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ABSTRACT

Electric vehicle (EV) adoption is expanding, posing new issues for grid operators, fleet operators, charging
station operators, and EV owners. The challenge is to devise an efficient and cost-effective strategy for
managing EV charging that takes into account the demands and objectives of all parties. This study offers
a context-aware EV smart charging system based on deep reinforcement learning (DRL) that takes into
account all participants’ requirements and objectives. The DRL-based system adjusts to changing contexts
such as time of day, location, and weather to optimize charging decisions within an instantaneous fashion by
balancing the trade-offs among charging cost, grid strain reduction, fleet operator preferences, and energy
efficiency of charging station maintainer while providing EV owners with a convenient and cost-effective
charging experience for its ability to handle sequential decision-making, capture complex patterns in data,
and adapt to changing contexts. The proposed system’s performance has been evaluated using simulations
and compared with existing solutions. The results demonstrate that the proposed system is capable of
balancing the trade-offs between different objectives and providing an energy-efficient solution which is
approximately 15% better than traditional approach, and about 10% more cost-effective charging experience
for EV owners while reducing grid strain by 20% and CO2 emissions by 10% as a result of using a natural
energy source. The proposed system has then resulted in achieving the needs for efficient and optimised
resource scheduling of fleet operators and charging station maintainers.

INDEX TERMS Context-aware, deep reinforcement learning, electric vehicle, resource optimisation.

I. INTRODUCTION is capable of adapting to changing contexts and optimizing

The growing popularity of electric vehicles (EVs) unveils
novel challenges for industry stakeholders which are the
main drivers of the industry for example grid operators,
fleet operators, charging station operators, and EV owners.
One of the primary challenges involves figuring out trade-
offs between several objectives, such as lowering the cost
of charging for EV users, reducing demand on the power
grid, optimizing fleet management, and improving energy
efficiency at charging stations. The suggested approach
should be a context-aware EV smart charging system that
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choices regarding charging in an immediate fashion to
negotiate compromises between charging cost, grid strain
reduction, fleet operator preference, and energy efficiency of
charging station maintainers while providing EV owners with
a convenient and cost-effective charging experience.

For the last few decades, researchers have been
working on EV smart charging. Initially, the emphasis
was to establish fundamental charging infrastructure and
standards [1], [2], [3]. In recent years, the focus has
shifted to designing advanced charging systems that are
capable of optimal trade-offs between several objec-
tives [4], [5], [6], [7], [8], [9], [10]. The increasing adoption of
electric vehicles (EVs) is a major trend in the transportation
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sector, driven by concerns about energy security, climate
change, and air pollution [12]. Though, the integration of
EVs into the electricity grid raises additional challenges for
grid operators, fleet operators, charging station operators,
and EV owners. The key problem is balancing trade-offs
between many objectives, such as lowering EV charging
costs, reducing the load on the power grid, optimizing
the management of fleets, and promoting energy efficiency
at charging stations [13], [14]. To present such issues,
researchers have proposed numerous solutions, which involve
including time-of-use pricing schemes [15], [16], [17], [18],
dynamic load management [19], [20], and smart charging
algorithms such as A Stochastic Game Approach [21],
Vehicle-to-Grid (V2G) Optimization [22], Pareto Optimal
solution in Multi-Objective Optimization [23], Real-Time
Energy Management Systems [24], Blockchain-based Charg-
ing Systems [25], [26], [27]. Ultimately, these aggregated
approaches mainly lack the way to engage with changing
parameters such as time of day, location, weather, and other
factors that may have significant effects on EV charging
patterns and electrical infrastructure obligations. Other
than this, such outcomes are usually reliant on centralized
decision-making, which can be rigid and incapable of
satisfying the ever-changing needs of various stakeholders.
In line with the availability of data being generated by
EV vehicles and its stakeholders, the application of complex
algorithms and technologies, such as optimization, control,
and machine learning, is at the forefront of EV smart charg-
ing [11]. Reinforcement learning (RL) is a suitable approach
for this research study due to several reasons. Firstly, RL is a
type of machine learning that focuses on making sequential
decisions in an environment to maximize a cumulative
reward. In the context of the EV charging infrastructure,
the decision-making process involves dynamically assigning
charging resources to meet the demands of EV end-users
while considering the constraints and objectives of other
stakeholders. Secondly, the application of deep reinforcement
learning (DRL) allows for the integration of deep neural
networks, enabling the model to capture complex patterns
and representations from large-scale data. In the context of
resource allocation in an EV charging infrastructure, DRL
can learn from historical charging data, user preferences, grid
conditions, and fleet operator requirements to make informed
decisions on resource optimization. Furthermore, the context-
awareness aspect of the research topic aligns well with
the capabilities of reinforcement learning. RL algorithms
can adapt to changing contexts, such as variations in user
demand, charging station availability, and grid conditions.
By continuously learning and updating its decision-making
policies, RL can optimize resource allocation based on the
current context and contribute to increased efficiency and
user satisfaction in the charging process. Deep reinforcement
learning (DRL) is currently gaining popularity as a solution
to the problem of EV smart charging. By maximizing a
reward signal, DRL is a strong machine-learning technique
that can learn to make judgments in complicated, dynamic
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contexts. It has been revealed to be advantageous for a variety
of applications, including gaming, robotics, and energy
management. Particularly, DRL-based EV smart charging
systems can adapt to changing settings and realistically
optimize charging decisions to balance trade-offs between
several objectives that have been presented. DRL-based EV
smart charging systems, for example, have been proposed
to optimize charging schedules to minimize charging costs
and reduce grid strain while taking the context of the
charging session into account [28], [29], [30]. Likewise,
DRL-based EV smart charging systems have been proposed
to optimize charging schedules across multiple EV fleets by
considering the preferences and objectives of different fleet
operators into account [31], [32]. Using this approach may
promote an additional flexible and decentralized decision-
making process that can more effectively meet the varying
requirements of various stakeholders.

In a nutshell, identifying an efficient and cost-effective way
to manage EV charging that takes into account the demands
and objectives of all participants is a complicated and difficult
process. According to a recent investigation, DRL-based
EV smart charging systems can be an effective solution
that can adapt to changing settings and optimize charging
decisions realistically to balance trade-offs between multiple
objectives. In the outcomes from above, more research in
this area is needed to improve these technology platforms by
integrating more context-aware and decision-making skills
that take into account the demands of all users.

II. LITERATURE REVIEW

Despite the significant progress that has been made in EV
smart charging research in recent years, there is still a
significant gap in the literature when it comes to addressing
the trade-offs between different objectives with respect to
all stakeholders which are involved in this research. More
specifically, still there is a lack of research that considers
the needs and preferences of all stakeholders, such as EV
owners, grid operators, fleet operators, and charging station
maintainers [33], [34]. Presently, the research focus mainly
on addressing the needs of a single stakeholder, such as
minimizing charging costs for EV owners or reducing grid
strain for grid operators, without fully considering the impact
on other stakeholders and their concerns. So, this can lead us
to sub-optimal solutions that do not fully optimize the trade-
offs between different objectives.

Little research has been done on the integration of context-
awareness in EV smart charging systems from the perspective
of multiple stakeholders. For example, a survey on the
current state of the art of context-aware EV charging systems
focused mainly on one stakeholder perspective, such as the
EV end-users [35]. There are also limited studies on the
use of deep reinforcement learning for EV smart charging,
particularly in a multi-stakeholder context. A multi-agent
reinforcement learning framework has been proposed to
coordinate EV charging, but does not take into account
the context-awareness or multiple objectives of different
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stakeholders [36]. It is reported that recent EV smart charging
systems don’t seem to have been designed to adapt to
changing contexts, which limits their effectiveness in real-
world situations. For example, in “A review of electric
vehicle charging control strategies: From off-line to real-
time approaches” [37], the authors have reviewed several
EV charging control strategies, but they do not seem to
discuss how to adapt the charging system to a changing
context. There also seems to be a lack of research on
how to balance the different objectives of the various
stakeholders involved in EV smart charging, such as EV
end-users, grid operators, fleet operators, and charging
station maintainers. For example, in “Optimizing Electric
Vehicle Charging Schedules: A Review” [38], authors have
reviewed several EV charging optimization methods, but
they do not discuss how to balance the different objectives
of different stakeholders. Additionally, the literature review
on similar models in other domain is also considered to
evaluate its contribution to the advancement of various
fields, including X-ray detection technology [39], predictive
maintenance planning [40], and battery prognostics [41].
They demonstrate the effectiveness of data-driven approaches
and highlight the potential for improved accuracy and cost
reduction in these areas of research.

Earlier studies have mainly focused on one objective or one
stakeholder and lack a comprehensive approach to quantify
the different combinations of the factors and the trade-offs
between various objectives for the involvement of multiple
stakeholders [44], [45], [46], [47], [48], [49]. As seen from the
literature, the EV smart charging problem is a complex and
dynamic one, involving multiple agents (EVs, grid, charging
stations) with different objectives and constraints as seen
in Tables 1, 2, 3, and 4. Therefore, there is a need for
more research on how to effectively coordinate and optimize
the decisions of multiple stakeholders in a decentralized
manner. To effectively coordinate and optimize the decisions
of these agents, it is necessary to develop methods that can
handle the uncertainty and non-stationary of the problem.
Moreover, to enable a better decision-making process, there
is a necessity for more research that brings outcomes with
further enhancements using combination, communication,
and coordination among different stakeholders. The tables 1,
2, 3, and 4 include the description of several metrics that
can be used to evaluate the resource optimality of different
solutions for EV charging. The metrics are described along
with their perspective of each stakeholder. By considering
the perspectives of all stakeholders, a more comprehensive
evaluation of the solutions can be made, taking into account
the specific requirements and constraints of the EV charging
environment.

Given the importance of context-aware systems and
multiple-factors, the theoretical framework for this research
is built upon three main components, namely, context-
aware systems, resource optimality, and deep reinforcement
learning. The main aim of this research is therefore to develop
a practical and smart context-aware EV smart charging
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TABLE 1. EV end user metrics.

from the charg-
ing process

Metric Description EV end user
Total cost of | The overall cost | Wants to minimize the
charging incurred for | cost of charging
charging EVs
Total time | The time taken | Wants to minimize the
taken to reach|for the EV |time taken to charge the
the charging [to reach the|EV
station charging station
and  complete
the charging
process
Total CO2 emis- | The total emis- | Wants to minimize emis-
sions sions produced |sions for environmental

and personal reasons

Total energy
consumption

The overall en-
ergy consumed
for charging the
EVs

Wants to minimize en-
ergy consumption

TABLE 2. Grid operator metrics.

for charging the
EVs

Metric Description Grid operator
Total cost of | The overall cost | Concerned with the cost
charging incurred for | of electricity, network
charging EVs upgrades, and energy
management systems
Total time | The time taken | Concerned with network
taken to reach|for the EV |upgrades and grid sta-
the charging |to reach the | bility
station charging station
and  complete
the charging
process
Total CO2 emis- | The total emis- | Concerned with reduc-
sions sions produced | ing emissions and meet-
from the charg- |ing regulatory require-
ing process ments
Total energy | The overall en- | Concerned with energy
consumption ergy consumed | demand and grid stabil-

ity

TABLE 3. Fleet operat

or metrics.

for charging the
EVs

Metric Description Fleet operator
Total cost of | The overall cost | Wants to minimize the
charging incurred for | cost of charging for their
charging EVs fleet of EVs
Total time | The time taken | Wants to minimize the
taken to reach|for the EV |time taken to charge
the charging [to reach the |their fleet of EVs
station charging station
and  complete
the charging
process
Total CO2 emis- | The total emis- | Wants to minimize emis-
sions sions produced |sions for environmental
from the charg- | and regulatory reasons
ing process
Total energy | The overall en- | Wants to minimize en-
consumption ergy consumed |ergy consumption and

costs

system that can optimize the trade-offs between different
objectives for all stakeholders involved. The system should
be able to adapt to the changing context and make decisions
accordingly. The concept of resource optimality is used to
guide the research in finding the optimal charging schedules
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TABLE 4. Charging station maintainer objectives.

Metric Charging station met-
rics

Total cost of | The overall cost | Wants to maximize rev-

Description

charging incurred for | enue from charging ser-
charging EVs vices
Total time | The time taken | Wants to  minimize
taken to reach|for the EV |downtime and increase
the charging |to reach the |usage of charging
station charging station | stations
and  complete
the charging
process
Total CO2 emis- | The total emis- | Wants to minimize emis-
sions sions produced |sions for environmental
from the charg- | and regulatory reasons
ing process
Total energy | The overall en- | Wants to minimize en-
consumption ergy consumed | ergy consumption and

for charging the | costs
EVs

for EVs that take into account the different objectives and
constraints of the stakeholders as seen in Table 4. This
concept is based on the idea that resources should be used
in the most optimised way possible. For this purpose, Deep
reinforcement learning using Q-networks is used as the main
method to optimize the charging schedules.

In summary, the three main components are considered to
guide the research in developing a context-aware EV smart
charging system that can optimize the trade-offs between
different objectives for all stakeholders involved as described
below.

Ill. THE STATE-OF-THE-ART FRAMEWORK

The overall objective of this research is to present a
framework that facilitates non-gasoline vendors such as EV
end-user, grid-operator, fleet operators, charging-station to
receive optimum outcomes with the help of provided key
factors i.e. fleet-booking, charging station, charging station
maintainer, charging point demand, location, charging station
availability, using machine learning technique. Additionally,
in this framework, a deep reinforcement learning (DRL)
technique which works as State, Reward, and Environment
pattern is used to optimise the process of decision-making for
the most optimum EV charging model.

Artificial intelligence is a broad category of computer
science that aids in the development of smart processes and
computers capable of doing activities that would typically
need human intelligence. Furthermore, these machines are
capable of resolving issues, enhancing decisions, as well as
performing tasks that were previously undertaken by human
beings [28], [29]. Machine Learning(ML) is a subpart of
Artificial Intelligence which is a data-driven and trained
using the data. Additionally, ML-based models are capable
of discovering their own findings from data being provided to
machine without any explicit human involvement. Moreover,
ML uses numerous algorithmic procedures that consume
data to figure-out how to progress, make predictions, and
explain data. These models can be trained via supervised,
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FIGURE 1. Reinforcement learning model.
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FIGURE 2. Reinforcement learning with policy presented via DNN source:
DeepRM-HotNets.

unsupervised, semi-supervised and reinforcement learning
based strategy. Among all these approaches in ML, Deep
Learning is the subsection of ML that consists of a set of
algorithms, based on the concept of artificial neural networks
that have a self-learning capability over the multi-layer neural
networks with the help of data that allows them to accomplish
tasks (e.g., image recognition, speech recognition) [30].

Reinforcement Learning (RL) is the science of decision
making which also lies in the machine learning section where
computer program act as an intelligent agent that interacts
with the environment and learns to act within that. For
example, how a Robotic Agent learns the movement of its
foot to play football is an example of reinforcement learning
[31]. The basic RL model involves an agent interacting with
an environment to learn an optimal policy for taking actions
in different states. At each time step t, the agent observes
the current state St of the environment and selects an action
Ai based on its policy. The environment transitions to a new
state St+1, and the agent receives a reward Rt for the action
taken in state St. The goal of the agent is to learn an optimal
policy that maximizes the expected cumulative reward over
time. The value of a state-action pair (St, Ai) is defined as the
expected cumulative reward starting from state St and taking
action Ai, and following the optimal policy thereafter. This
value is denoted as Q(St, Ai).

In figure 2, the agent is the learner and the decision-
maker. The environment is the point of interaction between
the agent and its objective. The environment reacts to
the agent’s actions by presenting it with fresh scenarios.
Rewards are another result of the environment; their unique
numerical values are what the agent attempts to maximize
over time by selecting activities. Formalizing the agent’s
purpose or aim in terms of a unique signal termed the
reward that travels from the environment to the agent. The
reward is a straightforward number R;e R at each time step.
The agent’s informal objective is to maximize the overall

VOLUME 11, 2023



M. Sharif et al.: Context Aware-Resource Optimality in EV Smart2Charge Application

IEEE Access

Reward (Rx)

> g sa
A collect all
information coming
¥ HPC _from drivers, ﬂ_ee(
* W ®managers, charging
* say stations and the.
D Y 4. power-grid for a
TR % certainarea. | use an
HPC
Lo algorithm to
process this data
T over high
H computing  nodes:
! and  suggest the
' best trade-off for all
[ [1 A 7 E acors in the eco
|
v

-Operator I

\_J

L
Actions (x) 1

State (s)

13
&
'E

Battery Type
Fleet Cost

@

Energy Type

Charging Station Maintainer

station vaatey D~
&

Station Service

owgna e D

Observer state
Environment

FIGURE 3. The state of the art architecture.

system”

==

reward it accumulates. This involves optimizing long-term
cumulative reward rather than immediate reward. The return
is a function of the agent’s desire to maximize future benefits
(in expected value). It has numerous distinct definitions based
on the nature of the activity and whether or not delayed
reward is desired. The unaccounted formulation is suitable
for continuous tasks in which the operative such as agent-
environment interaction certainly breakdowns into episodes;
the discounted formulation is suitable for continuous tasks in
which the interaction does not naturally breaks into episodes
but lasts indefinitely. We attempt to describe the returns
for the two types of jobs in such a way that a single set
of equations can be applied to both episodic and ongoing
scenarios. By solving the Bellman optimal equations, which
are certain consistency conditions that the optimal value
functions must satisfy, it is fairly straightforward to build an
optimum policy from the optimal value functions.

We reviewed a number of research initiatives completed by
various organizations that work independently adequately but
lead to the wastage of resource due to a lack of collaboration
in-between. In this context, let’s consider an example in
figure 3 where the first stakeholder, EV end-user is interested
to find an appropriate charging point on their way from
‘location X’ towards ‘location Y’ with minimal time to
charge the vehicle as well as lower charging cost. The second
stakeholder, the grid operator, is responsible for generating
electricity which is required to meet the requirements of
inhabitants without knowing their required demands in a
certain region. The charging station maintainer, as the third
stakeholder, plays a crucial role in ensuring that the charging
point is always ready for use before anyone reserves it.
However, it’s worth noting that this situation rarely happens
without prior knowledge of how the charging station operates.
On the other hand, the fleet operator stakeholder takes on the
responsibility of determining the optimal number of vehicles
available for booking. Their goal is to meet the recommended
requirements and preferences of the customers, ensuring
a smooth and satisfactory experience. Moreover, all of
these stakeholder work independently without knowing the
on-demand requirements from other vendors realistically.
However, the proposed state-of-the-art methodology in this
paper overcomes these issues and incorporates realistically
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with preferred demands from different vendors, and uses the
resources more efficiently.

The following part explains thoroughly the manner in
which the suggested architecture works. We demonstrate how
the algorithm makes use of contextual data to determine the
win-win requirement for each stakeholder. We define four
different sets of stakeholders in the efficient transportation
eco-system including EV end-users, Grid-Operator, Fleet-
Operator, and Charging Stations Maintainer.

1) EV end-users: EV end-user should share their travel
activity such as their movement plan (e.g. start-location
and end-location of their journey). Moreover, the EV
end-user will get the routing suggestions from which
needs choosing one of the paths. The technical spec-
ifications of the vehicle (e.g. a battery type) are also
decided by the EV end-user. The algorithm produces
the best potential route options based on these inputs
and the provided key performance indicators criteria,
including pricing and the accessibility of charging
stations. The EV end-user might select the routing
option that outfits according to his environment as well
as the best from the algorithm recommendations.

2) Grid-Operator: it can provide information on feeder
and transformer loads, such as charging and electric
supply booking, and so contribute to and have an
impact on the charging station’s grid-friendly use.
Usually, the grid-operator can approximate the feeder
and transformer loading for up to the upcoming twenty-
four hours utilizing cutting-edge distribution network
modeling technologies.

3) Fleet-Operator: The primary role of the fleet operator
is to keep eye on available fleet for booking and what
type of energy type is used in it (e.g. hydrogen, gas,
benzine, electric). Furthermore, battery usage data,
such as discharge rate, will be available to the fleet
manager, who may use it to troubleshoot issues and
organize repairs. In addition to this, what type of fleet
is requested and its cost as well as meeting the required
criteria of load according to customer requirements.

4) Charging Stations Maintainer: It will keep the
charging station operational in order to meet end-user
needs and deliver suitable services in the event of
an unintentional failure. When the cost of renewable
energy falls, the proprietor of the charging station may
send alerts to customers to get the charging done with a
minimal cost. Furthermore, before visiting the charging
station, the end-user can book a charging station for

their particular fleet.
The information received from individual stakeholders is

represented in ( X;, Xj, Xk, ... ..X), ) with associated initial
rewards respectively. These parameters represent the state(s)
that are further given to the model as inputs, as shown in the
bottom-left-hand side of Figure 3. These data sets, on the
other hand, are examined using a cutting-edge approach
based on deep reinforcement learning method where the
computer learns weights of DRL parameters from sets of
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f 1Qualues

Action Vector; = Argmax Q;

FIGURE 4. DQN model prediction using states and deep neural networks,
the outputs are Q-values, and actions are computed based on Argmax Q;
for the current State.

inputs, recommended domains, and their restrictions. When
the anticipated barrier is attained, the precise result is
produced in Figure 3 on the right, where different output
is displayed according to a specific stakeholder such as
“EV end-user: will get the best schedule and routing
option based on the personal needs of the car’s battery and
the environment™ is displayed, Grid-Operator: will obtain
expected power demands for a specific region based on
charging station reservations, as well as eliminate electric
fluctuation, and so on.” Otherwise, the system constantly
learns from its surroundings by interpolating weights, and so
on.

i
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There is a demonstration of an objective function for
reinforcement learning, which describes its aim. Here we
express our computation reward function r applies-over t for
time step calculations. Furthermore, we may acquire all of
the rewards by running with the aid of this goal function.
At a particular time step, state is represented by x, and action
taken at that state is represented by a. A reward r represents
the computed outcome over the state x and the action a.
In addition, each job aims to maximize a discounted sum of
its rewards y for particular time-steps [32].

As illustrated in Fig.4, the DQN agent receives input states
from four different stakeholders: EV end users, Grid Oper-
ators, Charging Station Maintainers, and Fleet Operators.
These input states consist of 16 features represented in X; to
X16 in Figure 3. The DQN agent uses a batch size of d; until
dps for each input-feature state, which is represented in Sy, S>
until S, in Figure 4. For each state, the DQN agent retrieves
a batch of records from memory, which can vary in size
from 50 to 200, and feeds them into a batch table. The DNN
used by the DQN agent has sixteen input features and two
hidden layers with hundreds of interconnected nodes. The
DNN has four output states, represented by a linear number
starting from 1 until by number, corresponding to the number
of participants.

The four output states represent the Q-values of each action
for each participant, which are used to determine the optimal
action for each participant in the given state. The action vector
is also represented in a similar manner in figure 5. An action is
assumed to be the choice made by the agent after processing
the environment during a specified time window. The
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FIGURE 5. Based on training and prediction of the current and
subsequent states, the DQN agent state transition Markov diagram
illustrates the learning process.

network agent provides a list of actions as an action vector
by combining the neural network input with its features. The
resulting Q-values are subsequently employed to predict if
the required information was effectively gathered. It feeds the
current DQN the state vector with the batch size. The agent
then evaluates the current DQN output based on threshold
rates as Q-values to calculate the Q-threshold value for
classifying stakeholders. Overall, the DQN agent uses the
input states from stakeholders to learn the optimal policy for
coordinating the charging of electric vehicles in a distributed
manner, which is presented in detail in the forthcoming
methodology section and explained with an example.

The essential functionality has been developed as a soft-
ware package that enables customers across various sectors to
interact using our platform. This interaction is made simpler
by middleware developed as a service component. With the
help of this modification, we can demonstrate the model’s
utility at the urban scale level under high computing demand,
high-dimensional data, and model scalability. As an example,
suppose “Stakeholder ‘X’ want to collect all data originating
from electric-vehicle end-users, fleet management, charging
stations, and the power grid for a certain area. In that case,
we can utilize an algorithm to analyze this data across several
computer nodes and offer the best trade-off for all potential
participants in EV charging ecosystem.”

A. TEMPLATE BASE AUTOMATION USING CI/CD

Continuous Integration/Continuous Deployment (CI/CD) is
a software development practice that involves continuously
integrating and testing code changes, and then deploying
those changes automatically to the production of its software
product. CI/CD can be particularly helpful in running Al
solutions on High Performance Computing (HPC) systems
for several reasons. For example, it can enable faster devel-
opment and deployment of Al solutions [42]. By automating
the process of integrating and testing code changes, CI/CD
can help reduce the time it takes to develop and deploy Al
solutions, especially when those solutions involve complex
algorithms and large amounts of data. Another example is
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that it can improve the scalability, reliability and stability
of AI solutions. By continuously testing code changes and
automatically deploying only those that pass all the tests,
CI/CD can help ensure that Al solutions are robust and
work as intended. This can be especially important when
running Al solutions on HPC systems, which may be used to
solve complex and mission-critical problems. Overall, CI/CD
can be a valuable tool for enabling the development and
deployment of Al solutions on HPC systems, helping to make
the process faster, more reliable, and more efficient.

IV. METHODOLOGY

The following section’s primary purpose is to provide an in-
depth explanation of the research approach used to build and
assess the suggested deep reinforcement learning algorithm
for the optimality of the electric vehicle smart2charge
application. This comprises data collection, preliminary
processing and purification, data normalization, and the
incorporation of critical information from all stakeholders
involved in the electric vehicle (EV) charging process.

A. DATA COLLECTION

Sources: The data was collected from various sources such
as real-world electric vehicle (EV) charging data, power grid
load data and other relevant datasets from the stakeholders
involved in the EV charging process, such as the EV end-
user, grid operator, fleet operator, and charging station
operator. Moreover, relevant part of the data is selected
and anonymised. Data Pre-processing: To ensure the quality
and consistency of the data, various pre-processing steps
were taken, such as removing irrelevant or duplicate data,
normalizing the data to a consistent format, and integrating
the data from different sources [43].

Cleaning: The suggested gathering of data and facts
obtained from various sources was extensively cleansed to
ensure that it was precise and trustworthy for use in training
the deep reinforcement learning algorithm. This implies
omitting any missing or inconsistent values and assuring
that the data was in the proper format for use in training
the algorithm. Data Normalization: The data need to be
normalized to a consistent format so that they can utilized
throughout the training and evaluation operations. This pro-
cess helps transform the information into a standard format,
such as altering the facts into values that are numerical,
standardizing a range of values, and converting the data
into a form consistent with the sophisticated methodology.
Locations: Latitude and longitude points have been added as
an additional column named ‘‘locations’ to the dataset, which
consists of the route direction’s geographical coordinates.
This data is utilized to combine the charging station dataset
to compute the distance from the present position toward the
station for charging. Energy source: The dataset now includes
another parameter called “energy source” that specifies the
type of energy used by each charging station operator during
the charging of the vehicle. All of the procedures mentioned
above have been finished in order to ensure that the input
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Algorithm 1: Deep Q-learning agent training based on Smart2ChargeApp environment

Data: Smart2Charge Dataset /* Environment */

Data: DQL Parameters /* Agent parameters */
begin
/* Pre-processing and Parameters Initialization */
Normalize Smart2ChargeDS
Initialize parameters as mention in figure 3
Batch_Size <— 50 ( varies between 50 to 200 )
State <— fetch ( Smart2ChargeDS, Batch_size )
Create_model (States, layers_hidden, ReLU, layers_output )
/* DQL agent learning episodes and iterations */
foreach epoch € num-episode do
Reset(states)
Create(q_val_List[size=bs,Action_size])
foreach T € num_iteration do
Initialize parameters
/* With probability of e: */
AV; < Create_random(Action_space) Vi € bs
€ < e xdecoy_rate
/* With probability of 1—e: */
QV; + model.predict(current-state)
AV; = Argmax(QV;) Vi € bs
/* Compute rewards */
RV; + Compute_reward(AV,labels) Vi € bs
/* Agent’s learning improvement */
Q'+ model.predict(state’)
QT;«-RV;+7 * Q[state’, action’]
Model.train(state,QT;)
Compute_loss(QV;,QT;)
State<—State’

end

end
end

FIGURE 6. Algorithm 1: Deep Q-learning agent training based on
Smart2ChargeApp environment.

information is in the best possible condition for training and
evaluating the deep reinforcement learning algorithm.

B. ALGORITHMS IMPLEMENTATION

This section demonstrates the high-level blueprint of how
the strategy has been implemented using deep reinforcement
learning. The algorithm is a Deep Q-learning (DQL) agent
training algorithm for the Smart2ChargeApp environment.
It starts by taking Smart2ChargeDS data as an input, pre-
processing it, and initializing the DQL parameters. The DQL
agent’s neural network model is then created with hidden
layers, ReLU activation function, and output layers. The
algorithm trains the DQL agent with a number of episodes
and iterations. For each episode, the states are reset, and the
algorithm loops over the iterations. The states can represent
the current state of the EV battery level, the location of the
EV, the cost of charging at the current location, the distance to
the nearest charging station, etc. For each iteration, the action
values are set randomly with probability epsilon and obtained
by predicting the actual state with probability 1-epsilon. The
actions can represent the decisions made by the EV end-
user, such as choosing to charge at the current location or to
drive to a different location. The reward is computed for each
action taken by the agent, and the Q-value for the next state
is predicted by the model.

The rewards can represent the cost of charging the EV, the
time taken to reach the next charging station. The rewards
should be designed for the agent to make decisions that result
in lower charging costs and shorter charging times. The target
Q-value is then computed, and the model is trained on the
current state and target Q-value. The loss is computed, and
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FIGURE 7. Algorithm 1: Deep Q-learning agent computational assessment
on Smart2ChargeApp environment.

the state is updated to the next state until the iteration is
complete. The algorithm repeats this process for each episode
until the training is complete. The agent’s computational
performance is then evaluated by comparing it with the
desired results and by monitoring the performance metrics
such as loss/reward, Discount factor and computational time
as depicted in figure 7.

The computational graph showcases the relationship
between discount factors (y), loss and reward values, and
computational time in the context of the DQN learning
process. The loss and reward values illustrate the performance
of the DQN model across different discount factors. As the
discount factor increases, the loss decreases, indicating
improved convergence and learning. Similarly, the reward
increases with higher discount factors, suggesting more
successful and rewarding agent behavior. The computational
time graph demonstrates the time required for the DQN
learning process as a function of the number of episodes.
The computational time appears to be relatively consistent
across different discount factors and increases gradually with
a higher number of episodes. This indicates that the DQN
model’s computational complexity is primarily influenced
by the number of episodes rather than the discount factor.
At the end, the choice of discount factor significantly affects
the learning process’s effectiveness, as reflected in the loss
and reward values. However, the computational time remains
relatively stable across different discount factors, with the
number of episodes playing a more significant role. These
insights can inform decision-making when configuring and
optimizing the DQN learning process based on desired
trade-offs between learning performance and computational
efficiency.

Rev3.5 In this figure 8, the training_loss values represent
the training loss for each episode during the DQN training
process, and the accuracy values inside the graph represent
the accuracy achieved for each episode. The plot displays two
y-axes, one for training loss represented with the color blue
and the other color representing accuracy red. The training
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FIGURE 8. Algorithm 1: DQN Accuracy and Convergence.

loss is plotted as a blue line with markers, and the accuracy
is plotted as a red line with markers.

C. SIMULATION SETUP
In this simulation environment, we need to consider electric
vehicle charging with an associated route from Stuttgart to
Germany with an approximate distance 129 km.
1) Parameters: The simulation environment includes the
following parameters:

a) Number of EVs: 3 sample EVs are considered for
the simulation.

b) Charging stations: The dataset includes informa-
tion about the charging stations along the route.

¢) Charging rate of the EVs: The rate of charging the
EVs is considered as an input parameter.

d) Cost of electricity: The cost of electricity at
each charging station is considered as an input
parameter.

e) Route direction: The route direction from
Stuttgart to Heidelberg is considered as an input
parameter.

f) Environmental factors: the factors such as
weather conditions and wind direction/speed are
considered as input parameters for the simulation.

g) Energy source: this parameter gives information
about the source of the energy such as coals, gas,
solar, and wind.

2) Constraints: The simulation need to be considered the
following constraints of the EV charging scenario;

a) The number of EVs and charging stations simu-
lated should not exceed the actual number of EVs
and charging stations present in the scenario.

b) The charging rate of the EVs should not exceed
the maximum charging rate of the EVs.

¢) The basic price calculated at each of the charging
stations must lie within the limit of the sum of the
actual cost of all charging stations.

d) The simulation should consider the impact of
other environmental factors such as weather, wind
on the EV charging process.
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FIGURE 9. Experiment design using simulation setup.

3) Optimal Parameters: The simulation need to be also
considered the following optimal parameters for energy
sources:

a) The optimal charging rate of the EVs to ensure
maximum efficiency and minimize the cost of
electricity.

b) The optimal route direction to reach the charging
station with the minimum cost of electricity.

¢) The optimal choice of charging station based on
the cost of electricity, distance to the charging
station, and availability of renewable energy
sources.

d) The simulation should also consider the impact of
environmental factors such as weather and wind
on the optimal parameters for energy sources.

D. EXPERIMENT DESIGN
The basic purpose of such experiments is to develop strategies
for optimizing the use of electric car resources, such as
reducing charging time and cost by selecting the nearest
and most cost-effective charging station, increasing the use
of renewable energy-based sources by selecting charging
stations powered by renewable energy such as photovoltaic
(PV) or wind rather than coal or oil. Moreover, the usage
of these energy sources produces a direct environmental
impact by reducing CO2 emissions and encourages the use
of eco-friendly energy sources by EV users. The proposed
experiment design is broken down into three main steps:
Experiment Design One, Experiment Design Two, and
Experiment Design Three, as shown in Figure 9.
1) Objective:
a) To minimize the cost of charging for the EV
end-user by selecting the nearest and most cost-
effective charging station.
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FIGURE 10. Simulation of EV without constraints and optional
parameters.

b) To maximize the use of renewable energy sources
by selecting charging stations powered by renew-
able energy.

¢) To minimize the time taken to reach the charging
station and minimize the impact of traffic conges-
tion, weather conditions, and wind direction on
the charging process.

d) To minimize the environmental impact by reduc-
ing CO2 emissions.

E. EVALUATION METRICS

The basic idea behind the evaluation metrics is to evaluate the
developed strategy to get the assurance of the used resources
in electric vehicle charging that meets the proposed objectives
as proposed by all of the participants. There are several
common evaluation metrics that are used in this context such
as energy efficiency, charging time, charging cost, battery
life, grid impact, environment impact. Meanwhile, the main
experiments to be presented in this paper will be built upon
the evaluation of the cost of charging for EV owners.

1) Experiment Design 1: Suppose that there are three
charging stations available to the EV end-user, A, B,
and C. Station A is powered by renewable energy and
charges $0.15 per kilowatt-hour, station B is powered
by conventional energy and charges $0.20 per kilowatt-
hour, and station C is also powered by conventional
energy but charges $0.10 per kilowatt-hour.

If the EV has a range of 100 miles and requires
20 kilowatt-hours of energy to fully charge, the cost of
charging at each station can be calculated as follows:
o Station A: 20 kilowatt-hours * $0.15/kilowatt-
hour = $3.00
o Station B: 20 kilowatt-hours * $0.20/kilowatt-
hour = $4.00
o Station C: 20 kilowatt-hours * $0.10/kilowatt-
hour = $2.00
According to the aforementioned inputs, the above cal-
culation determines that charging station C offers the
lowest calculated rates per kilowatt-hour. Accordingly,
it will be the most suitable option for the EV end-user
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to select to charging of their electric car. However, this
calculation does not accomplish any sort of constraints
or optional parameters. For instance, if the EV is unable
to reach station C due to range limitations, station
B or A may become the most cost-effective choice.
In conclusion, though these calculations are without
considering any constraints or optional parameters.
Therefore, the cost of charging can be calculated by
multiplying the kilowatt-hours required by the cost per
kilowatt-hour of the charging station. In consideration
of this example, station C is determined to be the most
cost-effective charging option for the EV end-user.
Experiment Design 2: Suppose there are three charging
stations available to the EV end-user, A, B, and C.
Station A is powered by renewable energy and charges
$0.15 per kilowatt-hour, station B is powered by
conventional energy and charges $0.20 per kilowatt-
hour, and station C is also powered by conventional
energy but charges $0.10 per kilowatt-hour.
If the EV has a range of 80 miles and requires
20 kilowatt-hours of energy to fully charge, the cost of
charging at each station can be calculated as follows:
o Station A: 20 kilowatt-hours * $0.15/kilowatt-
hour = $3.00
o Station B: 20 kilowatt-hours * $0.20/kilowatt-
hour = $4.00
o Station C: 20 kilowatt-hours * $0.10/kilowatt-
hour = $2.00
In this example, the EV has an 80-mile range, which
implies that it can only reach charging stations B or C,
but not station A. After the aforementioned calculations
and the limited range of vehicle movement, station C
has the lowest cost per kilowatt-hour and would be
the most cost-effective option for the EV end-user.
In conclusion, with the effects of constraints that have
been taken into account in this scenario, the cost of
charging can still be calculated by multiplying the
kilowatt-hours required by the cost per kilowatt-hour
of the charging station. So, station C provides the most
cost-effective charging option for the EV end-user.

S y)

53, y)

FIGURE 12. Simulation of EV with constraints and optional parameters.

3)

However, optional input values, such as the impact
of traffic congestion, weather conditions, and wind
direction, have not been considered in this calculation
that will be considered in our next experiments.
Experiment Design 3: Suppose the impact of traffic
congestion, weather conditions, and wind direction are
also taken into account. The charging time at each
station is calculated as follows:
o Station A: 20 kilowatt-hours * 1 hour/kilowatt-
hour = 20 hours
« Station B: 20 kilowatt-hours * 1.2 hours/kilowatt-
hour = 24 hours
« Station C: 20 kilowatt-hours * 0.9 hours/kilowatt-
hour = 18 hours
Now, the total cost of charging at each station can be
calculated as follows:
o Station A: 20 hours * $0.15/hour + $3.00 =
$3.00 + $3.00 = $6.00
o Station B: 24 hours * $0.20/hour + $4.00 =
$4.80 + $4.00 = $8.80
o Station C: 18 hours * $0.10/hour + $2.00 =
$1.80 + $2.00 = $3.80
In this example, station C still has the lowest total
cost of charging, and it takes the least time to reach
the charging station and has the least impact due
to traffic congestion, weather conditions, and wind
direction. Given the objective of minimizing the cost of
charging for the EV end-user and maximizing the use
of renewable energy sources, station A would still be
the optimal solution. Station A uses renewable energy
and has a total cost of $6.00, which is lower than station
B, which uses conventional energy and has a total cost
of $8.80. In terms of the environment, station A is the
most environmentally friendly option because it uses
renewable energy. Using renewable energy sources
such as solar PV and wind can greatly reduce CO2
emissions and minimize the environmental impact of
charging EVs. In conclusion, taking into account the
cost of charging, the use of renewable energy sources,
the time taken to reach the charging station, and the
impact of traffic congestion, weather conditions, and
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wind direction, station A is the optimal solution for the
EV end-user and the environment.

V. RESULTS AND PERFORMANCE ANALYSIS

The overall objective of this section will be to present the
findings from the simulation setup and evaluation metrics.
Performance Analysis will be used to compare the results to
the objectives set in the simulation setup and to other possible
solutions. The discussion section will interpret the results
and explore their implications, highlighting any limitations
of the simulation setup and discussing potential areas for
improvement.

A. RESULTS

The Results section will present the findings from the
simulation setup and evaluation metrics. For example, the
results might show that using wind power as the energy source
results in lower cost of charging and reduced environmental

impact compared to using a coal-fired power.
1) Result of Experiment Design 1: The initial experiment

design 1 revealed that the expense of charging an
electric vehicle could be determined by multiplying the
required kilowatt-hours by the cost per kilowatt-hour
of the charging station. At location P;(x, y), Station
C was identified as the most economical option for
the EV user, disregarding any restrictions or additional
optional factors. However, it is important to note that
the location was considered in context at the time.

2) Result of Experiment Design 2: In the second example
of experiment design 2, it was seen that the cost
of charging an electric vehicle at different locations
between charging stations A, B, and C can change
depending on the location of the vehicle and the cost
per kilowatt-hour of the charging station. The average
range of the battery to reach the station without traffic
congestion was also taken into consideration as a
constraint.

3) Result of Experiment Design 3: In the third example
of experiment design 3, the impact of using a natural
energy source for charging an electric vehicle was
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evaluated. It was concluded that charging an EV
using renewable energy sources such as solar PV
or wind power can reduce its environmental impact
by reducing CO; emissions. The cost of charging
was also considered, and the most cost-effective and
environmentally friendly option was determined.

B. PERFORMANCE ANALYSIS

The performance analysis of the simulation involves evaluat-
ing the performance of the proposed solution using a set of
metrics that were defined in the evaluation metrics section.
Based on the scenarios discussed above, we can analyze the
performance by considering both the perspectives of EV end-
users and the grid operator.

1) From the perspective of EV end-users: The overall
cost of charging an EV can very much depends on a
number of factors that includes such as the location of
the vehicle and charging stations, the charges required
to charge the electricity, the type of energy source
that employs the power the charging station, and any
restriction or optional consideration which will be
helpful to minimize or maximize the cost. The first
case explored the amount of charging the nongasoline
vehicle at three different charging points, where station
C reflects the most cost-effective option due to its lower
cost per kilowatt-hour. However, without taking into
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account any constraints or optional parameters, this
calculation might not always provide the best optimal
outcomes. Additionally, In the second case, we come
up with the introduction of constraints, such as the
range of the EV, which can impact the cost of charging.
By factoring in the range of the EV and the location of
the charging stations, we were able to determine the
most cost-effective option for the EV end-user from
the actual state of the vehicle. Other than this, In our
third case, we added the optional parameter of natural
source energy such as wind and PV, to the equation,
highlighting the potential benefits of using renewable
energy to power charging stations. This analysis results
in cost savings for the EV end-user and reduces
the environmental impact of charging the vehicle.
Overall, these examples demonstrate the importance of
considering various factors when determining the cost
of charging an electric vehicle. By getting into account
these constraints and optional parameters, as well as
exploring the use of renewable energy sources, it is
possible to provide a more optimized and sustainable
charging solution at the end for EV end-users with less
cost. Moreover, it will directly have less impact on the
energy producers.

From the perspective of a grid operator: the different
scenarios discussed above can have a significant impact
on the energy demand and supply of the charging
stations. As the number of electric vehicles on the road
increases, it becomes more critical to ensure that the
grid can handle the increased energy demand from the
charging stations. In the first scenario, where the EV
end-user chooses to charge at the most cost-effective
station, the grid operator can expect to see a higher
demand for charging at station C, which is powered
by conventional energy and charges $0.10 per kilowatt-
hour. This could potentially lead to a strain on the
grid during peak hours, especially if there are multiple
EVs charging simultaneously. In the second scenario,
where the EV end-user is limited by the range of
their vehicle, the grid operator can expect to see a
more even distribution of energy demand across the
different charging stations. However, there is still the
potential for strain on the grid during peak hours if
multiple EVs are charging simultaneously. In the third
scenario, where renewable energy is used to power one
of the charging stations, the grid operator can expect to
see a lower overall demand for energy from the grid,
which can help to reduce strain during peak hours.
Additionally, the use of renewable energy can help to
reduce the carbon footprint of the charging stations
and the overall energy demand of the grid. Overall, the
performance of the charging stations and the impact on
the grid will depend on a variety of factors, including
the location and number of charging stations, the
energy source used to power the stations, the range of
the EVs, and the behavior of the EV end-users. As the

adoption of electric vehicles continues to increase,
it will be important for grid operators to carefully
manage the energy demand and supply of the charging
stations to ensure a stable and sustainable energy
system.

C. COMPARISONS

We may evaluate the performance from the viewpoints of
both EV end customers and the grid operator based on the
situations covered above. In accordance with the performance
analysis, the expense of charging an electric vehicle is
fractionally dependent on a number of factors, particularly
the location of the charging station, the source of energy,
and the distance that exists between the vehicle and the
charging location. In the first scenario, we assessed the cost
of charging a battery-operated car at three different stations
for charging, each with a distinct power source and cost per
kilowatt-hour. According to the analysis, the station with
the lowest cost per kilowatt-hour was the most economical
choice for EV end users. But in the second and third cases,
we added limitations like the typical battery range and the
separation between the car and the charging station. Due to
these limitations, the analysis showed that, occasionally, the
most cost-effective charging station might not be the one with
the lowest cost per kilowatt-hour. For instance, if there is too
much distance between the vehicle and the station, the EV
would not be able to reach the most economical station and
the end-user could have to use a more expensive station.

According to the grid operator’s performance study, the
total electric power required for each charging station is
determined by the number and variety of EVs that utilize
the station. In accordance with the findings, energy demand
varies greatly depending on where and what time of day.
For example, if a charging station is located in a densely
inhabited location, the power demand for that charging station
will be considerably higher than for a charging station in
a less densely populated area. Furthermore, if the charging
occurs during peak time when the demand for electricity
is considerably high, the grid operator may be required to
generate more energy to meet the supply demands and more
resources to meet end-user demands. Therefore, the grid
operator needs to consider several factors when planning and
managing the energy supply to the charging stations, such as
the location of the station, the type of EVs using the station,
and the time of day. By doing so, the grid operator can ensure
a stable and efficient energy supply to the charging stations
while minimizing the environmental impact.

In figure 16, a bar graph shows the cost and environmental
impact of the three charging stations, along with the energy
source used to generate the electricity at each station. The
blue bars show the cost of electricity at each station whereas
the red bars show the CO2 emissions per kWh of electricity,
and the labels on the right side of the graph show the
energy source used at each station. The graph helps to show
the trade-off between cost and environmental impact for
each charging station, and also highlights the impact that
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the energy source can have on both factors. For example,
Station B has the lowest cost but the highest CO2 emissions,
while Station A has the highest cost but the lowest CO2
emissions. The energy source used to generate electricity
at each station is an important factor to consider when
evaluating the environmental impact of the charging stations.

VI. CONCLUSION

To summarize, increased EV adoption has created new
issues for stakeholders. The key dilemma is to establish an
optimal approach to managing a nongasoline vehicle that
incorporates resource efficient perspective of all parties. This
paper offers a context-aware electric vehicle smart charging
system that uses DRL to optimize charging decisions in
an immediate fashion. The effectiveness of the suggested
system has been assessed and compared with existing systems
using simulations, proving its capacity to properly balance
multiple objectives. In Addition to this, the system takes into
account various factors such as time of day, location, and so
on, to balance trade-offs between charging cost, grid strain
reduction, fleet operator preferences, and charging station
energy efficiency. Moreover, as a result of the development
of the proposed system along with the simulated experiments
in this research project, it is shown that the proposed system
has provided EV owners with a convenient and economical
charging experience that reduced the charging cost by 15%,
grid strain by 20% for grid-operators, and on average
CO, emissions by 10% by utilizing natural energy sources.
However, this current study contains limitations, including
the need for more real-world data and testing the proposed
approach in a real-world setting. More study is also needed to
increase the proposed approach’s scalability and adaptability.
Therefore, the future direction of this research will focus on
these points.
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