IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 15 July 2023, accepted 6 August 2023, date of publication 17 August 2023, date of current version 24 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3305927

== RESEARCH ARTICLE

Dealing With Sparse Rewards Using Graph
Neural Networks

MATVEY GERASYOV “'-2 AND ILYA MAKAROV 234

1 School of Data Analysis and Artificial Intelligence, HSE University, 101000 Moscow, Russia

2Laboratory of Algorithms and Technologies for Network Analysis, HSE University, 603155 Nizhny Novgorod, Russia
3 AI Center, National University of Science and Technology (NUST) MISiS, 119049 Moscow, Russia

4 Artificial Intelligence Research Institute (AIRI), 105064 Moscow, Russia

Corresponding author: Ilya Makarov (makarov @airi.net)
This work was supported in part on Section 2 by the Strategic Project “Digital Business” within the framework of the Strategic Academic
Leadership Program “Priority 2030 at the National University of Science and Technology (NUST) MISiS, in part by the Basic Research

Program at the National Research University Higher School of Economics (HSE University), and in part by the Computational Resources
of HPC Facilities at HSE University.

ABSTRACT Deep reinforcement learning in partially observable environments is a difficult task in itself and
can be further complicated by a sparse reward signal. Most tasks involving navigation in three-dimensional
environments provide the agent with minimal information. Typically, the agent receives a visual observation
input from the environment and is rewarded once at the end of the episode. A good reward function could
substantially improve the convergence of reinforcement learning algorithms for such tasks. The classic
approach to increasing the density of the reward signal is to augment it with supplementary rewards. This
technique is called reward shaping. In this study, we propose two modifications of one of the recent reward
shaping methods based on graph convolutional networks: the first involving advanced aggregation functions,
and the second utilizing the attention mechanism. We empirically validate the effectiveness of our solutions
for the task of navigation in a 3D environment with sparse rewards. For the solution featuring the attention
mechanism, we can also show that the learned attention is concentrated on edges corresponding to important
transitions in the 3D environment.

INDEX TERMS Deep reinforcement learning (DRL), graph neural networks (GNNs), partially observable
Markov decision process (POMDP), reward shaping.

I. INTRODUCTION

Reinforcement learning is a machine learning paradigm
where an artificial agent learns the optimal behavior through
interactions with a dynamic environment. Goals and purposes
are explained to the agent via a scalar reward signal it receives
after each interaction. Throughout the training process, the
agent infers the behavior that maximizes cumulative reward,
also called the return. To succeed in this task, the agent needs
to explore the environment to understand which states and
actions yield high rewards. On the other hand, the agent also
has to exploit the rewards it has already received to adapt
its behavior. This problem is known as the exploration and
exploitation trade-off.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang

Deep reinforcement learning (DRL) algorithms use neural
networks to process large or continuous state spaces. The
deep reinforcement learning approach has proven worthy in
many dynamic tasks, such as machine translation [1], [2], [3],
robotics [4], [5], [6], playing videogames [7], [8], [9], [10],
[11], [12], [13], [14], and performing navigation in complex
environments [15], [16], [17], [18], [19], [20]. In addition to
these domains, deep reinforcement learning has demonstrated
significant potential for solving real-world control problems,
such as predictive aircraft maintenance [21] and traffic signal
control [22], [23].

Navigating in three-dimensional environments can present
a challenging problem for agents due to the sparsity of
rewards. This problem arises when a scant number of states
in the state space return a meaningful reward signal. A typical
situation is when the agent must find a specific item or place

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

89180

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0003-0336-0223
https://orcid.org/0000-0002-3308-8825
https://orcid.org/0000-0003-2558-552X

M. Gerasyov, I. Makarov: Dealing With Sparse Rewards Using Graph Neural Networks

IEEE Access

TABLE 1. Summary of notations used in the paper.

Notation Description

S State space

A Action space

R Reward function

s,8¢ €S Current state

ses Next state

a,ar € A Current action

r Immediate reward
m(als) Policy

* Optimal policy

o7 Discount factor

Gy Discounted return at timestep ¢
V(s) State-value function
A(s,a) Advantage function
Jactor Objective of the actor

r¢(0) Probability ratio between the policies
clip(ri(0),1 —e,1+4¢) | Clipr:(0) between1 — eand 1 + €

R'(s,a,s") Shaped reward function

F(s,a,s") Shaping function

(] Scalar potential function defined on states
h Node embeddings

N () Set of neighbors of node 4

S Set of base case states

A Adjacency matrix of the graph

X Matrix of node features

Lo Cross entropy component of the loss
Lprop Message-passing component of the loss

in the environment and receives a positive reward only after
reaching the destination. From the RL training procedure
formulation, it naturally follows that one wants to reward
the agent as often as possible. Hence, sparse rewards are
detrimental to learning efficiency.

Throughout recent years several papers have addressed the
sparse reward problem. Some notable approaches include
reward shaping, Curiosity-Driven Methods [24], [25], [26],
Curriculum Learning [27], [28], [29], Adaptive Skill Acqui-
sition [30], [31], and learning with Auxiliary Tasks [32],
[33], [34]. This study focuses on the potential-based reward
shaping technique, as it is the most straightforward and
intuitive way to deal with the sparse reward problem. This
method is very flexible since it can be combined with most
general-purpose RL algorithms.

This paper proposes a novel modification to a recently
developed reward shaping technique based on the message-
passing mechanism of graph convolutional networks [35].
Over recent years, graph neural networks have become
increasingly popular and have found their application across
various domains, including reinforcement learning [36], [37].
As a result, numerous graph neural network architectures
have emerged, offering different benefits [38]. We show how
selecting the appropriate architecture can notably increase
the quality of the learned shaping function. For this purpose,
we conduct several experiments using environments with
sparse rewards from MiniWorld [16].

Il. BACKGROUND AND MOTIVATION
Table 1 summarizes the parameters, variables, and functions
used throughout this paper.

VOLUME 11, 2023

A. DEEP REINFORCEMENT LEARNING OVERVIEW

Markov decision process (MDP) is a standard model of agent-
environment interaction. An MDP is a tuple (S, A, P, R),
where S is a finite state space and A is a finite action space.
P denotes a state transition function, giving the transition
probability p(s;+1 | s, a;). Finally, R is a scalar reward
function. A fundamental property of MDP is that the con-
ditional probability distribution given by P depends only on
the current state and does not depend on the history of the
process. Discounted return is the sum of all rewards starting
from state s, multiplied by a discount factor y € [0, 1):

o]

Gi =D v i, ey
k=0

where 7y 41 is the reward recieved at timestep ¢ + k + 1.

In the partially observable MDP setting, the states are
not entirely observable by the agent, introducing additional
challenges to reinforcement learning algorithms.

At each step, an agent takes a decision according to a policy
7 (als). The main goal of reinforcement learning is to find an
optimal policy 7* that maximizes the expected discounted
return:

7" = argmax,; E;[Go] 2)

Value function Vy(s) is the expected discounted return con-
ditional on the state of the environment:

Va(s) =D m(al$) D pr,s' | s, @)lr +yVa(sH] (3)

r,s

where s is the next state after state s, r and a are the reward
and action at the current step respectively. v, (s) represents
the value of following policy 7 from state s.

Policy-based DRL methods approximate the agent’s policy
with a neural network. One of the most famous policy-based
methods is called advantage actor-critic [39]. The underlying
neural network has two heads called actor and critic, respec-
tively. The actor learns an optimal policy, and the critic learns
the value function, which represents the quality of a given
state. Thus, the information provided by the critic helps train
the actor. The update rule for the actor reflects this fact:

N

1
Vodacior = & § Vo logmo(as | s)A(st,ar) (4)

where 6 denotes the parameters of the network, N is the
number of steps in the trajectory, and A is the advantage of
action a in state s. The advantage function represents the
quality of a chosen action compared to the expected baseline,
given by the value function. Thus, following the update rule
given by (4), we aim to increase the probability of choosing
beneficial actions with positive advantage values. One can
estimate the advantage from a part of a trajectory (s, a, r, s)
of an agent as follows:

AGs,a) =r+yV(s) = V(s) 5)

89181

IEEE Access

M. Gerasyov, I. Makarov: Dealing With Sparse Rewards Using Graph Neural Networks

Training the critic can be formulated as a regression problem
with the following loss function:

1 N
Leriie = 57 2 2 (Vo) = [r +y VDT (6)

i=0 s,a

One problem with this approach is that the value of the
learning rate does not guarantee the degree of policy change.
Small changes in the network parameters can lead to abrupt
changes in the quality of a policy. The Proximal Policy
Optimization (PPO) algorithm [40] addresses this issue by
minimizing the following objective:

E, [min(r:(0)A;, clip(r,(0), 1 — €, 1 + €)A,)] @)

where r;(0) is the probability ratio r,(6) = %, and clip
old \“1 101

denotes clipping r;, which removes the benetit of moving r;
outside of the interval [1 — €, 1 + €].

B. REWARD SHAPING

The reward shaping framework aims to solve the sparse
reward problem by augmenting the original reward function
with a shaping function F(s, a, s'):

R'(s,a,s") = R(s,a,s) + F(s,a, s) (8)

Shaping functions can be hand-crafted based on expert
knowledge of the problem (e.g., Euclidean distance to the
goal) or inferred during the training procedure [35], [41]. The
necessary and sufficient condition for preserving the set of
optimal policies of an MDP is for the shaping function to take
the following form [42]:

F(s,a,s)=y®(s) — O(s) 9)

where @ is the scalar potential function defined on states.
Designing a good potential-based shaping by hand can be a
challenging task for some problems. Moreover, hand-crafted
reward shapings often lack performance compared to auto-
matically learned ones [35].

C. GRAPH NEURAL NETWORKS
A graph is a data structure representing a set of objects and
relations between them. A graph G can be defined as a collec-
tion of nodes and edges connecting them G = {V, E}. Each
node and edge of the graph can store additional information
in the form of feature vectors. Graphs are an essential tool
for modeling heterogeneously structured data, such as MDPs
in reinforcement learning problems. Graph neural networks
(GNNs) are deep learning models that allow for inference
on graphs by leveraging local graph structure and node-
level features. Graph convolutional networks (GCNs) are
a special kind of GNN that implement a message-passing
mechanism through the aggregation of neighboring nodes’
features. In this section, we discuss commonly-used graph
convolutional models.

The original Graph Convolutional Network [43] performs
aggregation of neighboring nodes’ features normalized by

89182

node degrees. The output of one convolutional layer of such
a network can is defined as follows:

1
h§l+l) = o + Z —h(.l)W(”), (10)
Cii
jeNG
where A(i) is the set of neighbors of node i, Ci =

VINDIVING)], W is a learnable weight matrix, [is the
number of layer, and o is a non-linear activation function.

Graph Attention Network (GAT) [44] adds the attention
mechanism to GCN. GAT convolution aggregates node fea-
tures of neighbors proportional to attention scores a; j:

1+1 1
W =o(> a,-,,WU)hJ‘.), (11)
JEN)
agf} = softmaxi(el(.f}); (12)

&) = LeakyReLU @D (WP |WK)), (13)

where || denotes concatenation and @) is a learnable weight
vector.

Finally, the GraphSAGE model [45] allows using different
aggregators, such as mean, pooling, and LSTM [46]:

l 1 . »
Wi = aggregate({h}. ¥j € N(0): (14)
hz('Hl) = a(W . concat(hf, .(/(;il))))’ (15)

where aggregate is one of the aggregators from the list men-
tioned above and concat stays for the concatenation of node
embeddings.

The key distinction among the outlined models lies in
how they propagate messages between nodes to update their
embeddings. Choosing an appropriate aggregating proce-
dure can strongly affect the performance of graph convo-
lutional networks. Next, we discuss learning an optimal
potential-based reward shaping using graph convolutional
networks.

D. REWARD PROPAGATION USING GRAPH
CONVOLUTIONAL NETWORKS

In [35], the authors propose applying GCNs to a graph in
which each state is a node and edges represent a possible
transition between two states. Since there is no access to
the complete underlying graph, it is approximated through
sampled trajectories. The key idea of this approach is to
propagate information about rewarding states through the
message-passing mechanism implemented by GCNs. The
probability distribution ®gcy at the output of the GCN is
used as a potential function for potential-based reward shap-
ing. To train the GCN, the authors use the following loss
function:

L=Ly+ nﬁpmp (16)

Lo = p(O|)log(®cen(s)) (17)
seS

Lorp = D AmlPoen(Xn) — PeevX)IIF (18)

VOLUME 11, 2023

M. Gerasyov, I. Makarov: Dealing With Sparse Rewards Using Graph Neural Networks

IEEE Access

Here, S is the set of base case states, which consists of the
first and last states of a trajectory and the states with non-
zero rewards. A is the adjacency matrix, and X is the matrix
of node features. Ly is the cross entropy loss between the
labels of states from S and predictions of the GCN model.
Lprop combines the neighboring messages through the graph
Laplacian. n is the hyperparameter controlling the contribu-
tion of L,,,, component to the whole loss. Lesser values
of n lead to a more simple and biased model. Following
the original paper, n is set to be equal to 10 in all the
experiments.

lIl. RELATED WORK

A. APPLICATIONS OF DEEP REINFORCEMENT LEARNING
Deep reinforcement learning has been successfully applied
to real-world problems in various domains. For example,
in [47], the authors employed Deep Q-Learning [48] to
predict lithium-ion battery capacity based on the permuta-
tion entropy of battery voltage sequences. Similarly, deep
reinforcement learning was utilized for predictive aircraft
maintenance [21]. The authors used a Soft-Actor-Critic [49]
agent to decide when to schedule an engine replacement
based on the estimates of Remaining-Useful-Life. Another
domain where reinforcement learning has shown promising
results is traffic signal control [22]. For instance, in [50],
the authors adopted the distributed framework of Ape-X
DQN [51] to learn a generalizable policy for operating a sig-
nalized intersection. In addition, deep reinforcement learning
has been effectively applied to mobile robot navigation in
indoor environments [6]. The authors trained an A3C [39]
agent using only data from a 2D laser scanner and an RGB-
D camera. These examples demonstrate the potential of deep
reinforcement learning to improve decision-making in com-
plex systems.

B. GRAPH CONVOLUTIONAL NETWORKS

Graph convolutional networks have been a significant devel-
opment in the field of representation learning on graphs.
Since their introduction [43], multiple modifications have
emerged to enhance their performance. One area of research
has focused on developing more effective methods of neigh-
borhood aggregation. For instance, GAT [44] has added
an attention mechanism to GCN, while GraphSAGE [45]
adapted the aggregation process to incorporate advanced
aggregators such as Long Short-Term Memory (LSTM) [46].
However, the choice of the optimal architecture heavily
depends on the task at hand, and it remains an active
research topic [52]. Model quality can be affected by vari-
ous design choices, including the style of message passing,
the number of message-passing layers, the dimensionality of
embeddings, layer connectivity, and others [53]. In addition,
different architectures vary in their expressive power [54].
Therefore, further research is necessary to discover better
architectures suitable for emerging tasks, such as applying
graph neural networks in reinforcement learning.

VOLUME 11, 2023

TABLE 2. CNN encoder architecture.

Layer | Number of filters | Kernel size | Stride | Activation
1 32 8 4 ReLU
2 64 4 2 ReLU
3 32 3 1 ReLU

IV. PROPOSED APPROACH

Following the reward propagation framework discussed pre-
viously, we propose using GAT and GraphSAGE models to
propagate information about rewarding states. We use two-
layered implementations of these models with 64 hidden
units. The first layer of our GAT model has four atten-
tion heads and LeakyReLU activation function. As for the
GraphSAGE model, we use mean aggregation and ReLU
activation in the first layer. We chose the LSTM aggregator
for the second layer since it is more appropriate considering
the sequential nature of the data in reinforcement learning.
We use an actor-critic network with a three-layered CNN
encoder to model the policy of all agents. The architecture
of the encoder is provided in Table 2.

The number of attention heads in the GAT model was
tuned by comparing the results of multiple experiments.
Other design choices highlighted in the previous section are
consistent with the prior work [35] to make a fair comparison.
We argue that the proposed models have an inductive bias
which can help the models leverage the specific structure of
the data in the problem at hand. The GraphSAGE model with
the LSTM Aggregator can take advantage of the sequential
nature of the data in the agent’s trajectory. The GAT model
can learn which transitions in the underlying MDP are rel-
evant to the agent’s task due to the attention mechanism.
In addition, the GAT model provides interpretability as we
can directly evaluate the learned attention scores. The training
data for the models are samples of the underlying MDP
graph represented by linear graphs of the agent’s trajecto-
ries. This sampling strategy has been demonstrated to be a
valid technique for training graph convolutional networks,
as it does not result in a significant deterioration of model
performance [35], [55].

The forward path in GCNs involves an aggregation of
neighboring nodes’ features. A simple approach to imple-
menting the aggregation step is to use a matrix multiplication
between the adjacency and feature matrices. However, this
method has a high time complexity of O(N2F), where N
represents the number of nodes and F is the dimension-
ality of node embeddings. It is possible to take advantage
of the sparse nature of adjacency matrices in the problem
at hand. By utilizing sparse operators, the time complexity
of the aggregation can be reduced to linear with respect to
the number of nodes [56]. This approach offers significant
improvements, enabling efficient processing of large graphs.
Thus, the time complexity of the forward path in GCNs is
linear with respect to the number of nodes in the framework of
the considered problem. The proposed models don’t involve
any expensive matrix operations such as inversion. They

89183

IEEE Access

M. Gerasyov, I. Makarov: Dealing With Sparse Rewards Using Graph Neural Networks

FIGURE 1. Screenshots of the FourRooms environment (left) and Maze
environment (right).

only require a constant number of additional matrix multi-
plications per layer when compared to GCN used in prior
work [35]. Given that all models in our experiments have
the same number of layers and hidden units, the proposed
approach can be considered comparable in computational
time to the baseline architecture.

The PPO algorithm is used to update the policy in all
experiments. The node features provided to GNNs come
from the output of the CNN encoder of the actor-critic net-
work. Finally, we compare our agents, denoted ®ga7r and
DGrapnsace respectively, with two baselines: ®gcny intro-
duced in the original paper [35] and basic PPO without any
reward shaping.

V. EXPERIMENT DESIGN AND RESULTS

We perform a series of experiments in MiniWorld [16]
to test our approach. MiniWorld has several challenging
three-dimensional POMDP environments. For our experi-
ments, we select two environments with sparse rewards:
FourRooms and Maze. Screenshots of both environments are
shown in Figure 1. In the next two sections, we describe them
in detail as well as the training procedure. We state our results
in the final section of this chapter.

A. FourRooms

The player spawns at a random position inside four rooms
connected by four openings. In order to get a reward, the
player must reach the goal, represented by a red box. Fur-
thermore, the position of the goal is also random for each
episode. Also, there is a time limit to perform this task which
is 250 steps. The player chooses one of three actions at each
step: move forward, turn left, and turn right. The environment
provides a positive reward only when the player succeeds.
In this case, the reward is scaled down proportional to how
long it took the player to reach the goal. The rest of the
original rewards are zeros.

We train all neural networks on 16 parallel instances of the
environment. We organize training based on the algorithm
outlined in [35]. The node features used by the GNN come
from the output of the CNN encoder of the actor-critic net-
work. Each agent interacts with its environment for 128 steps.
During this process, we record hidden states at the output
of the CNN encoder and add all transitions (s, s;+1) to the
graph G;, where i is the number of the environment. Then
we apply reward shaping using the current potential function

89184

@ and split the resulting sequence into four mini-batches.
Finally, we use these mini-batches and PPO to update the
policy. When environment i reaches the end of an episode,
we use the recorded hidden states, the set of the base case
states S;, and the graph G; to update the potential function
@ at the output of the GNN model. Since an agent does not
receive non-zero rewards until the end of an episode, S; only
consists of the first and last states of a trajectory. We repeat
this update procedure until the total number of steps made by
agents in all 16 environments exceeds 5 million.

B. MAZE

The player has to navigate to a goal through a procedurally
generated maze. The player and the goal spawn randomly
inside this maze, and the action space is the same as in the
previous environment. The critical difference that makes this
environment much harder than FourRooms is that the map
is generated randomly at the beginning of each episode. The
maze generation procedure begins at the top-left corner and
utilizes a recursive backtracking algorithm to construct the
maze. At each step, the algorithm randomly selects a neigh-
boring room that hasn’t been visited before and connects
it to the current room. If there are no available unexplored
rooms, the algorithm backtracks until it finds an unvisited
room or returns to the starting position. This process gen-
erates a connected acyclic graph, ensuring that every room
is reachable from any other room and that there is only one
path between any two rooms. Subsequently, walls are placed
between neighboring rooms that are found to be disconnected
after completing the generation procedure. All walls inside
the maze have the same color and texture. After the maze is
generated, the goal and the agent are placed in random loca-
tions within randomly chosen rooms. The time limit for this
environment is 216 steps, and rewards are assigned according
to the same rule as in FourRooms. Altogether this makes the
Maze environment a very challenging POMDP with sparse
rewards.

The MiniWorld developers provide four versions of this
environment, each with distinct size and movement charac-
teristics. These versions include MazeS2, which is a small
2 by 2 maze, MazeS3, which is a medium-sized 3 by 3 maze,
MazeS3Fast, which has increased turning and moving motion
per action, making navigation easier for the agent, and Maze,
the largest version with an 8 by 8 size. In this study, we use the
MazeS3 version, which has standard movement and turning
speeds and consists of 9 interconnected rooms. The training
procedure is the same as described in the previous section, but
since this environment is much more challenging, we extend
the training duration to 20 million steps.

C. RESULTS
The average rewards of the agents during training are shown
in Figure 2.

Here, we can immediately see that agents augmented with
reward shaping learn faster than baseline PPO. In FourRooms
experiments, after 5 million steps, all models converge to a

VOLUME 11, 2023

M. Gerasyov, I. Makarov: Dealing With Sparse Rewards Using Graph Neural Networks

IEEE Access

FourRooms
08 — %cen
B — mGAT
-(% 0.7 —— PGraphsace
=
@
5 0.6
©
<4
&L
LIDJ-O'S
C
3
= 0.4
0.3
0 1 2 3 4 5
Frame 1e6
MazeS3
08 —— %aov
—— Ogar
-(E“ DGraphsace
= 0.7
[
14
3
o 0.6
2]
‘a
w
505
Q
=

0.4

0.00 025 050 075 1.00 1.25 1.50 1.75 2.00
Frame le7

FIGURE 2. Learning curves for the FourRooms environment (top) and
MazeS3 environment (bottom). Results are in the form of
mean(R) + std (R).

TABLE 3. Final performance for both environments. We convert all
rewards to [0, 100] scale for better visibility. All results are shown in the
form of mean(R) + std (R).

Model FourRooms MazeS3
Qgar 69.93 £5.72 | 76.56 £ 5.27
PGraphsace | 69.91£5.64 | 68.96 +10.32
Pcen 65.28 £ 5.07 | 66.96 £+ 9.55
PPO 66.79 £6.31 | 59.75 +4.42

very similar final performance, with ®car and ®Graprsace
being marginally better. However, in the case of the MazeS3
environment, the difference between the models is more
explicit. Also, the ®g4r model kept improving even at the
end of the training, indicating that the result may be refined.

The final performance of all models is provided in Table 3.
It is worth noting that ®g47r has the best mean final per-
formance in both environments. Although, the difference is
significant only in the case of a more challenging MazeS3.

Finally, we assess the quality of attention learned by the
GAT model. Figure 3 demonstrates the distribution of atten-
tion values for the FourRooms environment.

We observe that the learned attention is largely focused on
the edges at the beginning of the trajectory and before reach-
ing the goal. Also, high attention is given to the transitions
at the point in time when the goal (the red cube) enters the

VOLUME 11, 2023

mmm attention

—77,—--I‘
02 0

.3

I.-—__ A —_
0.4 0.5

0.6

FIGURE 3. Histogram of the learned attention for the FourRooms
environment.

FIGURE 4. Pairs of screenshots corresponding to the transitions
(left-to-right) that received high attention (samples from the top
5 percent of transitions).

agent’s field of view (see Figure 4). This result, in particular,
is unusual since the model did not receive any additional
supervision to highlight such edges.

Hence, we can conclude that the GAT model learns to
focus its attention on the transitions that are important for the
agent’s task.

VI. CONCLUSION

This study presented two modifications of one of the novel
reward shaping techniques. Both our agents demonstrated
better convergence speed and final results compared to the
baselines. We also showed that the GAT model, which
achieved the best final performance for both environments,
was also able to learn meaningful attention relevant to the task
performed by the agent.

In future work, it may be beneficial to incorporate
edge-level or graph-level features. This would provide
the graph neural network responsible for learning the
potential function with additional information about the
environment. Moreover, it may be valuable to explore
a more complex design of a transition graph to better
capture the structure of the underlying Markov decision
process.

89185

IEEE Access

M. Gerasyov, I. Makarov: Dealing With Sparse Rewards Using Graph Neural Networks

REFERENCES

[1]

[2]

[3]

[4]

[51

[6]

[71

[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. Wu, F. Tian, T. Qin, J. Lai, and T.-Y. Liu, “A study of reinforcement
learning for neural machine translation,” in Proc. Conf. Empirical Methods
Natural Lang. Process. Brussels, Belgium: Association for Computational
Linguistics, Oct./Nov. 2018, pp. 3612-3621.

H. Satija and J. Pineau, “‘Simultaneous machine translation using deep
reinforcement learning,” in Proc. ICML Workshop Abstraction Reinforce-
ment Learn., 2016.

Y. Lee, J. Shin, and Y. Kim, ““Simultaneous neural machine translation with
a reinforced attention mechanism,” ETRI J., vol. 43, no. 5, pp. 775-786,
Oct. 2021.

A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra,
“Benchmarking reinforcement learning algorithms on real-world robots,”
2018, arXiv:1809.07731.

X. Ruan, D. Ren, X. Zhu, and J. Huang, “Mobile robot navigation based
on deep reinforcement learning,” in Proc. Chin. Control Decis. Conf.
(CCDC), Jun. 2019, pp. 6174-6178.

H. Surmann, C. Jestel, R. Marchel, F. Musberg, H. Elhadj, and M. Ardani,
“Deep reinforcement learning for real autonomous mobile robot naviga-
tion in indoor environments,”” 2020, arXiv:2005.13857.

M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining
improvements in deep reinforcement learning,” 2017, arXiv:1710.02298.
M. Wydmuch, M. Kempka, and W. Jaskowski, “ViZDoom competitions:
Playing doom from pixels,” 2018, arXiv:1809.03470.

C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. J6zefowicz, S. Gray,
C. Olsson, J. Pachocki, M. Petrov, H. P. d. O. Pinto, J. Raiman, T. Salimans,
J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and
S. Zhang, “Dota 2 with large scale deep reinforcement learning,” 2019,
arXiv:1912.06680.

I. Makarov, A. Kashin, and A. Korinevskaya, “Learning to play pong
video game via deep reinforcement learning: Tweaking deep q-networks
versus episodic control,” in Proc. 6th Int. Conf. Anal. Images, Social
Netw. Texts (AIST). Cham, Switzerland: Polytechnic University, Jul. 2017,
pp. 236-241.

I. Kamaldinov and I. Makarov, ‘“‘Deep reinforcement learning methods in
match-3 game,” in Proc. 8th Int. Conf. Anal. Images, Social Netw. Texts
(AIST), in Lecture Notes in Computer Science, Kazan Federal University.
Berlin, Germany: Springer, Jul. 2019, pp. 51-62.

I. Kamaldinov and I. Makarov, ‘“‘Deep reinforcement learning in match-3
game,” in Proc. IEEE Conf. Games (CoG). London, U.K.: Queen Mary
Univ. of London. New York, NY, USA: IEEE, Aug. 2019, pp. 1-4.

D. Akimov and I. Makarov, “Deep reinforcement learning with
vizdoomfirst-person shooter,” in Proc. 5th Workshop Exp. Econ. Mach.
Learn. (EEML). Cham, Switzerland: National Research University Higher
School of Economics, Sep. 2019, pp. 3-17.

M. Bakhanova and 1. Makarov, “Deep reinforcement learning in
VizDoom via DQN and actor-critic agents,” in Proc. 16th Int.
Work-Conf. Artif. Neural Netw. (IWANN). Barcelona, Spain: Universi-
tat Politecnica de Catalunya. Berlin, Germany: Springer, Jun. 2021,
pp. 138-150.

C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Kiittler,
A. Lefrancq, S. Green, V. Valdés, A. Sadik, J. Schrittwieser, K. Anderson,
S. York, M. Cant, A. Cain, A. Bolton, S. Gaffney, H. King, D. Hassabis,
S. Legg, and S. Petersen, “Deepmind lab,” 2016, arXiv:1612.03801.

M. Chevalier-Boisvert, ‘“Miniworld: Minimalistic 3D environment for
RL & robotics research,” Farama Found., 2018. [Online]. Available:
https://github.com/Farama-Foundation/Miniworld

1. Makarov, M. Tokmakov, and L. Tokmakova, ‘“‘Imitation of human behav-
ior in 3D-shooter game,” in Proc. 4th Int. Conf. Anal. Images, Social
Netw. Texts (AIST). Yekaterinburg, Russia: Ural Federal University. Cham,
Switzerland: CEUR Workshop Proceedings, Apr. 2015, pp. 64-77.

1. Makarov and P. Polyakov, “Smoothing Voronoi-based path with mini-
mized length and visibility using composite Bezier curves,” in Proc. 5th
Int. Conf. Anal. Images, Social Netw. Texts (AIST). Yekaterinburg, Russia:
Ural Federal Univ. Cham, Switzerland: CEUR Workshop Proceedings,
Apr. 2016, pp. 191-202.

I. Makarov, P. Zyuzin, P. Polyakov, M. Tokmakov, O. Gerasimova,
I. Guschenko-Cheverda, and M. Uriev, “Modelling human-like behav-
ior through reward-based approach in a first-person shooter game,”
in Proc. 3rd Workshop Exp. Econ. Mach. Learn. (EEML). Moscow,
Russia: National Research University Higher School of Economics. Cham,
Switzerland: CEUR Workshop Proceedings, Jul. 2016, pp. 24-33.

89186

(20]

(21]

(22]

(23]
[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(38]

(39]

(40]

[41]

I. Makarov, M. Tokmakov, P. Polyakov, P. Zyuzin, M. Martynov,
0. Konoplya, G. Kuznetsov, I. Guschenko-Cheverda, M. Uriev, I. Mokeev,
O. Gerasimova, L. Tokmakova, and A. Kosmachev, “First-person shooter
game for virtual reality headset with advanced multi-agent intelligent
system,” in Proc. 24th ACM Int. Conf. Multimedia (MM). New York, NY,
USA: Univ. of Amsterdam, Oct. 2016, pp. 735-736.

J. Lee and M. Mitici, “Deep reinforcement learning for predictive aircraft
maintenance using probabilistic remaining-useful-life prognostics,” Rel.
Eng. Syst. Saf., vol. 230, Feb. 2023, Art. no. 108908.

F. Rasheed, K. A. Yau, R. M. Noor, C. Wu, and Y.-C. Low, ‘“Deep
reinforcement learning for traffic signal control: A review,” IEEE Access,
vol. 8, pp. 208016208044, 2020.

Z.Li, C. Xu, and G. Zhang, “A deep reinforcement learning approach for
traffic signal control optimization,” 2021, arXiv:2107.06115.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” 2017, arXiv:1705.05363.

B. Li, T. Lu, J. Li, N. Lu, Y. Cai, and S. Wang, “Curiosity-
driven exploration for off-policy reinforcement learning methods,”
in Proc. IEEE Int. Conf. Robot. Biomimetics (ROBIO), Dec. 2019,
pp. 1109-1114.

L. Zheng, J. Chen, J. Wang, J. He, Y. Hu, Y. Chen, C. Fan, Y. Gao, and
C. Zhang, “Episodic multi-agent reinforcement learning with curiosity-
driven exploration,” in Advances in Neural Information Processing Sys-
tems, vol. 34, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, Eds. Red Hook, NY, USA: Curran Associates, 2021,
pp. 3757-3769.

S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone,
“Curriculum learning for reinforcement learning domains: A framework
and survey,” 2020, arXiv:2003.04960.

D. Zhang, W. Bao, W. Liang, G. Wu, and J. Cao, “A curriculum learning
based multi-agent reinforcement learning method for realtime strategy
game,” in Proc. 8th Int. Conf. Big Data Inf. Anal. (BigDIA), Aug. 2022,
pp. 447-452.

Y. Zhang, P. Abbeel, and L. Pinto, “Automatic curriculum learning through
value disagreement,” 2020, arXiv:2006.09641.

J. Holas and I. Farkas, “Adaptive skill acquisition in hierarchical reinforce-
ment learning,” in Artificial Neural Networks and Machine Learning—
ICANN 2020, 1. Farkas, P. Masulli, and S. Wermter, Eds. Cham,
Switzerland: Springer, 2020, pp. 383-394.

J. Holas and I. Farkas, “Advances in adaptive skill acquisition,” in Arti-

ficial Neural Networks and Machine Learning—ICANN 2021, 1. Farkas,

P. Masulli, S. Otte, and S. Wermter, Eds. Cham, Switzerland: Springer,
2021, pp. 650-661.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver,
and K. Kavukcuoglu, “Reinforcement learning with unsupervised auxil-
iary tasks,” in Proc. Int. Conf. Learn. Represent., 2017, pp. 1-14.

M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave,
T. Van de Wiele, V. Mnih, N. Heess, and J. Tobias Springenberg,
“Learning by playing—Solving sparse reward tasks from scratch,” 2018,
arXiv:1802.10567.

X. Lin, H. Baweja, G. Kantor, and D. Held, “Adaptive auxiliary task
weighting for reinforcement learning,” in Advances in Neural Information
Processing Systems, vol. 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, Eds. Red Hook, NY, USA: Curran
Associates, 2019.

M. Klissarov and D. Precup, “Reward propagation using graph convolu-
tional networks,” 2020, arXiv:2010.02474.

H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang, Y. Zhu,
K. Xu, and Z. Li, “CoLight,” in Proc. 28th ACM Int. Conf. Inf. Knowl.
Manage., Nov. 2019, pp. 1913-1922.

D. Gammelli, K. Yang, J. Harrison, F. Rodrigues, F. C. Pereira,
and M. Pavone, “Graph neural network reinforcement learning for
autonomous mobility-on-demand systems,” 2021, arXiv:2104.11434.
Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive
survey on graph neural networks,”” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 1, pp. 4-24, Jan. 2021.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” 2016, arXiv:1602.01783.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proxi-
mal policy optimization algorithms,” 2017, arXiv:1707.06347.

M. Grzes and D. Kudenko, “Online learning of shaping rewards in rein-
forcement learning,” Neural Netw., Off. J. Int. Neural Netw. Soc., vol. 23,
pp. 541-550, May 2010.

VOLUME 11, 2023

M. Gerasyov, I. Makarov: Dealing With Sparse Rewards Using Graph Neural Networks

IEEE Access

[42]

[43]
[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Proc. 16th
Int. Conf. Mach. Learn. San Mateo, CA, USA: Morgan Kaufmann, 1999,
pp. 278-287.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2017, arXiv:1609.02907.

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” 2018, arXiv:1710.10903.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” 2017, arXiv:1706.02216.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

A. Namdari, M. A. Samani, and T. S. Durrani, “Lithium-ion battery
prognostics through reinforcement learning based on entropy measures,”
Algorithms, vol. 15, no. 11, p. 393, Oct. 2022.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with deep reinforcement
learning,” 2013, arXiv:1312.5602.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Oft-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2018, arXiv:1801.01290.

G. Zheng, Y. Xiong, X. Zang, J. Feng, H. Wei, H. Zhang, Y. Li, K. Xu,
and Z. Li, “Learning phase competition for traffic signal control,” 2019,
arXiv:1905.04722.

D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van
Hasselt, and D. Silver, “Distributed prioritized experience replay,” 2018,
arXiv:1803.00933.

V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio,
and X. Bresson, ‘Benchmarking graph neural networks,” 2022,
arXiv:2003.00982.

J. You, R. Ying, and J. Leskovec, “Design space for graph neural net-
works,” 2021, arXiv:2011.08843.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, ““‘How powerful are graph neural
networks?” 2018, arXiv:1810.00826.

J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proc.
12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD).
New York, NY, USA: Association for Computing Machinery, 2006,
pp. 631-636.

D. Blakely, J. Lanchantin, and Y. Qi, “Time and space complexity of graph
convolutional networks,” Tech. Rep. Accessed: Dec. 31, 2021.

VOLUME 11, 2023

MATVEY GERASYOV received the bachelor’s
degree in computer science from the Moscow
State Technical University of Civil Aviation,
Moscow, Russia, and the master’s degree in data
science from the National Research University
Higher School of Economics, Moscow, in 2022.
He is currently with the School of Data Analysis
and Artificial Intelligence, National Research Uni-
versity Higher School of Economics, where he is
also continuing his research. Author contribution:

model code and experiments, and paper writing.

A

&/

ILYA MAKAROV received the Specialist degree
in mathematics from the Lomonosov Moscow
State University, Moscow, Russia, and the Ph.D.
degree in computer science from the University of
Ljubljana, Ljubljana, Slovenia.

Since 2011, he has been a Lecturer with the
School of Data Analysis and Artificial Intelli-
gence, HSE University, where he was the School
Deputy Head, from 2012 to 2016, and is currently
an Associate Professor and a Senior Research Fel-

low. He was the Program Director of the BigData Academy MADE from VK,
and a Researcher with the Samsung-PDMI Joint Al Center, St. Petersburg
Department, V.A. Steklov Mathematical Institute, Russian Academy of Sci-
ences, Saint Petersburg, Russia. He is also a Senior Research Fellow with
the Artificial Intelligence Research Institute (AIRI), Moscow, where he leads
the research in industrial AI. He became the Head of the Al Research Center
and the Data Science Tech Master Program in NLP, National University of
Science and Technology MISIS. Author contribution: paper revision, help
with experiment and model design, and research supervision.

89187

