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ABSTRACT This paper addresses an optimal path planning problem on the three-input six-dimensional
Brockett’s canonical system. This class of systems can be applied to control the position and orientation of a
rigid body in SE, such as spacecraft, aerial vehicles, or underwater vehicles, using only three inputs. Since the
number of inputs is less than the total number of degrees of freedom, it raises non-trivial technical issues in
finding the actual time sequence of control inputs. Here we show that the shortest paths connecting two points
are parametrized as helix paths by introducing the input quadratic norm as a Riemannian metric. In addition,
we present a quasi-analytical procedure to determine the optimal helix path for any given target point. The
characteristic feature of our method is that the optimal paths are parametrized as an explicit function on the
state space, which enables the solution paths to be derived without multidimensional iterations. The approach
was validated by numerical computations in two aspects: matching for arbitrary target points and covering
known optimal paths as special cases. The result that the shortest paths are represented by helices may also
help as guidance for solving more general problems numerically, for example, as an initial solution or as a
measure on the state space.

INDEX TERMS Optimal control, path planning, nonlinear control systems.

I. INTRODUCTION
A. BACKGROUND
This paper addresses the path planning problem of a class of
nonlinear control systems. This problem is motivated by non-
holonomic mechanical systems, that is, mechanical systems
associated with nonintegrable constraints. A typical class of
nonholonomic constraints is given by the following 1st-order
differential equation:c1

T(q)
...

cmT(q)

 · q̇ = 0, (1)

where q ∈ Rn denotes the state vector (e.g., general-
ized coordinates in the context of classical mechanics) and
n denotes its degrees of freedom. There are m constraints
c1(q), . . . , cm(q) ∈ Rn, which restrict the generalized veloc-
ity q̇ to be perpendicular to them. If (1) is not integrable,
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FIGURE 1. Differential-drive vehicles are typical underactuated
nonholonomic systems.

that is, if there is no constraint h(q) = const. that replaces
the velocity constraints (1), the system is called nonholo-
nomic. In a nonholonomic system, the possibility of changing
its full configuration to an arbitrary one remains, in spite
of the instantaneous restriction on its velocity. A well-
known example is the differential-drive vehicle shown in
Fig. 1. It is possible to change its position and orientation
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(three degrees of freedom in total) from any initial state to
another by appropriately choosing the velocity of the two
wheels. This property has attracted significant interest in the
nonlinear control theory. Considering the admissible velocity
as the control input, the non-integrability of the mechanical
constraints is interpreted as the controllability of nonlinear
systems. Since the number of admissible velocities is less
than n (in the case of a differential-drive vehicle, lateral
sliding motion is not allowed), it raises non-trivial technical
issues in finding the actual time sequence of control inputs.

These controllable underactuated systems have several
advantages and possible applications, as discussed in [1].
However, their control is much more difficult than that of
fully actuated systems. Therefore, for the underactuated sys-
tems with nonholonomic constraints, it is of the primary
importance to discuss the path planning problem.

Many mechanical systems, such that the nonholonomic
constraints (1) correspond to the generalized velocities, are
represented as the symmetric affine systems of the form

q̇ =

m∑
i=1

gi(q)ui, q, gi(q) ∈ Rn. (2)

where q denotes the state, ui denotes the input. The vector
field gi(q) indicates the direction of state change driven by the
corresponding input. This paper focuses on a subclass of these
symmetric affine systems in which nonlinear controllability
is ensured by the first-order Lie brackets, called ‘‘first-order
systems’’ [2].

B. RELATED WORKS: FINITE TIME STEERING METHODS
FOR ‘‘FIRST-ORDER SYSTEMS’’
We introduce existing path planning methods that include
first-order systems as their target systems and classify them
in two aspects: rate of decay and representations of the tar-
get systems. Although computational optimization methods
such as the A* algorithm (e.g., [3]) and model predictive
control (MPC) (e.g., [4]) can be used for general purposes,
it is difficult to strictly satisfy the termination boundary
conditions, especially for nonholonomic systems. There are
many path planning methods based on Lyapunov’s stability
theory, in which the time evolution of state quantities decays
exponentially (or its extension), for example, [5], [6], [7],
[8], [9], and [10]. However, we focused on finite-time steer-
ing, which is a stronger result than exponential stabilization.
If finite-time steering is achieved, the system is exponentially
stable; however, the converse is not always true. We note
that finite-time steering is not always superior to exponential
stabilization as a controller.

Several finite-time steering methods have been proposed
in [2], [11], and [12]. Murray and Sastry [2] presented
a step-by-step steering method on the first-order canoni-
cal systems, introduced in [13]. Owing to the difficulty of
matching multiple state variables to boundary conditions
by the optimal paths, they divided the state steering into
steps based on controllability structure. Leonard and Krish-

FIGURE 2. A schematic sequence of steering a differential-drive vehicle
by the method presented in [2]. Step 1: Steer x-coordinate to zero by
forwarding motion. Step 2: Steer θ-coordinate to zero by rotation.
Step 3: Steer y-coordinate to zero by combining forward/backward
motion and rotation. Each state quantity is steered in a separate step. The
motion is not aimed at its optimality.

naprasad [11] expanded the target system to matrix Lie
groups, and provided a steering method similar to that in [2].
Matrix Lie groups can represent Brockett’s canonical system
without any defects and include the matrix representations
of SO(m) and SE(m), which are important for applica-
tion use. The behavior of these step-by-step steering for a
differential-drive vehicle is shown schematically in Fig. 2.
In the words of [11], step-by-step steering is a ‘‘constructive
controllability’’ method and is not the result of aiming to gain
a good path but only to steer in finite time. Although there
are various measures of good paths, the authors feel it natural
to minimize the path length by introducing the inputs as a
Riemannian metric.

This input Riemannian metric minimization problem was
tackled early on by Brockett [13], [14] and Baillieul [15]. The
formulation of these optimization problems is summarized
in [16]. Jurdjevic [17], [18] also dealt with this problem in
a mathematical manner. In [13], Brockett introduced a local
canonical system for the first-order controllable systems.
In addition to introducing the canonical system, Brockett
parametrizes the optimal inputs by solving an optimization
problem. This result plays an important role in this study.

Several methods to obtain specific optimal paths have
been presented using the above formulation or numerical
computations. A numerical computation method is reported
in [19]. Using the existing result that the optimal paths on
SO(3) are parametrized as elliptic functions, Spindler [20]
used the shooting method to match the boundary conditions.
Henninger and Biggs [21] extended the target system to
include SO groups and provided results similar to those
of [20]. They also presented an analytical method for three-
dimensional systems. The authors of [22] and [23] focused on
a specific system on SE(3). Both authors discussed optimal
orientation problems at unit speeds intended for airplanes,
and helix paths were derived as the solution paths.
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C. THE FOCUS OF THE PAPER
In summary, for the case of more than three-dimensional
systems, either step-by-step steering, a ‘‘constructive con-
trollability’’ method, or multidimensional numerical opti-
mization is required. Analytical procedures for finding the
shortest path have only been achieved for specific systems,
such as two input three-dimensional systems. Hence,
we address the optimal path planning on a three-input six-
dimensional system, represented by a canonical form, which
we call Brockett’s canonical systems [13], and which is called
‘‘generalized Heisenberg system’’ in [24].

The setting of the target system is limited but signif-
icant. Three-dimensional inputs can steer six-dimensional
states maximally by the first-order Lie brackets, and six
dimensions are identical to the degrees of freedom of SE(3).
Precisely, it corresponds to controlling the position and ori-
entation of a rigid body in the three-dimensional space by
three-dimensional inputs. Our focus on the canonical system
will contribute as the first step toward solving more gen-
eral problems because finite-time steering was first solved
for the canonical systems and then extended to larger
classes.

Our purpose is to present a parametric representation of the
optimal paths and a path-determining method for any given
target point. To this end, in Section III, we show that the set
of good paths, meaning that the path length is the local min-
imum, can be parametrized as helix paths. In Section IV, the
existence of helix paths that satisfy the boundary conditions
for almost all target points and a determination method are
presented. In Section V, numerical examples show that paths
can be matched for almost all target points with reasonable
accuracy. We also show that the helix paths introduced in
Section III contain known shortest paths for several specific
target points. Finally, in Section VI, we summarize the con-
tents of this paper.

The position of this paper relative to existing studies
can be summarized as follows. References [2] and [11]
were the direct motivations of this study. They presented
finite-time steering methods for a wide class of systems,
but did not aim to gain good paths. In contrast, the path
planning method in this study provides good paths in the
sense that the path length measured by the input Riemannian
metric is the local minimum. While there are numerical
methods to plan the paths, this study not only presents a
path planning method but also parametrizes the optimal paths
by helix.

II. PRELIMINARIES
This section describes mathematical notations. These
techniques are described in [25].

We use the operator · to represent scalar or matrix products
to distinguish between multiplication and arguments. When
representing the dot product of vectors, we use the trans-
pose operator (·)T. The cross product of the two vectors v,

w ∈ R3 is defined as

v× w :=

v2w3 − v3w2
v3w1 − v1w3
v1w2 − v2w1

 , v =

v1v2
v3

 , w =

w1
w2
w3

.

(3)

Since the cross product by v is a linear operator, by defining
wedge operator (·)∧ as

v̂ = (v)∧ =

 0 −v3 v2
v3 0 −v1

−v2 v1 0

 , (4)

we can represent the cross product as

v× w = (v)∧ · w. (5)

For a vector ω ∈ R3, |ω| = 1, the following equation holds:

(ω̂)2 = ωωT
− I, (6)

where I denotes the unit matrix. The following equation holds
for the dot product and cross product of the vectors u, v,
w ∈ R3:

uT
· (v× w) = vT

· (w× u) = wT
· (u× v). (7)

We use the matrix representation of SO(3) defined as

SO(3) := {R ∈ R3×3
| RRT

= I, detR = 1}. (8)

With the definition of the normalization operator for the non-
zero vectors

v :=
v
|v|

, (9)

we can define map C from two ordered nonzero vectors to
SO(3) as

C(v,w) :=
[
v v× w v× (v× w)

]
, (10)

where v, w ∈ R3, v× w ̸= 0. Maps by R ∈ SO(3) hold the
following relations for the given v, w ∈ R3:

|R · (v− w)| = |v− w|, (11)

R · (v× w) = (R · v) × (R · w). (12)

III. PARAMETRIZATION OF THE OPTIMAL PATHS
This section establishes a set of candidates for good paths.
For this purpose, we define an input Riemannian metric
minimization problem between two points on the three-input
six-dimensional Brockett’s canonical system. We then derive
a parametric path representation that satisfies the shortest
stationary condition. The logical structure of this section is
shown in Fig. 3.
First, we define the minimization problem as follow:

Problem 1: Primal optimization problem

given xf , yf (13)

system ẋ = u, ẏ = x× u (14)

find x(τ ), τ ∈ [0, 1] (15)

s. t. x(0) = 0, y(0) = 0, x(1) = xf , y(1) = yf (16)

minimize J =

∫ 1

0
uT

· udτ (17)
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FIGURE 3. The figure shows the logical structure of Section III. The
definition of Problem 1 and Theorem 1 about it are given in [13].
We supplement Theorem 1 by Corollary 1 and prove that Theorem 2 is
held independently from the above two theorems. By applying the three
theorems in sequence to Problem 1, the search space of Problem 1 can
be restricted to the form of Problem 2 without losing the optimal paths.
This means that the search space of the optimization problem is reduced
from infinite-dimensional functions x(t) to 6-dimensional parameters.

Where x, y ∈ R3 are state vectors, and let x and y be called
base coordinates and fiber coordinates, respectively. Let a
pair of {xf , yf } denotes a target point. Let u(·) : [0, 1] → R3

denotes control input and be piecewise continuous. In this
formulation, we introduce the quadratic form uT

· u as a
Riemannian metric, not the input two-norm

√

uT · u, to sim-
plify the proof of Theorem 1. Whichever Riemannian metric
is introduced, the solution for this optimization problem is
identical [13].

For this problem, the following theorem holds:
Theorem 1 [13]: For the solutions of Problem 1 x∗(τ ),

there exist constant vectors λc, v ∈ R3, such that the follow-
ing equation holds:

d
dτ
x∗(τ ) = γλ(τ ) (18)

where γλ : [0, 1] → R3 is a parametric curve defined by

γλ(τ ) := exp(λ̂cτ ) · v (0 ≤ τ ≤ 1). (19)
Proof: This theorem was discussed for general dimen-

sional case in [13]. Here we provide a proof for the case of
3-dimensional input, which is the system under consideration
in this paper.

The Lagrangian function of the evaluation function (17)
and the constraint equation (14) is expressed as

L(x, ẋ, y, ẏ, λ) = ẋT
· ẋ+ λT

· (ẏ− x× ẋ) (20)

with the Lagrangian multiplier λ : [0, 1] 7→ R3 and without
u. Solving the Euler-Lagrange equation for y yields

0 =
d
dτ

(
∂L
∂ ẏ

)
−

∂L
∂y

(21)

= λ̇. (22)

Likewise, solving for x with substituting λ̇ = 0 yields

0 =
d
dτ

(
∂L
∂ ẋ

)
−

∂L
∂x

(23)

= (2ẍ− λ × ẋ− λ̇ × x) − (λ × ẋ) (24)

= 2ẍ− 2λ × ẋ. (25)

This differential equation can be solved by using the matrix
exponential function as

ẋ(τ ) = exp (λ̂τ ) · ẋ(0). (26)

□
From here, we begin the original formulations. First,

we normalize λc and impose its norm on the time.
Corollary 1: For the parametric curve γλ defined in

Theorem 1, there exist an equivalent parametric cruve γω :

[0, tf ] → R3 defined by

γω(t) := exp(ω̂t) · v (0 ≤ t ≤ tf ), (27)

ω ∈ R3, |ω| = 1. (28)

Due to the equivalence of γλ and γω, integrating γω on the
time yields another parametric curve that is equivalent to the
solution curve of Problem 1 x∗(τ ).
We can observe that exp(ω̂t) · v represents the rotated

vector of a constant vector v about an axis ω for an angle t .
This geometric observation leads us to express (27) as the
following time-integrated form.
Theorem 2: For the constant vectors ω, v ∈ R3, satisfying

|ω| = 1, there exist r, h ∈ R, r ≥ 0, � ∈ SO(3) such that
the following equation holds:∫ t

0
exp(ω̂τ ) · vdτ = � ·

 ht
r · sin t

r · (1 − cos t)

 . (29)

Proof: First, we proceed by cases to prove that there
exist � ∈ SO(3), h ∈ R, r ≥ 0 such that

exp(ω̂τ ) · v = � ·

 h
r cos(τ )
r sin(τ )

 (30)

is held.

a: CASE 1: ω̂v ̸= 0
The Rodrigues’ rotation formula expand exp(ω̂τ ) · v as

exp(ω̂τ ) · v = v+ ω̂v sin(τ ) + ω̂2v(1 − cos(τ )) (31)

= v+ (ωωT
− I)v− ω̂2v cos(τ ) + ω̂v sin(τ )

(32)

= ω(ωTv) − ω̂2v cos(τ ) + ω̂v sin(τ ). (33)

Here we used (6) to derive (32). We can re-arrange (33) as

exp(ω̂τ ) · v =

[
ω −ω̂2v ω̂v

]
·

 ωTv
|ω̂2v| cos(τ )
|ω̂v| sin(τ )

 . (34)

We can verify that
[
ω −ω̂2v ω̂v

]
is an element of SO(3) by

the definition (8) as[
ω −ω̂2v ω̂v

]
·

[
ω −ω̂2v ω̂v

]T
= I, (35)

det
[
ω −ω̂2v ω̂v

]
= 1. (36)
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The coefficients of the trigonometric functions |ω̂2v| and |ω̂v|
are positive scalar values, and these are equal. Therefore,
(30) holds by letting

� =

[
ω −ω̂2v ω̂v

]
, h = ωTv, r = |ω̂v|. (37)

b: CASE 2: ω̂v = 0, v ̸= 0

For the vector v, there exists a vector w ∈ R3 such that
v× w ̸= 0. Then exp(ω̂τ ) · v can be expressed as

exp(ω̂τ ) · v = v (38)

= C(v,w) ·

|v|
0
0

 . (39)

Therefore, (30) holds by letting

� = C(v,w), h = |v|, r = 0. (40)

c: CASE 3: v = 0

For this case, exp(ω̂τ ) · v is expressed as

exp(ω̂τ ) · v = 0 (41)

= I ·

00
0

 . (42)

Therefore, (30) holds by letting

� = I, h = 0, r = 0. (43)

Thus, we have shown that for the subjectedω, v, there exist
� ∈ SO(3), h ∈ R, r ≥ 0 such that (30) is satisfied. Since
� is constant against time, (30) can be integrated in the time
interval [0, t] as∫ t

0
� ·

 h
r cos(τ )
r sin(τ )

 dτ = � ·

 ht
r · sin t

r · (1 − cos t)

 . (44)

□
To summarize, the infinite-dimensional optimization prob-

lem defined as Problem 1 was reduced to the following
boundary value problem with the evaluation function.
Problem 2: Boundary value problem with evaluation

function

given xf , yf (45)

system ẋ = u, ẏ = x× u (46)

find � ∈ SO(3), r, h, tf ∈ R, r ≥ 0, tf ≥ 0 (47)

s. t. y(0) = 0, x(tf ) = xf , y(tf ) = yf , (48)

x(t) = � · ξ r,h(t), ξ r,h(t) :=

 ht
r · sin t

r · (1 − cos t)

 (49)

minimize J =

∫ tf

0
uT

· udt (50)

We note that Theorem 1 provides only the necessary condi-
tions for the optimal paths to be satisfied. Hence the existence
and uniqueness of the admissible solutions of Problem 2

are not guaranteed. In fact, there exist multiple admissible
solutions if |yf | is relatively large. Although it is interesting to
find the path that minimizes the evaluation function J among
the admissible solutions, we do not aim to solve this problem
but use the helix trajectory (49) as a set of candidates for good
paths. Conversely to the uniqueness, the existence of the helix
paths that steer the system to almost all target points will be
proved constructively in the next section.

IV. DETERMINATION METHOD OF THE OPTIMAL
HELIX PATHS
This section provides a method to obtain an admissible solu-
tion of Problem 2, that is, a helix path that satisfies the
boundary conditions. For simplicity, we assume that the target
points satisfy xf T

· yf ̸= 0, xf × yf ̸= 0.

A. REPRESENTATION OF THE HELIX ORIENTATION
First, we solve about the orientation � by considering its
symmetries on SO(3) and obtain its explicit representation
as a function of {r, h, tf } and {xf , yf }. By substituting the
optimal base trajectory (49) into the system constraints (46),
the behavior of the fiber coordinates y(t) is expressed as

y(t) = y(0) +

∫ t

0
x(τ ) × u(τ )dτ (51)

=

∫ t

0
(� · ξ r,h(τ )) × (� · ξ̇ r,h(τ ))dτ (52)

=

∫ t

0
� · (ξ r,h(τ ) × ξ̇ r,h(τ ))dτ (53)

= � ·

∫ t

0
ξ r,h(τ ) × ξ̇ r,h(τ )dτ (54)

= � · ηr,h(t), (55)

where

ηr,h(t) :=

 r2 · (t − sin t)
rh · (t − 2 sin t + t cos t)
rh · (t sin t + 2 cos t − 2)

 . (56)

Since � ∈ SO(3) is a rotation matrix, which preserves the
distance and angle, a set of necessary conditions for {r, h, tf }
to satisfy the boundary condition (48) is obtained as

|xf | = |ξ r,h(tf )|,

|yf | = |ηr,h(tf )|,

xf T
· yf = ξ r,h(tf )

T
· ηr,h(tf ). (57)

Conversely, if (57) is satisfied, the boundary conditions can
be matched by determining � as

� = C(xf , yf ) · (C(ξ r,h(tf ), ηr,h(tf )))
−1. (58)

This can be verified by the equations (49) and (55). Therefore,
finding the admissible solutions of Problem 2 is reduced to
the following three parameter problem:
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Problem 3: Reduced boundary value problem

given xf , yf , xf T
· yf ̸= 0, xf × yf ̸= 0 (59)

find r, h, tf ∈ R, r ≥ 0, tf ≥ 0 (60)

s.t. ξ r,h(t) :=

 ht
r · sin t

r · (1 − cos t)

 , (61)

ηr,h(t) :=

 r2 · (t − sin t)
rh · (t − 2 sin t + t cos t)
rh · (t sin t + 2 cos t − 2)

 , (62)

|xf | = |ξ r,h(tf )|, |yf | = |ηr,h(tf )|,

xf T
· yf = (ξ r,h(tf ))

T
· ηr,h(tf ) (63)

B. DETERMINATION OF THE HELIX SHAPE
Next, we solve Problem 3with respect to r, h, tf , for the given
conditions xf , yf . Let θ be the angle between them, which
satisfies

cos θ =
xf T

· yf
|xf ||yf |

. (64)

In order to simplify the expression, we prepare the following
functions of t:

a(t) := 2(1 − cos t), (65)

b(t) := t2, (66)

c(t) := (t − sin t)2, (67)

d(t) := 2t2 cos t + 2t2 − 8t sin t − 8 cos t + 8, (68)

e(t) := t2 + t sin t + 4 cos t − 4, (69)

f (t) := 2t sin t − 4(1 − cos t) − t(t − sin t). (70)

From the conditions (63), we obtain

|xf |2 = a(tf )r2 + b(tf )h2, (71)

|yf |2 = c(tf )r4 + d(tf )r2h2, (72)

|xf ||yf | cos θ = e(tf )r2 h. (73)

We begin to express r and h as functions of tf . Equations
(71), (72) can be summarized as[

r2|xf |2

|yf |2

]
=

[
a(tf ) b(tf )
c(tf ) d(tf )

] [
r4

r2h2

]
. (74)

The right-hand side is invertible since ad − bc = ef < 0 for
any t > 0, then we obtain[

r4

r2h2

]
=

1
e(tf )f (tf )

[
d(tf ) −b(tf )
−c(tf ) a(tf )

] [
r2|xf |2

|yf |2

]
. (75)

The first row is a quadratic equation with respect to r2, i.e.,

r4 −
d(tf )|xf |2

e(tf )f (tf )
r2 +

b(tf )|yf |2

e(tf )f (tf )
= 0 (76)

is obtained. Because the last term (b|yf |2)/(ef ) < 0 for any
t > 0, there exists a unique positive real solution with respect

to r2. Moreover, r must be positive according to its definition.
Therefore, r has a unique solution for tf as

r(tf ) =

√√√√d |xf |2

2ef

(
1 −

√
1 −

4bef |yf |2

d2|xf |4

)∣∣∣∣∣∣∣
t=tf

. (77)

By substituting this into (73), we have

h(tf ) =
|xf ||yf | cos θ

(r(tf ))2 · e(tf )
. (78)

Finally, we solve tf by |xf |, |yf |, and the angle θ .
Substituting (78) into the second row of (75) yields

−cer4|xf |2 + aer2|yf |2 − f · (|xf ||yf | cos θ )2
∣∣∣
t=tf

= 0.

(79)

Substituting (77) to eliminate r from (79), we obtain

(a2b) ·

(
ef

|yf |2

|xf |4

)2

+

(
(f cos θ )4−(ad + 2bc) · (f cos θ)2−bc · (ad − bc)

)
·

(
ef

|yf |2

|xf |4

)
+ cd2 · (f cos θ )2|t=tf

= 0. (80)

Solving (80) as a quadratic equation with respect to(
ef |yf |2/|xf |4

)
, we have a function that gives its root as the

tf to be solved as

|yf |2

|xf |4
−

βθ ± γθ

α
(t), (81)

where

α(t) : = 2a2bef , (82)

βθ (t) : = −(f cos θ )4 + (ad + 2bc) · (f cos θ )2

+ bc · (ad − bc), (83)

γθ (t) : = (bc− (f cos θ )2)

·

√
((f cos θ)2 − e2) · ((f cos θ )2 − f 2). (84)

In order to find a tf for any given xf and yf , we expect the
range of the functions (βθ + γθ )/α and (βθ − γθ )/α to cover
[0, ∞) by a domain of t . This is proven as follows, with the aid
of the intermediate value theorem. Fig. 4 shows an overview
of the functions (βθ ± γθ )/α. Where Td is the constant time
defined by

Td := min {t > 0 | d(t) = 0} ≃ 9.0, (85)

tθ is the parametric time defined by

tθ := min {t > 0 | γθ (t) = 0} (86)
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FIGURE 4. The functions (βθ ± γθ )/α against t , for various values of θ . The
bullet marks point at which γθ (t) = 0. The functions (βθ ± γθ )/α ranges
[0, ∞) by t ∈ (0, Td ], ∀θ .

FIGURE 5. Procedure for determining the optimal helix paths for the
given {xf , yf }.

whose range is in (0, 2π ). Then, we can see that the following
relationships hold:

βθ + γθ

α
(tθ ) =

βθ − γθ

α
(tθ ) > 0, (87)

lim
t→2π−

βθ + γθ

α
(t) = ∞, (88)

βθ − γθ

α
(Td ) = 0. (89)

In addition, the function (βθ + γθ )/α is continuous with
respect to t in [tθ , 2π ), and (βθ − γθ )/α is continuous in
[tθ ,Td ]. Therefore, by the intermediate value theorem, for
almost all pairs of {xf , yf }, there exists at least one t ∈ (0,Td ]
that satisfies (81) is zero. This root is the tf that we want
to obtain. Such tf can be obtained numerically, for example,
by applying the bisection method to (81).
Once tf is determined, r , h and � can be obtained by just

substituting tf into (77), (78) and (58) sequentially, as shown
in Fig. 5. In summary, we have shown that there exist helix
paths reaching almost all target points and also show the
method to find such a path with the smallest phase angle.
Remark 1 (Excepted Cases: xf T

· yf = 0, xf × yf = 0):
Although we have provided a path determination method for
almost all target points, the above procedure cannot be used
to find a solution path for the regions of measure zero such

FIGURE 6. By a helix path on the x , six-dimensional states x(t) , y (t) are
steered optimally to any given target point.

that the parallel or orthogonal conditions are satisfied. For
such cases, the solution path will be obtained by appropriate
case methods. For the orthogonal case xf T

·yf = 0, we should
degenerate the system into the 2-inputs 3-states system. For
the parallel case xf ×yf = 0, there exist numerous optimal�
due to rotational symmetry, and one of them can be chosen as
an optimal path’s parameter.

V. NUMERICAL EXPERIMENTS
In this section, we show some numerical examples. The
procedure shown in Fig. 4 was implemented using the pro-
gramming language Julia and was executed on a computer
equipped with a Ryzen5 3600 CPU. Since the procedure does
not require multidimensional iterations and the parameters
other than tf are written in closed-form, the computation time
to obtain the helix parameters is less than 30µs per path using
this setup. The paths are obtained directly by substituting
the helix parameters {r, h, tf , �} into (49) and (55). In the
figures, the given target points xf , yf are plotted as dots, and
the numerically obtained paths x(t), y(t) are plotted as lines.
Note that the state dimension of the whole system is six,
but we divide it into the base coordinates x and the fiber
coordinates y in order to overlay them as a trajectory on a
three-dimensional space. We first discuss generic examples,
then focus on four extreme cases.

A. GENERIC OPTIMAL PATHS AND THEIR ACCURACY
First, wemention that the numerical solutions are obtained for
a set of comprehensive target points with reasonable errors.
Symmetry on SO(3) is not covered. In addition, base coor-
dinates x is also normalized. Based on these considerations,
we set the target values in the range of

xf =
[
1.0 0.0 0.0

]T
, (90)

yf =
[
yf 1 0.0 yf 3

]T
, (91)

yf 1 ∈ [−100.0, 100.0], yf 3 ∈ [0.0, 100.0]. (92)

We cut the mesh at 0.1 intervals, and excluded the case
|yf | = 0.0 or θ = 0.0. The termination error µ was evaluated
by

µ := max
{

|xp − xf |
|xf |

,
|yp − yf |

|yf |

}
, (93)
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FIGURE 7. Helix path: even if xf × yf ≃ 0, we can find out the optimal
path. y (t) is steered to yf by the helix path on the x .

FIGURE 8. Circular path: y (t) moves in the vertical direction, while x(t)
moves along the circular path in the horizontal plane.

where xp, yp denote the termination point which calculated
by the set of numerically obtained parameters {r, h, tf , �}.
As a result of the above settings, numerical solutions were
obtained for all cases, and the termination error µ was
less than 0.02. Fig. 6 shows several sampled paths which
steer six-dimensional states x(t), y(t) optimally. Introducing
the helix path representation on x enabled us to obtain the
optimal paths on the six-dimensional underactuated system
quasi-analytically.

B. EXTREME CASE 1: A TYPICAL OPTIMAL HELIX PATH
Fig. 7 shows the first extreme case where xf and yf are nearly
parallel, which yields a typical path in this study. We set the
target point as xf = [2.0 0.0 0.0]T, yf = [−1.0 0.0 0.01]T.
Even in this case, the optimal path is obtained, with the
parameters being {r, h, tf } ≃ {0.351,−0.224, 8.49}.

C. EXTREME CASES 2–4: ENCOMPASSING RELATIONSHIP
WITH THE KNOWN SHORTEST PATHS
The remaining three cases correspond to those in which the
global optimal paths are already known in previous studies.
We show that the paths in this study encompass the global
optimal paths on these three cases. The two-input three-
state Brockett’s canonical system can be represented as a
special case of the three-input six-state Brockett’s canonical
system; where the case of xT

· y = 0, x, y ∈ R3 are satisfied.
Therefore, we show the three cases where x is embedded in
the horizontal plane and y is embedded in the vertical axis.

FIGURE 9. Arc path: y (t) moves in the vertical direction, while x(t)
moves along the arc path in the horizontal plane.

FIGURE 10. Straight path: the straight path on the x does not generate
the displacement of y (t) .

Fig. 8 and Fig. 9 show the cases where x(t) traces a
circle and an arc, respectively. For the case of the cir-
cle, the target point is xf = [0.01 0.0 0.0]T, yf =

[0.01 0.0 2.0]T, and the obtained parameters are {r, h, tf } ≃

{0.564, 0.00, 6.27}. For the case of the arc, the target point is
xf = [1.0 0.0 0.0]T, yf = [0.01 0.0 2.0]T, and the obtained
parameters are {r, h, tf } ≃ {0.613, 0.00274, 4.38}. In both
cases, the pitch of helix h ≃ 0, and in the case of the circle,
the phase angle tf ≃ 2π . These paths are consistent with the
known shortest paths.

Fig. 10 shows the case where x(t) traces a straight
path. The target point is xf = [1.0 0.0 0.0]T, yf =

[0.001 0.0 0.01]T, and the obtained parameters are
{r, h, tf } ≃ {0.0109, 0.125, 8.01}. This path is also consistent
with the known optimal paths. We note that there are two
ways to represent a straight-like path by the helix paths (49),
one is {rt = |xf |, h ≃ 0, tf ≃ 0} and the other one
is {ht = |xf |, r ≃ 0}, and the numerical solutions vary
significantly depending on the angle θ .

VI. CONCLUSION
In this paper, the authors have presented a helix path represen-
tation as the optimal paths on the three-input six-dimensional
Brockett’s canonical system. Then a procedure to determine
the helix path that reaches any given target point was pre-
sented. The key results of paper are as follows:

• The parametric representation of the optimal helix paths
was obtained as an explicit function x(t) = � · ξ r,h(t).
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• The helix parameters r , h, tf and � have distinct
geometric interpretations (representing the radius, pitch,
phase angle, and orientation, respectively).

Future work will include the following topics. As indi-
cated by Brockett’s necessary condition [26], the method of
this paper contains discontinuities around the excluded end
conditions (59). The other is that the paths only satisfy the
stationary conditions; hence the sufficiency of the optimality
is not guaranteed. These analyses will be interest in the future.

It is also required to develop for applicate the results of this
paper to real engineering systems. One important direction
is to extend the target systems from a Brockett’s canonical
system to Lie group representations or more general forms.
Achieving this would allow the results of this paper to be
applied to control the position and orientation of underwater
vehicles [11] without approximation. Another approach is to
improve the nilpotent approximation [27], [28] as an engi-
neering technique. This will allow us to apply the methods of
this paper to aircraft landing [4], [22] and spacecraft dock-
ing [21]. In addition, the construction and verification of a
feedback controller is also required.
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