
Received 23 July 2023, accepted 7 August 2023, date of publication 17 August 2023, date of current version 24 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3306028

Rough Substructures Based on Overlaps of
Successor in Quantales Under Serial
Fuzzy Relations
SAQIB MAZHER QURASHI 1, BANDER ALMUTAIRI 2, RANI SUMAIRA KANWAL3,
MLADEN KRSTIĆ 4,5, AND MUHAMMAD YOUSAF1
1Department of Mathematics, Government College University Faisalabad, Faisalabad 38000, Pakistan
2Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
3Department of Mathematics, Government College Women University Faisalabad, Faisalabad 38000, Pakistan
4Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
5Department of Logistics, Faculty of Transport and Traffic Engineering, University of Belgrade, 11000 Belgrade, Serbia

Corresponding author: Mladen Krstić (mladen.krstic@unisalento.it)

This research is supported by Researchers Supporting Project number RSPD2023R650, King Saud University, Riyadh, Saudi Arabia.

ABSTRACT In this research article, a new connection between serial fuzzy relations and an extended version
of rough sets in an algebraic structure quantale is established. The extended notion of rough sets consists of
successor class and an overlap of the successor class of an element of a quantale. Thus a new approximation
space based on serial fuzzy relations via the overlaps of successor in quantales, are introduced. The main
purpose of this study is to provide basic algebraic structures based on serial fuzzy-relations. In this way,
the new approximation space acquires certain appealing algebraic properties. Compatible fuzzy relations in
quantale are being applied to introduce the notions of rough multiplicative set, rough m-system and further
rough substructures of quantales. Following that, various quantale substructures are described in terms of
successor overlaps under serial fuzzy relations, leading to the development of some key theorems. Moreover,
several results including quantale homomorphism between rough substructures and their homomorphic
images are provided. It is concluded that this new study is significantly easy and superior to various types of
approximations in various types of algebraic structures. Furthermore, different examples are given to show
the effectiveness of the developed approach and a comparative study of the investigated approach with some
existing methods are expressed broadly which show that the investigated approach are more effective and
easy than the existing approaches.

INDEX TERMS Quantale, rough ideal, SFrelations, TCFR, rough multiplicative set, rough m-system.

LIST OF ACRONYMS/ABBREVIATIONS
Acronyms Representation
⊚ Binary operation on quantale
SubG Subquantale
UP. appr. Upper approximation
LW. appr. Lower approximation
FZ.Subset Fuzzy Subset
FZ-Relation Fuzzy Relation

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Da Lin .

TCFR Transitive compatible fuzzy relation
CFZR Complete fuzzy relation
AP.SP. Approximation space
SFrelations Serial fuzzy relation

I. INTRODUCTION
Managing ambiguous and vague information has always
been difficult. Many theories, like theory of rough sets [1]
and theory of fuzzy sets (FSs) [2], have been proposed to
address the imprecision and uncertainty found in practically
all real-world problems. Zadeh’s FS is a remarkable idea
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and is heavily used in many situations of uncertainty
including decision-making problems, pattern recognition,
clustering, networking, and many other fields of computer
and engineering. Each of these theories has unique qualities
and benefits. Another characteristics and advantages of FS
are used to characterize different properties of algebraic
structures in terms of fuzzy substructures. For example fuzzy
substructures in semigroups and quantale were proposed by
Kuroki [3] and Farooq et al. [4] respectively. t-intuitionistic
subgroups with Fuzzy set was characterized by Gulzar et al.,
[5], [6]. A Multi-attribute decision-making method in terms
of complex q-rung orthopair via Einstein geometric aggrega-
tion operators were studied by Wu et al., [7].
Rough set theory, which has several applications, was

developed by Pawalk [8]. It is becoming a highly helpful
method for addressing uncertainty among the elements of
a set. Consequently, various more general rough set models
were presented in [9] and [10] to avoid equivalence relation,
a necessary part in Pawalk rough set theory. By Dubois and
Prade, the idea of roughness in fuzzy sets was introduced [11].
Recently, Fuzzy convexities was investigated via overlap
functions by Pang [12]. Important Hamacher aggregation
operators dependent on the interval-valued intuitionistic
fuzzy numbers related to decision making was proposed by
Liu [13]. Fuzzy formal contexts and fuzzy relations between
objects of different types in the form of fuzzy relational
context families was investigated by Boffa [14].
In the literature, there are many examples of how various

algebraic structures are combined with rough and fuzzy
sets, and different applications can be seen. Roughness
in different algebraic structures like quantale and quantale
modules through congruence relations were investigated by
Yang and Xu [15], Qurashi and Shabir [16], respectively.
Many authors studied roughness in different other algebraic
structures; for more information, see [17], [18], [19],
and [20]. Different characterizations of important residual
implications in terms of Copulas was presented by Ji and
Xie [21], [22]. The character and applications of aggregating
intuitionistic uncertain linguistic variables to group decision
making were proposed by Liu and Jin [23].

To our knowledge, there has never been a study of
roughness for algebraic structures of quantale based on serial
fuzzy relations via the overlaps of successor in quantale.
From two perspectives, we attempt to generalize Mareay’s
work [24] in this research article. First, to weaken Rosenthal’s
conditions for quantale congruence [25], we shall first
establish the concept of compatibility in newly rough model
connected with quantale compatibility. Secondly, we will
introduce roughness of substructures through these transitive
and compatible fuzzy relations.

A. SOME BACKGROUND STUDIES AND IMPORTANCE OF
QUANTALE IN THE LITERATURE
The notion of quantale, which designates a complete lattice
equipped with associative binary multiplication distributing

over arbitrary joins, was used for the first time by Mul-
vey [26]. However, multiplicative ordered structures were
studied already in 1930s in the form of lattices of ring ideals.
Frames, various ideal lattices of rings and C∗-algebras, and
the power set of a semigroup are just a few of the many
examples of quantales. The study of such partially ordered
algebraic structures dates back to the late 1930s work on
residual lattices by Ward and Dilworth [27], [28] which was
driven by ring-theoretic problems. Derivation is helpful to
the research of structure and property in algebraic system.
Derivations in quantale was studied by Xiao and Liu [29].
Quantale module developed on quantale as a structure was
studied by Abramsky and Vickers [30]. Quantales can be seen
as a framework for a non-commutative topology. Further,
regular and normal quantales were defined by Paseka [31].
He further studied the notion of w-quantale and conjunctivity
in quantale. Moreover, simple and semisimple quantales and
quantale that classify C∗-algebras were presented by Kruml,
and Paseka and Kruml, Resende [32], [33], respectively.
Morphisms, theory of locales and the presheaves and sheaves
on a quantale were studied by Borceux and Van den
Bossche [34].

B. LITERATURE REVIEW IN DETAIL
For the purpose of studying the spectrum of C∗-algebras
and the foundations of quantum mechanics, quantales were
introduced. From this last point of view, a quantale is a
semigroup whose multiplication a ⊚ b can be temporally
interpreted as ‘‘a and then b’’. This idea has also appeared
in [35], when studying non-commutative versions of the
linear logic of Girard [36], and later in [31], where a quantale
can be understood as an algebra of observations on concurrent
systems.

Roughness to the substructures of quantales including
ideals, prime, semiprime and primary ideals were studied
by Wang and Zhao [37] in 2013. They actually used
congruence relations to develop different rough structures.
Further in 2014, rough set theory applied to quantale in a
different way but this is done again congruence relations
by Luo and Wang [38]. They also discussed rough fuzzy
substructures in quantale. Generalized or T-roughness by set-
valued homomorphism in quantalewas applied by Xiao and
Li [39]. Further, rough set theory to quantale was applied
by Qurashi and Shabir with the help of soft relations under
aftersets and foresets [40]. More generalized forms of rough
fuzzy substructures via (ϵ.ϵ

∨
q)-fuzzy type were also studied

by Qurashi and Shabir [41].

C. THE MOTIVATION OF THE STUDY AND THE RESEARCH
GAP IN THE LITERATURE CURRENTLY AVAILABLE
In the above literature review, some advancements in both
classical theory and rough set theory are highlighted. Also,
despite the fact that several findings about rough subquantale,
rough ideals of quantale, rough fuzzy substructures and
rough substructures based on set-valued homomorphism of
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quantales have been demonstrated, certain problems remain
unresolved and should be answered.

1. There have been numerous contributions to classical
quantale theory, but its generalization has received little atten-
tion. We point out some of them, for example soft substruc-
tures in quantale and its characterization by different means
like (ϵ, ϵ

∨
q)-fuzzy soft types substructures, (ϵ, ϵ

∨
qk )-fuzzy

soft type’s substructures of quantale are included. Moreover,
less attention is being paid to (ϵγ , ϵγ

∨
qδ)-fuzzy soft types

substructures of quantale. Further, rough neutrosophic soft
ideals and fuzzy bipolar soft ideals in quantale have received
less attention.

2. Roughness associated with soft relations under aftersets
and forests have been studied by Kanwal and Shabir [42],
[43] and Kanwal et al., [44]. This type of roughness was
being applied to substructures and fuzzy substructures of
semigroups and quantales. Can we extend the concept of
roughness and its results under serial fuzzy relations via the
overlaps of successor and obtain the similar results easily. So,
the study proposed is important.

3. Roughness techniques applied to substructures and
fuzzy substructures of quantale with the help of congruence
and set-valued homomorphism are in the literature discussed
above. What will be the behavior of rough substructures
when subjected to serial fuzzy relations via the overlaps of
successor is a logical question that naturally arises.

4. Some important theorems related to quantale homo-
morphism have been discussed in the references [40]
and [44] above. These remarkable theorems must therefore
be discussed in the context of quantale homomorphism under
serial fuzzy relations and compatible fuzzy relations based on
overlaps of successor.

5. The literature has examined many algebraic aspects
of rough and fuzzy substructures of quantale and others
structures with congruence, set-valued homomorphism, and
through soft relations. These works have not yet been thor-
oughly analyzed in the context of rough ideals in quantales
under serial fuzzy relations and compatible fuzzy relations
based on overlaps of successor classes. As the suggested
approach in this paper is easier to develop rough substructures
and discuss different properties. So it is concluded that this
new study is much better.

Addressing the aforementioned open questions and filling
the knowledge gap in the available literature are the ultimate
goals of this research.

D. COMPARATIVE RESEARCH AND THE DEFICIENCIES OF
THE EXISTING FIELD OF RESEARCH
The results reported in this research hold true for rough
substructures in quantale module based on fuzzy relations.
Moreover the current analysis is also applicable to fuzzy
substructures and intuitionistic fuzzy (IFS) substructures in
quantale through serial fuzzy relations and compatible fuzzy
relations based on overlaps of successor classes because
every fuzzy set is an IFS. Bilal and Shabir provided rough

Pythagorean fuzzy sets using soft binary relations [45]. As a
result, we can define Rough Pythagorean substructure in
quantale dependent on overlaps of successor classes under
serial fuzzy relations. However, there are some restrictions on
how far we can pursue our work. For example, we cannot take
q-rung orthopair fuzzy sets, picture fuzzy sets and fuzzy soft
hyper to establish overlaps of successor classes under serial
fuzzy relations. So distinct research are advised for these
generalized structures. Our research is primarily constrained
by this.

Following is a description of how the paper is organized.
In section-II, first of all substructures of quantales, fuzzy
relations and its types and successor class of an element
of quantale, overlap of the successor class, are discussed.
In section-III, roughness of substructures of quantale depen-
dent on compatible fuzzy relation and transitive compati-
ble fuzzy relation are defined. Moreover, complete fuzzy
relations are defined and different important results are
developed. These rough substructures based on overlaps of
successor and their homomorphic images under quantale
homomorphism are discussed in section-IV. At the end, the
conclusion is given in section V.

II. PRELIMINARIES
In this section, we will discuss some important definitions
like quantale and its substructures, generalized rough set and
related results. We will use symbols G and H for quantales
throughout the paper where G and H are nonempty universal
sets.
Definition 1 [26]: Let a nonempty set G be a complete

lattice associate with a binary operation ⊚ satisfying the
following conditions ∀g, gj ∈ G
1. g⊚

(∨
j∈Jgj

)
=

∨
j∈J(g⊚ gj)

2.
(∨

j∈Jgj
)
⊚ g =

∨
j∈J(gj ⊚ g)

Then this G is called quantale. Let WjW, Z ⊆ G Then we
define arbitrary join and binary operation as

W ∨ Z = {g1 ∨ g2|g1 ∈ W, g2 ∈ Z},

W ⊚ Z = {g1 ⊚ g2|g1 ∈ W, g2 ∈ Z},∨
j∈JWj = {

∨
j∈||gj ∈ Wj}.

Definition 2 [25]: A nonempty subset E of a quantale G
is called a subquantale(SubG) of a quantale G if following
properties hold, for all e1, e2, ej ∈ E

i.
∨
j∈Jej ∈ E ii. e1 ⊚ e2 ∈ E.

A nonempty subset E ⊆ G is called an m-system of G,
if for all p, q ∈ E, ↓ (p⊚ 1 ⊚ q) ∩ E ̸= ∅.
A nonempty subset E ⊆ G is called a multiplicative set of

G, if p⊚ q ∈ E for all p, q ∈ E.
Definition 3 [37]: A subset ∅ ̸= E of a quantale G is

called an ideal of G if
i. e1 ∨ e2 ∈ E∀e1, e2 ∈ E
ii. ∀e1, e2 ∈ G and e2 ∈ E such that e1 ≤ e2 ∈ E H⇒ e1 ∈

E
iii. ∀g ∈ G and e ∈ E H⇒ g⊚ e ∈ E and e⊚ g ∈ E.
Definition 4 [37]: An ideal E of a quantale G is called
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i. prime ideal if e1 ⊚ e2 ∈ E H⇒ e1 ∈ E or e2 ∈ E∀e1,
e2 ∈ G.
ii. semi prime ideal if e⊚ e ∈ E H⇒ e ∈ E∀e ∈ G.
iii.primary ideal if E ̸= G and ∀e1, e2 ∈ G
e1 ⊚ e2 ∈ E and e1 /∈ E H⇒ en2 ∈ E for some n > 0,

where en2 = e2 ⊚ e2 ⊚ · · · ⊚ e2.
Definition 5 [2]: Let G be a nonempty universal set then

the function L of G into the closed interval [0, 1] is called
FZ.Subsetof G.
Definition 6 [2]: Let G and H be two nonempty universal

sets then mapping σ : G × H → [0, 1] is said to be
FZ-Relation from G to H. A mapping σ : G × G → [0, 1] is
called FZ-Relation onG.AFZ-Relation in the form of matrix
is denoted by 

σ11 σ12 . . . σ1m
σ21 σ22 . . . σ2m
...

...
...

σn1 σn2 σnm


Definition 7 [46]: If there exists g ∈ G and for all h ∈ H

such that σ (g, h) = 1, where σ is a FZ-Relation of G into H.
Then σ is called serial FZ-Relation.
Definition 8 [46]: Assume that σ is a FZ-Relation on G.
i. If σ (g, g) = 1 for all g ∈ G then σ is called a reflexive

FZ-Relation.
ii. If σ (g1, g2) = σ (g2, g1) for all g1, g2 ∈ Q then σ is

called symmetric FZ-Relation.
iii. If σ (g1, g2) ≥ ∨g3∈G(σ (g1, g3) ∧ σ (g3, g2)) for all

g1, g2 ∈ G then σ is called Transitive.
Definition 9 [46]: If σ is reflexive, symmetric and transi-

tive then σ is called similarity FZ-Relation.
Definition 10 [47]: Assume that σ is a FZ-Relation from

G to H and t ∈ [0, 1]. For g ∈ G,

SCσ (g; t) := {h ∈ H : σ (g, h) ≥ t}

is called a successor class of g related to t-level under σ .
Definition 11 [47]: Assume that σ is a serial FZ-Relation

from G to H and t ∈ [0, 1] . For g1 ∈ G,

OSCσ (g1; t) := {g2 ∈ G : SCσ (g1; t) ∩ SCσ (g2, t) ̸= ∅}

is called an overlap of the successor class of g1 related to
t-level under σ .
The collection of OSCσ (g; t) for all g ∈ G is denoted by

OSCσ (G; t).
Remark 1 [47]: Assume that σ is a serial FZ-Relation

from G to H and t ∈ [0, 1]. Then ∀g ∈ GSCσ (g; t) ̸= ∅.

Proposition 1 [47]: Let σ be a serial FZ-Relation from G
to H and t ∈ [0, 1]. Then

1. g ∈ OSCσ (g; t) for all g ∈ G.
2.q ∈ OSCσ (p; t) iff OSCσ (p; t) = OSCσ (q; t) .

Definition 12 [47]: Let σ be a serial FZ-Relation from G
to H and t ∈ [0, 1] . A triple (G, H, OSCσ (G; t)) is called
an approximation space (AP.SP.) based on OSCσ (G; t).
If G = H, Then (G, H, OSCσ (G; t)) is replaced by
(G, OSCσ (G; t)).

Definition 13 [47]: Let (G, H, OSCσ (G; t)) be an
OSCσ (G; t)-AP.SP. and ∅ ̸= E ⊆ G, Then we define
UP.appr. of E in (G, H, OSCσ (G; t)) and LW.appr. of E in
(G, H, OSCσ (G; t)) as σ (E; t) := {g ∈ G : OSCσ (g; t) ∩

E ̸= ∅} and σ (S;u) := {g ∈ G : OSCσ (g; t) ⊆ E}.
The σR (E; t) := (σ (E; t), σ (E; t)) is called a rough set

of E in (G, H, OSC�(G; t)) if σ (E; t) ̸= σ (E; t).
Proposition 2 [47]: Let (G, H, OSCσ (G; t)) be an

OSCσ (G; t)-AP.SP. If ∅ ̸= E, F ⊆ G. Then
1. σ (∅; t) = ∅ and σ (∅; t) = ∅

2. σ (G; t) = G and σ (G; t) = G
3. E ⊆ σ (E; t) and σ (E; t) ⊆ E
4. σ (E ∪ F; t) ⊇ σ (E; t) ∪ σ (F; t) and σ (E ∩ F; t) ⊆

σ (E; t) ∩ σ (F; t)
5. σ (E ∪ F; t) = σ (E; t) ∪ σ (F; t) and σ (E ∩ F; t) =

σ (E; t) ∩ σ (F; t) .

6. If E ⊆ F, then σ (E; t) ⊆ σ (F; t) and σ (E; t) ⊆

σ (F; t).
7. σ (Ec

; t) = (σ (E; t))c, where Ec and (σ (E; t))c are
complements of E and σ (E; t), respectively.
Theorem 1: Let (G, H, OSCσ (G; t)) be an OSCσ (G; t)-

AP.SP. If E, F ⊆ G. Then
1. σ (E; t) ∩ σ (F; t) ⊆ σ (E ⊚ F; t),

if G is idempotent quantale.
2. σ (E; t) ∪ σ (F; t) ⊆ σ (E ∨ F; t), if 0 ∈ E ∩ F.
3. σ (E; t) ∪ σ (F; t) ⊆ σ (E ⊚ F; t), if e ∈ E ∩ F.
4. σ (E; t) ∪ σ (F; t) ⊆ σ (E ∨ F; t), if 0 ∈ E ∩ F.

5. σ (E; t) ∪ σ (F; t) ⊆ σ (E ⊚ F; t), if e ∈ S ∩ T.
6. σ (E; t) ∩ σ (F; t) ⊆ σ (E ∨ F; t).

Proof: 1. Since G is an idempotent quantale. Therefore
we have E ∩ F ⊆ E ⊚ F. From Proposition 2 we have

σ (E ∩ F; t) ⊆ σ (E ⊚ F; t)

From Proposition 2 we have

σ (E; t) ∩ σ (F; t) = σ (E ∩ F; t)

Therefore, σ (E; t) ∩ σ (F; t) ⊆ σ (E ⊚ F; t)
2. Let e ∈ E, we have for 0 ∈ Fe = e ∨ 0 ∈ E ∨ F. This

implies that e ∈ E∨F. Hence E ⊆ E∨F. Similarly, we have
F ⊆ E ∨ F. Thus, E ∪ F ⊆ E ∨ F. From Proposition 2 we
have,

σ (E ∪ F; t) ⊆ σ (E ∨ F; t)

Again from Proposition 2, we have

σ (E; t) ∪ σ (F; t) ⊆ σ (E ∨ F; t).

3. Let e ∈ E then for 0 ∈ F, we have e = e ⊚ 0 ∈ E ⊚ F.

This implies that e ∈ E ⊚ F, hence E ⊆ E ⊚ F. Similarly,
we haveE ⊆ E⊚F. Thus,E∪F ⊆ E⊚F. From Proposition 2
we have, σ (E ∪ F; t) ⊆ σ (E ⊚ F; t)
Again from Proposition 2, we have

σ (E; t) ∪ σ (F; t) ⊆ σ (E ⊚ F; t).

4. Let e ∈ E. Then for 0 ∈ F, we have e = e ∨ 0 ∈ E ∨ F.

This implies that e ∈ S ∨ T, hence E ⊆ E ∨ F. Similarly,
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we have F ⊆ E ∨ F. Therefore E ∪ F ⊆ E ∨ F. From
Proposition 2 we have,

σ (E ∪ F; t) ⊆ σ (E ∨ F; t)

Again from Proposition 2, we have

σ (E; t) ∪ σ (F; t) ⊆ σ (E ∨ F; t).

5.Let e ∈ E, then for e ∈ Fwe have e = e⊚0 ∈ E⊚F.This
implies that e ∈ E⊚F. Hence, E ⊆ E⊚F. Similarly, we have
F ⊆ E ⊚ F. Therefore, E ∪ F ⊆ E ⊚ F.From Proposition 2,
we have, σ (E ∪ F; t) ⊆ σ (E ⊚ F; t).
Again from Proposition 2 we have

σ (E; t) ∪ σ (F; t) ⊆ σ (E ⊚ F; t).

6. Clearly E ∩ F ⊆ E ∨ F. From Proposition 2 we have
σ (E ∩ F; t) ⊆ σ (E ∨ F; t) . From Proposition 2 we have

σ (E; t) ∩ σ (F; t) = σ (E ∩ F; t)

Therefore, σ (E; t) ∩ σ (F; t) ⊆ σ (E ∨ F; t).
Preliminaries section contains some importatnt definitions

including quantale and its substructures. In substructures of
quantale, idelas, subquantale, m-system andmultiplicative set
are presented. Further, successor class of g related to t-level
underFZ-Relation and overlap of the successor class of an
element of quantale are being discussed. The above all are
very important because roughm-system, roughmultiplicative
set and rough ideals are defined which are dependent
on overlap of the successor classes of quantale. In fact,
Proposition 2 shows the usefulness of Definition 12 and
Definition 13. However, we have generalized Proposition 2 in
Theorem 1 which shows the validity of definition 13 and 14
in quantale.

III. ROUGH SUBSTRUCTURES IN QUANTALES INDUCED
BY SERIAL FUZZY RELATIONS
Compatible fuzzy relations and transitive compatible fuzzy
relations in quantale are defined in this section. Further, more
generalized results dependent on transitive compatible fuzzy
relation and complete fuzzy relation are discussed.
Definition 14: Let σ be a FZ-Relation on G.
if ∀g1, g2, g3, g4, ej, fj ∈ G

1. σ (g1 ⊚ g3, g2 ⊚ g4) ≥ σ (g1, g2) ∧ σ (g3, g4)
2. σ

(∨
j∈Jej,

∨
j∈Jfj

)
≥

∧
j∈Jσ (ej, fj)

Then this is called compatible FZ-Relation.
Definition 15: Let (G,OSC(G; t)) be an OSC(G; t)-

AP.SP. If σ is a transitive and Compatible FZ-Relation then
(G, OSC(G; t)) is called an OSC(G; t)-AP.SP. of TCFR.
Proposition 3: Assume that (G,OSCσ (G; t)) is a OSCσ

(G; t)-AP.SP. of TCFR. Then for all g1, g2 ∈ G

(OSCσ (g1; t)) ⊚ (OSCσ (g2; t)) ⊆ OSCσ (g1 ⊚ g2; t) .

Proof: Let g3 ∈ (OSCσ (g1; t)) ⊚ (OSCσ (g2; t)). Then
there exists g4 ∈ OSCσ (g1; t) and g5 ∈ OSCσ (g2;u) such
that g3 = g4 ⊚ g5. Thus,

SCσ (g1; t) ∩ SCσ (g4; t) ̸= ∅ and

SCσ (g2; t) ∩ SCσ (g5; t) ̸= ∅.

Let g6 ∈ SCσ (g1; t) ∩ SCσ (g4; t) and g7 ∈ SCσ (g2; t) ∩

SCσ (g5; t). Then we have σ (g1, g6) ≥ t, σ (g4, g6) ≥

t, σ (g2, g7) ≥ tandσ (g5, g7) ≥ t. Since σ is a serial FZ-
Relation, we have (g1, g1) = 1 ≥ t, σ (g7, g7) = 1 ≥

t, σ (g5, g5) = 1 ≥ t and σ (g6, g6) = 1 ≥ t. Since σ

is transitive and compatible, we have

σ (g1 ⊚ g2, g6 ⊚ g7)

≥

∨
g8∈G

(σ (g1 ⊚ g2, g8)

∧σ (g8, g6 ⊚ g7))

≥ σ (g1 ⊚ g2, g1 ⊚ g7) ∧ σ (g1 ⊚ g7, g6 ⊚ g7)

≥ σ (g1, g1) ∧ σ (g2, g7) ∧ σ (g1, g6) ∧ σ (g7, g7)

≥ t ∧ t ∧ t ∧ t = t.

Hence, σ (g1 ⊚ g2, g6 ⊚ g7) ≥ t and so g6 ⊚g7 ∈ SCσ (g1 ⊚
g2; t). Since σ is transitive and compatible, we have

σ (g4 ⊚ g5, g6 ⊚ g7)

≥
∨
g9∈G(σ (g4 ⊚ g5, g9) ∧ σ (g9, g6 ⊚ g7))

≥ σ (g4 ⊚ g5, g6 ⊚ g5) ∧ σ (g6 ⊚ g5, g6 ⊚ g7)

≥ σ (g4, g6) ∧ σ (g5, g5) ∧ σ (g6, g6) ∧ σ (g5, g7)

≥ t ∧ t ∧ t ∧ t = t.

Hence, σ (g4 ⊚ g5, g6 ⊚ g7) ≥ t and so g6 ⊚g7 ∈ SCσ (g4 ⊚
g5; t). Thus, SCσ (g1 ⊚ g2; t) ∩ SCσ (g4 ⊚ g5; t) ̸= ∅.
Therefore, g3 = g4 ⊚ g5 ∈ OSCσ (g1 ⊚ g2; t) .

Hence, (OSCσ (g1; t)) ⊚ (OSCσ (g2; t)) ⊆ OSCσ (g1 ⊚
g2; t).
Proposition 4: Assume that (G,OSCσ (G; t)) is a

OSCσ (G; t)-AP.SP. of TCFR. Then for all g1, g2 ∈ G

(OSCσ (g1; t)) ∨ (OSCσ (g2; t)) ⊆ OSCσ (g1 ∨ g2; t) .

Proof: Let g3 ∈ (OSCσ (g1; t)) ∨ (OSCσ (g2; t)). Then
there exists g4 ∈ OSC�(g1; t) and g5 ∈ OSC�(g2;u) such
that g3 = g4 ∨ g5. Thus,

SCσ (g1; t) ∩ SCσ (g4; t) ̸= ∅ and

SCσ (g2; t) ∩ SCσ (g5; t) ̸= ∅.

Let g6 ∈ SCσ (g1; t) ∩ SCσ (g4; t) and g7 ∈ SCσ (g2; t) ∩

SCσ (g5; t). Then we have σ (g1, g6) ≥ t, σ (g4, g6) ≥

t, σ (g2, g7) ≥ t and σ (g5, g7) ≥ t. Since σ is a serial
FZ-Relation, we have (g1, g1) = 1 ≥ t, σ (g7, g7) = 1 ≥

t, σ (g5, g5) = 1 ≥ t and σ (g6, g6) = 1 ≥ t. Since σ is
transitive and compatible, we have

σ (g1 ∨ g2, g6 ∨ g7)

≥

∨
g8∈G

(σ (g1 ∨ g2, g8)

∧ σ (g8, g6 ∨ g7))

≥ σ (g1 ∨ g2, g1 ∨ g7) ∧ σ (g1 ∨ g7, g6 ∨ g7)

≥ σ (g1, g1) ∧ σ (g2, g7) ∧ σ (g1, g6) ∧ σ (g7, g7)

≥ t ∧ t ∧ t ∧ t = t.
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TABLE 1. Binary operation ⊚ on quantale G.

FIGURE 1. Complete lattice in quantale G.

Hence, σ (g1 ∨ g2, g6 ∨ g7) ≥ t and so g6 ∨ g7 ∈ SCσ (g1 ∨

g2; t). Since σ is transitive and compatible, we have

σ (g4 ∨ g5, g6 ∨ g7)

≥
∨
g9∈G(σ (g4 ∨ g5, g9) ∧ σ (g9, g6 ∨ g7))

≥ σ (g4 ∨ g5, g6 ∨ g5) ∧ σ (g6 ∨ g5, g6 ∨ g7)

≥ σ (g4, g6) ∧ σ (g5, g5) ∧ σ (g6, g6) ∧ σ (g5, g7)

≥ t ∧ t ∧ t ∧ t = t.

Hence, σ (g4 ∨ g5, g6 ∨ g7) ≥ t and so g6 ∨ g7 ∈ SCσ (g4 ∨

g5; t). Thus, SCσ (g1 ∨ g2; t) ∩ SCσ (g4 ∨ g5; t) ̸= ∅.
Therefore, g3 = g4 ∨ g5 ∈ OSCσ (g1 ∨ g2; t) .

Hence, (OSCσ (g1; t)) ∨ (OSCσ (g2; t)) ⊆ OSCσ (g1 ∨

g2; t).
Example 1: Let G = {0′, p′, q′, r ′, s′, 1′

} be a quantale
with binary operation ⊚ defined in Table 1 and Shown in
Figure 1.
Define the membership grades of relationship between any

two elements in G under FZ-Relations σ on G as follows
1 0 0 0 0 0
0 0 1 0 1 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1


Clearly, σ is transitive and compatible. For t = 0.6, the
successor class of each element in G related to 0.6 under σ

TABLE 2. Binary operation ⊚ on quantale G.

are

SCσ

(
0′

; 0.6
)

=
{
0′

}
,

SCσ

(
p′

; 0.6
)

=
{
q′, s′

}
,

SCσ

(
q′

; 0.6
)

=
{
q′, s′

}
,

SCσ

(
r ′

; 0.6
)

=
{
r ′

}
.

SCσ

(
s′; 0.6

)
=

{
q′, s′

}
and

SCσ

(
1′

; 0.6
)

=
{
1′

}
.

Hence, the core of successor class of each element in G
related to 0.6 level under σ are

OSCσ

(
0′

; 0.6
)

=
{
0′

}
,

OSCσ

(
p′

; 0.6
)

=
{
p′, q′, s′

}
,

OSCσ

(
q′

; 0.6
)

=
{
p′, q′, s′

}
,

OSCσ

(
r ′

; 0.6
)

=
{
r ′

}
,

OSCσ

(
s′; 0.6

)
=

{
p′, q′, s′

}
,

OSCσ

(
1′

; 0.6
)

=
{
1′

}
,

Here it is easy to verify that for all g1, g2 ∈ G

(OSCσ (g1; 0.6)) ⊚ (OSCσ (g2; 0.6))

⊆ OSCσ (g1 ⊚ g2; 0.6) and

(OSCσ (g1; 0.6)) ∨ (OSCσ (g2; 0.6))

⊆ OSCσ (g1 ∨ g2; 0.6)

Observe that in this example equality in general does not hold.
Let us consider the following Example.
Example 2: Let G = {0′, e′, f ′, g′, h′, 1′

} be a quantale
with binary operation ⊚ defined in Table 2 and Shown in
Figure 2.
Define the membership grades of relationship between any

two elements in G under FZ-Relations σ on G as follows
0 0 0 0 1 0
0 1 1 1 0 0
0 1 1 1 0 0
0 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


It easy to verify to σ is transitive and compatible.

VOLUME 11, 2023 88783



S. M. Qurashi et al.: Rough Substructures Based on Overlaps of Successor in Quantales

For t = 0.6, the successor class of each element in G
related to 0.6 under σ are

SCσ

(
0′

; 0.6
)

=
{
h′

}
,

SCσ

(
e′; 0.6

)
=

{
e′, f ′, g′

}
,

SCσ

(
f ′

; 0.6
)

=
{
e′, f ′, g′

}
,

SCσ

(
g′

; 0.6
)

=
{
e′, f ′, g′

}
,

SCσ

(
h′

; 0.6
)

=
{
h′

}
and

SCσ

(
1′

; 0.6
)

=
{
1′

}
.

Hence, the core of successor class of each element in G
related to 0.6 level under σ are

OSCσ

(
0′

; 0.6
)

=
{
0′, h′

}
,

OSCσ

(
e′; 0.6

)
=

{
e′, f ′, g′

}
,

OSCσ

(
f ′

; 0.6
)

=
{
e′, f ′, g′

}
,

OSCσ

(
g′

; 0.6
)

=
{
e′, f ′, g′

}
,

OSCσ

(
h′

; 0.6
)

=
{
0′, h′

}
and

OSCσ

(
1′

; 0.6
)

=
{
1′

}
.

Here it is easy to verify that for all g1, g2 ∈ G

(OSCσ (g1; 0.6)) ⊚ (OSCσ (g2; 0.6))

= OSCσ (g1 ⊚ g2; 0.6) and

(OSCσ (g1; 0.6)) ∨ (OSCσ (g2; 0.6))

= OSCσ (g1 ∨ g2; 0.6) .

Definition 16: Let (G, OSCσ (G; t)) be an OSCσ (G; t)-
AP.SP. of TCFR. Then for all g1, g2 ∈ G,

(OSCσ (g1; t)) ⊚ (OSCσ (g2; t)) = OSCσ (g1 ⊚ g2; t)

Then the collection OSCσ (G; t) is called ⊚-Complete.
If for all g1, g2 ∈ G,

(OSCσ (g1; t)) ∨ (OSCσ (g2; t)) = OSCσ (g1 ∨ g2; t)

Then the collection OSCσ (G; t) is called ∨-Complete.
Although approximation through overlaps of successor

inquantales is totally dependent on overlap of the successor
class (OSCσ (g; t)) of an element of quantale yetwe have
observed some interesting properties of these classes under
serial fuzzy relations. It is noticed that these classes
under

∨
and ⊚ always show always containment. That

is (OSCσ (g1; t)) ∨ (OSCσ (g2; t)) ⊆ OSCσ (g1 ∨ g2; t)
and (OSCσ (g1; t)) ⊚ (OSCσ (g2; t)) ⊆ OSCσ (g1 ⊚ g2; t).
Further, it is observed that equality does not hold in general.
So in next results, we have applied the conditions of
transitive compatible fuzzy relation(TCFR) and complete
fuzzy relation (CFZR) to fulfil the condition of equality.
Definition 17: Let (G,OSCσ (G; t)) be an OSCσ (G; t)-

AP.SP. of TCFR. Then the collection OSCσ (G; t) is called
σ -Complete if it is both ⊚-Complete and ∨-Complete.
Definition 18: Let (G,OSCσ (G; t)) be an OSCσ (G; t)-

AP.SP. of TCFR. Then σ is called complete
FZ-Relation(CFZR) ifOSCσ (G; t) is complete induced by σ .

FIGURE 2. Complete lattice in quantale G.

(G, OSCσ (G; t)) is called anOSCσ (G; t)-AP.SP. of CFZR if
σ is complete.
Theorem 2: Let (G, OSCσ (G; t)) be an OSCσ (G; t)-

AP.SP. of TCFR and ∅ ̸= E, F ⊆ G. Then

1. σ (E; t) ⊚ σ (F; t) ⊆ σ (E ⊚ F; t)
2. σ (E; t) ∨ σ (F; t) ⊆ σ (E ∨ F; t).

Proof: 1. Let g1 ∈ σ (E; t) ⊚ σ (F; t) Then there exists
g2 ∈ σ (E; t) and g3 ∈ σ (F; t) be such that g1 = g2 ⊚ g3.
ThenOSCσ (g2; t)∩E ̸= ∅ andOSCσ (g3; t)∩F ̸= ∅. There
exists g4, g5 ∈ G be such that g4 ∈ OSCσ (g2; t) ∩ E and
g5 ∈ OSCσ (g3; t) ∩ F. This means that g4 ∈ OSCσ (g2; t),
g4 ∈ E and g5 ∈ OSCσ (g3; t), g5 ∈ F. This implies that
g4 ⊚g5 ∈ E⊚F and g4 ⊚g5 ∈ OSCσ (g2; t)⊚OSCσ (g3; t).
From Proposition 3, we get

g4 ⊚ g5 ∈ (OSCσ (g2; t)) ⊚ (OSCσ (g3; t))

⊆ OSCσ (g2 ⊚ g3; t)

⇒ g4 ⊚ g5 ∈ OSCσ (g2 ⊚ g3; t)

So, we have OSCσ (g2 ⊚ g3; t) ∩ E ⊚ F ̸= ∅. This implies
that g1 = g2 ⊚ g3 ∈ σ (E ⊚ F; t).
Hence, σ (E; t) ⊚ σ (F; t) ⊆ σ (E ⊚ F; t).
2. Let g1 ∈ σ (E; t) ∨ σ (F; t) Then there exists g2 ∈

σ (E; t) and g3 ∈ σ (F; t) such that g1 = g2 ∨ g3. Then
OSCσ (g2; t) ∩ E ̸= ∅ and OSCσ (g3; t) ∩ F ̸= ∅. There
exists g4, g5 ∈ G such that g4 ∈ OSCσ (g2; t) ∩ E and
g5 ∈ OSCσ (g3; t) ∩ F. This means that g4 ∈ OSCσ (g2; t),
g4 ∈ E and g5 ∈ OSCσ (g3; t), g5 ∈ F. This implies that
g4 ∨ g5 ∈ E ∨ F and g4 ∨ g5 ∈ OSCσ (g2; t)∨OSCσ (g3; t).
From Proposition 4, we get

g4 ∨ g5 ∈ (OSCσ (g2; t)) ∨ (OSCσ (g3; t))

⊆ OSCσ (g2 ∨ g3; t)

⇒ g4 ∨ g5 ∈ OSCσ (g2 ∨ g3; t)
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So, we have, OSCσ (g2 ∨ g3; t) ∩ E ∨ F ̸= ∅. This implies
that g1 = g2 ∨ g3 ∈ σ (E ∨ F; t).

Hence, σ (E; t) ∨ σ (F; t) ⊆ σ (E ∨ F; t).
Theorem 3: Let (G, OSCσ (G; t)) be an OSCσ (G; t)-

AP.SP. of CFZR and ∅ ̸= E, F ⊆ G Then

1. σ (E; t) ⊚ σ (F; t) ⊆ σ (E ⊚ F; t)
2. σ (E; t) ∨ σ (F; t) ⊆ σ (E ∨ F; t) .

Proof: 1. Suppose that g3 ∈ σ (E; t)⊚σ (F; t) then there
exists g1 ∈ σ (E; t) and g2 ∈ σ (F; t) such that g3 = g1 ⊚g2.
This implies that OSCσ (g1; t) ⊆ E and OSCσ (g2; t) ⊆ F.
This shows thatOSCσ (g1; t)⊚OSCσ (g2; t) ⊆ E⊚F. Since
σ is ⊚-Complete, we have OSCσ (g1; t) ⊚ OSCσ (g2; t) =

OSCσ (g1 ⊚ g2; t) ⊆ S ⊚ T. This implies that

OSCσ (g1 ⊚ g2; t) ⊆ E ⊚ F.

⇒ g3 = g1⊚g2 ∈ σ (E ⊚ F; t). Hence, σ (E; t)⊚σ (F; t) ⊆

σ (E ⊚ F; t).
2. Suppose that g3 ∈ σ (E; t) ∨ σ (F; t) then there exists

g1 ∈ σ (E; t) and g2 ∈ σ (F; t) such that g3 = g1 ∨ g2.
This implies that OSCσ (g1; t) ⊆ E and OSCσ (g2; t) ⊆ F.
Implies that OSCσ (g1; t) ∨ OSCσ (g2; t) ⊆ E ∨ F.
Since σ is ∨-Complete So, we have OSCσ (g1; t) ∨

OSCσ (g2; t) = OSCσ (g1 ∨ g2; t) ⊆ S ∨ T. This implies
that

OSCσ (g1 ∨ g2; t) ⊆ E ∨ F.

⇒ g3 = g1∨g2 ∈ σ (E ∨ F; t). Hence, σ (E; t)∨σ (F; t) ⊆

σ (E ∨ F; t).
Definition 19: Let ∅ ̸= E ⊆ G and (G, OSC�(G; t))

be an OSCσ (G; t)-AP.SP. of TCFR. Then a nonempty
OSCσ (G; t)-UP.appr. σ (E; t) of E in (G, OSC�(G; t)) is
a SubG of G then this is called an OSCσ (G; t)-UP.appr.
Subquantale.

A nonempty OSCσ (G; t)-LW.appr. σ (E; t) of S in
(G, OSCσ (G; t)) is a SubG of G then this is called an
OSCσ (G; t)-LW.appr. Subquantale.

Similarly, we can define ideals(prime, semi-prime, pri-
mary, multiplicative set, m-system).
Theorem 4: Assume that ∅ ̸= E ⊆ G and

(G, OSCσ (G; t)) is a OSCσ (G; t)-AP.SP. of TCFR. If E is
a closed under arbitrary joins, then σ (E; t) is closed under
arbitrary joins.

Proof: Let F ⊆ σ (E; t) then for each f ∈ F, we obtain
f ∈ σ (E; t) , then OSCσ (f ; t) ∩ E ̸= ∅. There exists xf ∈

OSCσ (f ; t) ∩ E. Therefore, we get xf ∈ OSCσ (f ; t) and
xf ∈ E. Now,∨
f ∈F

xf ∈ OSCσ (f ; t) ∨ OSCσ (f ; t) ∨ · · · ∨ OSCσ (f ; t)

From Proposition 4, we get

⊆ OSCσ (f ∨ f ∨ f ∨ · · · ∨ f ; t) = OSCσ (∨F; t)∨
f ∈F

xf ∈ OSCσ (∨F; t)

Since E is a closed under arbitrary joins, we have∨
f ∈Fxf ∈ E. Therefore, we have∨

f ∈Fxf ∈ OSCσ (∨F; t) ∩ E,

⇒ OSCσ (∨F; t) ∩ E ̸= ∅

⇒ ∨F ∈ σ (E; t)

Thus, σ (E; t) is closed under arbitrary joins.
Theorem 5: Assume that ∅ ̸= E ⊆ G and

(G, OSCσ (G; t)) is a OSCσ (G; t)-AP.SP. of ∨-Complete
FZ-Relations. Let E be a closed under arbitrary Joins, then
σ (E; t) is closed under arbitrary joins.

Proof: Let F ⊆ σ (E; t) then for each f ∈ F, we have
f ∈ σ (E; t) . Then OSCσ (f ; t) ⊆ E.

Since σ is ∨-Complete FZ-Relation. Therefore,

OSCσ (f ∨ f ∨ f ∨ · · · ∨ f ; t)

= OSCσ (f ; t) ∨ CCσ (f ; t) ∨ · · · ∨ CCσ (f ; t)

⇒ OSCσ (∨F; t) = ∨OSCσ (F; t)

Assume that w ∈ OSCσ (∨F; t) = ∨OSCσ (F; t). There
exists xf ∈ OSCσ (f ; t) ⊆ E(f ∈ F) such that w =

∨
f ∈Fxf .

Since E is a closed under arbitrary joins, we obtain w =∨
f ∈Fxf ∈ E. Therefore, we get OSCσ (∨F; t) ⊆ E,

⇒ ∨F ∈ σ (E; t)

Hence, σ (E; t) is closed under arbitrary join.
Theorem 6: Let (G,OSC�(G; t)) be an OSCσ (G; t)-

AP.SP. of TCFR and E is a SubG of G.Then σ (E; t) is an
CCσ (G; t)-UP.appr. Subquantale.

Proof: Let E be a SubG of G, thenby definition of SubG,
we have E ⊚ E ⊆ E and E ∨ E ⊆ E. By Proposition 2,
we obtain ∅ ̸= E ⊆ σ (E; t). Hence σ (E; t) is a nonempty
OSCσ (G; t)-UP.appr. As ⊚E ⊆ E. By Proposition 2 we get
σ (E ⊚ E; t) ⊆ σ (E; t). By Theorem 2 we obtain σ (E; t) ⊚
σ (E; t) ⊆ σ (E ⊚ E; t) ⊆ σ (E; t).
Thus, σ (E; t) ⊚ σ (E; t) ⊆ σ (E; t).
Also, As ∨E ⊆ E. By Proposition 2 we obtain σ (E ∨

E; t) ⊆ σ (E; t). By Theorem 2we have σ (E; t)∨σ (E; t) ⊆

σ (E ∨ E; t) ⊆ σ (E; t).
Thus, σ (E; t) ∨ σ (E; t) ⊆ σ (E; t).
Hence, σ (E; t) is a SubG of G. Therefore, σ (E; t) is an

OSCσ (G; t)-UP.appr. quantale.
Theorem 7: Let (G, OSCσ (G; t)) be an OSCσ (G; t)-

AP.SP of CFZR and E is a SubG of G with σ (E; t) ̸= ∅

Then σ (E; t) is an OSCσ (G; t)-LW.appr. quantale.
Proof: Let E be a SubG of G, then by definition of SubG,

we have E ⊚ E ⊆ E and E ∨ E ⊆ E. Also, σ (E; t) is a
nonempty OSCσ (G; t)-LW.appr.

As ⊚E ⊆ E. By Proposition 1 we have σ (E ⊚ E; t) ⊆

σ (E; t). By Theorem 3 we get σ (E; t) ⊚ σ (E; t) ⊆ σ (E ⊚
E; t) ⊆ σ (E; t).
Thus, σ (E; t) ⊚ σ (E; t) ⊆ σ (E; t).
Also, as E ∨ E ⊆ E . By Proposition 2 we have σ (E ∨

E; t) ⊆ σ (E; t). By Theorem 3 we get σ (E; t)∨ σ (E; t) ⊆

σ (E ∨ E; t) ⊆ σ (E; t).
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Thus, σ (E; t) ∨ σ (E; t) ⊆ σ (E; t).
Hence, σ (E; t) is a SubG of G. Therefore, σ (E; t) is an

OSCσ (G; t)-LW.appr. quantale.
Example 3: Assume that E := {0′, f ′, g′, h′

} ⊆ G from
Example 2, then we have σ (E; 0.6) = {0′e′, f ′, g′, h′},and
σ (E; 0.6) = 0′, h′

Note that σ (E; 0.6) ̸= σ (E; 0.6). Hence, it is simple
to check that σ (E; 0.6) is an OSCσ (G; 0.6)-UP.appr. quan-
taleand σ (E; 0.6) is an OSCσ (G; 0.6)-LW.appr. quantale.
However, E is not a SubG of G.
Theorem 8: Let (G, OSCσ (G; t)) be an OSCσ (G; t)-

AP.SP. of ∨-Complete FZ-Relations and E is an ideal of
G.Then σ (E; t) is an OSCσ (G; t)-UP.appr. ideal.

Proof: 1. Suppose p, q ∈ σ (E; t) then OSCσ (p; t) ∩

E ̸= ∅ and OSCσ (q; t) ∩ E ̸= ∅

There exists r ∈ OSCσ (p; t)∩E and s ∈ OSCσ (q; t)∩E,
we have r ∈ OSCσ (p; t), r ∈ E and s ∈ OSCσ (q; t), s ∈ E.
AsE is an ideal so we get r∨s ∈ E and r∨s ∈ OSCσ (p; t)∨

OSCσ (q; t) . From Proposition 3 we obtain,

r ∨ s ∈ OSCσ (p; t) ∨ OSCσ (q; t) ⊆ OSCσ (p ∨ q; t)

⇒ r ∨ s ∈ OSCσ (p ∨ q; t)

⇒ r ∨ s ∈ OSCσ (p ∨ q; t) ∩ E

OSCσ (p ∨ q; t) ∩ E ̸= ∅, Thus, p ∨ q ∈ σ (E; t) .

2. Let p ≤ q ∈ σ (E; t). Then there exists w ∈

OSCσ (q; t) ∩ E. From this we obtain w ∈ OSCσ (q; t) and
w ∈ E. Now,

OSCσ (q; t) = OSCσ (p ∨ q; t) ∵ p ∨ q = q

Since σ is ∨-Complete FZ-Relations, Therefore, OSCσ (p ∨

q; t) = OSCσ (p; t) ∨ OSCσ (q; t). There exists ∈

OSCσ (p; t), s ∈ OSCσ (q; t) such that w = r ∨ s. Since
E is an ideal.

Therefore, r ≤ r ∨ s = w ∈ E implies that r ∈ E. Thus,
r ∈ OSCσ (p; t)∩ E implies that OSCσ (p; t)∩ E ̸= ∅. Thus
p ∈ σ (E; t).
3. Let r ∈ G, p ∈ σ (E; t) Then there exists q ∈

OSCσ (p; t) ∩ E such that q ∈ OSCσ (p; t) and q ∈ E. As E
is an ideal of G, so we get, q ⊚ s ∈ E, s ⊚ q ∈ E for each
s ∈ OSCσ (r; t) ⊆ G. Therefore, we have

q⊚ s ∈ OSCσ (p; t) ⊚ OSCσ (r; t)

From Proposition 2 we have

q⊚ s ∈ OSCσ (p; t) ⊚ OSCσ (r; t) ⊆ OSCσ (p⊚ r; t)

⇒ q⊚ s ∈ OSCσ (p⊚ r; t) ∩ E
⇒ OSCσ (p⊚ r; t) ∩ E ̸= ∅ ⇒ p⊚ r ∈ σ (E; t)

Similarly, we have r ⊚ p ∈ σ (E; t). Therefore, σ (E; t) is an
OSCσ (G; t)-UP.appr. ideal.

We give an example to illustrate that the condition for all
g1, g2 ∈ G,

(OSCσ (g1; 0.6))∨(OSCσ (g2; 0.6))=OSCσ (g1∨g2; 0.6)

In Theorem 8 is indispensable.

Example 4: From Example 1we havefor all g1, g2 ∈ G

(OSCσ (g1; 0.6)) ∨ (OSCσ (g2; 0.6)) ̸=OSCσ (g1 ∨ g2; 0.6)

Because,(
OSCσ

(
0′

; 0.6
))

∨
(
OSCσ

(
r ′

; 0.6
))

= {q′
}

and

OSCσ

(
0′

∨ r ′
; 0.6

)
= {p′, q′, s′}

This implies that(
OSCσ

(
0′

; 0.6
))

∨
(
OSCσ

(
r ′

; 0.6
))

̸= OSCσ

(
0′

∨ r ′
; 0.6

)
Set E = {0′, p′

} then E is an ideal but σ (E; 0.6) =

{0′, p; , q′, s′} is not ideal because σ (E; 0.6) is not a lower
set.
Theorem 9: Let (G, OSCσ (G; t)) be an OSCσ (G; t)-

AP.SP. of CFZR and E be an ideal of G with σ (E; t) ̸= ∅.
Then σ (E; t) is an OSCσ (G; t)-LW.appr. ideal.

Proof: 1. Let p, q ∈ σ (E; t). ThenOSCσ (p; t) ⊆ E and
OSCσ (q; t) ⊆ E
Since σ is ∨-Complete FZ-Relations, we have

OSCσ (p; t) ∨ OSCσ (q; t) = OSCσ (p ∨ q; t) ⊆ E
⇒ OSCσ (p ∨ q; t) ⊆ E.

Hence, p ∨ q ∈ σ (E; t).
2. Let p ≤ q ∈ σ (E; t). Then there exists OSCσ (q; t) ⊆

E. Let w ∈ OSCσ (p; t) and r ∈ OSCσ (q; t), we have

w ∨ r ∈ OSCσ (p; t) ∨ OSCσ (q; t)

From Proposition 4 we have

w ∨ r ∈ OSCσ (p; t) ∨ OSCσ (q; t) ⊆ OSCσ (p ∨ q; t)

w ∨ r ∈ OSCσ (p ∨ q; t) = OSCσ (q; t) ⊆ E
∵ p ∨ q = q

As E is an ideal. Therefore, w ≤ w ∨ r ∈ E ⇒ w ∈ E. Thus,
OSCσ (p; t) ⊆ E. Hence, p ∈ σ (E; t).

3. Let r ∈ G, p ∈ σ (E; t). Then we have OSCσ (p; t) ⊆

E. Let q ∈ OSCσ (p ⊚ r; t). Since σ is ⊚-Complete FZ-
Relations so we have

q ∈ OSCσ (p⊚ r; t) = OSCσ (p; t) ⊚ OSCσ (r; t)

Then there exists q1 ∈ OSCσ (p; t) ⊆ E and q2 ∈

OSCσ (r; t) such that q = q1 ⊚ q2.
As E is an ideal of G, we get q = q1 ⊚ q2 ∈ E. Therefore,

we have OSCσ (p⊚ r; t) ⊆ E.
Hence, p⊚r ∈ σ (E; t). Similarly, we have r⊚p ∈ σ (E; t).

Thus, σ (E; t) is an OSCσ (G; t)-LP.appr. ideal.
Example 5: Assume that E := {0′, g′, h′, 1′

} ⊆ G from
Example 2, then we have σ (E; 0.6) = G and σ (E; 0.6) =

0′, h′, 1′. Note that σ (E; 0.6) ̸= σ (E; 0.6). Hence, it is
simple to verify that σ (E; 0.6) is an OSCσ (G; 0.6)-UP.appr.
ideal and σ (E; 0.6) is an OSCσ (G; 0.7)-LW.appr. ideal. But
E is not a ideal of G.
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Theorem 10: LetE be a prime ideal ofG and (G,OSCσ (G;
t)) be an OSCσ (G; t)-AP.SP. of CFZR. Then σ (E; t) is an
OSCσ (G; t)-UP.appr. prime ideal.

Proof: As E is an ideal of G so by Theorem 8 σ (E; t)
is an OSCσ (G; t)-UP.appr. ideal. Now we have to show that
σ (E; t) is an OSCσ (G; t)-UP.appr. prime ideal.

Let g1, g2 ∈ G such that g1 ⊚ g2 ∈ σ (E; t). Then
OSCσ (g1 ⊚ g2; t) ∩ E ̸= ∅.

As σ is ⊚-Complete FZ-Relation. Therefore, OSCσ (g1;
t)⊚OSCσ (g2; t)∩ E = OSCσ (g1 ⊚ g2; t)∩ E ̸= ∅. There
exists g3 ∈ OSCσ (g1; t) and g4 ∈ OSCσ (g2; t) such that
g3⊚g4 ∈ E. Since E is a prime ideal of G, so we have g3 ∈ E
or g4 ∈ E. Therefore, we have g3 ∈ OSCσ (g1; t) ∩ E or
g4 ∈ OSCσ (g2; t)∩E. This implies thatOSCσ (g1; t)∩E ̸= ∅

or OSCσ (g2; t) ∩ E ̸= ∅.
g1 ∈ σ (E; t) or g2 ∈ σ (E; t). Hence, σ (E; t) is an

OSCσ (G; t)-UP.appr. prime ideal.
Theorem 11: LetE be a prime ideal ofG and (G,OSCσ (G;

t)) be an OSCσ (G; t)-AP.SP. of CFZR. Then σ (E; t) ̸= ∅ is
an OSCσ (G; t)-LW.appr. prime ideal.

Proof: Proof is similar to above.
Theorem 12: Let E be a semi-prime ideal of G and (G,

OSCσ (G; t)) be an OSCσ (G; t)-AP.SP. of CFZR. Then σ (E;
t) is an OSCσ (G; t)-UP.appr. semi-prime ideal.

Proof: As E is an ideal of G, so by Theorem 8, σ (E; t)
is an OSCσ (G; t)-UP.appr. ideal. Now we have to show that
σ (E; t) is an OSCσ (G; t)-UP.appr. semi-prime ideal.

Let g1, ∈ G such thatg1⊚g1 ∈ σ (E; t), thenOSCσ (g1⊚g1;
t) ∩ E ̸= ∅.

There exists g2 ∈ OSCσ (g1 ⊚ g1; t)∩E. This implies that
g2 ∈ OSCσ (g1 ⊚ g1; t) and g2 ∈ E.
Since σ is⊚-Complete FZ-Relation. so we haveOSCσ (g1;

t) ⊚ OSCσ (g1; t) = OSCσ (g1 ⊚ g1; t). Then there exists
g3 ∈ OSCσ (g1; t) such that g2= g3 ⊚ g3 ∈ E. Since E is a
semi-prime ideal of G, so we have g3 ∈ E. This implies that
g3 ∈ OSCσ (g1; t)∩E. This implies that OSCσ (g1; t)∩E ̸=

∅. Thus g1 ∈ σ (E; t). Hence, σ (E; t) is an OSCσ (G; t)-
UP.appr. semi-prime ideal.
Theorem 13: Let E be a semi-prime ideal of G and (G,

OSCσ (G; t)) be an OSCσ (G; t)-AP.SP. of CFZR. Then σ (E;
t) ̸= ∅ is an OSCσ (G; t)-LW.appr. semi-prime ideal.

Proof: Proof is similar to above.
Theorem 14: Let E be a primary ideal of G and (G,

OSCσ (G; t)) be an OSCσ (G; t)-AP.SP. of CFZR. If σ (E;
t) ̸= ∅ and σ (E; t) ̸= Q. Then σ (E; t) is an OSCσ (G; t)-
UP.appr. primary ideal.

Proof: As E is an ideal of G, so by Theorem 8, σ (E; t)
is an OSCσ (G; t)-UP.appr. ideal. Now we have to show
that σ (E; t) is an OSCσ (G; t)-UP.appr. primary ideal. Let
g1, g2 ∈ G such thatg1⊚g2 ∈ σ (E; t) and g1 /∈ σ (E; t) then
there exists p ∈ OSCσ (g1 ⊚ g2; t) ∩ E. From this we have,
p ∈ OSCσ (g1 ⊚ g2; t) and p ∈ E.

As σ is ⊚-Complete FZ-Relation so we have p ∈

OSCσ (g1 ⊚ g2; t) = OSCσ (g1; t) ⊚ OSCσ (g2; t) ⇒ p ∈

OSCσ (g1; t) ⊚ OSCσ (g2; t). There exists q ∈ OSCσ (g1; t)
and w ∈ OSCσ (g2; t) be such that p = q ⊚ w ∈ E. Since

g1 /∈ σ (E; t), we get q /∈ E. Since E is a primary ideal we
have wn ∈ E for some n > 0. Now, w⊚ w⊚ w⊚ . . . ⊚ w ∈

OSCσ (g2; t)⊚OSCσ (g2; t)⊚OSCσ (g2; t) . . .⊚OSCσ (g2;
t).

Since σ is ⊚-Complete FZ-Relation. Thus, we have

wn ∈ OSCσ (g2 ⊚ g2 ⊚ . . . ⊚ g2; t)

⇒ wn ∈ OSCσ

(
gn2; t

)
, ⇒ wn ∈ OSCσ

(
gn2; t

)
∩ E

⇒ OSCσ

(
gn2; t

)
∩ E ̸= ∅, ⇒ gn2 ∈ σ (E; t)

Hence, σ (E; t) is an OSCσ (G; t)-UP.appr. primary ideal.
Theorem 15: Let E be a primary ideal of G and (G,

OSCσ (G; t)) be an OSCσ (G; t)-AP.SP. of CFZR. Then σ (E;
t) ̸= ∅ is an OSCσ (G; t)-LW.appr. primary ideal.

Proof: Proof is similar to above.
Theorem 16: Let E is a multiplicative set of G and (G,

OSCσ (G; t)) be an OSCσ (G; t)-AP.SP. of TCFR. Then σ (E;
t) ̸= ∅ is an OSCσ (G; t)-UP.appr. multiplicative set.

Proof: Assume that g1, g2 ∈ σ (E; t) , there exists p ∈

OSCσ (g1; t) ∩ E, q ∈ OSCσ (g2; t) ∩ E.
⇒ p ∈ OSCσ (g1; t), p ∈ E and q ∈ OSCσ (g2; t), q ∈ E,

⇒ p⊚ q ∈ OSCσ (g1; t) ⊚ OSCσ (g2; t).
From Proposition 3, we have p ⊚ q ∈ OSCσ (g1; t) ⊚

OSCσ (g2; t) ⊆ OSCσ (g1⊚g2; t) ⇒ p⊚q ∈ OSCσ (g1⊚g2;
t).
Since E is a multiplicative set, so we have p ⊚ q ∈ E.

Therefore, p⊚ q ∈ OSCσ (g1 ⊚ g2; t) ∩ E.

⇒ OSCσ (g1 ⊚ g2; t) ∩ E ̸= ∅ ⇒ g1 ⊚ g2 ∈ σ (E; t).
Hence, σ (E; t) is an OSCσ (G; t)-UP.appr. multiplicative

set.
Theorem 17: Let E be a multiplicative set of G and (G,

OSCσ (G; t)) be an OSCσ (G; t)-AP.SP. of ⊚-Complete FZ-
Relation. Then σ (E; t) ̸= ∅ is an OSCσ (G; t)-LW.appr.
multiplicative set.

Proof: Assume that g1, g2 ∈ σ (E; t) , then, OSCσ (g1;
t) ⊆ E and OSCσ (g2; t) ⊆ E.Let p ∈ OSCσ (g1 ⊚ g2; t).
As σ is⊚-Complete FZ-Relation, we have p ∈ OSCσ (g1⊚

g2; t) = OSCσ (g1; t) ⊚ OSCσ (g2; t).
Then there exists q ∈ OSCσ (g1; t) ⊆ E and w ∈

OSCσ (g2; t) ⊆ E such that p = q⊚ w.

Since, E is a multiplicative set, we have

p = q⊚ w ∈ E, ⇒ p ∈ E

So, OSCσ (g1 ⊚ g2; t) ⊆ E, ⇒ g1 ⊚ g2 ∈ σ (E; t)

Hence, σ (E; t) is an OSCσ (G; t)-LW.appr. multiplicative
set.
Theorem 18: Let E ⊆ G is an m-system of G and (G,

OSCσ (G; t)) be an OSCσ (G; t)-AP.SP. of ∨-Complete FZ-
Relation. Then σ (E; t) is anOSCσ (G; t)-UP.appr. m-system.

Proof: Assume that g1, g2 ∈ σ (E; t) , then OSCσ (g1;
t) ∩ E ̸= ∅ and OSCσ (g2; t) ∩ E ̸= ∅.

Hence there exists p1 ∈ OSCσ (g1; t)∩ E, p2 ∈ OSCσ (g2;
t) ∩ E.

⇒ p1 ∈ OSCσ (g1; t), p1 ∈ E and p2 ∈ OSCσ (q2; t),
p2 ∈ E, ⇒ p1, p2 ∈ E. As E is an m-system, there is p ∈ E
such that p ≤ p1 ⊚ 1 ⊚ p2.
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Hence, p1 ⊚ 1 ⊚ p2 = p ∨ (p1 ⊚ 1 ⊚ p2).
Now, p1 ⊚ 1 ⊚ p2 ∈ OSCσ (p1 ⊚ 1 ⊚ p2; t),

⇒ p1 ⊚ 1 ⊚ p2 ∈ OSCσ (p ∨ (p1 ⊚ 1 ⊚ p2); t),

Since σ is ∨-Complete FZ-Relation so we have

p1 ⊚ 1 ⊚ p2 ∈ OSCσ (p; t) ∨ OSCσ (p1 ⊚ 1 ⊚ p2; t)

There exists q ∈ OSCσ (p; t),
w ∈ OSCσ (p1 ⊚ 1⊚ p2; t) such that p1 ⊚ 1⊚ p2 = q∨w

and hence, q ≤ p1 ⊚ 1 ⊚ p2. By Proposition 1, we have q ∈

OSCσ (p; t) if and only if

OSCσ (p; t) = OSCσ (q; t)

Since p ∈ E, p ∈ OSCσ (p; t) this implies that

OSCσ (p; t) ∩ E ̸= ∅

⇒ OSCσ (q; t)∩E ̸= ∅, ⇒ y ∈ σ (E; t).
Hence, σ (E; t) is an OSCσ (G; t)-UP.appr. m-system.

IV. HOMOMORPHIC IMAGES OF ROUGH
SUBSTRUCTURES IN QUANTALE
This section is devoted to study the relations between
rough substructures of quantale dependent on overlap of the
successor classes and their homomorphic images. Moreover,
some important theorems under quantale homomorphism are
introduced.
Definition 20: Let (G,⊚) and (H, ⊗) be two quantales.

Then a mapping F : G → H is known as a homomorphism
in quantale if it satisfies the following Properties
1. F (g1 ⊚ g2) = F (g1) ⊗ F(g2)
2. F(∨j∈Jgj) = ∨j∈JF(gj)∀g1, g2, gj ∈ G,

A homomorphism F is said to be monomorphism if it is
one-one and homomorphism F is said to be epimorphism if it
is onto. A homomorphism F is said to be isomorphism if it is
bijective. Note that σ is order preserving as g1 ≤ g2 implies
F (g1) ≤ F (g2).
Proposition 5 [25]: Let σ (g1, g2) = ρ (F (g1), F(g2)) ,

∀g1, g2 ∈ G where F is a surjective homomorphism from G
in (G,OSCσ (G; t) to H in (H;OSCρ(H; t)) then following
properties hold
1. g1 ∈ OSCσ (g2; t) if and only if F(g1) ∈

OSCρ(F (g2) ; t), ∀g1, g2 ∈ G.
2. For every nonempty subset E of G we have

F (σ (E; t)) = ρ (F(E); t) .

3. For every nonempty subset E of G we have

F
(
σ (E; t)

)
⊆ ρ (F(E); t) .

4. For every nonempty subsetE ofG and ifF is one-one then
we have

F
(
σ (E; t)

)
= ρ (F(E); t)

5. If ρ is a transitive and compatible FZ-Relations, then σ is
a transitive and compatible FZ-Relations.

Proof: 1. Let g1 ∈ OSCσ (g2; t), where g1, g2 ∈ G.
Then F(g1), F(g2) ∈ H and SCσ (g1; t) ∩ SCσ (g2; t) ̸=

∅. Thus there exists g3 ∈ G such that g3 ∈ SCσ (g1; t) ∩

SCσ (g2; t) .

Hence, σ (g1, g3) ≥ t and σ (g2, g3) ≥ t. By the
assumption, we get

ρ (F (g1) , F (g3)) = σ (g1, g3) ≥ t and

ρ (F (g2) , F (g3)) = σ (g2, g3) ≥ t.

Thus, F(g3) ∈ SCσ (F(g1); t) ∩ SCσ (F(g2); t).
This implies that SCσ (F(g1); t) ∩ SCσ (F(g2); t) ̸= ∅.
Therefore, we have F(g1) ∈ OSCσ (F (g2) ; t).
Conversely, let F(g1) ∈ OSCσ (F (g2) ; t). Then

SCσ (F(g1); t) ∩ SCσ (F(g2); t) ̸= ∅.
Then there exists g3 ∈ G such that F(g3) ∈

SCσ (F(g1); t) ∩ SCσ (F(g2); t).
Then ρ (F (g1) , F (g3)) ≥ t and ρ (F (g2) , F (g3)) ≥ t.

This implies that

ρ (F (g1) , F (g3)) = σ (g1, g3) ≥ t and

ρ (F (g2) , F (g3)) = σ (g2, g3) ≥ t.

This implies that g3 ∈ SCσ (g1; t) ∩ SCσ (g2; t) .

We get, SCσ (g1; t) ∩ SCσ (g2; t) ̸= ∅.
Hence, g1 ∈ OSCσ (g2; t).
2. Let E ̸= ∅ and E ⊆ G. Suppose that h1 ∈ F (σ (E; t)) .

Then there exists g1 ∈ σ (E; t) such that F (g1) = h1,
we haveOSCσ (g1;t) ∩ E ̸= ∅. There exists g2 ∈ G such that
g2∈ OSCσ (g1;t) ∩ E and g2 ∈ E. By property (1), we obtain
that F (g2) ∈ OSCρ (F (g1) ;t) and F(g2) ∈F(E).
OSCρ (F (g1) ; t) ∩ F(E) ̸= φ. So we have,

h1 = F(g1) ∈ ρ(F(E); t)

Thus, F
(
� (E; t)

)
⊆ ρ(F(E); t).

Now, let h2 ∈ ρ(F(E); t) then there exists g3 ∈ G
such that h2 = F(g3) and so we have OSCρ (F (g3) ; t) ∩

F(E) ̸= φ. There exists g4 ∈ E be such that
F (g4) ∈ OSCρ (F (g3) ;t) and φ(g4) ∈ F(E). By property
(1) we get q4∈ OSCσ (g3;t) ∩ E and g3 ∈ E, so we have
OSCσ (g3;t) ∩ E ̸= ∅. Hence, g3 ∈ σ (E; t) and therefore,
h2 = F(g3) ∈ F (σ (E; t)). Thus,

ρ(F(E); t) ⊆ F (σ (E; t))

Hence, F (σ (E; t)) = ρ(F(E); t).
3. Let E ̸= ∅ and E ⊆ G. Suppose that h1 ∈ F

(
σ (E; t)

)
.

Then there exists g1 ∈ σ (E; t) such that F (g1) = h1,
we have OSCσ (g1; t) ⊆ E. We have to show that

OSCρ (h1; t) ⊆ F(E).

Let h2∈ OSCρ (h1; t) . Then there exists h2 ∈ G be such
that F (g2) = h2. ⇒ F (g2) ∈ OSCρ (F (g1) ; t) By property
(1) we obtain g2∈ OSCσ (g1;t) and g2 ∈ E. Hence, we have
h2 = F(g2) ∈ F(E). ⇒ OSCρ (h1; t) ⊆ F(E), ⇒ h1 ∈

ρ(F(E); t). Hence, F
(
σ (E; t)

)
⊆ ρ(F(E); t).

4. Let E ̸= ∅ and E ⊆ G. We have to show that
ρ (F(E); t) ⊆ F

(
σ (E; t)

)
.
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Suppose that h1 ∈ ρ(F (E) ; t) then there exists g1 ∈ G
such that h1 = F(g1) and so we have OSCρ (F (g1) ; t) ⊆

F(E). We have to show that

OSCσ (g1;t) ⊆ E.

Let g2∈ OSCσ (g1;t) then by property (1) we have
F (g2) ∈ OSCρ (F (g1) ; t) . This implies that F(g2) ∈F(E).
Then there exists g3 ∈ E such that F (g3) = F(g2).
By assumption we have g2 ∈ E and so OSCσ (g1;t) ⊆ E.
⇒ g1 ∈ σ (E; t).

Hence, h1 = F(g1) ∈ F
(
σ (E; t)

)
, this implies

ρ (F(E); t) ⊆ F
(
σ (E; t)

)
.

From this and property (3) we have

ρ (F(E); t) = F
(
σ (E; t)

)
.

5. Transitive: Let ρ be a transitive then

ρ (F (g1) , F (g2)) ≥

∨
F(g3)∈H

(ρ (F (g1) , F (g3))

∧ ρ (F (g3) , F (g2))

⇒ σ (g1, g2) ≥

∨
g3∈G

(σ (g1, g3) ∧ σ (g3, g2))

∀g1, g2 ∈ G by definition.
This shows that σ is a transitive.
Compatibility: Suppose that ρ is compatible then

∀g1, g2, g3, ej, fj ∈ G, we have

ρ (F (g1 ⊚ g3) , F (g2 ⊚ g4))

≥ ρ (F (g1) , F (g2))

∧ρ (F (g3) , F (g4)) and

ρ
(
F

(∨
j∈Jej

)
, F

(∨
j∈Jfj

))
≥

∧
j∈Jρ

(
F

(
ej

)
, F

(
fj

))
.

This implies that σ (g1 ⊚ g3, g2 ⊚ g4) ≥ σ (g1, g2) ∧

σ (g3, g4) and σ
(∨

j∈Jej,
∨
j∈Jfj

)
≥

∧
j∈Jσ (ej, fj). This

shows that σ is compatible.
Proposition 6: Let σ (g1, g2) = ρ(F (g1), F(g2))∀g1,

g2 ∈ G where F is a surjective homomorphism from G
in (G,OSCσ (G; t) to H in (H;OSCρ(H; t)) then following
statements holds
1. g ∈ σ (E; t) ⇔ φ(g) ∈ ρ(F(E); t)
2. g ∈ σ (E; t) ⇔ φ(g) ∈ ρ(F(E); t.

Proof: 1. Let g ∈ σ (E; t) then OSCσ (g; t) ∩ E ̸=

∅. Then there exists g1 ∈ OSCσ (g; t) ∩ E ⇒ g1 ∈

OSCσ (g; t) , g1 ∈ E.
By Proposition 5 we have F(g1) ∈ OSCρ(F (g) ; t),

F(g1) ∈ F(E)
This implies F(g1) ∈ OSCρ(F (g) ; t) ∩ F(E).

⇒ OSCρ(F (g) ; t) ∩ F(E) ̸= ∅

⇒ F (g) ∈ ρ (F(E); t) .

Conversely, let F(g) ∈ ρ(F(E); t) then OSCρ(F (g) ; t) ∩

F(E) ̸= ∅. Then there existsF(g1) ∈ OSCρ(F (g) ; t)∩F(E).
This implies F(g1) ∈ OSCρ(F (g) ; t), F(g1) ∈ F(E).

By Proposition 5, we have

g1 ∈ OSCσ (g; t) , q1 ∈ E ⇒ g1 ∈ OSCσ (g; t) ∩ E

⇒ OSCσ (g; t) ∩ E ̸= ∅,⇒ g ∈ σ (E; t).
Hence, g ∈ σ (E; t) ⇔ φ(g) ∈ ρ(F(E); t)
2. Let g ∈ σ (E; t) then OSCσ (g; t) ⊆ E. Then there

exists g1 ∈ OSCσ (g; t) ⊆ E ⇒ g1 ∈ OSCσ (g; t) , g1 ∈ E.
By Proposition 5 we have F(g1) ∈ OSCρ(F (g) ; t), F (g1) ∈

F(E).
This implies F(g1) ∈ OSCρ(F (g) ; t) ⊆ F(E).

⇒ OSCρ(F (g) ; t) ⊆ F(E)
⇒ F (g) ∈ ρ (F(E); t) .

Conversely, let F(g) ∈ ρ(F(E); t) then OSCρ(F (g) ; t) ⊆

F(E). Then there exists F(g1) ∈ OSCρ(F (g) ; t) ⊆ F(E).
This implies F(g1) ∈ OSCρ(F (g) ; t), F(g1) ∈ F(E).

By Proposition 5, we have

g1 ∈ OSCσ (g; t) , g1 ∈ E ⇒ g1 ∈ OSCσ (g; t) ⊆ E

⇒ OSCσ (g; t) ⊆ E, ⇒ g ∈ σ (E; t).
Hence, g ∈ σ (E; t) ⇔ F(g) ∈ ρ(F(E); t)
Proposition 7: Let σ (g1, g2) = ρ(F (g1), F(g2))∀g1,

g2 ∈ G where F is a bijective homomorphism from G in
(G, OSCσ (G; t) to H in (H;OSCρ(H; t)). If ρ is complete
then σ is complete.

Proof: 1. Let g3 ∈ OSCσ (g1 ⊚ g2; t) . Then by
Proposition 5 we get

F(g3) ∈ OSCρ(F (g1 ⊚ g2) ; t)

As ρ is complete and F is a homomorphism so,

F (g3) ∈ OSCρ (F (g1 ⊚ g2) ; t)

= OSCρ (F (g1) ⊚ F(g2) ; t)

= OSCρ (F (g1) ; t) ⊚ OSCρ (F (g2) ; t)

Then there exists h1 ∈ OSCρ (F (g1) ; t) and h2 ∈

OSCρ (F (g2) ; t) be such that F (g3) = h1 ⊚ h2. As F is
surjective, there exists g4, g5 ∈ G such that F (g4) = h1 and
F (g5) = h2.
This implies that F (g4) ⊚ F (g5) = F (g3) ∈

OSCρ (F (g1) ; t) ⊚ OSCρ (F (g2) ; t). It follows that
F(g4) ∈ OSCρ (F (g1) ; t), F (g5) ∈ OSCρ (F (g2) ; t) .

By proposition 5(1), we get g4 ∈ OSCσ (g1; t) and g5 ∈

OSCσ (g2; t),since F is a homomorphism, we get F (g4) ⊚
F (g5) = F (g3) = F(g4 ⊚ g5).

Since F is one-one, we get that g3 = g4 ⊚ g5.
Therefore, we obtain g3 = g4 ⊚ g5 ∈ OSCσ (g1; t) ⊚

OSCσ (g2; t), ⇒ q3 ∈ OSCσ (q1; t) ⊚ OSCσ (q2; t). Hence,

OSCσ ((g1 ⊚ g2) ; t) ⊆ OSCσ (g1; t) ⊚ OSCσ (g2; t)

Now, by Proposition 3 and Proposition 5, we have

OSCσ (g1; t) ⊚ OSCσ (g2; t) ⊆ OSCσ ((g1 ⊚ g2) ; t) .

Hence,

OSCσ (g1; t) ⊚ OSCσ (g2; t) = OSCσ ((g1 ⊚ g2) ; t) .
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2. Let g3 ∈ OSCσ (g1 ∨ g2; t) then by Proposition 5,
we get

F(g3) ∈ OSCρ(F (g1 ∨ g2) ; t)

As ρ is complete and F is a homomorphism so,

F (g3) ∈ OSCρ (F (g1 ∨ g2) ; t)

= OSCρ (F (g1) ∨ F(g2) ; t)

= OSCρ (F (g1) ; t) ∨ OSCρ (F (g2) ; t)

Then there exists h1 ∈ OSCρ (F (g1) ; t) and h2 ∈

OSCρ (F (g2) ; t) be such that F (g3) = h1 ⊚ h2. As F is
surjective, there exists g4, g5 ∈ G such that F (g4) = h1 and
F (g5) = h2.

This implies that F (g4) ∨ F (g5) = F (g3) ∈

OSCρ (F (g1) ; t) ∨ OSCρ (F (g2) ; t). It follows that
F(g4) ∈ OSCρ (F (g1) ; t) and F(g5) ∈ OSCρ (F (g2) ; t).

By Proposition 5 we get g4 ∈ OSCσ (g1; t) and g5 ∈

OSCσ (g2; t), since F is a homomorphism, we get

F (g4) ∨ F (g5) = F (g3) = F(g4 ∨ g5)

Since F is one-one, we get that g3 = g4 ∨ g5.
Therefore, we obtain g3 = g4 ∨ g5 ∈ OSCσ (g1; t) ∨

OSCσ (g2; t), ⇒ q3 ∈ OSCσ (q1; t) ∨ OSCσ (q2; t). Hence,

OSCσ ((g1 ∨ g2) ; t) ⊆ OSCσ (g1; t) ∨ OSCσ (g2; t)

Now, by Proposition 4 and Proposition 5 we have

OSCσ (g1; t) ∨ OSCσ (g2; t)

⊆ OSCσ ((g1 ∨ g2) ; t) .

Hence,

OSCσ (g1; t) ∨ OSCσ (g2; t)

= OSCσ ((g1 ∨ g2) ; t) .

Theorem 19: Let σ (g1, g2) = ρ(F (g1), F(g2))∀g1, g2 ∈

G. where F is a surjective homomorphism from G in
(G, OSCσ (G; t) to H in (H; OSCρ(H; t)) of TCFR and
E be a nonempty subset of G. Then ρ(F(E); t) is an
OSCρ(H; t)-UP.appr. quantale iffσ (E; t) is an OSCσ (G; t)-
UP.appr. quantale.

Proof: Let ρ(F (E) ; t) be an OSCρ(G; t)-UP.appr.
quantale. We have to show that σ (E; t) is an OSCσ (G; t)-
UP.appr. quantale. For this we have to show that σ (E; t) is a
SubG of G.
(1). Let g1 ∈ σ (E; t) ⊚ σ (E; t), From Proposition 5 we

have

F(g1) ∈ F(σ (E; t) ⊚ σ (E; t))

= F(σ (E; t)) ⊚ φ(σ (E; t))

= ρ (F(E); t) ⊚ ρ (F(E); t) ⊆ ρ (F(E); t)

= F(σ (E; t))

Therefore, there exists g2 ∈ σ (E; t) such that F (g1) =

F(g2). We have OSCσ (g2; t) ∩ E ̸= ∅.

From Proposition 1 we have F(g1) ∈ OSCρ(F (g2) ; t).
By Proposition 5, we obtain g1 ∈ OSCσ (g1; t) from
Proposition 1 OSCσ (g1; t) = OSCσ (g2; t) this implies that

OSCσ (g1; t) ∩ E ̸= ∅

⇒ g1 ∈ σ (E; t)

Hence, σ (E; t) ⊚ σ (E; t) ⊆ σ (E; t).
(2). Let g1 ∈ σ (E; t) ∨ σ (E; t), From 2 Proposition 5 we

have

F(g1) ∈ F(σ (E; t) ∨ σ (E; t))

= F(σ (E; t)) ∨ φ(σ (E; t))

= ρ (F(E); t) ∨ ρ (F(E); t) ⊆ ρ (F(E); t)

= F(σ (E; t))

Therefore, there exists g2 ∈ σ (E; t) such that F (g1) =

F(g2), we have OSCσ (g2; t) ∩ E ̸= ∅.
From Proposition 1 we have

F(g1) ∈ OSCρ(F (g2) ; t)

By Proposition 5, we obtain g1 ∈ OSCσ (g1; t) so from
Proposition 1, we have OSCσ (g1; t) = OSCσ (g2; t). This
implies that

OSCσ (g1; t) ∩ E ̸= ∅

⇒ g1 ∈ σ (E; t)

Hence, σ (E; t) ∨ σ (E; t) ⊆ σ (E; t).
Thus, σ (E; t) is a SubG of G. Therefore, σ (E; t) is an

OSCσ (G; t)-UP.appr. quantale.
Conversely, let σ (E; t) be an OSCσ (G; t)-UP.appr. quan-

tale. We have to show that ρ(F(E); t) is an OSCρ(H; t)-
UP.appr. quantale.

For this we have to show that ρ (F(E); t) is a SubH of H.
(3). By Proposition 5 we have ρ(F(E); t)⊚ ρ(F(E); t) =

F(σ (E; t))⊚F(σ (E; t)) = F(σ (E; t)⊚ σ (E; t)), since F is
homo. ⊆ F(σ (E; t)) since σ (E; t) is SubQ = ρ(F(E); t) By
Proposition 5

ρ (F(E); t) ⊚ ρ (F(E); t) ⊆ ρ (F(E); t) .

(4). By Proposition 5 we have ρ (F(E); t)∨ρ (F(E); t) =

F(σ (E; t)) ∨ F(σ (E; t)) = F(σ (E; t) ∨ σ (E; t)) since F is
homo. ⊆ F(σ (E; t)) since σ (E; t) is SubQ = ρ (F(E); t) by
Proposition 5

ρ (F(E); t) ∨ ρ (F(E); t) ⊆ ρ (F(E); t) .

This shows that ρ(F(E); t) is a SubH of H. This shows
that ρ(F(E); t) is an OSCρ(H; t)-UP.appr. quantale.Hence
proved.
Theorem 20: Let σ (g1, g2) = ρ(F (g1), F(g2))∀g1, g2 ∈

G where F is a bijective homomorphism from G in
(G, OSCσ (G; t) to H in (H; OSCρ(H; t)) of TCFR and E be
a nonempty subset of G. Then ρ(F(E); t) is an OSCρ(H; t)-
LW.appr. quantale iff σ (E; t) is an OSCσ (G; t)-LW.appr.
quantale.
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Proof: Proof of this theorem is similar to above
Theorem 19.
Theorem 21: Let σ (g1, g2) = ρ(F (g1), F(g2))∀g1, g2 ∈

G where F is a surjective homomorphism from G in
(G, OSCσ (G; t) to H in (H;OSCρ(H; t)) of TCFR and E be
a nonempty subset of G. Then ρ(F(E); t) is an OSCρ(H; t)-
UP.appr. ideal iff σ (E; t) is an OSCσ (G; t)-UP.appr. ideal.

Proof: Let σ (E; t) is an OSCσ (G; t)-UP.appr. ideal.
We have to show that ρ(F(E); t) is an OSCρ(H; t)-UP.appr.
ideal.

(1). Let h1, h2 ∈ ρ(F(E); t). Then there exists g1, g2 ∈ G
such that F (g1) = h1, F (g2) = h2.
Since σ (E; t) is an ideal. Therefore, g1 ∨ g2 ∈ σ (E; t).

This implies that F(g1 ∨ g2) ∈ F(σ (E; t)).
By Proposition 5 we have F(g1 ∨ g2) ∈ ρ(F(E); t). This

implies F(g1)∨F(g2) ∈ ρ(F(E); t) since F is homo.⇒ h1∨

h2 ∈ ρ(F(E); t).
(2). Assume that h1 ≤ h2 ∈ ρ(F(E); t). Then there exists

g1 ∈ G and g2 ∈ σ (E; t) such that h1 = F(g1) and h2 =

F(g2). SinceF (g1) ≤ F(g2) we haveF(g1)∨F(g2) = F(g1∨
g2) = F(g2) ∈ ρ(F(E); t). This implies

F(g1 ∨ g2) ∈ ρ(F(E); t)

⇒ g1 ∨ g2 ∈ σ (E; t) by Proposition 5.
Since σ (E; t) is an ideal and

g1 ≤ g1 ∨ g2 ∈ σ (E; t)

⇒ g1 ∈ σ (E; t), ⇒ F(g1) ∈ ρ(F(E); t).
⇒ h1 ∈ ρ(F(E); t).

(3).Assume that h1 ∈ ρ(F(E); t), h2 ∈ G then there exists
g1 ∈ σ (E; t), g2 ∈ G such that h1 = F(g1) and h2 = F(g2).
Since σ (E; t) is an ideal, so we have g1 ⊚ g2 ∈ σ (E; t),

⇒ F(g1 ⊚ g2) ∈ ρ(F(E); t)

⇒ F(g1) ⊚ F(g2) ∈ ρ(F(E); t). Since F is homo. ⇒ h1 ⊚
h2 ∈ ρ(F(E); t). Similarly, h2 ⊚ h1 ∈ ρ(F(E); t). Hence,
ρ(F (E) ; t) is an OSCρ(H; t)-UP.appr. ideal.

Conversely, Assume that ρ(F(E); t) is an OSCρ(H; t)-
UP.appr. ideal. We have to show that σ (E; t) is an
OSCσ (G; t)-UP.appr. ideal.

(4). Let g1, g2 ∈ σ (E; t) then F (g1) , F(g2) ∈ ρ(F(E); t).
Since ρ(F(E); t) is an ideal so we have F(g1) ∨ F(g2) ∈

ρ(F(E); t).
⇒ F(g1 ∨g2) ∈ ρ(F(E); t) since F is homo. ⇒ g1 ⊚g2 ∈

σ (E; t).
(5). Let g1 ≤ g2 ∈ σ (E; t) then F(g1) ≤ F(g2) ∈

ρ(F(E); t). By Proposition 5.
Since ρ(F(E); t) is an ideal so we have F(g2) ∈

ρ(F(E); t) this implies that g2 ∈ σ (E; t) by Proposition 5.
(6). Assume that g1 ∈ σ (E; t) and g2 ∈ G then by

Proposition 5 we have F(g1) ∈ ρ(F(E); t), φ(g2) ∈ H. Since
ρ(F(E); t) is an ideal so we have

F (g1) ⊚ F (g2) ∈ ρ (F(E); t) ,

⇒ F (g1 ⊚ g2) ∈ ρ (F(E); t) , since F is homo.

⇒ g1⊚g2 ∈ σ (E; t) by Proposition 5 similarly, g2⊚g1 ∈

σ (E; t). Hence, σ (E; t) is an OSCσ (G; t)-UP.appr. ideal.
Theorem 22: Let σ (g1, g2) = ρ(F (g1), F(g2))∀g1, g2 ∈

G where F is a bijective homomorphism from G in
(G, OSCσ (G; t) to H in (H; OSCρ(H; t)) of TCFR and E be
a nonempty subset of G. Then ρ(F(E); t) is an OSCρ(H; t)-
LW.appr. ideal iff σ (E; t) is an OSCσ (G; t)-LW.appr. ideal.

Proof: The proof of this is similar to above theorem.
Theorem 23: Let σ (g1, g2) = ρ(F (g1), F(g2))∀g1, g2 ∈

G where F is a bijective homomorphism from G in
(G, OSCσ (G; t) to H in (H; OSCρ(H; t)) of CFZR and E be
a nonempty subset of G. Then ρ(F(E); t) is an OSCρ(H; t)-
UP.appr. prime ideal iff σ (E; t) is an OSCσ (G; t)-UP.appr.
prime ideal.

Proof: Assume that σ (E; t) is an OSCσ (E; t)-UP.appr.
prime ideal. Let h1, h2 ∈ G such that h1 ⊚ h2 ∈ ρ (F(E), t).
Then there exists h1, h2 ∈ E such that F (g1) = h1 and
F (g2) = h2. Then

OSCρ (F (g1) ⊚ F (g2) ; t) ∩ F(E) ̸= ∅.

Since ρ is complete, we have

(OSCρ (F (g1) ; t) ⊚ OSCρ (F (g2) ; t)) ∩ F(E)
= OSCρ (F (g1) ⊚ F (g2) ; t) ∩ F(E) ̸= ∅.

Then there exists F(q3) ∈ OSCρ (F (g1) ; t) and F(g4) ∈

OSCρ (F (g2) ; t) be such that F(g3)⊚F(g4) ∈ F(E) and we
have F(g3 ⊚ g4) ∈ F(E). Then there exists g5 ∈ E such
that F (g3 ⊚ g4) = F(g5). By Proposition 5 we get g3 ∈

OSCσ (g1; t) and g4 ∈ OSCσ (g2; t). From Proposition 5 and
Proposition 3, we obtain that g3 ⊚ g4 ∈ OSCσ (g1 ⊚ g2; t).
By Proposition 1 we haveOSCσ (g1⊚g2; t) = OSCσ (g3⊚

g4; t). Note that F(g3 ⊚ g4) ∈ OSCρ(F(g3 ⊚ g4); t).
Then F (g5) ∈ OSCρ (F (g3 ⊚ g4) ; t) . By Proposition 5,

we have g5 ∈ OSCσ (g3 ⊚ g4; t) = OSCσ (g1 ⊚ g2; t) .

Thus, OSCσ (g1 ⊚ g2; t) ∩ E ̸= ∅ and therefore we get,
g1 ⊚ g2 ∈ σ (E; t) . Since, σ (E; t) is a prime ideal of G,
therefore, we have g1 ∈ σ (E; t) or g2 ∈ σ (E; t). We get
that F(g1) ∈ F(σ (E; t)) or F(g2) ∈ F(σ (E; t)). From
Proposition 5, we have F(g1) ∈ ρ(F(E); t) or F(g2) ∈

ρ(F(E); t), this implies that h1 ∈ ρ(F(E); t) or h2 ∈

ρ(F (E) ; t). This shows that ρ(F(E); t) is a prime ideal ofH.
Hence, ρ(F(E); t) is an OSCρ(H; t)-UP.appr. prime ideal.

Conversely, assume that ρ(F(E); t) is an OSCρ(H; t)-
UP.appr. prime ideal. Now, let g6, g7 ∈ G such that g6 ⊚g7 ∈

σ (E; t). Then F(g6 ⊚ g7) ∈ F(σ (E; t)). By Proposition 5
we get

F(g6) ⊚ F (g7) = F(g6 ⊚ g7) ∈ F(σ (E; t))

= ρ(F(E); t)

Thus, F(g6) ∈ ρ (F(E); t) or F(g7) ∈ ρ (F(E); t). Now,
we consider the following two cases.

Case 1. If F(g6) ∈ ρ (F(E); t), By Proposition 5 we
have F(g6) ∈ F(σ (E; t)). There exists g8 ∈ σ (E; t)

such that F (g6) = F(g8) then OSCσ (g8; t) ∩ E ̸= ∅.
By proposition 1, we get F (g8) ∈ OSCρ (F (g8) ; t) . Thus,
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F (g6) ∈ OSCρ (F (g8) ; t) . By Proposition 5, we have g6 ∈

OSCσ (g8; t) . From Proposition 1 we have OSCσ (g6; t) =

OSCσ (g8; t) . Thus, we have OSCσ (g6; t) ∩ E ̸= ∅ and
so,

g6 ∈ σ (E; t) .

Case 2. If F(g7) ∈ ρ (F(E); t), By Proposition 5 we
have F(g7) ∈ F(σ (E; t)). There exists g9 ∈ σ (E; t)

such that F (g7) = F(g9) then OSCσ (g9; t) ∩ E ̸= ∅.
By Proposition 1 we get F (g9) ∈ OSCρ (F (g9) ; t) . Thus,
F (g7) ∈ OSCρ (F (g9) ; t) . By Proposition 5 we have g7 ∈

OSCσ (g9; t) . From Proposition 1 we have OSCσ (g7; t) =

OSCσ (g9; t) . Thus, we have OSCσ (g7; t) ∩ E ̸= ∅ and so,
g7 ∈ σ (E; t) . Hence, σ (E; t) is an OSCσ (G; t)-UP.appr.
prime ideal.
Theorem 24: Let σ (g1, g2) = ρ(F (g1), F(g2))∀g1, g2 ∈

G where F is a bijective homomorphism from G in
(G, OSCσ (G; t) to H in (H;OSCρ(H; t)) of CFZR and E be
a nonempty subset of G, then ρ(F(E); t) is an OSCρ(H; t)-
LW.appr. prime ideal iff σ (E; t) is an OSCσ (G; t)-LW.appr.
prime ideal.

Proof: The proof of this is similar to above Theorem 23.
In the following comparison Table 3, we are interested

to express our approach how the proposed work is easy to
previous work. Further we will show what the difficulties in
the previous studies are and how the proposed work is free
from all these difficulties.

V. CONCLUSION AND FUTURE WORK
This article identifies certain restrictions on the roughness
specified by congruence and set-valuedmappings and defines
some benefits for rough structures built on serial fuzzy
relations via successor overlaps. Then on the newly developed
rough set model based on serial fuzzy relations, some new
rough substructures are defined such as rough multiplicative
set, rough m-system and further rough substructures of
quantales.

The approaches used in the methods developed by
Davvaz [10], Yang and Xu [15], Luo and Wang [38],
Qurashi et al., [40], and Kanwal and Shabir [42], [43]
are based on fundamental techniques such as roughness
through set-valued mappings, with the aid of congruence
relations, and roughness based on aftersets and foresets
by soft relations, respectively. Although the aforementioned
techniques are all well-developed and effective, they do
have some limitations. We require numerous equivalence
relations, for instance, in order to validate our results and
examples while examining roughness through congruence
relations. Finding equivalence relations and then congruence
is never easy. In case of roughness through set-valued
mappings, we need set-valued homomorphism to proceed our
works. Sometimes it becomes difficult to find out set-valued
homomorphism. Moreover, roughness through soft relations
is yet more tedious due to the difficulty in determining
compatible and complete relations with respect to aftersets

TABLE 3. Comparison table.

and forests. Thus, we are not required such type of limitations
in our paper.

In further work, we will broaden the applicability of
the suggested approach to a variety of algebraic struc-
tures, including as quantale modules, ordered semigroups,
rings, and near-rings. We will also focus on how the
suggested approach may be applied to various real-life
problems employing intuitionistic and Pythagorean fuzzy
sets. Moreover, we will extend the developedmethod toothers
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generalization of fuzzy sets as well and will be used to
decision making techniques.
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