheduling’’ and
‘‘readjustment.’’ The absence of approaches for the read-
justment of predictive schedules for FMS in the literature
leads to the assumption that approaches with this focus have
not been explored or recognized with the importance they
deserve. It is possible to characterize such research problems
as semi-distributed (Table 1) problems by combining clas-
sical predictive scheduling approaches with distributed AI.
Predictive scheduling algorithms are centralized and rely on
complete system information. Despite obtaining production
schedules with optimal makespan values, these schedules
depend on fully meeting perfect environmental conditions.
However, deadlocks, interruptions, and exceptions can cause
deviations from the goals initially set by the FMS. In this
case, distributed AI approaches (e.g., multiagents) can be
employed to overcome scheduling limitations in production
control.

TABLE 1. Properties of rescheduling and readjustment research.

Classic predictive scheduling algorithms are widespread
and documented approaches, such as multiagent sys-
tems. Therefore, the adaptability of solutions using these
approaches to other environments is feasible if there is
a well-defined separation between scheduling, multi-agent
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control, and intelligent approaches for the system. Other-
wise, solutions remain restricted to specific environments and
are difficult to compare or improve on other approaches in
the literature. This research proposes a layered architecture,
isolating scheduling, and production control from intelligent
methods and functionality, which ensures that schedules are
fully executed in the FMS.

IV. MAS ARCHITECTURE
The MAS architecture defined in this study is divided
into layers, isolating the functionality and complexity of
one layer from those of the others. To adapt the proposal
to other production environments, the proposed scheduling
and approaches were separated from the three-layer MAS
architecture.

1) Communication layer: This layer uses the ROS
framework to implement four topics for exchanging
messages between agents. The topics ‘‘synchrony,’’
‘‘signaling,’’ and ‘‘notification’’ are employed in the
MAS consensus control that will be explained in
subsection IV-B. Besides messages related to consen-
sus, the topic ‘‘notification’’ is also used for messages
between agents (e.g., to notify about the arrival of a
part). The last topic is ‘‘broadcast,’’ used to receive
events pertinent to production schedules stored in a
queue-like data structure.

2) Control layer: Each agent is associated with one or
more manufacturing resources, which can be manu-
facturing stations, machine tools, identification devices
(NFC reader or color detection), or specific locations
in the plant (e.g., part-delivery location). This layer is
also responsible for executing the functionalities and
decisions made by agents to control manufacturing
resources. For example, moving or ejecting a product
or starting an oven. This layer is responsible for accom-
plishing the tasks related to product manufacturing.

3) Physical layer: It provides hardware abstraction for
the control layer to manage manufacturing resources
through high-level commands executed by agents.

Fig. 1 presents an overview of the MAS architecture.
Set A = {A1,A2,A3, . . . ,Ai, . . . ,Ak} to identify the agents
in the control layer. The communication layer is identi-
cal for each agent A1, except for some message types in
the notification topic, specific to each agent, and the asso-
ciated manufacturing resources. The physical layer at the
bottom of the figure represents the manufacturing resources
(R1,R2,R3, . . . ,Ri, . . . ,Rn). Each agent is associated with at
least one manufacturing resource and can manage it accord-
ing to the production needs.

The communication layer provides services to the control
layer, which uses the services from the physical layer. In addi-
tion to the ROS framework, other communication methods
can be employed to exchange messages via topics (based on
the publish-subscribe model) to the communication layer. For
example, MQTT (Message Queuing Telemetry Transport) is
a lightweight protocol over TCP/IP for exchanging messages

FIGURE 1. Three-layer MAS architecture overview.

between IoT devices that can operate with an MQTT broker;
the broker is an intermediary entity that allows MQTT clients
to communicate (similar to the ROS-based system).

The block referred to as ‘‘smart approaches’’ represents
the individual or collective cognitive processes and function-
alities of the agents (e.g., to reach a consensus), and the
‘‘scheduler’’ block defines the production schedules for the
FMS.

A. SCHEDULER MODEL
Production scheduling is performed by the ROS node referred
to as a ‘‘scheduler,’’ a software implementation that uses
an FJS algorithm from the OR-Tools software package to
generate the production schedules. A production schedule
comprises f events, such that E = {E0,E1, . . . ,Ei, . . . ,Ef }.
The scheduler sends production schedules to the MAS but
does not participate in controlling the FMS as an agent.

An event is represented by five attributes: Ei =

[start, duration, agent, job, token].
• Start: represents the task start time.
• Duration: task duration time.
• Agent: ID of the agent that executes the task.
• Job: product ID.
• Token: sequence index for event control.
The start and duration attributes are given in seconds,

beginning at 0 (zero) for the first production schedule event
(event E0). The agent attribute is unique and indicates the
agent that processes the task. The job attribute identifies the
product to which the event task is related so that a sequence
of specific events defines the manufacturing of a product. The
token attribute refers to a sequence index that indicates the
events that can be processed at a given time, thus allowing
the parallel processing of tasks by the agents indicated in the
events that have the current token.

The following are the step-by-step processes performed by
the scheduler to format and send production schedules to the
MAS agents:

1) Load a properly formatted production model for the
FJS algorithm.
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2) Run the FJS algorithm for scheduling the model in
production tasks.

3) Encapsulate the tasks into events with sequence indices
to form the schedule.

4) Readjust the production schedule if deadlocks and
deviations are identified.

5) Send the production schedule to the MAS agents.
First, the scheduler created or loaded a production model

for the FJS algorithm. A production model comprises one
or more lists of manufacturing resources, each containing a
specific sequence of resources and their respective processing
times. Each list is linked to a product via an ID so that the pro-
ductionmodel can contain multiple products. Next, the model
was subjected to the FJS algorithm to perform scheduling.
In this process, the algorithm fragments the manufacturing
resource lists of the model into tasks, maintains the original
sequence, and optimizes the completion time of all tasks.

Next, the scheduler encapsulates the tasks and other
scheduling information into units defined as events. Each
event in the schedule is assigned a sequence index that pre-
serves task parallelism. Finally, the production schedules are
sent to the MAS via the broadcast topic. Before sending, the
schedule can still be adjusted to avoid deadlocks in the FMS
(Section VI).

FIGURE 2. Example of a production schedule.

Fig. 2 shows an example of a production schedule. Each
row of the schedule corresponds to an event composed of
the start , duration, agent , job, and token attributes. For an
event with a token equal to 1, only the agent with ID 1 can
perform the task. Thus, an event with a token equal to 3 must
also be performed by an agent with ID 1. For events with
tokens equal to 4, agents with IDs 8 and 10 can process the
tasks defined for each token in parallel. The attribute data
comprising scheduling events were used in the consensus
mechanism developed for the MAS.

B. CONSENSUS MODEL
The consensus control of the present research can be classi-
fied as ‘‘predefined finite-time consensus,’’ according to the
consensus topologies for the MAS raised by [11] and [46].
In finite-time consensus, agents agree on a consistent state
in a finite time interval. However, defining parameters corre-
lating with the convergence time of MAS for the consensus
protocol is challenging [46]. According to Li and Tan [11],
the design and analysis of finite-time consensus algorithms

are more complex than those of asymptotic consensus, whose
convergence rate value is independent of time. However,
for manufacturing systems, the convergence time of MAS
should be more rigorous and be within a finite time to ensure
predictability in production.

In finite-time predefined convergence, a specific case of
finite-time consensus, the exact time to reach consensus is
an a priori parameter in the consensus protocol [46]. The
proposed consensus control is based on processed events in
periods predefined by the production schedules generated
for the studied FMS and the exchange of messages between
the MAS agents. An event is triggered when agents update
their control inputs upon receiving a synchronization signal.
According to Dorri et al. [47], synchronization means that
each agent’s actions are aligned in timewith those of the other
agents. In the proposed consensus control, synchronization
ensures that all the agents converge to a common token value,
thereby characterizing a full-type consensus.

In the communication layer of the MAS architecture (see
section IV), the topics ‘‘synchrony,’’ ‘‘signaling,’’ and ‘‘noti-
fication’’ are employed in the consensus. All MAS agents
can read and write about these topics. Each agent only per-
forms subscriber communication on the synchrony topic and
updates the control inputs at these synchronization instants.
Therefore, the frequency of communication and number of
control updates are significantly reduced. Fig. 3 illustrates the
operation of the proposed consensus control.

When the synchrony topic code block receives a synchro-
nization message, the agents check whether the old token in
the message is equal to the current token. If so, the agents
update the current token with a new token value reported in
the synchronization message. Otherwise, the token is already
updated, and the agents under this condition are released
from processing the current event until a new synchronization
message is received. After the token is updated and a synchro-
nization flag is reinitialized, the agents check whether their
agent ID matches the ID contained in the current event. If so,
the particular agent identified by the event processes the task
by invoking production resources. The agent then removes
the current event from the schedule and signals the comple-
tion of the task. However, the other agents also check if there
is any control procedure for the same event (e.g., preparing a
resource to receive the product). Finally, before removing the
event from the schedule, the agents enable a blocking flag
that prevents the token from being updated until the control
procedure is complete.

When a task completion message is received in the signal-
ing topic code block, the agents check whether it contains
their agent ID. Otherwise, the agent waits for the lock flag
to deactivate (WaitUnlock). Subsequently, the agent sends a
status message that increments the value of the synchroniza-
tion flag. This synchronization flag indicates the number of
active agents that have checked the last event. However, when
the task completion message contains the agent’s ID, it also
communicates with the increment the synchronization flag
and waits for synchronism from the other agents (WaitSync).
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FIGURE 3. Proposed consensus control model.

If the current event does not have a token, the agent sends
a message to the synchrony block informing the current and
new tokens (token, token+1). Otherwise, if an event has the
current token, the agent sends a synchronization message
by repeating it (token or token). Notably, the current event
is no longer the same as that used by the synchrony block
because it has already been deleted. Therefore, if the current
event has the same token, it is considered a parallel event
to the production tasks defined for another MAS agent. This
mechanism is necessary because the scheduler replicates the
complete schedule for all the MAS agents. However, events
that do not have an agent ID may still require the attention
of specific agents (e.g., to notify that the product has been
received).

Finally, in the notification block, when an agent receives a
notification message of type ‘‘status’’ containing the value 1
(meaning ‘‘on’’), it increments its sync flag. Other messages
are used in the notification block for agent communication
but are specific to other procedures and have no relation to
consensus. Whenever a new production schedule is started
or restarted after its completion, the token is reset and the
process of consensus and task execution is repeated. An
essential aspect of this architecture is that the agent model
performs signaling, synchronization, notification, broadcast-
ing, and control in independent threads. Therefore, sequential
processing does not delay the execution of schedules in indi-
vidual or parallel events unless deadlocks or deviations are

caused by manufacturing resources in the physical layer of
the architecture.

C. AGENT MODEL
A well-structured agent model aligned with the consensus
model guarantees scalability and synchronization with the
FMS. Scalability is an important feature that should be con-
sidered at the design stage, because it is difficult to add it
later to the system. Small and medium-sized enterprises often
choose to invest in a category of FMS referred to as flexible
manufacturing cells (FMCs), which have a lower financial
cost, implement the cell concept, and can be interconnected
with other FMCs or a larger FMS. Therefore, the MAS
architecture must be sufficiently scalable to adapt an FMS to
changes. With the complexity of FMSs, achieving a system
balance with conventional control schemes is difficult.

Fig. 4 presents the proposed agent model, which consists
of five threads running concurrently according to the support
provided by the operating system embedded in the hardware.
The synchrony, signaling, and notification threads are related
to the topics and code blocks used for consensus, as discussed
in Subsection IV-B. A broadcast refers to the messaging
topic and the block responsible for receiving events for pro-
duction schedules. Finally, the controller thread is related
to the actions that an Ai agent performs on the resources
associated with it, as well as individual or collective func-
tionalities and decision making. The agent model favors the
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FIGURE 4. Proposed agent model.

system scalability because, in conjunction with the consensus
model, it allows the inclusion, exclusion, or change of agents
(and resources), independent of scheduling and production
control.

Another essential characteristic of complex manufacturing
systems is their ability to synchronize, because such systems
usually comprise several interrelated subsystems. Similarly,
FMS rely on synchronous points to track production tasks
using different resource types.Moreover, production schedul-
ing cannot be performed randomly, as production resources
become available. There is no way to guarantee accurate
responsiveness to demand regarding the production time,
which makes adopting schedules with makespan predictions
unfeasible. However, the agent and consensus models pro-
posed for the MAS architecture of the FMS in this study
guaranteed synchronism.

V. FACTORY SIMULATION PLATFORM
This section presents a physical factory simulation platform
modified to operate as an FMS with order-controlled manu-
facturing1. The features of the FMS are described below.
• Vacuum gripper robot (VGR): A station with a robot and
vacuum suction gripper for moving parts in the FMS.

• High-bay warehouse (HBW): An automated high-bay
warehouse with 3 × 3 slots and containers for storing
and retrieving parts.

• Multi-processing station (MPO): simulates an industrial
oven andmachining benchwith a rotary table and a robot
to move the parts.

• Sorting line and detection (SLD): The sorting line has a
conveyor, part color detection chamber, and three pneu-
matic pistons.

• General-purpose manufacturing stations (MS1-MS7)
consist of seven manufacturing stations with bays that
accommodate parts and LEDs to indicate machining.

1Order-controlled manufacturing means production to meet customer
demands or to stock, and may or may not be repetitive.

The factory also has a color-detection sensor (DCS),
reader/writer near-field communication (NFC), parts disposal
point (TSH), parts arrival point (DSI), and parts collection
point (DSO). In total, 14 parts processing points (DSI, DSC,
NFC, HBW,MPO, SLD,MS1, MS2, MS3, MS4, MS5, MS6,
MS7, DSO) are employed in production planning. Fig. 5
shows the physical locations of the resources in the FMS.

FIGURE 5. Simulation platform for the FMS.

Small cylindrical parts (height = 13.9 mm, diameter =
26.1 mm) of varying colors (white, red, and blue) were
moved on the FMS to simulate production. Each part has an
individual NFC identification tag that records the color and
production history, along with date and time information.

The physical and functional characteristics of the manu-
facturing resources available on the platform allow them to
be classified by the buffer type as follows:
• Limited buffer: holds a part indefinitely according to the
capacity of the resource (e.g., containers in the HBW
warehouse).

• Limited transient buffer: maintains part of the resource
while the system processes other tasks (e.g., a manufac-
turing station).

• Null buffer: A non-buffered manufacturing resource that
occupies the transport system during task processing
(e.g., color detection sensor).

According to this classification, the DSO, TSH, and HBW
resources are of the limited buffer type with a capacity of 1
(one part). The MS1, MS2, MS3, MS4, MS5, MS6, and
MS7 resources are of the limited transient buffer type with a
capacity equal to 1 because they can hold a newly machined
part for a certain amount of time as long as the resource
remains idle during the next token increment. Finally, the
DSI, DSC, MPO, SLD, and NFC resources are of the null
buffer type because they rely on the VGR robotic arm to
suspend the part over the resource for identification. Thus,
the robotic arm is unavailable for other parallel tasks until
the DSI, DSC, MPO, SLD, or NFC release it.

In the FMS, manufacturing resources are associated with
the agents of the proposed MAS architecture, which control
the resources to accomplish the tasks defined in the produc-
tion schedules. The MAS has 11 agents, identified from A1
to A11. Agent A1 is responsible for transportation and coor-
dinates the VGR robot to move parts to the FMS resources.
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The DSI, DSC, NFC, DSO, and TSH are also associated with
A1 because the VGR controller is physically connected to
them in the factory. Agent A2 coordinates the MPO station
resources, including a pneumatic actuator that pushes the
part onto the SLD conveyor, which the VGR robot cannot
reach. Agent A3 coordinates the HBW robot to move parts
from the rack to the conveyor belt and vice versa. Agent A4
coordinates the SLD station resources to sort parts by color.
Moreover, stations MS1-MS7 are coordinated by agents
A5-A11. These stations have been added to the FMS to
increase their potential as simulation platforms.

In practice, the VGR, MPO, HBW, and SLD station agents
operate on the controllers associated with these stations.
Stations MS1-MS7 had no controllers, and the agents ran
independent processes on a computer that controlled the
stations using a NodeMCU card. A Wi-Fi router or com-
puter configured as a hotspot provides the FMS network.
The scheduler and agents communicate via ROS topics. Pro-
duction is coordinated according to the schedules defined
by the scheduler node. The ROS framework was chosen
for the topology because it is lightweight, general purpose,
open source, and compatible with various industrial tools and
products.

VI. READJUSTMENT THREE-STAGE FILTER
This section presents three methods for ensuring flexibility
and reducing deadlock problems in the FMS under study.
These methods are based on readjusting the predictive sched-
ules, as discussed in Section III. The objective is to ensure that
the production schedules generated by the FJS algorithm are
executed entirely. The readjustment-focused approach is an
alternative to computationally expensive rescheduling solu-
tions, which are generally limited to specific environments.

A. SERIALIZER FILTER
The first method for deadlock-free production in the studied
FMS is referred to as the ‘‘serializer filter.’’ It identifies
whether production schedules contain events associated with
null-buffer resources. If so, the method serializes these events
so that they do not occur in parallel with other events in the
schedule. Otherwise, the VGR robot responsible for trans-
porting parts in the FMS cannot move new parts to fulfill
other scheduled tasks because it is busy with the current part.

Fig. 6 illustrates the operation of the serializer filter for a
production schedule with two types of parts. The first part
was manufactured according to the sequence REF ≺ DSI ≺
DSC ≺ NFC ≺ MS1 ≺ MS4 ≺ DSO ≺ REF , whereas
the second part was manufactured according to the sequence
REF ≺ DSI ≺ DSC ≺ NFC ≺ MS2 ≺ MS5 ≺ DSO ≺
REF . The numbered arrows indicate the movement of the
loadedVGR robot (with the parts), whereas the dashed arrows
represent the movement of the unloaded robot (without the
parts). Given an initial production schedule (Fig. 6-A), the
VGR robot must move from the reference point (REF) to
the DSI to select the first part type (transition 0). The move-
ment from REF to DSI corresponds to the first event in the

FIGURE 6. Operation of the serializer filter.

schedule. Subsequently, the robot must return empty to REF
(transition ‘‘a’’), picking up the second type of part at the
ISD (transition 1). However, the robot loaded with the first
part taken from the ISD cannot be unloaded to pick up the
second part, which causes a blockage in the FMS. Similarly,
the problem is repeated in the DSC and NFC because of the
null buffering of resources and sharing of transport robots.
Predictive scheduling algorithms are generally not designed
to identify or prevent this problem.

The serializer filter ensures that a part is processed sequen-
tially on null buffer resources according to its manufacturing
sequence until it is deposited on a buffer-limited or buffer-
limited transient resource (Fig. 6-B). For the first part type,
the VGR robot sequentially performed transitions 0 to 3 until
it deposited the part at station MS1. MS1 and the other
stations were classified as having a limited transient buffer
(see Section V). Next, the VGR robot should move unloaded
to REF (transition ‘‘a’’), pick up a part of the second type
(transition 4) and move it sequentially through the null buffer
resources until it unloads the part at station MS2. Soon after,
the VGR robot retrieves the part that was at MS1 (transi-
tion ‘‘b’’) and deposits it at MS4 (transition 8). Then it returns
unloaded to pick up the other type of part left at MS2 (tran-
sition ‘‘c’’) and deposit it at MS5 (transition 9), continuing
until the schedule ends. The serializer filter pseudocode is
presented in Alg. 1.

Given a production schedule defined by list E of events
and list B of agents associated with null-buffer resources, the
serializer filter performs three functions to readjust the sched-
ule: First, the serializer uses the check_method() function to
check for null buffer resources in the schedule. It function
checks the scheduled events for each part or product j until
it finds an event in which the agent ID (Ei[agent] ) is contained
in B (lines 41×44). If found, the function includes an event
in the gpo group (line 45) and searches for other events of
the same type related to j. The search continues until the
function finds an event j that does not have an agent ID
associated with B, meaning that an event with limited buffer
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Algorithm 1 - Serializer filter
1: E ← [E0, . . . ,Ei, . . . ,Ef ];B← [0, 1, 2, 3, 4, 5, 6]

2: function update_schedule()
3: E0[start] ,E0[token] ← 0
4: ctl ← [ ]
5: for (i← 0, |E|) do
6: if (Ei[job] = Ei+1[job] ) then
7: Ei+1[start] ← Ei[start] + Ei[duration]
8: Ei+1[token] ← Ei[token] + 1
9: ctl ← [ ]
10: else if (Ei[job] ! = Ei+1[job] ) then
11: if (Ei+1[job] ∈ ctl) then
12: Ei+1[start] ← Ei[start] + Ei[duration]
13: Ei+1[token] ← Ei[token] + 1
14: ctl ← [ ]
15: else
16: Ei+1[start] ← Ei[start]
17: Ei+1[token] ← Ei[token]
18: ctl ← append(Ei[job] )
19: ctl ← append(Ei+1[job] )
20: end if
21: end if
22: end for
23: return E
24: end function

25: function exec_serializer(L)
26: for (j← 0, |J |) do
27: for (g← 0, |Lj|) do
28: idx ← E .index(Ljg0)
29: for (e← 0, |Ljg|) do
30: E .remove(Ljge)
31: end for
32: for (e← |Ljg|, 0) do
33: E .insert(idx,Ljge)
34: end for
35: end for
36: end for
37: return update_schedule()
38: end function

39: function check_method()
40: L, aux ← [ ]
41: for (j← 0, |J |) do
42: gpo← [ ]
43: for (i← 0, |E|) do
44: if (Ei[job] = j) and (Ei[agent] ∈ B) then
45: gpo← append(Ei)
46: for (k ← i+ 1, |E|) do
47: if (Ek[job] = j) and (Ek[agent] ∋ B) then
48: if (|gpo| = 1) and (gpo0[agent] ∈ B) then
49: idx ← E .index(gpo0)
50: for (m← idx − 1, 0) do
51: if (gpo0[job] = Em[job] ) then
52: gpo.insert(0,Em)
53: break
54: end if
55: end for
56: end if
57: aux ← append(gpo)
58: gpo← [ ]
59: end if
60: break
61: end for
62: end if
63: end for
64: if (|gpo| > 0) then
65: aux ← append(gpo)
66: end if
67: L ← append(aux)
68: aux ← [ ]
69: end for
70: if (|L| > 0) then
71: return exec_serializer(L)
72: else
73: return E
74: end if
75: end function

resources has been identified (lines 46 and 47). Next, the
function checks whether the null buffer event included in the
gpo was unique; there were no others to complete the group
(at least one pair). In this case, the gpo event is sequentially
linked to a previous event of the same job, such that in the
execution of the method, the null buffer event is not isolated
in the schedule. Thus, the previous event (Em) is positioned at
the beginning of the group, followed by the null buffer event
(lines 48 to 56). Thus, if null buffer resources exist in the
schedule under analysis, they are separated into two or more
groups. The function assembles a list L with the respective
events that must be processed sequentially for each product
(lines 57 and 67). Therefore, schedule readjustment is neces-
sary if this list contains null-buffer events (lines 70 and 71).

Function exec_serializer() adjusts the production sched-
ule. For each part or product j, the function obtains the posi-
tion index (idx) of the first event (Ljg0) of each group saved in
L (lines 26×28). The function then removes all events of the
group related to j from the initial schedule (lines 29 and 30)
and inserts them again in reverse order, from last to first, from
the position indices previously obtained (lines 32 and 33).
Finally, the method calls the update_schedule() function to
arrange the start (Ei[start] ) and tokens (Ei[token]) for each event
in the modified schedule (line 37). For this, the function
compares whether the current event (Ei) and the next event
(Ei+1) refer to the same product (line 6). If this is the case,
the beginning of event Ei+1 is updated to start after the end
of event Ei (line 7). Similarly, the token of Ei+1 is updated
by 1 from the token value of Ei (line 8). However, if the
current event Ei and the next event Ei+1 refer to different
products (line 10), the function checks whether the product
(job) of the next event is contained in ctl (line 11). If it
is, Ei+1[start] and Ei+1[token] (lines 12 and 13) are updated
incrementally, and ctl is reset. Otherwise, updating the start
and token for Ei+1 involves repeating the respective values
of Ei (lines 16 and 17). Finally, event-related product IDs
are included in ctl for a new round of schedule updates
(lines 18 and 19).

B. PRUNING FILTER
The second method for deadlock-free production in the stud-
ied FMS is referred to as the ‘‘pruning filter.’’ This method
seeks to identify null buffer events organized contiguously
with limited or transient buffer events of the same product
(Ei[job]). If so, this method breaks the contiguity of the events.
It readjusts the schedule such that the null buffer event is
prioritized and arranged in parallel with events from other
products. In other words, the method ‘‘prunes’’ the last lim-
ited buffer event contiguous to the same product’s null buffer
event. The pruned event obtains another token number and
is positioned away from the null buffer event in the schedule.
Although the FMS relies on the VGR robot to move the parts,
the pruning filter can optimize some production schedules.

Fig. 7 illustrates the operation of the pruning filter for a
production schedule with two types of parts. The first part
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FIGURE 7. Operation of the pruning filter.

was manufactured according to the sequence REF ≺ DSI ≺
DSC ≺ NFC ≺ MS7 ≺ MS1 ≺ DSO ≺ REF and the second
part was manufactured according to REF ≺ DSI ≺ DSC ≺
NFC ≺ MS3 ≺ MS2 ≺ DSO ≺ REF . When running
the production schedule without readjustment (Fig. 7-A), the
VGR robot must leave the reference point (REF), pick up a
part, and move it until it reaches the NFC.With the token was
incremented to three, the VGR robot moved the NFC part
to MS7. Next, the token was incremented to four, enabling
the processing of the part at MS7. The VGR robot then
unloads the part at station MS1 (transition ‘‘a’’), which is
the following resource in the currentmanufacturing sequence.
The unloaded VGR robot goes to REF (transition ‘‘b’’) and
picks up another part type at DSI (transition ‘‘c’’). The token
is incremented to 5, then to 6 and 7 until the part is deposited
at MS3 (token 7). In summary, MS7 could process in parallel,
but is in an event with an individualized token (Table 4). In
this case, the schedule does not block but diverts the MAS
control from the optimal sequence of part production, causing
delays.

The pruning filter method avoids the deviation problem
by parallelizing and prioritizing the task execution of events
related to null buffer resources and separating contiguous
buffer-limited events. Fig. 7-B explains the operation of the
pruning filter method. For the first part type, the VGR robot
sequentially executes events with tokens from 0 to 3 until it
deposits the part at theMS7 station. The unloaded VGR robot
picks up another part type at DSI (transitions ‘‘b’’ and ‘‘c’’)
and moves the part to DSC (token 4) and NFC (token 5). With
a token increment of 6, the NFC takes priority (null buffer
resource) and processes until the part is deposited into MS3.
The unloaded VGR robot is positioned at the MS7 station
(transition ‘‘d’’), waits for the part to be processed (token 6),
and moves it to the next station (MS1). The remaining events
followed the standard production control process performed
by the MAS according to the schedule.

The pseudocode for the pruning filter is presented inAlg. 2.
Being E , a list of events in a production schedule, andD, a list

Algorithm 2 - Pruning Filter
1: E ← [E0, . . . ,Ei, . . . ,Ef ]
2: D← [4, 7, 8, 9, 10, 11, 12, 13, 14, 15]
3: function update_schedule()
4: E0[start] ,E0[token] ← 0
5: ctl ← [ ]
6: for (i← 0, |E|) do
7: if (Ei[job] = Ei+1[job]) then
8: Ei+1[start] ← Ei[start] + Ei[duration]
9: Ei+1[token] ← Ei[token] + 1
10: ctl ← [ ]
11: else if (Ei[job] ! = Ei+1[job]) then
12: if (Ei+1[job] ∈ ctl) then
13: Ei+1[start] ← Ei[start] + Ei[duration]
14: Ei+1[token] ← Ei[token] + 1
15: ctl ← [ ]
16: else
17: Ei+1[start] ← Ei[start]
18: Ei+1[token] ← Ei[token]
19: ctl ← append(Ei[job] )
20: ctl ← append(Ei+1[job] )
21: end if
22: end if
23: end for
24: return E
25: end function
26: function exec_pruning(L)
27: for (d ← 0, |L|) do
28: idx ← E .index(Ld )
29: for (k ← idx + 1, |E|) do
30: if (Ld[job] = Ek[job]) then
31: E .insert(k,Ld )
32: E .remove(Ld )
33: break
34: end if
35: end for
36: end for
37: return update_schedule(L)
38: end function
39: function check_method()
40: L ← [ ]
41: for (i← 0, |E|) do
42: if (Ei[agent] ∈ D) and (Ei−1[agent] ∋ D) then
43: if (Ei[job] = Ei−1[job] ) and (i > 0) then
44: L ← append(Ei)
45: end if
46: end if
47: end for
48: if (|L| > 0) then
49: return exec_pruning(L)
50: else
51: return E
52: end if
53: end function
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of agents associated with resources of buffer limited or buffer
transient limited, the pruning filter performs three functions
for schedule readjustment. First, the check_method() func-
tion (line 39) goes through the scheduled events to identify
whether the event agent belongs to D and, if so, whether the
event preceding it belongs toD (line 42). When this condition
is satisfied, the function determines whether the product or
part (Ei[job] ) identified in the task of the current event is the
same as that of the previous event (Ei−1[job] ) (line 43). If so,
the current event is reserved in list L (line 44), and the process
is repeated until all the events in the schedule have been
checked. Finally, if the list L contains events, the production
schedule must be readjusted (lines 48 and 49).

The function exec_pruning() readjusts the production
schedule (line 26). For each event loaded at L, the function
obtains its respective index (idx) from its position in the initial
schedule (line 28). The function then proceeds through the
rest of the schedule from each index obtained to identify the
next event with the same product (Ei[job] ) as the Ld event under
analysis (Lines 29 and 30). If found, event Ld is inserted
into the schedule at the position defined by k (line 31) and
the old event is deleted (line 32). Finally, the method calls
the update_schedule() function to arrange the starts (Ei[start] )
and tokens (Ei[token]) for each event in the modified schedule
(line 37). This update function operates in the same manner
as the serializer filter method.

C. OVERLAY FILTER
Previous filters can avoid deadlocks and optimize some
predictive schedules but cannot prevent overlaps in manufac-
turing resources. In this study, overlap is understood as an
attempt to process the part of a resource already occupied by
another. This type of deadlock occurs because the resources
are buffer-limited, and the system must be able to avoid
them to ensure flexibility. The third filter, called the ‘‘over-
lay filter,’’ can identify and prevent overlaps in production
resources. This methodmoves certain overlapping events into
the schedule to avoid deadlocks.

Fig. 8 illustrates the operation of the overlay filter for a
production schedule with two types of parts. The first type
was manufactured according to the sequence REF ≺ DSI ≺
MS7 ≺ MS5 ≺ MS1 ≺ DSC ≺ DSO ≺ REF , and the
second type was based on REF ≺ DSI ≺ MS7 ≺ DSC ≺
MS1 ≺ MS3 ≺ DSO ≺ REF . First, the original schedule was
subjected to serialization and pruning filters, resulting in the
schedule shown in Fig. 8-A. However, the readjusted sched-
ule contains deadlocks because of the overlaps highlighted in
DSI → MS7 (token 2) and DSC → MS1 (token 4) for the
second type of schedule. InMS7, the overlap occurs because
the VGR robot would deposit a part of the first type in the
resource (token 1) and then fetch a part of the second type
in DSI (transition ‘‘a’’ token 1) also to attempt to deposit in
MS7 (token 2). However, MS7 would already be busy with
the first part type, and the system would enter a deadlock
state owing to the circular waiting. Similarly, the overlap
would also occur atMS1, which would be busy with a part of

the first type (transition ‘‘c,’’ token 3) when the VGR robot
would go to deposit the part of the second type at the same
resource (token 4). The overlay filter identifies overlapping
events while generating amapping of state transitions. Table 2
lists the indices of the overlapping events and the mapping
performed for the schedule shown in Fig. 8-A.

FIGURE 8. Operation of the overlay filter.

TABLE 2. Mapping of state transitions and overlap indexes.

The generated mapping shows the overlay transitions
(identified by ‘‘S’’), the transitions for events with resources
that will be busy with parts (specified by ‘‘*’’), the part IDs
(in brackets), and the schedule overlay indexes (identified in
idx). The strategy of the overlap filter is to locate the index
(called the wex) of the event with the same agent ID that
precedes the overlap event and swap its position to avoid
a deadlock. The wex index event is inserted immediately
after the event with the same job that precedes the wex in
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the schedule (an index called fdx). This strategy of swap-
ping positions preserves the originally definedmanufacturing
sequence of the parts. Fig. 8-B shows the readjusted- and
overlay-free schedule. The overlap filter readjusts the sched-
ule so that the transition ‘‘a’’ for the first part type does not
occur in MS7, which is shared with the second part type.
Consequently, when the VGR robot moved to the second
type, MS7 was free. However, the overlap that would occur
at MS1 was also resolved by switching the event position
(token 7) for the second part type.

The pseudocode for the overlay filter is presented in Alg. 3.
R is a list of the names of the fabrication resources used
for mapping, B is a list of agents associated with buffer-
limited resources, and A is a list of letters used to identify
transitions (lines 1 to 3).M , L, andK are variables for saving,
mapping data, overlay index data, and resource names used
in the decision control (line 4). Initially, the overlay filter
uses the function check_method() (line 31) to check for an
overlap. Thus, the indices of the overlapping events are stored
in L (line 55). The intermediate pseudocode (lines 34×52)
refers to the mapping of the transitions for the limited buffer
resources occupied by parts (line 42), normal processing
transitions (line 45), and overlay transitions (line 54). Then,
the mapping is available (lines 61 and 62), along with the
possible overlap indices stored in L (line 64). If L is not null,
then one or more overlaps are identified during mapping.

The fix_overlay() function readjusts the production sched-
ules that contain overlaps (line 5). First, the function takes the
index of the event of the same agent ID as the overlapping
event and saves it to wex (lines 7-12 if wex precedes Li in
the schedule, or lines 13-18 if wex succeeds Li). Next, the
function obtains the index of the event preceding wex and
saves it in fdx (lines 19×24). The wex index event is shifted
and inserted immediately after the fdx index event (lines
25×27). This code sequence is executed for each overlay
index contained in L. Finally, the schedule is updated with
the update_method() function, which processesE in the same
manner as the serializer and pruning filter functions. An
essential aspect of the overlay filter was omitted in Alg. 3
to simplify the presentation that its functions are recursive.
Therefore, the schedule was readjusted and checked succes-
sively until it was free of overlap. Moreover, in each round
of schedule readjustments, the method applies serializer and
pruning filters to avoid deadlocks due to the displacement of
the wex index events.
The schedule can be sent to the MAS at the end of all

readjustments. Using these methods as filters enables the
addition of new filters to the solution as required without
affecting the MAS architecture. The serialization, pruning,
and overlay filters proposed in this study reduce the possi-
bility of deadlocks in the FMS, and prevent deviations that
affect the responsiveness of the system.

VII. EXPERIMENTAL EVALUATION
This section describes the experiments performed using the
proposals discussed in this study. The experimental results

Algorithm 3 - Overlay filter
1: R← [REF,DSI ,DSC, . . . ,MS6,MS7,DSO]
2: B← [7, 8, 9, 10, 11, 12, 13]
3: A← [ASCII_letters]; a← 0
4: M ,L,K ← [ ]

5: function fix_overlay()
6: for (i← 0, |L|) do
7: for (j← Li − 1, 0) do
8: if (ELi[agent]

= Ej[agent] ) then

9: wex ← E .index(Ej)
10: break
11: end if
12: end for
13: for (j← Li + 1, |E|) do
14: if (ELi[agent]

= Ej[agent] ) then

15: wex ← E .index(Ej)
16: break
17: end if
18: end for
19: for (e← wex − 1, 0) do
20: if (Ewex[agent] = Ee[agent] ) then
21: fdx ← E .index(Ee)
22: break
23: end if
24: end for
25: aux ← Ewex
26: E .remove(Ewex )
27: E .insert(fdx + 1, aux)
28: end for
29: return update_method()
30: end function

31: function check_method()
32: for (e← 0, |E|) do
33: for (i← e, |E|) do
34: if (Ee[job] = Ei+1[job] ) then
35: src← R[Ee[agent] ]
36: dst ← R[Ei+1[agent] ]
37: if (src ∈ K ) then
38: K .remove(src)
39: end if
40: if (dst ∋ K ) then
41: if (Ei+1[agent] ∈ B) and (i− e > 0) then
42: M ← append(src+‘‘->’’+dst+‘‘*’’)
43: K ← append(dst)
44: else
45: M ← append(src+‘‘->’’+dst+‘‘ ’’)
46: end if
47: if (i− e > 0) then
48: src← R[Ei+1[agent] ]
49: dst ← R[Ee+1[agent] ]
50: M ← append(src+‘‘->’’+dst+A[a])
51: a← a+ 1
52: end if
53: else
54: M ← append(src+‘‘->’’+dst+‘‘S’’)
55: L ← append(E .index(Ei+1))
56: end if
57: break
58: end if
59: end for
60: end for
61: for (i← 0, |M |) do
62: print(M [i])
63: end for
64: print(‘‘overlap idx: ’’,L)
65: if (|L| > 0) then
66: return fix_overlay(L)
67: else
68: return E
69: end if
70: end function

are divided into four subsections. An Intel Core i5-8250U
1.60GHz computer with 8GB of RAM generated the original
and readjusted production schedules. First, the conformity
of the readjusted schedules with the respective operations
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defined for the serializer and pruning filter was evaluated and
then compared with the original schedule. Next, the ability of
the overlay filter to resolve overlaps in the production sched-
ules was evaluated. The last subsection presents the results of
the readjusted schedules executed byMAS agents on the FMS
simulation platform (see Section V). A video of the FMS
operating with schedules readjusted by the three-stage filter
and supplementary material with the experiment schedules
and respective diagrams is available online2.

A. EXPERIMENT 1
The first experiment verified the conformity of the serializer
filter to production schedules susceptible to deadlocks. Fig. 9
shows the Gantt diagrams for the three production schedules
with deadlocks generated by the FJS algorithm for compari-
son with the schedules readjusted by the serializer filter. The
duration of events in the schedules was set to fixed-sized time
units (5 s each) to make the diagrams easier to visualize.

The first schedule specifies the manufacturing of three
different products whose order of event execution is num-
bered (Fig. 9-A). The schedule has deadlocks owing to
task parallelism in null-buffered manufacturing resources
(events 1 through 7, circled in the figure). The modified
schedule, just below the initial schedule generated by the
FJS, separates the blocking events from the parallel exe-
cution and sets them up for individual processing in the
MAS. These events are assigned unique token numbers
and organized in a new schedule to maintain the original
sequence of manufacturing resources defined for the prod-
ucts. In Fig. 9-A, three events are removed from the parallel
execution in the modified schedule (shown in the individual
columns in the diagram). Serializing the events to avoid
deadlocks in the FMS increased the completion time of the
modified schedule by 5 s.

The second schedule specifies the manufacturing of two
types of products (Fig. 9-B). However, this schedule causes
deadlocks in tasks related to the DSI, DSC, and NFC
resources, as circled in the figure. The serializer filter method
alters the initial schedule created by the FJS by separat-
ing these events from the parallel execution. Serializing the
blocking events increased the completion time of all tasks
by 5 s in the new schedule. In the FMS studied, schedules
must be executed repeatedly to reach the number of products
defined in order. Therefore, the schedule completion time
must be multiplied by the number of products required. For
the modified schedule shown in Fig. 9-B, 20 units of each
product type required a simulation time of 13 min.

Finally, the third schedule deals with three types of parts
(Fig. 9-C), defined by REF ≺ DSI ≺ NFC ≺ MS1 ≺
MS7 ≺ DSO ≺ REF for the first type, REF ≺ DSI ≺
MPO ≺ SLD ≺ DSO ≺ REF for the second type, and
REF ≺ DSI ≺ DSC ≺ NFC ≺ HBW ≺ REF for the
last type. In the first type, the VGR robot should move from

23-Stage Filter video https://youtu.be/farVogeNT8M and supplementary
material https://github.com/alexlds77/access2023.

its reference point (REF) to the part arrival location (DSI).
The VGR robot picks up a part in the DSI and positions
it in the NFC reader unit. Subsequently, the part should be
transported for machining at the MS1 station. From MS1,
the part is transported to another station (MS7), and after
processing, it is deposited at the part removal point (DSO).
Finally, the VGR robot returns to its reference point (REF),
and the return from the VGR to the REF is implicit at the end
of each product. The other two types of parts follow similar
processes for machining and delivery or for stock in HBW.
Because the schedule generated by the FJS algorithm was
blocked, the proposed method serialized events that could
not be executed in parallel to solve the null-buffer problem.
Serializing events increased the task completion time for the
modified schedule by 35 s.

Table 3 presents the details of the comparison among the
five more extensive schedules, each with three types of parts.
Each part type is specified by a sequence of production
resources as in REF ≺ DSI ≺ DSC ≺ NFC ≺ MS1 ≺
MS4 ≺ DSO ≺ REF (Schedule 1). Each resource in the
sequence was associated with an event with a token number.
For the previously mentioned part types, the tokens of the
events were numbered from 0 to 7 in the original schedule
(FJS). In the readjusted schedule using a serializer filter
(SRF), the token values were 0-3 and 9-12.

Table 3 lists the number of events, number of transitions
per schedule, and the completion time for each. Except for
the reference position (REF) for the three-axis VGR robot,
the other items in the sequences were manufacturing features.
Therefore, the number of events in the schedule is equal to the
sum of the resources in all the sequences. For the schedules
listed in the table, the number of events ranged from 24 to 27,
whereas the number of transitions ranged from 41 to 45 for
FJS and 29 to 38 for SRF. The completion time for all tasks
is longer in the modified schedule (theoretically) owing to
the serialization of the null buffer resources. However, unlike
the FJS, the SRF guarantees that schedules are fully exe-
cuted, considering the perfect functioning of resources in the
FMS. In practice, if the FJS schedules are not blocking, they
may demand more makespan than the readjusted schedules
because of more transitions, which implies using the VGR
robot.

For information purposes, the processing times of the FJS
and serializer filter methods for generating the schedules
listed in Table 3 were computed. These times were between
13.92 ms and 14.81 ms for the FJS and between 14.60 ms
and 15.25 ms when using the serializer filter; that is, 0.68 ms
for the worst time and 0.44 ms for the best time. On a
more extensive schedule, with 11 products and 90 events, the
schedule generation time was computed to be 42.81 ms for
the FJS and 45.54 ms for the serializer filter.

B. EXPERIMENT 2
The second experiment verified the optimization capability
of the pruning filter for the given production schedules, and
its relevance as a readjustment method. Fig. 10 shows the
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FIGURE 9. Serializer filter conformance certification.

TABLE 3. Comparison between FJS and SRF schedules.

Gantt diagrams for the three initial production schedules and
compares them with the respective diagrams of the schedules
readjusted by the pruning filter.

The schedules shown in Fig. 10-A specify the manufac-
turing of the three types of parts. The initial schedule (top)
includes events with null buffer manufacturing resources
that are serialized and contiguous with events with lim-
ited buffer or limited transient buffer resources. The cir-
cles and arrows in the respective diagrams highlight these
events. The arrows are also labeled in the diagrams of the
modified schedules, with ‘‘s’’ for events placed side by
side and ‘‘p’’ for pruning. In the modified diagram shown
in Fig. 10-A (bottom), the method breaks the contiguity
by separating buffer-limited events while parallelizing and

prioritizing the last event of each serialized sequence in the
schedule.

The pruning filter reduces the length of the initial schedule
to 115 s. The state diagram of the modified schedule in
Fig. 10-A displays the sequence of events and their respective
tokens. Events related to each part or product type are rep-
resented in a state diagram using colors (gray, blue, or red).
The numbered arrows represent the movement of the parts
according to the evolution of the tokens, whereas the dashed
arrows represent the free movement (no parts) of the VGR
robot. The DSI, DSC, NFC, MPO, and SLD resources were
null-buffered in the factory, whereas the other resources were
limited buffered, except for the reference position (REF). The
MPO and SLDwere considered null buffer resources because
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FIGURE 10. Pruning filter conformance certification.

the VGR robot did not reach the SLD. The SLD is accessed by
the MPO, and from the moment a part is placed in the MPO,
it is processed and sent to the SLDwithout dependency on the
VGR robot. The number of tokens for the initial schedule is
26, whereas that for the readjusted schedule is 24. The MAS
must process 37 events to produce three product types in the
FMS.

The initial schedule in Fig. 10-B also has null buffer
events contiguous with bounded buffer events. The diagram
of the modified schedule identifies the parallelized events
(labeller with ‘‘s’’) and the detached events (labeller with
‘‘p’’) from contiguity as defined by the pruning filter. This
method reduced the initial schedule length to 80 s. The
number of tokens for the initial schedule is 18, whereas
that for the readjusted schedule is 16; each schedule has

24 events. Finally, Fig. 10-C shows a diagram of the initial
and readjusted schedules using a pruning filter. The total
number of events per schedule is 46. This method reduces the
length of the initial schedule from 160 s (33 tokens) to 140 s
(28 tokens).

C. EXPERIMENT 3
The third experiment highlighted the importance of the over-
lay filter in readjusting production schedules with an overlap.
Figure 11 shows the Gantt diagram for the three schedules
previously readjusted by serialization and pruning filters with
deadlocks owing to overlap. Fig. 11-A (top diagram) shows a
production schedule with three parts. REF ≺ DSI ≺ MPO ≺
SLD ≺ DSC ≺ MS3 ≺ NFC ≺ DSO ≺ REF defines
the production sequence for the first part (in blue color),
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REF ≺ DSI ≺ NFC ≺ MS1 ≺ MS6 ≺ MS4 ≺ DSC ≺
DSO ≺ REF is the sequence for the second type (red part),
and REF ≺ HBW ≺ MPO ≺ SLD ≺ MS4 ≺ HBW ≺ REF
for the third type (gray). However, the schedule will cause
deadlock owing to overlap when the VGR robot moves the
gray part from resource SLD to resource MS4 (transition
‘‘a’’) and then tries to move the red part from MS1 to MS6
andMS4 (transitions ‘‘b’’ and ‘‘c’’). Deadlock occurs because
of the circular wait for the VGR robot when the MS4 process
(identified by 18 in the diagram) waits for the robot to remove
the gray part. Simultaneously, processMS6 (identified as 15),
which occupies the robot, waits for MS4 to become available.
The overlay filter solves the overlap problem by switching
the order of events in the schedule, as shown in Fig. 11-A
a (bottom diagram). First, the VGR robot would move the
gray piece from SLD to MS4 (transition ‘‘a’’), and then it
would move the red part from MS1 to MS6 (transition ‘‘b’’).
Upon completing the previous tasks, the robot would move
the gray part fromMS4 toHBW , leavingMS4 free to process
the red part (transition ‘‘d’’). The overlap filter performs a
single cycle of readjustments to leave the schedule free of
overlaps. The theoretical completion time of all tasks for the
readjusted schedule increased by 5 s compared to the initial
schedule.

Fig. 11-B (top diagram) shows another production sched-
ule for three part types defined by sequences REF ≺ HBW ≺
MPO ≺ SLD ≺ MS3 ≺ MS5 ≺ NFC ≺ REF for the first
part type (gray color), REF ≺ DSI ≺ MPO ≺ SLD ≺
DSC ≺ MS5 ≺ MS2 ≺ NFC ≺ HBW ≺ REF for
the second type (blue part), and REF ≺ DSI ≺ NFC ≺
MS1 ≺ MS4 ≺ MS3 ≺ DSC ≺ DSO ≺ REF for the third
type (red part). The schedule will cause deadlock owing to
overlap atMS5when the VGR robot moves the blue part from
resourceDSC to resourceMS5 (transition ‘‘a’’) and then tries
to move the gray part from MS3 to MS5, which will already
be occupied (transition ‘‘b’’). By the schedule, transition ‘‘a’’
will occur first, then transition ‘‘b.’’ However, transition ‘‘d,’’
which would release MS5, will only happen after transition
‘‘c,’’ resulting in circular waiting. The overlay filter solves
the deadlock problem as highlighted in Fig. 11-B (bottom
diagram), with the VGR robot prioritizing the transport of
the blue part from NFC to MS5 (transition ‘‘a’’) and from
MS5 to MS2 (transition ‘‘b’’). With the MS5 free, the agent
coordinating the VGR robot can deposit the other part (gray
color) in the resource (transition ‘‘c’’). Therefore, the read-
justed schedule is free of overlays to be executed by theMAS.
The overlay filter also performs a single readjustment cycle
on the original schedule to solve the overlapping problem.

However, to solve the overlap problem in MS3, as high-
lighted in the schedule in Fig. 11-C (top), the overlay filter
performed two cycles of readjustments (recursively). The
original schedule specifies three part types, and the overlay is
predicted with the movement of the gray part from resource
MS2 to resource MS3 (transition ‘‘b’’), whereby MS3 is
already occupied by the red part (transition ‘‘a,’’ from DSI to
MS3). However, the method avoids deadlock by prioritizing

the removal of the red part fromMS3 (transition ‘‘b’’). Thus,
MS3 will be free to process the gray part (transition ‘‘c’’),
as displayed in the diagram for the readjusted production
schedule (Fig. 11-C, bottom). The theoretical task completion
times for the readjusted schedules in Fig. 11-B and Fig. 11-C
increased by 5 s. This time increase refers to prioritizing
an overlapping event with a shared production resource.
Therefore, overlapping eventually occurs only in schedules
with shared production resources between two or more part
types. Event prioritization is achieved with serialization. In
the worst case, the overlay filter serializes all events of each
part type recursively to avoid overlap problems. However,
this method combines serializer and pruning filters for dead-
lock resolution by null buffering and contiguity breaking for
schedule optimization.

Table 4 presents data comparing other production sched-
ules initially readjusted by the serializer and pruning filters
(S+P) with the readjustments performed by the overlay filter
(OVF). The first schedule in the table (schedule 1) speci-
fies three part types according to production sequences and
the respective part color indicated at the beginning of each
sequence. The schedule consists of 24 events, and the num-
ber of transitions is 38 for the initial schedule (S+P) and
30 for the schedule modified by the overlay filter (OVF). The
method performed five cycles of readjustments to solve the
deadlock problems.

In the first cycle, the method predicts overlaps in resources
MS1,MS3, andMS7 and readjusts the schedule. The method
identified an overlap in MS5 (cycle 2) and MS7 (cycle 3). In
the fourth cycle, the method solves the overlapping problems
and obtains deadlock-free (ND) scheduling. The serializer
and pruning filters were then run to ensure the serializa-
tion of the null buffer events and schedule optimization.
Finally, the overlay checks that the schedule remains free
of overlaps (cycle 5) because of possible readjustments
by the serializer and pruning filters and confirms that no
other deadlocks are found. The completion time of the
tasks in the schedule, readjusted using the overlay filter,
was 70 s.

The other schedules in Table 4 also specify the manu-
facturing of the three distinct part types. The number of
events in the schedules varied between 19 and 30 and the
number of transitions with readjustments performed by the
overlay filter was smaller than that in the initial schedule. This
method identified overlaps and readjusted all schedules to
resolve deadlocks. In the best case, a schedule with an overlap
requires three cycles of readjustments to be free of deadlocks
(e.g., schedule 2). The overlap filter also solves the overlap
problem for other cases; however, the readjustment process
involves shifting the position of the null buffer events. The
serializer and pruning filters then change the initial solution
if it has deadlocks, and the overlay filter is rerun to resolve
other deadlocks (e.g., within Schedules 5 and 6). The sched-
ules readjusted by the overlay filter have a slightly longer
optimal length than the initial schedules but can be executed
deadlock-free by the MAS.
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FIGURE 11. Overlay filter conformance certification.

TABLE 4. Comparison between SRF + PRF and OVF schedules.

D. EXPERIMENT 4
This subsection evaluates the performance of MAS in exe-
cuting production tasks on a simulation platform. The two
figures compare the operations performed by the agents with
the readjusted schedules, and the table presents data on other
production schedules used in the FMS. The results of the
experiments are presented in detail along with the time spent
on the operations (makespan). The times were obtained by
measuring the MAS code execution times for each schedule.

Fig. 12 shows the execution of the production schedule
with two types of parts. The first type is defined as REF ≺
DSI ≺ MS1 ≺ DSO ≺ REF , whereas the second type

is defined as REF ≺ DSI ≺ MS2 ≺ DSO ≺ REF .
Fig. 12-A, in the upper part of, shows the deadlock problem
in the FMS during the execution of the original predictive
schedule (FJS) without readjustment. The bottom of the
figure shows the corresponding state diagram of the schedule
in question. The deadlock problem occurs because DSI is
a ‘‘null buffer’’ type resource and cannot be used for tem-
porary part storage, thus preventing the VGR robot from
being free to attend to other parallel tasks defined in the
schedule. To avoid overlapping parts on the same resource,
transitions ‘‘a’’ and ‘‘b’’ should not occur in the order the
FJS algorithm defined them. Therefore, the schedule in
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Fig. 12-A is blocking and can only be executed with due
readjustment.

When considering the same schedule readjusted by the
serializer filter, the execution of events occurs in a different
order from that defined in the original schedule. This method
serializes null buffer events, ensuring that other events depen-
dent on the VGR robot do not execute in parallel with the
null buffer events. Fig. 12-B (top) shows that the first part
(in white) leaves the DSI (token 1) and is deposited in MS1
for processing (for 40 s). The MS1 event precedes the DSI
event in the schedule. In this case, the VGR robot moves the
current part back to the resource for the next event (token 2):
the DSO. In parallel to the DSO event, transition ‘‘a’’ occurs,
where the robot from the VGR goes to REF. The robot then
picks up a new part (in blue) at the DSI and takes it to
MS2 (tokens 2 and 3), as shown in the state diagram in the
respective figure. At MS2, the part was processed (for 30 s)
and then deposited in the DSO (token 4). In parallel to the
DSO event, transitions ‘‘b’’ and ‘‘c’’ occur, where the VGR
robot goes to REF, and the schedule ends. Events that occur in
parallel in the schedule are identified using repeated number
tokens (tokens 2 and 4, in this case). The makespan of the
readjusted schedule with the serializer filter was 152.91 s.

The order of event execution in the schedule readjusted
by the pruning filter follows the premise of maintaining the
serialization of the null buffer events, parallelizing the last
event in the serialized group, and prioritizing its execution for
theVGR robot. Fig. 12-C shows themanner inwhich the filter
operates at the top. After the first part (in white) is deposited
at MS1, the VGR robot moves to pick up the other part (part
in blue) at DSI (transition ‘‘a’’). Meanwhile, MS1 continues
the processing (for 40 s). The new part is transferred from
the DSI to MS2 (token 2) and deposited in the processing
resource (for 30 s). The VGR robot then moves to the MS1
resource (transition ‘‘b’’). After the MS1 processing time
elapsed, the first part was sent to the DSO (token 2). The
processing of the production schedule continues according
to the state diagrams. A crucial aspect of readjustment with
the pruning filter is determining the pruning event (MS1
and MS2). Unlike the serializer, the pruning events occur in
parallel, preventing the VGR robot from being idle, waiting
40 s for the completion of MS1 and another 30 s for the
fulfillment of MS2. With the readjustment of the pruning
filter, the makespan was reduced to 105.16 s compared to that
of the serializer filter. The schedules in Fig. 12 are free of
overlap and were successfully executed by the MAS.

Fig. 13 shows the execution of a production schedule with
three types of parts. The first part type was defined as REF ≺
DSI ≺ DSC ≺ NFC ≺ MS7 ≺ DSO ≺ REF , the second as
REF ≺ DSI ≺ MPO ≺ SLD ≺ NFC ≺ DSO ≺ REF , and
the third as REF ≺ HBW ≺ MS3 ≺ DSO ≺ REF . The top
panel of Fig. 13 shows the operations in the FMS, with arrows
labeled with token numbers and transitions for each modified
schedule. The yellow arrows represent the flow executed by
the agents with a schedule readjusted using the serializer filter
(SRF). In contrast, the arrows in cyan represent the flow

executed by the pruning filter (PRF). Both schedules were
subjected to the overlap filter and therefore did not overlap.

Fig. 13-A shows a state diagram of the serializer filter.
There is a transition ‘‘a’’ when the schedule execution flow
for the first part type reaches DSO (token 4). Subsequently, a
‘‘context switch’’ (OS analogy) occurs at the moment when
the VGR robot stops moving the first part type and starts
moving the new part (in blue). The execution flow with
the robot moving the new part continues until it reaches
the DSO-related event (Token 8). Next, with transition ‘‘b,’’
the robot moves to HBW (token 9), MS3 (token 10), and DSO
(token 11). Finally, with the transition ‘‘c,’’ the VGR robot
returns to the reference position (REF). The makespan of the
readjusted schedule with the serializer filter was 304.9 s.

Fig. 13-B displays a state diagram of the pruning filter. In
the execution flow for the first part type, the transition ‘‘a’’
occurs inMS7, not in DSO, because the event associated with
MS7 is pruned from contiguity with the serialized null buffer
events. Furthermore, the last event in the serialized group
(NFC) is prioritized for execution over other events of the
same token. The transition from the NFC to MS7 (token 3)
occurs first, and then from REF to DSI. Thus, the part is left
in MS7, which immediately starts its processing (for 20 s),
whereas the VGR robot goes to REF (transition ‘‘a’’) and then
to DSI (token 3). The flow occurs similarly to the serializer
filter, except for DSO (token 9, transition ‘‘c’’), which directs
the robot to remove the part from MS7 and place it in DSO.
Finally, token 10 chains the robot to return to its reference
position (REF). The makespan of the readjusted schedule
with the pruning filter was 294.2 s.

Table 5 presents data from other schedules tested at the
FMS under study. These schedules have also been certified
by the overlay filter and are free of overlap. The first schedule
refers to manufacturing two types of parts according to the
color indicated at the beginning of the sequence of events
for each part. The order of execution of the events for every
kind of schedule is shown in the columns referring to the
token. For schedule 1, the FJS algorithm defines resource
mapping by tokens as REF(0) ≺ DSI (1) ≺ MPO(2) ≺
SLD(3) ≺ MS7(4) ≺ MS4(5) ≺ HBW (7) ≺ REF(8) for
the white-colored part and REF(1) ≺ DSI (2) ≺ MS1(3) ≺
MS3(5) ≺ MS2(6) ≺ DSO(8) ≺ REF(9) for the blue-
colored part. Therefore, if the original FJS schedule were not
blocking, the MAS agents would execute the events in the
order REF (token 0), DSI and REF (token 1), MPO and DSI
(token 2), SLD and MS1 (token 3), until they reached the last
REF-related event (token 9).

For schedule 1, readjusted by the serializer filter, the map-
ping is REF(0) ≺ DSI (1) ≺ MPO(2) ≺ SLD(3) ≺
MS7(4) ≺ MS4(7) ≺ HBW (8) ≺ REF(9) for the
white-colored part and REF(4) ≺ DSI (5) ≺ MS1(6) ≺
MS3(7) ≺ MS2(8) ≺ DSO(9) ≺ REF(10) for the
blue-colored part. Therefore, MAS agents execute schedules
differently, avoiding deadlocks that occur in the original
schedule. Similarly, the mapping and execution orders of
the same schedule readjusted by the pruning filter differed.
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FIGURE 12. Operations performed in the SRF and PRF schedules.

TABLE 5. Comparison between FJS, SRF and PRF schedules.

Therefore, the makespan values are different: 331.2 s for the
serializer filter and 324.6 s for the pruning filter. The number
of events in the readjusted schedule was the same as that in
the original schedule. However, with the serialization of some
events, the number of transitions was lower in the readjusted
schedules (18 transitions). In this study, the number of transi-
tions is equal to the number of movements performed by the
VGR robot to transport the parts in the FMS to the completion
of the schedule.

In Schedule 2, the numbers of parts (3), events (19), and
transitions (32, 23, and 23) were higher than those in the pre-
vious schedule. However, the makespan times were shorter,
which means that the distance between the resources traveled
by the VGR robot is shorter (the resources are close to each
other), or the processing time of the parts on the resources is
shorter. Themakespan obtained by running the SRF-modified
schedule was 301.4 s, whereas that of the PRF-modified
was 285.4 s.
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FIGURE 13. Operations performed in the SRF and PRF schedules.

Schedules 3-8 followed the same pattern as the makespan
obtained using the proposed filters. In all these schedules,
the pruning filter had a lower makespan than the serializer
because of pruning, which avoided the idleness of the RGR
robot and because of the parallelism and prioritization of
certain events with null buffer resources. Notably, a smaller
makespan value for a pruning filter is not a rule. For example,
in schedule 6, station MS7 processes a part for 30 s, and
MS3 for 10 s. If the processing time at MS7 and MS3 is set
to 5 s the makespan of the serializer becomes smaller than
that of pruning, respectively 100.04 s and 109.97 s. Owing
to the time issue, this situation occurs because it is more
advantageous for the VGR robot to wait to complete the part
at MS7 rather than move to other resources and then return to
MS7.

VIII. OVERALL EVALUATION
The proposed three-stage readjustment filter for predictive
schedules successfully avoids specific deadlock problems in
the FMS under study. The results showed that the number
of events in the readjusted schedules equaled that in the
original schedule. Even with the serialization of some events,
the makespan obtained was similar to the optimal length

calculated by the predictive algorithm because the number
of transitions in the readjusted schedules was smaller. This
condition implies that no additional events require more pro-
cessing time from the system, no extra buffers are required,
and no other actions imply rescheduling at runtime. Although
significant research exists for dealingwith deadlock problems
in production scheduling, such as [12], [13], [16], [17], [24],
[26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[38], [39], [40], [41], [42], [43], and [44], approaches aimed
at dynamic scheduling and rescheduling for runtime deadlock
recovery rely on information about the system state that will
only be available during its execution.

However, the readjustment focuses on defining the order of
events and transitions to ensure a functional (deadlock-free)
production schedule. Furthermore, the consensus control of
the proposed MAS architecture provides synchronization at
predefined periods, allowing agents to deduce the system’s
current state according to the percentage of events executed at
each token change, which is interesting for focused research
in rescheduling. Consensus control is crucial for agents to
cooperate in the execution of manufacturing tasks defined by
scheduling. Synchronism ensures a predictable response to
demand and production stability. The communication layer
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and consensus mechanism are the same across all agents,
favoring the scalability and adaptability of the MAS archi-
tecture to other scenarios. The scalability of the architecture
was attested using virtual agents developed for the FMS under
study for informational purposes.

FIGURE 14. Scalability of the MAS architecture.

Fig. 14 shows the load scalability in the relationship
between the agents and threads for the agent model pre-
sented in Section IV. On an average, a single agent in the
system ran between six and seven threads. With two agents,
each ran 13-14 threads; with three agents, 20 threads each;
and so on. Fifty-five virtual agents were run on the com-
puter described in Section VII, resulting in 341 threads per
agent, or 18755 threads overall. As the number of agents
in the system increases, the number of threads increases
exponentially owing to the increased connections between
agents. Because the agents are implemented with threads
for each ROS topic and its control functions, the total num-
ber of agents in the MAS is limited only by the resources
of the computer hosting the virtual agents. However, in a
real scenario, the computational load is distributed on the
hardware of the production resources, and this limitation is
irrelevant. In this case, the bandwidth is likely to be a limit-
ing resource. But there are a variety of solutions that allow
the integration of ROS-based systems in industrial environ-
ments, such as the ROS-Industrial [48] software package that
contains libraries, tools, and drivers for industrial hardware.
In addition, there are converters for integration into indus-
trial networks (e.g., PROFINET networks) and gateways that
allow quick and easy access to industrial IoT ecosystems.

The proposals of this study ensures that different produc-
tion schedules, defined based on a complete view of the
FMS state, are executed deadlock-free. The MAS replaces
the centralized fixed-cycle production control of the original
platform. The platform was adapted to FMS concepts to
ensure production flexibility using the proposed approaches.
Furthermore, the MAS agents can run simple predictive
schedules for a single product at a time, in any manufac-
turing sequence, or with repeated resources. In this case,
the readjustment filters are dispensed because deadlocks
do not occur in the system. Therefore, considering all the
part-processing resources available in the FMS under study,

the system reconfiguration flexibility would theoretically
admit up to 14. (Factorial) Simple Predictive Schedule. Other
situations could be addressed by including new readjustment
methods. For example, a filter that considers the relationship
between the path and processing time prioritizes schedules
that can be executed in less time.

Replicating the approach for other scenarios is straightfor-
ward but requires some adaptations. For readjustment filters,
it is necessary to indicate the null-buffer resources for the
serializer filter (Alg. 1, variable B) and the resources that
the pruning filter can prune (Alg. 2, variable D). For the
overlay filter, it is necessary to indicate the resources that
can serve as a limited buffer and the nomenclature of all the
FMS resources (Alg. 3 for variables B and R, respectively).
Production schedules should be made available for the filters
according to the model defined in subsection IV-A. For the
MAS architecture, the communication layer and consensus
can be replicatedwithout adaptations with ROS-based agents.
The most significant adaptation work is concentrated on the
control and physical layers because they are specific to the
manufacturing resources of the new scenario. Some avail-
able solutions, such as OpenPLC [49], an open-source Pro-
grammable Logic Controller compatible with Windows and
Linux host platforms, can facilitate this integration, such as
the Raspberry Pi and derivatives (e.g., UniPi and PiExtend).
Any controller with embedded Linux, supporting Python and
rospy [50] (Python client library for ROS), can be used as
the host system for the agents. For example, the FMS in this
research employs ARM Cortex A8 (32-bit/600MHz) + Cor-
tex M3 controllers and embedded Linux, compiled with a
tool called Buildroot3. With this issue resolved, redirecting
the event-processing flow would be sufficient for the control
to perform manufacturing tasks in the new scenario.

TABLE 6. Efficiency of Readjustment 3-Stage Filter .

Table 6 summarizes the data on the number of com-
pleted schedules and efficiency of the proposed methods for
each experiment in Section VII. The experiments included
30 schedules, considering all figures and tables in the section.
The last row of the table presents the sum of the completed
schedules for each algorithm and their respective efficiency
percentages. In the first experiment (Expt.1), the serializer
filter (SRF) was 75%. In comparison, the FJS is 0% for all the
eight production schedules used in the experiment. A percent-
age of 0% indicates that no FJS schedule can be completed in

3Buildroot is available at https://buildroot.org/
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the FMS because of deadlocks. In the other experiments, the
percentage of 0% for the FJS schedules was repeated because
the algorithm did not consider production resource sharing or
transportation system limitations when creating schedules. In
the third experiment (Expt.3), the efficiency of the serializer
and pruning filters was 0% because the readjusted schedules
contained deadlocks by overlapping (ditto for two schedules
fromExpt.1). Finally, the combination of the three-stage filter
represented in the table by OVF showed 100% efficiency for
all sets of schedules evaluated.

A. COMPLEXITY OF ALGORITHMS
Information regarding the time complexities of the proposed
algorithms is essential for evaluating the employment of these
approaches in other production environments. Time complex-
ity represents the time required for an algorithm to execute a
function of an input length. Table 7 presents data on the time
complexity of the developed agents and readjustment filters.
The mathematical notation Big–O was used to calculate the
time complexity for the best and worst cases.

TABLE 7. Time complexity of the proposed algorithms.

The time complexity of the agents refers to a single agent,
because the proposed model is standard for all MAS agents.
According to the model (subsection IV-C), the complexity
calculation focuses on the communication layer of the MAS
architecture. In comparison, the control and physical layers
are specific to the resources associated with each agent;
therefore, they are omitted from the calculation.

Conditional statements, assignments, and simple opera-
tions are computed at constant times. Other more complex
operations were calculated according to the time complex-
ity defined in the documents on the current CPython. The
sending and receiving of messages in code blocks for con-
sensus (see Fig. 3) were computed with a constant time
O(1). In Table 7, the sum of the complexities calculated
for ‘‘signaling,’’ ‘‘synchrony,’’ and ‘‘notification’’ represents
the time complexity of the consensus. Finally, the temporal
complexities of the serializer, pruning, and overlay filters are
presented. In the overlay filter, the temporal complexity of the
recursion is not computed, because it depends on the number
of times the method calls itself. It is essential to point out
that because the algorithms are executed before the schedules
are sent to the MAS, the time spent on readjustment does not
influence the performance of the FMS.

IX. CONCLUSION
This paper presented a multi-agent architecture for flexible
manufacturing systems (FMS), emphasizing the applicability
of consensus in manufacturing control problems. In the liter-
ature, consensus algorithms have rarely been adapted to deal
with production control or have not yet been implemented
in flexible manufacturing systems with the necessary depth
and detail to enable portability to other production envi-
ronments, enhancements, and incorporation into commercial
solutions. This paper presented the architecture of the pro-
posed multi-agent system (MAS), consensus model, agent
model, format of the production schedules, and production
control model. MAS can be considered an enabling and
enabling technology for Industry 4.0 owing to its dynamic
and distributed characteristics, including the ability to mod-
ularize, cooperate, and self-organize to solve manufacturing
problems and for more intelligent production.

Related studies and the importance of readjusting the
production schedules generated by classical predictive
scheduling processes were also discussed. The readjustment
three-stage filter was developed and evaluated to readjust
the predictive production schedules generated by the flexible
job-shop scheduling (FJS) algorithm. The first filter serializes
null-buffer events to ensure that there are no deadlocks in
the FMS part-movement system. The second filter prioritizes
the execution of null-buffered events in parallel with other
events and prunes certain buffer-limited events to reduce
the makespan. The third filter detects and prevents overlap-
ping production resources owing to circular waiting, which
is essential for the MAS to execute deadlock-free sched-
ules. Experiments proved that classic predictive scheduling
algorithms combined with MAS and filters for readjusting
schedules to avoid deadlocks guarantee flexibility of the FMS
for production demands.

To the best of our knowledge, there is no information on
flexible manufacturing systems in real environments oper-
ating with multiple agents and methods similar to those
proposed in this study for comparison purposes. In the liter-
ature, some proposals are limited to theoretical results, with
simplifications that make it impractical to port solutions to
real environments or even reproduce them in other studies.
Considering that the buffer capacity of the resources and
transportation system used to move the parts or products in
the production system is crucial to the applicability of the
solution, these issues cannot be simplified in studies. Similar
to the simulation platform presented in this study, many real
manufacturing environments have limitations in terms of the
system for moving parts around a factory. An example is
the overhead cranes used by hundreds of factories, where the
approach presented in this study can be applied.

The approaches proposed are suitable for manufacturing
systems, especially those that require sequential operations.
However, the weakness of the approach is that the more the
manufacturing machines are shared, higher is the unavail-
ability for parallel operations, which increases the production
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time. These situations occur because of serializing particular
operations of the same job owing to limited buffer resources
and transport restrictions to avoid deadlocks. One solution is
to increase the number of machines performing the same type
of operation and the buffer capacity, or to limit the number of
distinct products in production schedules.

Some issues are challenging to address in the readjust-
ment of production schedules, such as unforeseen runtime
situations, production resource failures, and urgent orders.
In these cases, production rescheduling may be the focus
of research, but preferably independent of the architecture
and may be complementary to the approach proposed in
this study, and vice versa. In future studies, new filters will
be developed to handle the relationship between the trajec-
tory and processing time to reduce the makespan. A future
goal is to develop an approach for agents to obtain partial
group consensus when rescheduling is required. Industry
4.0 technologies are essential to improve decision-making
about readjustment and rescheduling. The main challenge in
decision-making processes is the availability of information
that supports understanding problems and choosing solutions.
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