
IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received 24 July 2023, accepted 11 August 2023, date of publication 17 August 2023, date of current version 24 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3305920

A Novel Vehicle Localization Method Based on
Adaptive Singular Spectrum Analysis Using
Low-Cost INS/GNSS
LEBIN ZHAO , TAO CHEN, PEIPEI YUAN, ZHAOGUO TANG, AND JIE WANG
School of Automobile, Chang’an University, Xi’an 710064, China

Corresponding author: Tao Chen (chentao@chd.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFC0807500, and in
part by the National Natural Science Foundation of China under Grant 51978075.

ABSTRACT A low-cost inertial navigation system (INS) and global navigation satellite system (GNSS)
fusion position estimator is affected by accuracy limitations and multiple noises, leading to significant errors
in positioning estimation. This paper proposes a new fusion algorithm, SSA-ESKF, which combines singular
spectrum analysis (SSA) and an error-state Kalman filter (ESKF). The low-cost inertial measurement unit
(IMU) and GNSS data obtained from the GNSS receivers are separately subjected to SSA noise reduction.
The SSA noise-reduced data is then utilized in the ESKF. Consequently, the SSA-ESKF demonstrates
superior performance in terms of lower state errors compared to the conventional ESKF. This approach
helps minimize the impact caused by neglecting higher-order terms in the Taylor expansion and enhances
the linearization of the ESKF, thereby achieving improved positioning accuracy. However, the SSA typically
relies on empirically selecting constant singular values, which may result in an incomplete or excessive
separation of signal and noise. To address this limitation, we further propose an adaptive spectral singularity
analysis (ASSA) that yields better results when integrating the noise-reduced data into the ESKF. To verify
the proposed method, the KITTI dataset experiments and real vehicle experiments with low-cost INS/GNSS
were designed. The comparison of experimental results between the KF, ESKF and the SSA-ESKF, ASSA-
ESKF indicates the superiority of the ASSA-ESKF. In addition, the ablation experiments were conducted
to verify the effectiveness of the SSA on IMU data and GPS data independently, and the results showed the
effectiveness of the SSA on GPS data.

INDEX TERMS Error-state Kalman filter, global navigation satellite system, inertial navigation system,
localization, low-cost sensors, real-time, singular spectrum analysis.

I. INTRODUCTION
The positioning of vehicles is a fundamental requirement
in fields such as intelligent driving and cooperative con-
trol and is a popular topic of current research [1]. There
is a growing demand for low-cost sensors that can provide
sufficiently accurate, real-time, and robust absolute position
information. Currently, the global navigation satellite system
(GNSS) [2], [3] and inertial navigation system (INS) [4], [5]
are widely used positioning systems due to their low cost and
ease of installation. However, meeting all the aforementioned
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requirements using a single low-cost sensor is challenging.
Therefore, research efforts are focused on the fusion of INS
and GNSS [6], [7] for positioning. One of the key advantages
of fusing INS and GNSS is addressing the limitations of
each system. The INS suffers from accumulated errors over
time, such as scale factor error, cross-coupling error, and
random noise, leading to positioning drift [8], [9]. However,
these errors can be corrected by integrating the absolute
position information provided by GNSS into the fusion sys-
tem. On the other hand, GNSS signals can be affected by
environmental factors like multipath effects or occlusion in
special environments such as urban canyons or tunnels, which
can result in positioning jumps or even unavailability. The
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INS can provide continuous position estimates in such sit-
uations, ensuring the system’s robustness. In summary, the
INS/GNSS fusion system leverages the strengths of both
systems to enhance positioning performance and robustness.
By combining the advantages of INS and GNSS, the fusion
system overcomes individual limitations and addresses the
requirements of accurate and reliable vehicle positioning.

The Bayesian theory-based Kalman filter (KF) technique
has been widely utilized in multisensor data fusion sys-
tems. The KF is characterized by a straightforward structure,
efficient calculation, and strong real-time performance [10].
However, when applied to the nonlinear INS/GNSS system
described in (3)-(6), the KF yields poor performance due
to its reliance on linear state and observation equations.
To address this limitation, researchers have proposed vari-
ous KF derivatives suitable for nonlinear systems, such as
extended Kalman filtering (EKF) [11], [12], [13], unscented
Kalman filtering (UKF) [14], [15], [16], and particle filtering
(PF) [17], [18]. These KF derivatives have been shown to
enhance the accuracy of combined INS/GNSS systems [19],
[20], [21]. The EKF expands the nonlinear model using a
first-order Taylor series to achieve local linearization, fol-
lowed by the application of KF. However, this approach
introduces new linear errors by neglecting higher-order terms,
potentially leading to system divergence. Moreover, the EKF
requires computationally demanding calculations of the Jaco-
bian matrix for prediction and update operations. While the
EKF offers improved accuracy compared to the KF, the KF is
computationally more robust and faster. The UKF addresses
these challenges by approximating the mean and variance
of the probability density function through sigma points and
assigning weights using regular sampling. Although slightly
slower in terms of computation compared to the EKF, the
UKF retains second-order terms, resulting in higher accuracy
and improved robustness. In terms of handling nonlinear
issues, both the EKF andUKF require more processing power
and rely heavily on the computer system’s hardware, but they
outperform the KF [22]. The PF employs the Monte Carlo
random sampling method to generate random particles, and
the number of particles impacts the accuracy and processing
speed of the filtration. Real-time performance decreases as
precision increases.

In recent years, error-state Kalman filtering (ESKF) [23]
has emerged as a popular algorithm in multi-sensor fusion
systems involving inertial devices [24]. The fundamental
principle behind ESKF is to decompose the true state into
a nominal state that represents the dominant signal and an
error state that represents the minor signal [25]. The Kalman
filtering process is then performed on the error state. Unlike
traditional Kalman filtering, the mean value of the error
state is reset once the error state update is completed. ESKF
combines the strengths of both Kalman filtering and extended
Kalman filtering, offering several unique advantages [24],
[25]. Firstly, by treating the error state as a minor sig-
nal, ESKF can potentially avoid issues related to first-order

singularities and the INS universal lock problem. Secondly,
it can mitigate the linearity error introduced by truncating
higher-order terms in the Taylor expansion of the error state,
resulting in improved accuracy of linearization [26]. Thirdly,
the computation of the Jacobi matrix is simpler and faster in
ESKF compared to EKF, thanks to the enhanced linearization
of the error state. Finally, due to the relatively small changes
in the error state over time, the frequency of observation
correction can be reduced.

In the ESKF-based INS prediction process, the estimation
of the error state is a crucial step, which involves utilizing
the discrete-time system kinematics and IMU data. The error
state consists of a deterministic part and a stochastic part,
with the stochastic part primarily comprising various noises
and perturbations generated by the INS. Hence, reducing the
noise in the IMU data contributes to bringing the error state
closer to zero. This reduction in noise is advantageous for the
linearization process, Jacobi matrix calculation, and observa-
tion frequency. On the other hand, the ESKF-based GNSS
update process may encounter challenges related to locating
divergence due to the presence of both linear and random
noise signals in the GNSS signal itself [27], [28]. Fortunately,
this issue can be addressed by employing appropriate filtering
techniques.

However, the application of the ESKF may be insufficient
for fusing data from low-cost sensors that are prone to various
sources of noise. To address this limitation, [29] introduced
the technique of singular spectrum analysis (SSA) [30], [31]
for GPS noise reduction and proposed a real-time KF predic-
tionmethod based on SSA. The study validated the efficacy of
this method for GPS data, demonstrating improved position-
ing accuracy and stability. However, the selection of feature
values in the SSA process can be time-consuming, and linear
KF is not the optimal solution for nonlinear GPS data [32].
Building upon this research, this paper enhances the SSA
algorithm by adaptively selecting the optimal singular value,
and then combines it with the ESKF.

The SSA-ESKF and ASSA-ESKF presented in this paper
are used for low-cost GNSS and INS data fusion to estimate
the real-time position of the body. The experimental verifi-
cation process is divided into two parts, namely, the KITTI
data set verification and the real vehicle verification with
low-cost GNSS and INS. The advantage of the KITTI dataset
is that it can provide reliable ground truth, but due to the
high accuracy of the data, this paper adds different Gaussian
white noises to simulate low-cost sensor data. Based on the
ground truth, this paper can carry out objective error analysis,
and compare the results of the KF, ESKF, ASSA-ESKF and
SSA-ESKF with different singular values. In addition, this
part of the experiment also verified the noise reduction of
SSA and ASSA on a single data. Real-vehicle experiments
using low-cost GNSS and INS are used to assist in validating
the proposed method. Due to the lack of reliable ground
truth, this paper compares the results of each algorithm with
the trajectory length as the object, and combined with the
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smoothness of the trajectory graph, this paper believes that
the shorter the trajectory length, the higher the accuracy.

The main contributions of this paper are as follows:
1) SSA-ESKF: A singular spectrum analysis error-state

Kalman filter is proposed for real-time positioning using low-
cost INS/GNSS.

2) Optimizing the SSA and proposing the ASSA to
enhance its effectiveness.

3) ASSA-ESKF: The improved ASSA is combined with
the ESKF to form the ASSA-ESKF.

4) This algorithm has been validated on the KITTI dataset
with some Gaussian white noises and the vehicle equipped
with low-cost INS/GNSS.

The remainder of this paper is organized as follows.
Section II discusses the coordinate system, notation, and
underlying mathematical model, Section III presents the
kinematic-based error states [26] and the state equations of
the error states, and Section IV introduces the ASSA-ESKF
method for low-cost INS/GNSS real-time localization.
Section V shows the experiments and experimental analysis.
The conclusions are presented in Section VI.

II. MATERIALS AND METHODS
In this part, the fundamental mathematical model is covered.
First, a description of the four reference coordinate systems
is given. Second, an explanation is given for the mathemat-
ical notations utilized. Third, the onboard IMU’s operation
is explained. Fourth, the position data are translated across
coordinate systems. Finally, the paper illustrates the 6-degree-
of-freedom (6-DOF) kinematic model based on three-axis
acceleration and three-axis angular velocity.

A. COORDINATE SYSTEM
In this paper, IMU data and GNSS receiver data are fused
to estimate the vehicle’s position, which is limited by the
performance of the sensor and ignores the influence of the
Earth’s rotation. This paper stipulates three coordinate sys-
tems (as shown in Fig. 1), namely, the IMU coordinate system
(b-frame), the navigation coordinate system (n-frame), Earth-
centered, and the Earth-fixed (ECEF) system (e-frame).

1). b-frame: The origin is located at the center of mass of
the carrier, that is, the center of the IMU’s mass, and the x-y-z
axes point to the right-front-up (RFU) directions of the body.

2). n-frame: The origin is located at the starting point of the
vehicle, and the x-y-z axes point to the east-north-up (ENU)
direction.

3). e-frame: The origin is located at the Earth’s center, the
x-axis points to the intersection of the equator and the prime
meridian, the z-axis points to the average rotation axis of the
Earth through the north pole, and the y-axis is perpendicular
to the x-z plane to form a right-handed coordinate system. The
coordinate representation in the e-frame can be divided into
two types: geocentric rectangular coordinates represented
by pe and geocentric geographical coordinates represented
by pw. The coordinate conversion from pe to pw in the e-frame
is shown in (3).

FIGURE 1. Coordinate systems.

TABLE 1. Mathematical notations for vehicles.

B. MATHEMATICAL NOTATIONS
This subsection gives the mathematical notation description
in Table 1.

C. INERTIAL MEASUREMENT UNIT
The IMU records triaxial acceleration and triaxial angular
velocity in the b-frame [33]. However, the measurements
obtained from the IMU are influenced by various factors,
including temperature variations, scale factor errors, quadra-
ture coupling errors, zero offset, and noise. While the effects
of scale factor and quadrature coupling errors can be miti-
gated through appropriate calibration techniques, this paper
primarily emphasizes the offset and noise terms, which have
a more pronounced impact. The following model illustrates
the relationship between the measured value obtained from
the IMU and the actual value.

In the b-frame, the measured acceleration can be modeled
as [34]:

am = RnTb
(
at − gt

)
+ abt + an (1)
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where am ∈ R3×1 is the measured acceleration, at ∈

R3×1 is the true acceleration in the n-frame without bias
and noise terms, gt ∈ R3×1 is the gravitational accelera-
tion vector in the n-frame, abt ∈ R3×1 is the bias term of
the slowly varying acceleration conforming to a first-order
Markov process, ȧbt = aw, where aw ∼ N

(
0, σ 2

aw

)
is a

perturbation impulse, and is zero-mean white Gaussian noise,
where an ∼ N

(
0, σ 2

an

)
.

The measurement of angular velocity in the b-frame can be
modeled as [35]:

ωm = ωt + ωbt + ωn (2)

where ωm ∈ R3×1 is the measured angular velocity, ωt ∈

R3×1 is the true angular velocity without bias and noise terms,
ωbt ∈ R3×1 the bias term of the slowly varying acceleration
conforming to a first-orderMarkov process, ω̇bt = ωw, where
ωw ∼ N

(
0, σ 2

ωw

)
is a perturbation impulse, and ωn ∈ R3×1

zero-mean white Gaussian noise, where ωn ∼ N
(
0, σ 2

ωn

)
.

D. COORDINATES CONVERSION
First, compute the coordinate conversion from pw to pe in the
e-frame. According to the NMEA, the result calculated by the
GNSS receiver is the latitude, longitude, and height, which
needs to be converted to the e-frame [36]:

pe =

 px
py
pz

 =

 (rN + h) cosϕ cos λ

(rN + h) cosϕ sin λ((
1 − e2

)
+ h

)
rN sinϕ

 (3)

where rN =
re√

1−e2 sin2 ϕ
is the radius of curvature of the

meridian of Earth, e =

√
r2e−r2p
re

expresses the eccentricity
of the ellipse approximation of Earth, re is the radius of
curvature of the equator of Earth, rp represents the radius of
curvature of the polar of Earth, and rM indicates the radius
of curvature of the prime vertical of Earth.

Next, calculate the coordinate frame conversion pe in the
e-frame to pn in the n-frame [36].

pn = Rne p
e (4)

where Rne =

 − sinϕ cosϕ 0
− sin λ cosϕ − sin λ sinϕ cos λ

cos λ cosϕ cos λ sinϕ sin λ

 repre-

sents a rotation matrix from the e-frame to the n-frame.

E. KINEMATICS EQUATIONS
By employing kinematic equations, the onboard IMU uti-
lizes real-time three-axis acceleration and angular velocity to
determine the position, speed, and direction of the vehicle.
This paper presents the 6-DOF kinematic equations, which
are described as follows [24]:

ṗ = v (5)

v̇ = Rnba+ g (6)

q̇ =
1
2
q⊗

[
0
ω

]
(7)

where the quaternion form is q =
[
qs qx qy qz

]T, the
operator ⊗ is the quaternion multiplication notation. For the
detailed rules of the quaternion, please refer to [37].

III. THE ERROR STATE
The state vector x, characterizes the vehicle and consists
of five components: position, velocity, attitude, acceleration
bias, and angular velocity bias. The equation representing the
state vector is as follows:

x =
[
pT pT qT aTb ωT

b

]T
∈ R16×1 (8)

where x includes 16 elements, and p, v and q represent the
position, velocity and rotation in the n-frame, respectively.
The notations ab and ωb denote the acceleration bias and
angular velocity bias in the b-frame, respectively.

In the ESKF, this article represents the true state of the state
vector as an appropriate combination of the nominal state
with a large signal and the error state with a small signal,
xt = xn ⊕ δx, where ⊕ is the additive combination operator,
especially, qt = qn ⊗ δq, where δq =

[
1 δθ

/
2

]T represents
the attitude error in the unit quaternion representation [38].
The IMU measurements am and ωm are grouped into the
nominal state, and the noise term, bias, and perturbation are
integrated into the error-state. The error state is estimatedwith
the advantages of flexible sampling rate, high robustness and
low computational complexity [39].

The nominal-state xn:

xn =
[
pTn v

T
n q

T
n a

T
bn ωT

bn

]T
∈ R16×1 (9)

where pn, vn, qn, abn and ωbn express the nominal values of
the position, velocity, rotation, acceleration bias and angular
velocity bias, respectively.

According to (5)-(7), the kinematic equation of the nominal
state is [40]:

ẋn =


vn

Rnban + gn
1
2qn ⊗

[
0

ωm − ωb

]
03×1
03×1

 (10)

The error-state δx is:

δx =
[
δpT δvT δθT δaTb δωT

b

]T
∈ R15×1 (11)

where δp, δv, δθ , δa and δωb denote the error values of
the position, velocity, rotation, acceleration bias and angular
velocity bias, respectively.

The kinematic equation of the erro r state is [26] and [27]:

δẋ =


δv

−Rnb [(am − ab)]× δθ − Rnbδab − Rnban
− [ωm − ωb]× δθ − δωb − ωn

aw
ωw

 (12)
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where [·]× ∈ R3×3 denotes a skew symmetric matrix
of a 3D vector, such as a =

[
ax ay az

]T and [a]× = 0 −az ay
az 0 −ax

−ay ax 0

.

IV. ASSA-ESKF MODEL
The ASSA-ESKF system proposed in this paper is imple-
mented based on INS and GNSS, and is divided into
five parts: system initialization, preprocessing and ASSA
noise reduction, error state prediction, error state observation
update and true state correction. First, while keeping the vehi-
cle stationary, the initialization is finished by integrating the
acceleration and angular velocity with the position provided
by the GNSS. This is achieved when the IMU measured data
and GNSS data arrive at the filter through the sliding window.

Second, the data in the sliding window are subjected to
outlier processing and SSA noise reduction. Third, after inte-
grating and storing the IMUmeasurement data in the nominal
state, the ESKF calculates the mean value of the error state
and its covariance by taking bias, multiple noises, and lin-
earization errors into account. Fourth, the GNSS position data
are used to update the projected content, and the mean value
of the revised error state and its covariance are reported. The
filtering process is finished by introducing the updated error
state to the nominal state and zeroing its mean value while
maintaining its covariance. This is followed by going back
to step two to start a new cycle. Fig. 2 show the structure of
the suggested low-cost INS/GNSS real-time locating system
based on the ASSA-ESKF [41].

A. DATA PREPROCESSING
When the vehicle is driving, the low-cost INS and GNSS
are susceptible to environmental and system factors, which
may cause numerical anomalies and lead to a decrease in
the accuracy of the position estimation or even a system
crash [42]. The abnormal values were also found by analyzing
the collected data, including acceleration, angular velocity,
longitude, dimension and altitude. Therefore, it is necessary
to perform anomaly processing on INS and GNSS data. The
data of sensors are represented as a vector χk :

χk
=

[
tkI a

k
x a

k
y a

k
z ωk

x ωk
y ωk

z t
k
G ϕk λ k hk

]
(13)

where tI and tG are the times corresponding to the IMU and
GNSS data streams, respectively.

1) OUTLIER JUDGMENT
To process the abnormal data quickly and accurately, this
article sets sliding windows to judge and correct the abnormal
value of the data. According to the output frequency of the
sensors, the time thresholds of the IMU ξI and the receiver
ξG are set. The acceleration threshold ξa, angular velocity
threshold ξω, dimension threshold ξϕ , longitude threshold ξλ

and altitude threshold ξh are set according to the speed limit
standard for safe driving of Chinese cars and common car

dynamics, i.e.,

ξ =
[
ξI ξax ξay ξaz ξωx ξωy ξωz ξG ξϕ ξλ ξh

]
.

If 1χ = χk
− χk−1 > ξ , there is an outlier in the data.

It should be noted that the outlier may be only one element
in the vector χ . In addition, since the IMU data frequency is
much higher than the GNSS data frequency, the GNSS part
of χ is complemented by zero. To facilitate data processing,
the IMU and GNSS data are processed separately in the
corresponding part of the code, and a new judgment threshold
distance ξ s is added in the GNSS data outlier judgment.

2) OUTLIER CORRECTION
Outliers in the data may occur singly or consecutively. First,
the mean values of the variation of consecutive normal values
in the sliding windows are calculated, and then the outliers
are corrected by adding the nearest normal value to the mean
value of the variation. In the case of consecutive outliers, the
number of outliers is multiplied by a factor of the number of
outliers before the mean value of the variation.

ck = χk−1 + i1nmean (14)

where ck generally refers to the corrected outliers, χk−1 is
the normal value of the last time, and 1nmean represents the
mean value of the normal value change in a certain period of
time, where i ∈ Z.

B. ADAPTIVE SINGULAR SPECTRUM ANALYSIS
Singular spectrum analysis is a nonparametric spectral esti-
mation technique that exhibits robustness to noise spec-
trum distribution and enables adaptive noise reduction [43].
In recent years, SSA has found applications in signal pro-
cessing, particularly for noise filtering in time series signals.
The methodology involves constructing a Hankel trajectory
matrix based on the time series signal, performing singular
value decomposition (SVD) and reconstruction on the Han-
kel matrix, and extracting the principal component signal
representing the original time series. This analysis allows
for the examination of the time series structure and subse-
quent prediction [31]. The complete process of SSA can be
divided into two stages: decomposition and reconstruction.
The decomposition stage includes embedding and singular
value decomposition, while the reconstruction stage involves
grouping and diagonal differentiation. In the reconstruction
stage, this paper proposes an improved grouping method that
adaptively determines the number of valid eigenvalues based
on the results of each SVD calculation.

1) EMBEDDING STEP
The embedding step is the mapping of a one-dimensional
sequence into multiple dimensions. The one-dimensional raw
signal s = (s1, s2, · · · sn) ∈ R16×1 is mapped to a trajectory
matrix S ∈ Rl×m, where n > 2, l = n

/
2, m = n− l + 1. The
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FIGURE 2. Framework of the (A)SSA-ESKF localization by INS/GNSS.

trajectory matrix S is shown in the following formula [30]:

S =


s1 s2 · · · sm−1 sm
s2 s3 · · · sm sm+1
...

...
. . .

...
...

sl−1 sl · · · sn−2 sn−1
sl sl+1 · · · sn−1 sn

 (15)

2) SINGULAR VALUE DECOMPOSITION STEP
Perform singular value decomposition of the S:

S =

r∑
i=1

σiU iVT
i = S1 + S2 + · · · + Sr (16)

where σi is the singular value of matrix S, σ1 ≥ σ2 ≥

· · · ≥ σr > 0, r = rank(S) ≤ min(l,m), U i represents the
l-dimensional left singular vector of matrix S, and V i repre-
sents the m-dimensional right singular vector of matrix S.

3) ADAPTIVE FEATURE REGROUPING
The purpose of grouping is to separate the effective compo-
nents and noise in the signal, and construct the S constructed
from the original signal sequence s into the sum of the useful
signal SU and the noise signal SN , S = SU + SN . The
first b-th large singular values σ1, σ2, · · · , σb are useful
components of the signal, and the remaining r − b small
singular values are noise components. In order to separate
the signal from the noise, the choice of truncation value b
plays a crucial role. A common approach is to assign an
empirical value to b directly and select the first b singular
values for signal reconstruction. However, this technique
may lead to incomplete noise reduction, leaving some noise

components, or it may remove some valid signal components,
causing distortion in the reconstructed signal. An alternative
method, proposed in the literature [43], is the mean value
method, which calculates the average of all singular val-
ues. The singular values above the mean correspond to the
valid signal, while the singular values below the mean are
considered noise components. This method is effective for
signals contaminated by smaller Gaussian noises. For smooth
signals, the number of singular values can also be determined
based on the number of principal frequencies obtained from
the results of a fast Fourier transform [45]. After analyzing
the data, it was discovered that the mean value approach can
be applied since the first 30% of the singular values in the
GNSS trajectory matrix account for more than 99% of the
total. However, the mean value method or Fourier transform
method cannot be directly applied to the IMU signal due to
its volatility caused by ground excitation, vehicle vibration,
and other factors. Moreover, the influence of micronoise and
possibly sparse large noise introduces fluctuations in the rank
of the trajectory matrix. In this work, the properties of IMU
singular values are examined, and an adaptive signal-to-noise
separation method is proposed. First, calculate the maximum
difference and the adjacent difference of the singular values.

1σi =

{
σi + σi+1 1 ≤ i < r
σ1 − σr i = r

(17)

Second, extract the highest value 1σmax from the range
1 ≤ i < r , and then determine the subscript b that
corresponds to 1σmax.

1σmax = 1σb = max(1σ1, 1σ2, · · · 1σr ) (18)
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Then, calculate the difference of the singular values corre-
sponding to the subscripts from b+ 1 to r :

1σb+1,r = 1σb+1 − 1σr (19)

Finally, calculate the ratio κσ of 1σb+1,r to 1σr :

κσ =
1σk+1,r

1σr
(20)

If κσ < β, β is the truncation threshold. Then the r singular
values are truncated at subscript b, and the first b singular
values are used for reconstruction. However, if κσ > β, repeat
the above operations for1σi within the range of k+1 ≤ i < r
until κσ < β is satisfied, and determine the cutoff value b.
Group the trajectory matrices according to the determined
cutoff value b:

S = SU + SN = S1 + S2 + · · ·Sb + Sb+1 + · · · + Sr (21)

where SU = S1 +S2 + · · ·Sb is the valid data of S and SN =

Sb+1 + · · · + Sr , Sr is considered to be the noisy part of S.

4) DIAGONAL AVERAGING STEP
The purpose of diagonal averaging is to convert the above
grouped effective matrices into sequences of length n.
According to (21), and for ease of writing, the matrix SU is
substituted with the matrix F, and the elements of the matrix
F are denoted by fij, where 1 ≤ i ≤ l, i ≤ j ≤ k .

F =


f1,1 f1,2 · · · f1,k−1 f1,k
f2,1 f2,2 · · · f2,k−1 f2,k
...

...
. . .

...
...

fl−1,1 fl−1,2 · · · fl−1,k-1 fl−1,k
fl,1 fl,2 · · · f1,1 fl,k

 (22)

Set l∗ = min {l, k} and k∗
= max {l, k}. If l < k , then

f ∗
ij = fij, otherwise, f ∗

ij = fji. The matrixF can be transformed
into the desired sequence fm ∈ Rn by diagonal averaging,
where 1 ≤ m ≤ n [30].

fm =



1
m

m∑
p=1

f ∗

p,k−p+1 1 ≤ m ≤ l∗

1
l∗

l∗∑
p=1

f ∗

p, m−p+1 l∗ ≤ m ≤ k∗

1
n−m+1

n−k∗+1∑
p=m−k∗+1

f ∗

p, k−p+1 k∗
≤ m ≤ n

(23)

C. ERROR-STATE KALMAN FILTER
The ESKF is broken down into four phases [26], beginning
with the prediction of the error state based on the IMU. A lin-
ear dynamic system’s dynamics, control, and measurement
matrices are generated from the values of the nominal state.
The ESKF forecasts the Gaussian estimates of the error states
while merging the nominal states. The next upgrade is to the
GNSS-based error state observation. The GNSS calibration
data present a post Gaussian estimation of the error state.
Third, the nominal vector includes the observed error state
mean. Finally, the error state mean is reset.

1) THE ESKF PREDICTION
The kinematic equation is a time-continuous equation, while
the IMU outputs discretization. The kinematic equation
between neighboring periods of the error state is obtained
from the statement of (12) in (24), as shown at the bottom
of the next page, [46]:
where 1t denotes the sampling interval time of IMU,
εv,k ∼ N

(
0,Ev,k

)
, εθ,k ∼ N

(
0,Eθ,k

)
, εa,k ∼

N
(
0,Ea,k

)
and εω,k ∼ N

(
0,Eω,k

)
are the perturbation

impulses applied to velocity, direction, and bias estimates,
modeled by white Gaussian processes, where Ev,k =

σ 2
an1t

2I3, Eθ,k = σ 2
ωn

1t2I3, Ea,k = σ 2
aw1t

2I3, Eω,k =

σ 2
ωw

1t2I3, where σ an
[
m

/
s2

]
, σωn

[
rad

/
s
]
, σ aw

[
m

/
s2

/√
s
]

and σωw

[
rad

/
s
/√

s
]
are generally provided by the IMU

product specification or obtained by Allan analysis of
variance.

δxk+1 = g(xk , δxk , ym,k , εk ) = Akδxk + Bkεk (25)

where ym =
[
am ωm

]T is the system input, εk =[
εv,k εθ,k εa,k εω,k

]T represents the perturbation impulses,
Ak and Bk are the Jacobian matrices of concerning the error
state and perturbation impulses, Bk and Ak , as shown at the
bottom of the next page.

According to (25), the prediction equation of ESKF is as
follows:

δx−

k+1 = Akδx+

k + Bkεk (26)

6−

k+1 = Ak6+

k A
T
k + BkW kBT

k (27)

where δxk+1 ∼ N (δx−

k+1, 6
−

k+1), the notation - indicates the
prior value of the state, and + indicates the posterior value of
the state,

W k =


σ 2
an1t

2I3 03 03 03
03 σ 2

ωn
1t2I3 03 03

03 03 σ 2
aw1t

2I3 03
03 03 03 σ 2

ωw
1t2I3

 .

2) THE GNSS OBSERVATION UPDATE
At present, the IMU information has been used to predict the
ESKF.Next, theGNSS information is used to correct the filter
to observe the IMU error. In addition, during the initialization
process, pe is also used to determine the coordinate origin
of the car in the n system. The update step is performed
through the observation value pe of the GNSS system, and
the relationship between the observation vector z and the state
vector x is

zk+1 = h(xn,k+1) + vk+1 (28)

where h(·) is the GNSS observation function, and v is white
Gaussian noise, vk+1 ∼ N (0,Vk+1).
The GNSS observation correction equation is:

δx+

k+1 = δx−

k+1 + Kk+1(δzk+1 −Hk+1δx
−

k+1) (29)

6+

k+1 = 6−

k+1 − Kk+1(Hk+16
−

k+1H
T
k+1 + V k+1) (30)
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where δxk+1 ∼ N (δx+

k+1, 6
+

k+1) and Kk+1 is the Kalman
Gain.

Kk+1 = 6−

k+1H
T
k+1(Hk+16

−

k+1H
T
k+1 + V k+1) (31)

Kalman Gain defines whether the system’s output relies
more strongly on the prior or posterior estimation. The IMU
estimation serves as the previous estimate in this study, while
the GNSS estimation serves as the posterior estimate. The
system places greater faith in the IMU estimation when the
Kalman Gain is close to zero, and the GNSS estimation when
the Kalman Gain is close to one.
H is the Jacobian matrix of the observation function, which

is obtained according to the chain rule:

H =
∂h
∂δx

∣∣∣∣
x

=
∂h
∂x

∣∣∣∣
x

∂x
∂δx

∣∣∣∣
x

= HxXδx (32)

where Hx =
∂h
∂x

∣∣
x =

[
I3 03 I3×4 03 03

]
is the Jacobian

of the nominal condition and the subscript k + 1 is elimi-

nated for clarity, Xδx =
∂x
∂δx

∣∣
x =

 I6 06×3 03×6
04×6 Q4×3 03×6
06 06×3 I6

 is

the Jacobian of the nominal condition concerning the error
state, depending on the composition of the error state, where

Q4×3 =
1
2 ×


−qx −qy −qz
qw −qz qy
qz qw −qx

−qy qx qw

.

3) INJECTION OF THE OBSERVED ERROR INTO THE
NOMINAL STATE
After the GNSS observation update is completed, the normal
state is updated in combination with the observation error

state:

x+

n,k+1 = x−

n,k+1 ⊕ δx+

k+1 (33)

which is

p+

n,k+1 = p−

n,k+1 + δp+

n,k+1 (34)

v+n,k+1 = v−n,k+1 + δv+n,k+1 (35)

q+

n,k+1 = q−

n,k+1 ⊗ q
{
δθ+

n, k+1

}
(36)

a+

b,n,k+1 = a−

b, n,k+1 + δa+

b,n, k+1 (37)

ω+

b,n,k+1 = ω−

b,n,k+1 + δω+

b,n,k+1 (38)

4) THE ESKF RESET
After injecting the error state into the normal state, the
error-state mean needs to be reset:

δxk+1 = δxk+1 ⊖ δx+

k+1 (39)

δx+

k+1 = 0 (40)

where ⊖ is the inverse of ⊕.
Algorithm 1 shows the iterative steps of the proposed

ASSA-ESKF, which contains initialization, data preprocess-
ing, ASSA denoising, ESKF measurement prediction, and
ESKF measurement update.

V. EXPERIMENTS
The proposed paper introduces two methods, SSA-ESKF and
ASSA-ESKF, aimed at enhancing the fusion accuracy of low-
cost INS/GNSS systems. The experimental section is divided
into three parts, each focusing on IMU data, GNSS data,
and IMU/GNSS data, respectively. The results obtained from
these experiments are compared and analyzed against those
of the ESKF and KF methods.

δxk+1

=


δpk + δvk1t

δvk +

(
−Rnb,k

[(
am,k − ab,k

)]
×

δθk − Rnb,kδab,k
)

1t − εv,k

exp
[(

ωm,k − ωb,k
)
1t

]T
×

δθk − δωb,k1t − εθ,k

δab,k + εa, k
δωb,k + εω,k

 (24)

Bk =


03 03 03 03
I3 03 03 03
03 I3 03 03
03 03 I3 03
03 03 03 I3

 ,

Ak =


I3 I31t 03 03 03
03 I3 −Rnb, k

[(
am,k − ab,k

)]
×

1t −Rnb,k1t 03
03 03 exp

[(
ωm,k − ωb,k

)
1t

]T
×

03 −I31t
03 03 03 I3 03
03 03 03 03 I3

 .
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Algorithm 1 INS/GNSS system for vehicle position based on
ASSA-ESKF
Input: am, ωm, pm
Initialization:
1. Put acceleration and GNSS data into buffers keeping vehi-
cle stationary
2. Calculate the mean of IMU and GNSS data in the buffers
3. return the mean values into ESKF
4. Initialize ESKF variables x−

0 ,
∑

−

0 ,W0,V0
Data preprocessing:
5.Outlier Correction via (14)
ASSA denoise:
6. Build track matrixS(15)
7. Singular Value Decomposition via (16)
8. Adaptive Feature Regrouping via (17)-(20)
9. Adaptive eigentriple Grouping via (21)
10. Diagonal AveragingF (22)-(23)
ESKF Measurement prediction [44]:
11. Error state estimates via (26)
12. Error state covariance prediction via (27)
ESKF Measurement update:
13. Compute Kalman gain via (31)
14. Error state update via (29)
15. Error state covariance update via (30)
16. Full state correction via (33)
17. ESKF reset via (39)-(40)
18. Run steps 5-17

Experiments Based on the KITTI Dataset: The KITTI
dataset is utilized in this study due to its provision of
reliable ground truth, ensuring the objective analysis of
experimental results in terms of errors. However, the IMU
and GPS data within the KITTI dataset are sourced from
the high-performance OXTS RT3003 device, which is both
expensive and highly accurate. To mimic the output of low-
cost sensors, Gaussian white noise is introduced to the KITTI
dataset. This paper divides the experiment into two parts
based on the level of added noise. Furthermore, unlike pre-
vious studies such as [30] that solely focused on GPS data,
the proposed method in this paper is designed to handle two
different types of data, namely IMU and GNSS. As a result,
three sets of experiments are conducted: IMU data-based,
GPS data-based, and IMU/GPS data-based. In each set of
experiments, the comparisons between the two algorithms,
SSA-ESKF and ASSA-ESKF, are performed by conducting
separate experiments for each singular value r range in which
they are located (refer to (16)). The experiments using the
SSA-ESKF are differentiated based on the symbol r to indi-
cate different singular values. For instance, an experiment that
is based on IMU data with a singular value of r = 5 in the
SSA-ESKF is denoted as r5IMU-ESKF. This notation helps to
specify and identify the specific experiments conducted using
SSA-ESKFwith different singular values. If the experiment is
based on IMU/GPS data using the ASSA-ESKF, it is denoted
as ASSAIMU/GPS-ESKF.

TABLE 2. The gaussian noises added to KITTI dataset.

Real Vehicle Experiment Based on low-cost Sensors: To
provide further evidence of the effectiveness of the proposed
method, this paper includes real vehicle experiments employ-
ing low-cost INS/GNSS systems. However, due to the lack
of trustworthy ground truth, the analysis of results compares
trajectories by estimating the distance between them. The
paper assumes that a shorter distance between the estimated
trajectories indicates higher accuracy. Consequently, the
vehicle trajectory during the experiment remains smooth.
Real-Time Analysis: This paper also conducts real-time

comparisons of ESKF, SSA-ESKF, and ASSA-ESKF
experiments to analyze the real-time impact when ESKF
incorporates SSA and ASSA. This analysis focuses on
understanding how the inclusion of SSA and ASSA affects
real-time performance.

A. EXPERIMENTS BASED ON THE KITTI DATASET
To address the need for simulating the data output of low-
cost sensors, this paper introduces different levels of Gaussian
white noise to the IMU and GPS data, creating four distinct
sets of IMU and GPS data (as outlined in Table 2), and can
successfully conduct IMU/GPS fusion through the KF.

The experiments are divided into two parts based on four
sets of dataset. In the first part, Data 1 is utilized for three
separate groups of experiments: IMU-based, GPS-based, and
IMU/GPS-based experiments. In the second part, Dataset II
is used to introduce dual noise specifically for the IMU-
based experiments. TheGPS data remains in its original form,
aiming to exclude any interference from the GPS data on the
results of the IMU-based experiments. Similarly, Dataset III
is employed for GPS-based experiments, and Dataset IV
is utilized for IMU/GPS-based experiments. This part of
the experiment includes the addition of dual noise in the
experimental data to further simulate the data from low-cost
sensors.

The main experimental steps for the SSA-ESKF or ASSA-
ESKF based on IMU data are as follows: Firstly, the IMU
data is subjected to SSA or ASSA processing, followed by
fusion estimation with GPS data using ESKF. Similarly, for
GPS-based experiments, the GPS data is first subjected to the
SSA or ASSA processing, and then fusion estimation with
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FIGURE 3. APEs assess the state estimation methods (KF, ESKF,
ASSA-ESKF, SSA-ESKF) by measuring the disparity between estimated and
true positions. the SSA and ASSA from (a), (b) and (c) use the IMU data,
GPS data, and IMU/GPS data, respectively.

IMU data using the ESKF is performed. For IMU/GPS-based
experiments, both IMU and GPS data are simultaneously
subjected to SSA or ASSA processing, followed by ESKF
fusion estimation.

1) THE PART ONE EXPERIMENTS USING DATASET I
In this subsection, four algorithms, namely the KF, ESKF,
SSA-ESKF, and ASSA-ESKF, are employed to conduct three
sets of experiments based on IMU, GPS, and IMU/GPS
data. Specifically, the SSA-ESKF experiments are further
categorized into 14 experiments based on different singular
values r(refer to (16)). The outcomes of these experiments
were compared against the ground truth values to quantify
the absolute position error (APE), which encompasses met-
rics including maximum error, mean error, median error,
minimum error, error squared, and standard deviation. Addi-
tionally, the root mean square error (RMSE) was computed
as an additional performance measure. The APE and RMSE
are visualized in Fig. 3 and presented in Table 3, respectively.
Fig. 3 illustrates the APE plots for three experimental

groups, clearly showing that the KF exhibits more outliers
and higher APE compared to the ESKF, ASSA-ESKF, and
most of the singular values in SSA-ESKF. In Fig. 3(a), the
APEs for ESKF are comparable to those of the SSA-ESKF

TABLE 3. RMSE of the three sets of experiments.

and ASSA-ESKF, suggesting a potential bias in the effec-
tiveness of the SSA for IMU data denoising, which requires
further validation. Additionally, in Fig. 3(b) and (c), the
ESKF demonstrates significantly higher APEs compared to
the ASSA-ESKF and SSA-ESKF (except for r=1), indicating
the notable effectiveness of SSA in denoisingGPS data. How-
ever, in Fig. 3(b) and (c), the APEs for the SSA-ESKF with
the same r are nearly identical, which may further indicate
that the impact of IMU data processing through SSA on the
fused results is minimal.

Table 3 shows the RMSEs obtained by comparing the three
sets of experimental results with the ground truth. It should
be noted that these experiments use the same data (Dataset I),
but in the SSA-ESKF and ASSA-ESKF experimental parts,
the IMU data, GPS data and IMU/GPS data were denoised
by the SSA and ASSA. Fig. 4 shows the percentage distribu-
tion of RMSE improvement of SSA-ESKF and ASSA-ESKF
compared to the KF and ESKF. The calculation formula is
shown in (41).

P =
e1 − e2
e1

× 100% (41)

where P represents the percentage of accuracy improvement
obtained by comparing RMSE. e1 indicates the RMSE of the
KF or ESKF, and e2 denotes the RMSE of the ASSA-ESKF
or SSA-ESKF.

Comparing these RMSEs, as shown in Table 3 and Fig. 4,
this paper draws similar conclusions as above. It can be seen
from Fig. 4(a) that the RMSE distribution is almost a horizon-
tal line. This shows that the SSA based on IMU data still has
little difference in RMSE even if different singular values are
selected. Therefore, the ASSA further proposed in this paper
cannot effectively reduce RMSE. From Fig. 4(b), both the
ASSA-ESKF and SSA-ESKF based on GPS data get positive
results.Moreover, this study also found that in the SSA-ESKF
experiment, as r decreases, RMSE also gradually decreases.
When r = 4, the RMSE reaches the minimum, r continues to
decrease and RMSE increases, and When r = 1, the RMSE
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FIGURE 4. Percentage reduction in RMSE of ASSA-ESKF and SSA-ESKF
with different r-values relative to the KF and ESKF. The SSA-ESKF and
ASSA-ESKF in Fig. (a), (b) and (c) are based on the IMU data, GPS data and
IMU/GPS data, respectively.

reaches the maximum, much larger than other RMSEs. The
distribution in Fig. 4(c) is similar to Fig. 4(b), which also
shows that IMU data has limited improvement in fusion accu-
racy after the SSA or ASSA. However, it should be pointed

TABLE 4. Comparison of the KF, ESKF and ASSA-ESKF RMSE based on
IMU, GPS, and IMU/GPS data using dataset I.

out that the accuracy of IMU/GPS-based the ASSA-ESKF is
slightly higher than that of GPS-basedASSA-ESKF as shown
in Table 4.

In conclusion, based on the results of the initial exper-
iments, this paper suggests that our proposed SSA-ESKF
and ASSA-ESKF methods may not be effective for IMU
data alone. The RMSE of the ESKF and ASSAIMU-ESKF
are almost the same, as shown in Table 4. However, these
methods have shown validity when applied to both GPS
data and combined IMU/GPS data. The experimental results
of the ASSA-ESKF method, using IMU/GPS data, indicate
a 6.9% improvement over the ESKF method and a 19.7%
improvement over the KF method, as calculated using (41).

2) THE PART TWO EXPERIMENTS USING DATASET II, III,
AND IV
To further validate the effectiveness of the proposed methods
for IMU, GPS, and IMU/GPS data, this study introduces
two types of Gaussian white noise to the KITTI dataset to
simulate low-cost sensor data. Additionally, in order to elim-
inate interference from another type of data on the validation
results, only the two types of noise are added to the valida-
tion data, while the other type of data remains unchanged.
Therefore, this section requires three datasets: Dataset II for
IMU data validation, Dataset III for GPS data validation, and
Dataset IV for IMU/GPS data validation. The noises added to
the datasets are presented in Table 2.

Similar to the experimental procedure in the first part, this
subsection also conducts three sets of experiments. Each set
of experiments includes the KF, ESKF, ASSA-ESKF, and
SSA-ESKF with all different singular values. The difference
is that these three sets of experiments utilize data with differ-
ent added noises. Fig. 5 illustrates the APEs for the three sets
of experiments.

The APE distribution in Fig. 5(a) is similar to Fig. 3(a),
indicating that even with different singular values, there is
almost no difference in APE between the SSA-ESKF exper-
imental results. Therefore, this study suggests that the SSA
has limited effectiveness in denoising IMU data. However,
the ESKF, SSA-ESKF, andASSA-ESKF exhibit significantly
lower APE values compared to the KF. Additionally, this
may be attributed to the high-precision raw data used by
GPS data, which does not contain outliers in the results.
In Fig. 5(b) and (c), although these two sets of experiments
utilize slightly different IMU data, they demonstrate similar
APE distributions. This indicates that whether or not the SSA
denoising is applied to IMU data with dual noise, it does not
significantly affect the fusion results, further supporting the
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FIGURE 5. APE distributions of the state estimation methods (KF, ESKF,
ASSA-ESKF, SSA-ESKF) by measuring the disparity between estimated and
true positions. the SSA and ASSA from (a), (b) and (c) based the IMU data,
GPS data, and IMU/GPS data from Dataset II, Dataset III and Dataset IV,
respectively.

conclusion that the SSA has limited denoising capabilities
for IMU data. Furthermore, the ASSA-ESKF consistently
exhibits lower APE compared to the ESKF and SSA-ESKF.
Specifically, for a singular value of 1, the APE of r1-ESKF is
noticeably higher, and there are more outliers in the results of
the KF and r2-ESKF. In Fig. 5(b), there are evident outliers
in r11-ESKF and r14-ESKF, while in Fig. 5(c), there are
no apparent outliers. This suggests that the addition of dual
noise to IMU data, followed by SSA processing, improves the
robustness of the estimation to some extent.

Table 5 presents the RMSEs for the three sets of experi-
mental results. Vertically comparing the RMSEs of the first
set of experiments based on IMU data, all values are nearly
1.162 meters, except for that of the KF. Horizontally compar-
ing the RMSEs between the second set based on GPS and the
third set based on IMU/GPS, the difference is not significant.
However, in the third set where IMU data is added with two
types of noise, the RMSE of ASSA-ESKF (1.225 meters)
is slightly lower than the RMSE of ASSA-ESKF in the
second set (1.237 meters). To provide a visual analysis of
the RMSE, this study calculates the percentage improvement
of SSA-ESKF and ASSA-ESKF relative to KF and ESKF
using (41), and presents the results in Fig. 6.

TABLE 5. RMSE of the three sets of experiments.

Fig. 6 exhibits a similar overall distribution to Fig. 4.
In Fig. 6(a), the RMSEs for various experiments show min-
imal variation. In Fig. 6(b) and (c), as the singular values
decrease, the overall accuracy of the SSA-ESKF tends to
increase. The highest accuracy is achieved when r= 4. When
r = 1, the RMSE of the SSA-ESKF is reduced by 2 - 4 times
compared to the KF and ESKF. Therefore, the magnitude
of the improvement is too large to be visually represented.
In the experiments based on GPS data, the ASSA-ESKF
demonstrates an accuracy improvement of 42.37% and 7.95%
compared to the KF and ESKF, respectively. For the experi-
ments based on IMU/GPS data, the accuracy improvement is
41.73% and 8.69%.

3) DISCUSSION
Based on the two sets of experiments, this study concludes
that the SSA and ASSA have limited effectiveness in denois-
ing IMU data, while their denoising effects on GPS and
IMU/GPS data are more significant. Additionally, although
the accuracy of the SSA-ESKF is comparable between GPS
data and IMU/GPS data, SSA-ESKF applied to IMU/GPS
data can reduce outliers and improve robustness. In the two
sets of experiments based on IMU/GPS data, even though
Data IV includes two types of Gaussian white noise for both
IMU and GPS data, the RMSE after the ASSA-ESKF is
1.225 meters, which is equivalent to the results obtained from
Data I. It is important to note that these experiments used
high-precision KITTI data with added Gaussian white noises
to simulate low-cost sensor outputs. Therefore, they cannot
completely replace low-cost sensor data. However, this study
believes that the conclusions drawn from these experiments
are still highly valuable for reference, and similar conclu-
sions would be obtained when using actual low-cost sensor
data, although the magnitude of accuracy improvement may
vary.

VOLUME 11, 2023 88681



L. Zhao et al.: Novel Vehicle Localization Method Based on Adaptive SSA

FIGURE 6. Percentage reduction in RMSE of ASSA-ESKF and SSA-ESKF
with different r-values relative to the KF and ESKF. (a), (b) and (c) show
the percentage reduction in RMSE using Dataset II, Dataset III and
Dataset IV, respectively. Please note that the range of the r-value
in (b) and (c) is greater than 2.

B. REAL VEHICLE EXPERIMENTS BASED ON LOW-COST
SENSORS
To verify the performance of the proposed algorithms on low-
cost sensors, real vehicle experiments using a low-cost Star-
Neto Newton-M2 containing the INS/GNSS was conducted.

FIGURE 7. (a) shows the layout of the equipment installation. (b) shows
the map of the trajectory of the experimental vehicle. (c) explains the
distances of the 3D coordinate points from the coordinate origin during
the driving process, the distances in the x-y-z direction are represented by
the vertical axis, respectively, and the horizontal axis indicates the
number of positions calculated during the experiment.

TABLE 6. The IMU parameters.

The device parameters of the IMU are given in Table 6, with
an output frequency of 100 Hz, the output frequency of GNSS
is 5 Hz, and the GNSS antenna pole arm compensation is
x = 0 meter, y = -0.5 meters, z = -0.05 meters, as shown
in Fig. 7(a). The equipment was calibrated before the
experiment.

Due to limitations in the experimental conditions, it was
not possible to obtain reliable ground truth for the exper-
imental vehicle, which prevented the comparison of APE
and RMSE between the KF, ESKF and ASSA-ESKF. There-
fore, this study primarily focused on smooth trajectories
of the experimental vehicle, allowing the evaluation of
algorithm accuracy based on the estimated trajectory dis-
tances. By observing the trajectories and considering the esti-
mated distances, this study concludes that shorter distances
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TABLE 7. Comparison of the trajectory leng.

TABLE 8. Comparison of the computation time.

correspond to higher estimation accuracy. It should be noted
that the ASSA-ESKF proposed in this article has been proven
to be superior to the SSA-ESKF, therefore, the SSA-ESKF
experiments will not be conducted in this subsection.

After conducting experiments with the KF, ESKF, and
ASSA-ESKF, it was found that the KF was unable to com-
plete the experiment, and therefore trajectory comparisonwas
not performed. This set of experiments resulted in a total of
16,161 output position points, and the trajectory of the vehicle
is depicted in Fig. 7(b). The trajectories in the x, y, and z
directions were illustrated in Figure 7(c). The length of the
trajectories is presented in Table 7. The trajectory length of
the ASSA-ESKF based on IMU data, as shown in Table 7,
is nearly negligible compared to the ESKF. The trajectory
lengths of the ASSA-ESKF based on GPS data and IMU/GPS
data are almost equal. Furthermore, considering the conclu-
sions from the first part, this paper suggests that both the
SSA and the proposed ASSA are ineffective in reducing noise
in IMU data. However, the ASSA-ESKF estimates based
on GPS data or IMU/GPS data show a reduction in length
compared to the ESKF, specifically by 948.98 meters and
954.91 meters, respectively. Therefore, this paper concludes
that the ASSA-ESKF estimates based on IMU/GPS data are
closer to the true value than the ESKF estimates, approaching
an improvement of 954.91 meters. This significant increase
in accuracy demonstrates the effectiveness and superiority of
the proposed ASSA-ESKF method.

C. COMPARISON THE COMPUTATION TIMES
This subsection compares the running times of the algo-
rithms. The all algorithms are run on the computer with Intel
I7 8th CPU and 16 Gb RAM. Table 8 shows the partial run-
ning results. The results show that the proposed ASSA-ESKF
algorithm only takes approximately 6 microsecond and
0.5 millisecond longer time for one operation than the ESKF
using Dataset IV and the data from Newton-M2, which can
ensure the real-time performance of the system.

VI. CONCLUSION
The main objective of this paper is to improve the perfor-
mance of ESKF for positioning using low-cost INS/GNSS
systems, therefore, this paper proposed the SSA-ESKF and
ASSA-ESKF algorithms. The noise reduction effectiveness

of ASSA and the SSA for IMU, GPS and IMU/GPS data were
verified by the KITTI dataset, which incorporated Gaussian
noises. The GPS-based the ASSA-ESKF reduced the RMSE
by 7.88% and 19.22% using Dataset I, 7.95% and 42.37%
usingDataset III, compared to the ESKF andKF, respectively.
Furthermore, the IMU/GPS based ASSA-ESKF methods
reduce the RMSE by 8.41% and 19.69% using Dataset I,
8.69% and 41.73% using Dataset IV, compared to the ESKF
and KF, respectively. Most of the experimental results of
the SSA-ESKF are also superior to the ESKF, but it needs
to choose the appropriate singular value, which takes some
experience and time. However, the SSA-ESKF and ASSA-
ESKF for IMU data seem ineffective. In the experimental
accuracy, the ASSA-ESKF based GPS and IMU/GPS data
is also better than the SSA-ESKF, thus, the ASSA-ESKF is
better than the SSA-ESKF in terms of experimental accuracy
and time spent. The real vehicle experiments using a low-
cost INS/GNSS was also conducted, and the driving distance
estimated by different algorithms was compared due to the
lack of highly reliable ground truth. The results show an
estimated distance of 1881.252 meters for ASSA-ESKF and
2836.162meters for the ESKF. It is obvious that our proposed
ASSA-ESKF algorithm has significant accuracy. In addition,
the increased time of a single operation cycle is less than
1 millisecond, which ensures real-time operation.

It is obvious that ASSA is effective in noise reduction
for GNSS data and IMU/GNSS data and there is a certain
regularity with the variation of singular values. Additionally,
the IMU/GNSS -based the SSA-ESKF has better robustness
than that of the GNSS-based. However, the noise reduction
effect for IMUdata seems invalid. IMUdata is time correlated
and conforms to the definition used by SSA. It may be caused
by the difference of the two data structures and needs to
be further investigated. In addition, since this paper did not
discuss the length of the sliding window, it may not have been
possible to place the periodic noise of the IMU signal within
the sliding window, resulting in differences in the observation
effects.

For future work, it is recommended to explore optimization
techniques for the ASSA denoising method or develop alter-
native signal-to-noise ratio separation strategies tailored to
specific datasets in order to enhance denoising effectiveness.
Further investigation is needed to examine the influence of the
sliding window length in the SSA and ASSA on denoising
IMU and GNSS data. Additionally, incorporating new sen-
sors to evaluate and analyze the proposed algorithms would
be beneficial. Furthermore, the robustness of the algorithm
requires further validation.
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