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ABSTRACT Regression testing is carried out to test the updated supply code within the constraints of time
and sources. Since it is very difficult to run all the updated source code every time, test case prioritization is
needed to decrease the fee of regression testing. Variousmethodologies including extensions of white box and
black box prioritization, have been presented considering the prioritization of test instances. In this context,
the employment of particle swarm optimization (PSO) is usually recommended for test case prioritization.
Single test case prioritization focuses to order test cases to maximize objectives like fault detection rate,
execution time, etc. Regression testing for single-objective test suite prioritization can become challenging
due to its longer execution time. However, test case prioritization for multi-objective functions is a complex
and time-consuming task. A check suite may be organized in a certain order by an appropriate technique,
subsequently permitting the detection of flaws as early as possible. Multi-goal particle swarm optimization
(MOPSO) is used for case prioritization in regression testing. The purpose of MOPSO in this context is
to organize the test suite in a specific order that maximizes fault coverage, provides sufficient coverage of
test cases, and minimizes execution time. This study proposes an approach based on MOPSO that focuses
on maximum fault coverage, most circumstance insurance, and minimal execution time. Experiments are
performed using the average percentage of faults detected (APFD) to evaluate its performance. Performance
analysis using APFD consisting of no order, opposite order, and random order indicates that the MOPSO
surpasses all the previous techniques and obtains an 85% fault coverage. Moreover, MOPSO is better in
terms of execution time, fault detection fee, and early detection capabilities.

INDEX TERMS Test case prioritization, regression testing, particle swarm optimization genetic algorithm,
fault detection.

I. INTRODUCTION
Software testing (ST) holds vital importance in the software
program development life cycle (SDLC) since it provides a
malware-free software program bundle. Despite its relevance
and importance, ST is a slow process, and checking the whole
system is expensive. ST approaches comprise the strolling
of software to find out whether or not all of the pieces are
according to the purchaser’s requirement. If any trouble is
diagnosed, it is going to be possibly a mistake. There are
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various stages of ST and a ramification of ST techniques is
employed. So, among all the ST strategies, the high-priority
testing is regression trying out (RT).

The primary aim of checking the software is to make
sure that the gadgets are error-free. Testing a system entirely
under financial constraints and boundaries is difficult. A few
strategies are important and selecting an appropriate and
effective strategy is needed. Some strategies may be applied
to decrease the time needed for testing. One of these strategies
includes giving priority to the test instances via the use of
variousmethodologies, which results in a constrained number
of test cases. A technique based totally on particle swarm
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optimizer, a stochastic approach, is usually recommended
in this context, which may be applied for the prioritization
of the check instances. It can be beneficial in developing
a prioritized model of the test suite with a decreased variety
of check cases.

Single-objective test suite prioritization techniques aim
to order test cases in a way that maximizes a specific
objective, such as fault detection rate, code coverage,
or execution time. These techniques help optimize testing
efforts by executing critical test cases early in the testing
process. Several studies have explored different approaches
and algorithms for single-objective test suite prioritization,
comparing their effectiveness and performance in various
software testing scenarios. These techniques provide valuable
insights into improving the efficiency and effectiveness of
software testing.

Regression testing is a challenging technique primarily
on account of its execution time. Higher time is involved
for test cases due to simulation [1]. Consequently, different
testing strategies are developed to cope with this issue. For
example, [2] presented a bi-objective approach employing
a genetic algorithm (GA) to prioritize tests. For test case
prioritization, the hardware damage factor is utilized. The
time span needed for test case execution is also considered.
The study [1] used greedy algorithms and meta-heuristics for
test case prioritization. Multi-objective test case optimization
methods are also proposed, like [3].
This study brings a multi-goal approach in this regard. The

criteria for multiple-goal issues are normally incompatible,
prohibiting simultaneous optimization of every objective.
Many, if now not all, engineering troubles encompass
several goals inclusive of minimizing cost, minimizing time,
maximizing performance, maximizing reliability, and so on.
These objectives are hard to meet at the same time.

Particle swarm optimization (PSO) is a common
meta-heuristic approach that is especially well-suited to this
type of situation. Using functions and proposing strategies to
find diverse solutions, standard PSO is adapted to meet multi-
objective functions.

Multiple-objective optimization may be approached in
two ways. One option is to merge all but one of the key
functions into a common combined function or to shift
all but one of the objectives to the constraint set. In the
first situation, methodologies such as utility theory and the
weighted sum method can be used to choose a single aim.
However, the issue is choosing the right values or suitability
functions to describe the decision preferences. Even for
someone knowledgeable about the issues, selecting these
weights exactly and reliably can be challenging in reality.
This disadvantage is exacerbated by the fact that scaling
across objectives is required, and tiny changes in the weights
might result in drastically different solutions. The issue in
the latter situation is that in order to transfer aims to the
decision problem, a limiting value for each of the previous
objectives must be constructed. This is quite unpredictable.
An optimization approach would yield a single solution in

both circumstances, rather than a variety of options that may
be compared for trade-offs. As a result, decision-makers
frequently choose a collection of good options that take into
account multiple objectives [4].
To maximize the performance of the algorithm, Han et al.

suggested an adapted multi-objective PSO (MOPSO) which
is focused on a combined paradigm of solution distributions
volatility and population interval data, in which a universally
optimum solution decision method based on entropy was first
developed. Its goal is to examine the present evolutionary
pattern and strike a balance between MOPSO’s convergence
and variety [5], [6]. The specific optimum particle is chosen
in the classic MOPSO by analyzing the intent function value.
When the intended purpose values of two particles can not be
contrasted, a random value is chosen.

It is possible to become stuck in local optima if the
particular ideal particle is chosen incorrectly. In conclusion,
the algorithm employs a hybrid method to update each
individual optimal position, hence increasing variations of
the demographics and avoiding local optima. This assists the
particles in finding the most suitable particles overall [7]. The
Genetic algorithm (GA) is awell-known optimizationmethod
influenced by the process of natural evolution. GA mimics
Darwin’s concept of the fittest in nature. The underpinnings
of GA include genetic decoding, fitness evaluation, and
biologically inspired operators. In addition, Holland added
a new element, reversal, which is widely utilized in GA
approaches [8]. As a result, an effective strategy is required
that has the ability to improve the efficacy of test cases by
increasing the rate of defect identification.

A. MOTIVATION
The objective of this study is to provide a mechanism for
prioritization of test cases in such a manner that re-execution
of the whole test suite is not required. By picking the
proper collection of test cases in a test suite, test case
selection strategies lower the total expenditure of the software
testing process. These procedures, on the other hand, need
more time and money. Prioritization of test cases is crucial
during the selection of test cases in a software testing
program. This lowers the total cost and length of time
necessary for unit testing. Prioritization strategies avoid
the problems that arise during test case selection since
they do not eliminate the test cases directly. Employing
existing prioritizing approaches, engineers cannot begin
executing test cases until the particular order in which they
should be executed is defined. However, using test case
prioritization in regression testing requires many progressive
processes, which adds to the computing cost. The key concept
is to apply multi-objective particle swarm optimization,
a stochastic approach to selecting the test cases. Particle
Swarm Optimization is an optimization method that has
been developed and is being utilized effectively in many
sectors of computer sciences. The use of MOPSO will be
beneficial in developing a prioritized test suite so that errors
are covered as early as possible. The test case selection
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approach lowers the total cost needed for the software testing
process by picking the most suitable set of test cases in a
test suite. However, these approaches entail greater effort and
financial consumption. Test case prioritization plays a key
role during test case choice in software testing applications.
This minimizes the total cost and time necessary for the
testing phase. As the prioritizing strategies do not dismiss the
test cases themselves, they eliminate the downsides that arise
during the test case choice. Using the current prioritization
methods, programmers cannot begin running the test cases
until the precise order for running the test cases is determined.
But, the employment of test case prioritization in regression
testing includes many sequential procedures that raise the
computing cost. Hence, the present research works suggest
the Particle Swarm algorithm (PSO) to improve the ranking
of the test cases and test suites. The presence of diversities
in test case selection and prioritizing transforms into a multi-
objective dilemma.

B. CONTRIBUTIONS
This study presents the MOPSO model to overcome the
above-mentioned limitations. To check the effectiveness of
our suggested technique, we compare MOPSO with ‘no
ordering’, ‘reverse ordering’, ‘random ordering’, and Genetic
algorithm in this work. The purpose of ordering is to organize
the test scenarios in the manner that the most relevant test
cases are selected that can reveal mistakes as fast as possible,
depending on some reasonable, non-arbitrary criterion. Test
cases are prioritized in the same way they are created, with
no order. Test cases are ranked in reverse order of generation
in reverse prioritization. In random prioritizing, the test cases
in a test suite are ordered in random order. The testing criteria
can vary, but they are useful for finding time constraints in the
system under testing that have different components, roles,
and non-function aspects. In addition, the measure, and the
efficacy of test cases in identifying errors, is suggested in
this work, based on which test cases have been arranged.
This setup has the ability to find the most errors at the start
of the testing process. The performance of this suggested
technique is compared to that of specialized fitness of various
non-ordering, random ordering, reverse ordering, and GA
algorithms using APFD values and graphs. The proposed
method performs better than other methods.

This paper is further divided into four sections. Related
work is discussed in Section II. Test case prioritization algo-
rithms are presented in Section III. Section IV describes the
proposed approach and its working functionality. Prioritized
test suit is discussed in Section V while comparative analysis
is carried out in Section VI. In the end, Section VII concludes
this study.

II. LITERATURE REVIEW
There are several stages of Software Testing, as well as
numerous Software Testing approaches. Regression Test-
ing(RT) is the most significant of all Software Testing
approaches [9]. Regression testing verifies that no new errors

are generated in the modified program. However, due to
time, expense, and resource constraints, it is nearly difficult
to complete all scheduled test cases [10]. In regression
testing, it is necessary to ensure that all modifications
made to the program do not clash with current functions.
This testing ensures that any new modifications made to
the program will not have an impact on prior processes
and that all parts will stay intact and correct, with no
undesired behavior. Regression testing is a typical aspect
of the software development life cycle, as well as in
larger organizational settings [11]. According to research,
regression testing is a costly procedure that may account for
more than 33% of the total cost of the product [12] because
its size grows organically throughout software testing and
maintenance [13]. Regression test case prioritization (RTCP)
has emerged as one of the most successful methods for
reducing regression testing overheads [13].

In aggressive surroundings where clients are seeking
first-rate gadgets, software checking has multiplied in
importance, to make sure the first-class and dependability
of the software program below development. Although, this
hobby is occasionally disregarded because it is pretty costly,
accounting for up to 50% of the overall software program
improvement price. Therefore, analyzing the efficiency and
efficacy of the system by completely checking the system is
not practical [14]. To start with, checking the systems turned
into manual, however in recent years, the technique has been
computerized with the help of software program solutions.
Considering automatic checking entails much less time and
resources, it’s miles becoming a more famous method among
checking corporations in companies.

The success of testing is heavily reliant on the created
check cases. Thus, it is very crucial to optimize the check case
for executing the testing method. Meta-heuristic algorithms
are the most generally acknowledged method for tackling
optimization issues in software improvement. In preference,
meta-heuristic strategies are employed to address complex
problems that allow discovery close to the most efficient
solutions. In the current decade, several meta-heuristic algo-
rithms have been explored to address numerous optimization
issues as part of software program improvement [15]. Ameta-
heuristic is an algorithmic framework that can be utilized in
a ramification of conditions of optimization problems with
only some adjustments to adapt to the particular situation.
Numerous works are growing and unfolding a number of
meta-heuristic algorithms for check case prioritization.

A. REGRESSION TESTING
IEEE widespread standard IEEE-1219-1998 [16] states that
regression testing may be executed at numerous levels, which
include unit, integration, and system testing. Regression
testing is frequently cited as one form of testing that is
performed at all 3 ranges. These three stages of evaluation are
just like the product testing technique, however, they must be
targeted on adjustments that have come inside the program.
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Most of the cutting-edge regression testing processes are
concentrated on unit testing. some of the strategies emphasize
all levels of assessment due to the uncertainty level and length
of the software systems. It is far more difficult to create them
collectively with all of the features in an unmarried construct.
So, they are produced in the builds where each build covers a
certain set of features. Each time a build is launched, it must
also incorporate prior features of the system as well as the
new ones. This procedure continues till the final version of
the system is presented, which is simply a group of linked
components. Due to the development of a software system
in multiple builds, it becomes very vital to guarantee that
adjustments to the system do not have significant impacts on
the running of the system. Regression testing is vital for the
following grounds

• Modifications in the code, or in current features
• Extension to the current system by adding a feature or
features

• Existing bug is eliminated from the system
• Environment changes
• Any other modification which may influence the system
• Requirement modifications
To reduce the price of the testing process, three basic

techniques have mostly been presented ‘test case reductions’,
‘test case selecting’, and ‘test case prioritization (TCP)’.
Test suite reduction seeks to reduce identical test cases
such that the quantity of the test suite is reduced. Test case
selection examines the changes between the current and
earlier versions and chooses only such test cases that are
suited to the adjustments. Neither test suite reduction nor test
case selection assures the stability of the test suite. TCP seeks
to discover the ideal arrangement of the test cases such that
a regression test provides the most benefit under constrained
resources or when the testing process is suddenly interrupted
at some arbitrary point [7].

B. TEST SUITE PRIORITIZATION
To guarantee that the system is operating as per purpose
after the introduction of new features and perhaps even
enhancements to the software, regression tests are performed.
However, an increase in the size of the system magnifies
the number of needed test cases. Due to limits on spending
plans in the context of time or even in the form of money or
something in between, running over all test cases becomes
unfeasible. The test case ranking is utilized to figure out
which test cases should be performed and which might
not be needed. There are numerous reasons why test cases
are reprioritized including repair costs. It is difficult and
impracticable to test every situation when a sophisticated
system is examined. Prioritization of test cases arranges them
according to a set of criteria. The purpose of this approach is
to increase the probability that if test cases are prioritized in
some order, they will satisfy the defined goals within the time
and cost constraints, as opposed to if they are not prioritized.
Prioritizing test cases can help with a broader range of goals,
as seen below

• The objective of software developers and testers is to
improve the rate of defect identification,

• Spotting high-risk defects earlier in the evaluation
process,

• Earlier in the testing phase, to enhance the chance of
defect issues connected to specific code modifications,

• To increase the pace at which coverable content is
covered,

• To boost a system’s dependability,
• To minimize the running time of test suits,
• To maximize the fault detection rate of the test suit.

C. PROBLEM DEFINITION
The purpose of this study is to investigate the application
of multi-objective particle swarm optimization in order to
prioritize the test cases. The objective of this study is to
provide a mechanism for prioritization of test cases in such
a manner that re-execution of the whole test suite is not
required. By picking the proper collection of test cases in a
test suite, test case selection strategies lower the total expendi-
ture of the software testing process. These procedures, on the
other hand, need more time and money. Prioritization of test
cases is crucial during the selection of test cases in a software
testing program. This lowers the total cost and length of
time necessary for unit testing. Prioritization strategies avoid
the problems that arise during test case selection since they
do not eliminate the test cases directly. Employing existing
prioritizing approaches, engineers cannot begin executing
test cases until the particular order in which they should be
executed is defined. However, using test case prioritization
in regression, testing requires many progressive processes,
which adds to the computing cost.

The key concept is to applyMOPSO, a stochastic approach
to selecting the test cases. PSO is an optimization method
that has been developed and is being utilized effectively in
many sectors of computer science. The use ofMOPSOwill be
beneficial in developing a prioritized test suite so that errors
are covered as early as possible.

The test case selection approach lowers the total cost
needed for the software testing process by picking the most
suitable set of test cases in a test suite. However, these
approaches entail greater effort and financial consumption.
Test case prioritization plays a key role during test case
choice in software testing applications. This minimizes
the total cost and time necessary for the testing phase.
As the prioritizing strategies do not dismiss the test cases
themselves, they eliminate the downsides that arise during
the test case choice. Using the current prioritization methods,
programmers cannot begin running the test cases until the
precise order for running the test cases is determined. But,
the employment of test case prioritization in regression
testing includes many sequential procedures that raise the
computing cost. Hence, the present research works suggest
PSO improves the ranking of the test cases and test suites. The
presence of diversities in test case selection and prioritizing
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transforms into the multi-objective dilemma, hence MOPSO
is utilized.

III. TEST CASE PRIORITIZATION ALGORITHMS
A large number of algorithms are employed in test-case
prioritization. Apart from random selection, greedy tech-
niques are the earliest prioritizing algorithms in the test-case
prioritization domain. Many test case prioritizing algorithms
are being invented and unveiled by various academics in
the area. They are the greedy algorithm, the additional
greedy algorithm, the optimal algorithm, the hill climbing
algorithm, the artificial bee colony optimization, the genetic
algorithm, the ant colony optimization, and the particle
swarm optimization.

A. GREEDY ALGORITHM
Greedy algorithms that concentrate on gradually choosing
the latest ‘best’ test cases during test-case prioritization are
commonly employed to handle the test-case prioritization
problem. The greedy algorithms are split into two groups. The
first group selects tests that include more statements, while
the second group selects tests that are the furthest away from
the selected tests.

The complete and additional algorithms are the most
prevalent greedy algorithms in the first category. The overall
method, in particular, prioritizes test cases predicated on
the direct descendant order of declarations covered by each
test case, whereas the additional algorithm prioritizes test
cases relying on the direct descendant order of statements
covered by each unchecked test case but unveiled by
the initially selected test cases. The usual greedy method
in the second category is adaptable randomly generated
prioritization which is developed on the basis of adaptable
random testing. It specifically creates a potential set of test
cases iteratively before picking one test case based on a
selection method. Based on a range-defining function f 1 and
the furthest selection function f 2, the choosing algorithm
seeks to choose a test case that is the farthest from the
previously selected test cases. The study [17], in particular,
advocated using Jaccard distance to determine f 1 and defined
three forms of selection function f 2. As greedy algorithms
generally sought the local best answer, to prioritizing, their
prioritization findings may not be ideal.

B. HILL CLIMBING ALGORITHM
Hill climbing is a classical optimization approach that relates
to the local search category. It is an iterative method that
begins with an initial solution to a problem and then seeks
to discover a better solution by modifying a single piece
of the answer progressively. If the modification results in
a better solution, an incremental change is made to the
proper approach, and the process is repeated until no more
enhancements are identified. Hill climbing, for example, can
be used for the traveling salesman dilemma. It is simple to
discover an initial solution that visits all cities, but it will be
far inferior to the best solution. The method starts with such

a result and makes little changes to it, such as rearranging the
order in which two variables are evaluated. Hill climbing is
useful for locating a local optimum (a solution that cannot
be enhanced by evaluating an adjacent arrangement), but it
does not always result in the best possible solution (the global
maximum) out of all conceivable options (the search space).
Hill climbing is the best solution for convex issues. When the
time frame available to do a search is restricted, such as with
real-time systems, hill climbing can frequently yield a better
outcome than other algorithms. It is a timeless algorithm,
which means that it may deliver a valid solution even if it
is halted at any point before it finishes [18].

C. ARTIFICIAL BEE COLONY OPTIMIZATION
The artificial bee colony (ABC) is a situational method based
on the behavior of bees. Firstly, this approach may be utilized
to solve the difficulties of function optimization. The three
phases of this technique’s operation are the employed bee
(EB) phase, onlooker bee (OB) phase, and scout bee (SB)
phase. The best answer in the ABC algorithm is determined
by the food supply. The primary goal of bees is to find a food
source. As a result, each bee has a distinct capacity to detect
the food source.

The employed bee phase is the first step in the algorithm.
During this phase, the bee searches for a protein source,
gather information about the food and sends it to the next
phase. The algorithm’s next step is the ‘onlooker’ bee phase.
This phase assesses the quality of the data gathered in the
preceding phase. If the quality of the information is poor,
the bee will seek a different food place in the vicinity. When
the observer bee is unable to increase the quality of food by
applying limit operators, the ‘scout’ bee phase is triggered,
and the food site is abandoned. This phase’s task is to locate
abandoned food at a new area algorithm [19]. In the later part
of this study, we go through the genetic algorithm and the
particle swarm optimization approach in great depth.

D. GENETIC ALGORITHM OVERVIEW
The GA is a type of evolutionary computation that is widely
used for optimization problems. Prof. John Holland [20]
was the first to employ the genetic algorithm in 1975.
In most cases, GA gives approximations to diverse issues.
GA employs a variety of natural strategies including heredity,
selecting, fusion or combination, mutations, and breeding.
Because it does not require binary encoding and decoding,
real-coded GA is generally quicker than binary GA. The
following are the various stages in this algorithm

i) Randomize or iteratively define a starting population.
Obtain the optimal level of each individual in the
population,

ii) Assign each member’s selection probability in such a
way that it is proportionate to their optimal solution,

iii) Select the desired folks to generate offspring from the
latest generation to create the next generation,

iv) Repeat the steps till a good answer is discovered,
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FIGURE 1. Implementation of genetic algorithm.

v) GA describes a population as a collection of particles,
with each particle being referred to as a chromosome.
The objective functions also termed the fitness value,
are then used to assess these genes. The cost function
is often the problem’s target value.

GA has several methods including selection, reproduction,
crossover, mutation, and stopping. Selection is a method of
selecting the chromosomes that go on to generate depending
on the suitability criteria. Reproduction is the process of
creating the upcoming workforce from the existing one.
Crossover is the mechanism of genetic material being
exchanged across genomes. Mutation is a process that
causes genes to alter in a specific individual. The algorithm
is prevented from being trapped at a certain point using
mutation. The final stage in GA is to apply the stopping
criteria. When the iteration approaches a desirable solution
or reaches its peak cycle, it comes to an end.

E. IMPLEMENTATION OF GA ALGORITHM
Using a predetermined fitness function, GA results in the
development of the fittest individuals after each iteration. The
GA’s fundamental flow chart is shown in Figure 1.

Genetic algorithms may be used for a wide range of
applications. It is mostly used to tackle problems with opti-
mization. Informatics, computational methods, engineering,
industrialization, and phylogenetics are some of the domains
where GA is applied.

IV. PROPOSED APPROACH
Although, several algorithms exist for test case prioritization
in existing literature such as hill climbing, ant colony, genetic
algorithm, etc. PSO is a widely adopted approach in this
regard. Its ease of implementation and interpretability are
among the leading factors. We present some background
information regarding our proposed investigation in this
paper. We did a literature study and comparative analysis

of several pieces of research by comparing our suggested
approach with existing research. We identified the following
deficiencies in existing white box prioritizing methodologies
after a comprehensive examination of the aforementioned
methods. The data on defects and test cases is gathered
from original software testing in fault-based prioritizing
methodologies. When software is modified, it is possible that
new problems be generated. Modifications to one element
of the program may have an impact on other portions of
the software. As a result, earlier data on failures may not be
valuable in regression testing for the following reasons:

• The errors in the earlier (original) release have already
been solved; therefore they are unlikely to arise again.

• Software modifications may bring new bugs. As a result,
past error data is no longer usable for assessing changed
applications.

Recognizing that single-objective approaches may be
unsatisfactory for fault prediction, several researchers sug-
gested multi-objective learning approaches, which have been
shown to work better than single-objective approaches.

In keeping with the existing works, previous research
works focused on suites that are primarily based on their
capability to find faults. These works exclude code coverage
as well as other valued elements such as test case size
and alertness code size. The objective test in prioritization
primarily based on fault detection capability is insufficient
because it ignores prices like execution time, test suite
size, code length, and condition coverage. Price, code,
and condition coverage are required because it provides
information on the testing framework concerning accuracy,
and cost reduction is the foremost goal of regression testing.
Designs and versions such as Junit and Selenium no longer
provide any approach for prioritizing check cases and are
primarily based on fault detection abilities. Frameworks
run test instances in a logical order, irrespective of their
priority. These popular testing techniques and frameworks
also do not consider other factors. Other aspects which
can have an impact on the authenticity of prioritization
techniques include the dimensions of the software program
being tested, the variety of check suites equipped for testing,
testing instances under these prioritization strategies, and
the testing surroundings that support these prioritization
strategies. In this study, we suggested a coverage-basedmulti-
objective prioritizing approach. We also compare the results
of the suggested MOPSO with the Genetic algorithm

A. MODEL OF PROPOSED METHODOLOGY
Regression testing is used to validate modified source code.
Because resources and time are finite in regression testing,
we must choose those test cases among test suites with
higher rates of fault detection to decrease execution time [11].
Techniques for prioritizing test cases, test cases should be
executed in an order that maximizes some objective function.
Prioritization is intended to enhance the possibility that this
objective function will be better satisfied if the test cases
used for regression testing are conducted in the given order
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FIGURE 2. Workflow of the proposed approach.

rather than in a random way. 7 Testing a system is critical
when considering the system’s durability and effectiveness,
and it requires resources, accounting for up to 60% of the
development budget. Testing of systems is normally done in
a manner that similar resources are provided to all areas of the
system, but when bigger systems are examined, this method
is not practical as it is hard to do so due to financial limits
and the amount of time necessary. So, regression testing is
conducted on the system to verify that modifications made
to the system do not affect the usual running of the system.
Since the quantity of test cases needed for testing rises as
the scale of the system grows, some method is essential
to execute testing in an effective and quick way without
completing the comprehensive testing of the system [21].
Thus, two factors, condition coverage, and fault coverage,
are used in this thesis to improve the fault detection rate of
the test suit, and execution time is used as a minimization
function.

This study suggests the use of a multi-objective test case
prioritizing strategy based on PSO. This technique generates
test suites that are used to evaluate MOPSO using the
benchmarks code coverage, execution time, and condition
coverage. Figure 2 shows an illustration of the suggested
approach.

MOPSO is used with objective parameters such as code
coverage, condition coverage, and execution time. T =

{T1,T2, . . . ,Tm} is the test suite containing m test cases, and
the location of the particle is provided as pt = {t1, t2, . . . , tm}

where tj belongs to the set {0, 1}. The lack of the test case
featured by 0 and 1 reveals the presence of Ti in the portion
of test cases. The test cases are transformed into binary form.

When it comes to food, the PSO behaves like a flock of
birds. The food-finding procedure is carried out by passing
on the expertise of searching among neighboring birds. PSO
employs the ‘bird’s flock’ notion in order to find the best
solution. By watching the behavior of the adjacent particles,
each particle iteration search space in PSO attempts to
converge on the route of the global best solution. Every other
particle may track the best prior location of any particle,
which is denoted by pbest and calculated by a function called
the fitness function. The global best position of all particles is

indicated by gbest , and the velocity (execution speed) of each
particle may be calculated.

B. DESCRIPTION OF PROPOSED MODEL
One of the most common metrics used to assess the
performance of a test case or suite is code coverage. It has
been extensively researched in academics and is widely
employed in the industry. A test case, on the other hand, may
cover a piece of code but overlook its flaws, regardless of the
coverage measure utilized. Code coverage is a frequent form
of test adequacy criteria.Most present automated test creation
solutions employ code coverage as their quality assessor.

We use code coverage as one of our primary goal
parameters to investigate the effectiveness of code coverage.
We test MOPSO’s fault detection ability and evaluate it with
other approaches in the suggested methodology. We compute
code coverage for each revision to address our first research
question. If any test suite that meets the condition assures
the discovery of the defect, we term it effective or sufficient
for detecting the fault. It is not our sole goal when ranking
test cases; additional objective parameters include condition
coverage. For every path in the test suit, we compute
condition coverage. As the maximizing function, these two
goal parameters are employed.We use a dummy test suit with
10 faults and 8 test cases to maximize code and condition
coverage. Following that, each test case is prioritized using
several strategies such as no order, random order, reverse
order, and the proposed MOPSO.

MOPSO is employed to optimize coverage, cost, and fault
detection. The particle positions are supplied as decimal
matrices, indicating the fraction of test instances for the
testing procedure. Referring to the hypothesis

T = {T1,T2, . . . ,Tk} (1)

It is the test suite having k test cases, the particle location
is given as

pt = {t1, t2, . . . , tm} (2)

where tm belongs to the set {0, 1}.
The lack of the test scenarios indicated by 0 and 1 shows

that Ti is available in a subgroup of test cases. The test cases
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TABLE 1. Possible cases for updation of pbest and gbest .

are translated to binary. When looking for food, the PSO
exhibits flock-based behavior. The food-finding procedure is
carried out by passing on the expertise of seeking among
neighboring birds. PSO employs the bird’s flock notion in
order to find the best alternative.

By analyzing the behavior of the adjacent component,
each particle iterates the searching region in PSO attempts to
evolve in the route of the global best solution. Every other
particle may track the best prior position of any particle,
indicated by pbest and calculated by a function called fitness
function.

The proposed MOPSO algorithm attempts to maximize
multiple objectives concurrently. The efficacy of the sug-
gested technique is calculated through testing, and the
findings obtained show better effectiveness. Algorithm 1
provides details of how the proposed approach works.

C. RESEARCH DESIGN
In this research, we shall employ a quantitative technique
and an optimization research design. The primary purpose
of the optimization process is to identify input variables
that minimize or maximize the objective function while
maintaining the constraints. We offer the MOPSO strategy
to solve the problem of test case prioritizing.

To begin, we prepare a test suit comprising dummy
test cases. The test suite consists of eight test cases
(TC1,TC2, . . . ,TC8) and ten faults (F1,F2, . . . ,F10). The
second stage is to use MOPSO to choose test cases from the
test suite based on three hyperparameters

• Code coverage,
• Condition coverage, and
• Execution time
These parameters are used such that the chosen test cases

cover all faults while taking the shortest percentage of time to
run. The third step is test case prioritization, which allocates
priority to the test cases developed in phase 2 so that the
selected sample of these test cases detects errors rapidly. The
following test cases are added to the test suite in sequential
order. We prioritize test cases in the proposed method based
on fault coverage and test case execution duration.

D. PROPOSED APPROACH FLOW CHART
The proposed MOPSO technique is used to optimize test
cases. Prioritization is based on three objective parameters
at the same time. Figure 3 depicts the entire operation of the
proposed system. The proposed approach is divided into two

Algorithm 1 Pseudocode of MOPSO Algorithm
Define the objectives: Identify the coverage metrics that
represent the different aspects of the system you want to
cover (e.g., code coverage, requirement coverage, branch
coverage).
Determine the fault detection metrics that measure the
effectiveness of each test case (e.g., fault detection rate,
number of defects found).
1: Determine the search space: Identify the test cases to

be prioritized. Each test case is represented as a particle
in the MOPSO algorithm.

2: Initialize the population:Generate an initial population
of particles representing the test cases. Assign random
priorities or positions to each particle.

3: Evaluate the fitness of each particle: Execute the test
cases represented by each particle. Measure the coverage
achieved and the fault detection rate for each test case.

4: Update the personal best (pbest) for each particle:
Compare the fitness (coverage and fault detection) of
each particle with its personal best. Update the personal
best if the current fitness is better than the previous best.

5: Update the global best (gbest): Select the
non-dominated particles from the current population
based on coverage and fault detection. Update the global
best if a new non-dominated solution is found.

6: Update the velocity and position of each particle:
Calculate the new velocity for each particle using the
current velocity, personal best position, and global best
position. Update the position of each particle based on
the new velocity.

7: Repeat steps 4 to 7 until a termination criterion is
met: Termination criteria can be a maximum number of
iterations or a predefined fitness threshold.

8: Return the prioritized order of test cases based on the
final positions of the particles

parts. The first part is initializing required parameters such
as velocity, iteration counter, local pbest , and global gbest .
The proposed algorithm’s second component is known as
the loop. The velocity and particle position will be updated
iteratively in this section.

The following are some possible scenarios for updating
pbest and gbest , as given in Table 1. Because the value of Fi
(fitness function) is greater than Fpbest and Fgbest in the first
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FIGURE 3. Flow chart of the proposed approach.

case, pbest and gbest are not updated. In the second case, Fi
is less than Fpbest but greater than Fgbest , so pbest is updated
to the new personal best of each particle while gbest remains
unchanged. If Fi (fitness function) is less than Fpbest and
Fgbest in the third scenario, both will be updated to the new
value. The last case is exceptional; it would not be possible in
a usual context. The stopping criterion is important to obtain
optimal results; if it is not determined appropriately, the GA
may return sub-optimal results.We have defined two stopping
criteria. The first is when there is not improvement in the
population with each iteration, the algorithm will terminate.
Secondly, if the number of maximum iterations is reached,
the algorithm will terminate and provide the best solution.

V. PRIORITIZED TEST SUITE EFFECTIVENESS
It is necessary to evaluate the efficiency of the sequence/
ordering of the test suite based on the performance of
the prioritizing approach employed in this study. The
frequency of discovered problems will be used to determine
effectiveness. The level of efficacy is calculated using the
following metrics.

A. AVERAGE PERCENTAGE OF FAULTS DETECTED METRIC
To evaluate the aim of improving the percentage of fault
detection in a subset of the test suite, we utilize the APFD
metric introduced by [22], which quantifies the rate of fault
detection percentage of test suite performance. The APFD is
computed by calculating the weighted mean of the proportion
of errors found throughout the test suite execution. TheAPFD
value ranges from 0 to 100, with higher values indicating
faster (superior) fault detection rates. The following formula
may be used to compute APFD

APFD = 1 −

(
Tf1 + Tf2+, . . . ,+Tfm

mn

)
+

1
2n

(3)

where n be the number of test cases and m be the number of
errors, while Tf1, . . . ,Tfm) are the position of first test T that
uncovers the fault.

B. MULTI-OBJECTIVE OPTIMIZATION
Many engineering optimization issues necessitate the simul-
taneous optimization of many objectives. This type of
problem is known as multi-objective optimization (MOP)
because the objectives to be optimized frequently contradict
one another. As a result, the primary goal of the MOP
method is to identify a set of roughly optimum suggestions
between several goals in the solution space, and the fairer the
distribution of these solutions, the better [7]. Unlike single-
objective issues, multi-objective optimization (MOO) seeks
to optimize many objectives at the same time [23].

C. PARTICLE SWARM OPTIMIZATION
The PSO was initially developed by [24] for optimization
issues. The PSO was influenced by bird flocks’ foraging
activity. Individuals in PSO fly in groups in multidimensional
spaces to locate the population’s possible optimal solution.
It is worth emphasizing that each individual learns from
their previous individual encounter as well as the experience
of successful peers and adaptively changes their pace and
position. In the basic PSO, the individuals in the population
are referred to as particles, and it is a possible solution in the
swarm. The particles’ location and velocity are updated using
the following formula

VIJ (T + l) = WVIJ (T ) + C1R1(XP_BEST_IJ (T )

− XIJ (T )) + C2R2(XG_BEST_J (T ) − XIJ (T ))

(4)

xij(t + 1) = xij(t) + vij(t + 1) (5)

where xi = (xi1, xi2, . . . , xiD) and vi = (vi1, vi2, . . . , viD)
indicate the position and velocity of the ith particle in the
Dth dimension of the search space; xp_best_ij indicate the
individual best jth dimensional position of the ith particle
and is generally called the individual best position (p_best);
xg_best_j shows the jth dimensional positions of the globally
best particle in the population and often it is called the global
best position (g_best). The w is the coefficient of inertia,
w = 0.4; c1 and c2 indicate the acceleration coefficients,
c1 = c2 = 2.0; r1 and r2, respectively, indicate two random
coefficients produced uniformly in the range of [0, 1]; and
t shows the number of iterations, t = 1, 2, . . . ,T (T is
the maximum number of iterations). Typically, to prevent
particles from fleeing the search area, a maximum value
(vmax) is described for each dimension of the particle’s
velocity vector. When the particle velocity vij exceeds the
defined vmax, the particle velocity vij is directly set to vmax.
Figure 4 shows the flow char of PSO.

D. MULTI OBJECTIVE PARTICLE SWARM OPTIMIZATION
MOPSO is a population-based multi-objective meta-heuristic
technique that has been utilized to tackle a variety of
multi-objective optimization problems. MOPSO entails opti-
mizing two or more competing objective functions at
the same time, subject to specified limitations. MOPSO
algorithms are purpose-built to deliver strong and scalable
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FIGURE 4. Flow chart of particle swarm optimization model.

solutions. In such algorithms, each member termed a particle,
utilizes basic local rules to regulate its behavior, and the
swarm meets its goals through the contacts of the entire
group. The Pareto dominance relation is used in MOO
and MOPSO to develop preferences among solutions to
be believed as leaders. By investigating Pareto dominance
notions, each particle in the swarm might have several
leaders, but only one could be chosen to update the velocity.

The resemblance of PSO to evolutionary algorithms
highlights the idea that employing a Pareto ranking system
might be a simple method to adapt the technique to
manage MOO issues. A particle’s (individual’s) historical
record of the best solutions identified might be used to
store non-dominated solutions developed in the previous.
The application of global attraction mechanisms in con-
junction with a historical archive of previously discovered
non-dominated vectors would encourage convergence toward
globally non-dominated solutions [6].

E. EXPERIMENTAL SETUP
The experimental research design for this work is explained
in this portion. Experimentation is carried out using the
following system specifications. An Intel inside Core m i5
CPU machine is used with 4 GB of RAM, and Windows
10 pro operating system. Jupyter NoteBook is used with
Python 3.0 to calculate results and APFD metrics.

The fundamental principle behind test case prioritizing is
to cover as many faults as possible with the fewest amount
of test cases. At this stage, we are analyzing the time of
execution of individual test cases, and coverage of faults
is being used for this purpose. The dummy test suites and

TABLE 2. Test suit representation.

TABLE 3. Fault representation of test suit.

the system under test (SUT) are chosen in the first stage.
To do unit testing, the Python computational environment
(Jupyter Notebook) is chosen. For unit testing in Python,
the Pyunit package is used. In the second phase, we use
‘coverage.py’ (Code coverage tool for Python) to collect
the information needed for the proposed strategy. It collects
coverage statistics as well as the size of the system under test
(SUT). ‘Pyunit’ is used to calculate the size of the test suite.
All faulted versions of the SUT are created and examined.

The data from the second phase, which includes the test
suite size, condition coverage, execution time, and code
coverage pertinent contents, is used in the third step. The
data is then analyzed to assign a weight to each test case
based on its ability to find the maximum number of faults
in the shortest amount of time. The test suite utilized in this
investigation is described in detail in Table 2.

Table 3 shows the relationship between test cases and
defects for the test suite. The dummy test suite has eight test
cases, namely TC1–TC8, and ten probable errors denoted as
‘F1’ to ‘F10’. In Table 2, the binary value 1 indicates that
the fault was recognized by the relevant test case, whereas
0 indicates that the problem did not exist. The execution
time is the time required by each test case in the test suite.
The maximum execution time of 6 hours is spotted for the
test suite. Table 3 depicts the relationship between test cases
and faults. The binary value 1 indicates that the fault was
uncovered by the corresponding test case, while 0 indicates
that the error did not exist.

We compared the proposed method to no ordering, reverse
ordering, and random ordering. Because MOPSO contains
certain random parameters, we use the average result of
100 runs of the algorithm in this situation.

F. RESULTS
The metric used for performance assessment is the APFD
metric. The proposed method beats no ordering, reverse
ordering, and random ordering because they acquired the
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TABLE 4. Reduced test suit of no ordering technique.

FIGURE 5. APFD value of fault detected by ‘no ordering’.

least execution time while also covering all defects. APFD
evaluation of all approaches is discussed in the subsequent
sections.

1) NO ORDERING
Table 4 shows the minimal test case set for the no-ordering
technique. The representation contains the test case, the
binary form of the identified defects, and the execution
time (in hours). The test cases in the simplified test set
are TC1,TC2,TC3,TC4,, and TC5. For the test suite, the
maximum execution duration is 6 hours.

A visual display of detected faults and test cases using the
no-ordering approach is presented in Figure 5.

2) RANDOM ORDERING
Table 5 shows the illustration of recognized errors, minimum
selected test cases, and execution time for the random
ordering technique. The test cases TC4,TC1,TC3,TC5, and
TC6 are chosen in the test case set. The random order requires
a minimum execution time of 3 hours.

3) REVERSE ORDERING
Table 6 shows a test case set with a minimum of test
cases for the reverse ordering approaches. The selected
test case is presented in binary form, along with the time
required to complete each test case. TC8,TC7,TC6,TC5,
and TC4 are the test cases chosen in the reverse ordering
methodology. The reverse ordering technique required a
minimum execution time of 3 hours.

TABLE 5. Reduced test suit of random technique.

FIGURE 6. APFD value of fault detected by ‘random ordering’ technique.

TABLE 6. Reduced test suit of reverse technique.

FIGURE 7. APFD value of fault detected by ‘reverse ordering’.

TABLE 7. Test suit representation.

4) PROPOSED MOPSO APPROACH
Table 7 contains information on the minimal test case set
for the proposed MOPSO approach, including the test cases,
binary form of faults, and execution time.

VOLUME 11, 2023 90693



M. Nazir et al.: Multi-Goal Particle Swarm Optimizer for Test Case Prioritization

FIGURE 8. APFD value of fault detected by the proposed approach.

TABLE 8. Displaying prioritized order of various approaches.

G. PRIORITIZED ORDER OF VARIOUS APPROACHES
Table 8 shows the prioritized sequence of test cases in the
selected test suite for various prioritizing approaches like no
ordering, random ordering, reverse ordering, and MOPSO.

H. TIME COMPLEXITY
The complexity analysis of the MOPSO algorithm involves
analyzing the computational cost of its main operations. Here
is a breakdown of the complexity analysis for the MOPSO
algorithm.

• The complexity for population initialization is O(N ),
where N is the population size,

• The complexity of fitness evaluation is O(NM ), where
M is the number of test cases. Each particle’s fitness is
evaluated for M test cases, resulting in a total of N ∗M
evaluations,

• Time complexity of personal best (pbest) update and
global best (gbest) update is O(N ), Comparisons are
made between the fitness of each particle and its
personal best. Non-dominated particles are selected
from the population to update the global best.

• Time complexity for velocity and position update is
O(N ). The velocity and position of each particle are
updated using its personal best and global best positions.

• Time complexity of termination criterion is O(1). The
termination criterion is typically a predefined condition
and does not depend on the population size.

Overall, the time complexity of the MOPSO algorithm can
be approximated as

O(G ∗ N ∗M ) (6)

where G is the maximum number of iterations, N is the
population size, and M is the number of test cases. It is
important to note that the complexity can vary depending on
the specific implementation and the problem being solved.

VI. COMPARATIVE ANALYSIS
Mostly, effectiveness issues can be resolved by any meta-
heuristic algorithm. GAs are among the most significant
types of the optimization algorithm. GAs are global search
heuristics that employ an iterative approach to arrive at the
intended result. In most cases, GA gives approximations to
diverse issues. GA employs a variety of evolutionary strate-
gies, including heredity, choice, crossovers or recombinant,
variation, and generation. GA can tackle difficult optimiza-
tion issues since it can accommodate both continuous and
discrete parameters. GA has proven to be extremely effective
in a variety of challenges including efficiency, design, and
scheduling, power systems data handling, and so on.

Swarm intelligence (SI), a novel distributed approach,
may also readily handle optimization issues. Beni and
Wang [25] created the notion of SI, which was influenced
by natural phenomena such as bird flocking, ant colonies,
animal swarming, fish schooling, and bacterial development.
Based on biological events or processes, an attempt was
made to build a different algorithm or dispersed problem-
solving devices. Kennedy et al. created PSO in the mid-
1990s [24]. The basic principle behind PSO is that each
particle represents a potential solution that is updated based
on two types of information accessible throughout the
decision-making process. The first, intellectual behavior,
is learned from one’s own experiences, while the second,
social behavior, is learned from one’s neighbors’ experiences,
i.e., they tested the options themselves and know which
ones their neighbors have chosen and how beneficial the
best sequence of options was. Because of its many benefits,
such as resilience, effectiveness, and simplicity, PSO is
becoming more popular. PSO has been determined to need
less processing power when matched to other stochastic
algorithms. PSO has demonstrated its promise in many areas
for tackling various optimization issues, but it still takes
a long time to discover answers for large-scale technical
challenges.

A. MULTI-OBJECTIVE GENETIC ALGORITHM VERSUS
MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION
Both strategies are now being used to solve the challenge of
prioritizing test cases for a randomly chosen test suite. Both
methods are executedwith the same number of iterations, cost
function, component amplitudes and phase limitations, and
cost function analyses. GA is superior to PSO in certain ways
because GA is discrete in nature, i.e. it converts parameters
to binary 0s and 1s, and so can certainly manage discrete
issues, whereas PSO is continuous and must be changed to
accommodate discrete issues. In comparison to GA, in PSO,
the factors can have any value depending on their current
position in the composite area and the velocity distribution
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TABLE 9. Reduced test suit of MOGA and proposed MOPSO approaches.

connected with it. Genetic algorithms are inefficient at
dealing with complexity because the number of components
undergoingmutation is quite large in such instances, resulting
in a significant expansion in the search area. In this case,
PSO is the best alternative since it involves a small number
of parameters and hence minimal iterations. GA converges
to a local optimum or even random locations rather than the
problem’s global optimum, whereas PSO seeks out the global
optimum.

B. REDUCED TEST SUIT OF MOGA AND PROPOSED
MOPSO
The reduced test suite of the multi-objective genetic
algorithm (MOGA), as well as the proposed technique
MOPSO, is shown in Table 9. MOGA’s reduced test suite
includes TC4,TC1,TC2, and TC8 test cases. While the
suggested method discovered the most faults in just three test
scenarios, such as TC6,TC4, and TC1. Each test case is also
presented in binary form in the table.

Figure 9 presents a comparison between the performance
of MOGA and the proposed approach MOPSO concerning
the APFDmetric which is used to evaluate their performance.
It indicates that the proposed approach obtains a higher APFD
of 85% in comparison to 83.5% from MOGA and shows
better performance.

C. APFD MATRIX COMPARISON OF MOGA AND MOPSO
Figures 9(a) and 9(b) reveal that the multi-objective genetic
algorithm only covers 83.75% of the faulted region, whereas
the suggested technique yields superior results, covering 85%
of the APFD area. The proposed approach’s better coverage
rate demonstrates impressive performance. For test suite
prioritization, the suggested method is both efficient and
resilient.

The APFD for each technique is used to calculate the
comparative results. The APFD metric is employed to boost
fault detection in test suites. Let T test suite with k test
cases, and Flt be the collection of j faults that TSuite wraps.
The TSuite Fltj is TSuite’s initial test case sequence that
demonstrates fault i. Performance comparison of various
approaches regarding APFD percentage is given in Table 11.

When compared to random order, no order, reverse
ordering, and genetic algorithm, the proposed approach
achieves the best results, as it takes the shortest time to
execute with perfect fault coverage, as shown in Figure 10.

FIGURE 9. (a) APFD value of genetic algorithm, and (b) APFD value of
MOPSO algorithm.

FIGURE 10. Comparison of execution time (hours) of different
approaches with the proposed approach.

The time it takes to run a test suite is not taken into account
in the APFD. The execution time is taken into account while
selecting and prioritizing test cases in the suggested method.
The APFD is then used to evaluate the results of the proposed
technique to those of other approaches, as shown in Figure 10,
which reveals that the presented strategy is more stable than
others.

Table 9 shows the prioritized ordering for the presented
technique and MOGA approach. In comparison to previous
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TABLE 10. Performance comparison with existing approaches.

TABLE 11. APFD ratio of different prioritization techniques.

TABLE 12. Time required by tests for different approaches.

techniques, the suggested MOPSO ordering involves the
usage of priority for calculating the results. The findings
reveal that the suggested strategy takes less time to exe-
cute than other strategies, demonstrating that the proposed
approach outperforms the others. In addition, the execution
time of several test cases with random, reverse, no ordering,
GA, and suggested approach is also carried out showing
better performance of the proposed approach. The execution
times of several existing prioritizing strategies are compared
to the suggestedmethodology in Table 12. The findings reveal
that the suggested strategy takes less time to execute than
other strategies, demonstrating that the proposed approach
outperforms other approaches.

D. COMPARISON WITH EXISTING APPROACHES
For showing the efficacy of the proposed MOPSO algorithm,
a performance comparison is carried out with existing
works. We selected several works that presented models
on multi-objective optimization tasks. For example, [11],
[26], and [27] focused multi-objective optimization and
used the same performance evaluation parameter APFD.
Table 10 presents the comparison results indicating the
superior performance of the proposed approach.

VII. CONCLUSION AND FUTURE WORK
Regression testing is carried out to test the performance
of a modified or enhanced software to ensure its intended
functionality. Since testing all the units is impracticable and
costly, case prioritization is performed. The optimization of
case prioritization is a complex task, especially whenmultiple
conflicting objectives are to be met. This study advocates
the use of a multi-objective PSO (MOPSO) approach to
reduce execution costs and increase fault coverage for
prioritizing the test cases. The key contribution is to

examine PSO in a multi-goal method for selecting random
check cases, with code coverage and situation coverage
as maximization functions and execution time as reduction
functions. The APFD is used for a detailed examination of
the outcomes from several approaches including no ordering,
random ordering, reverse ordering, genetic algorithm, and
the proposed MOPSO. In comparison to the genetic set of
rules, the MOPSO set of rules is the first-class method for
prioritizing test cases because it has the shortest execution
time and covers a higher percentage of faults. It suggests
that the no ordering, reverse ordering, random ordering, and
genetic algorithm show inferior performance compared to the
proposed approach that covers 85% area of APFD. Further,
with regard to execution time, the proposed approach is
quicker than previous approaches. For future work, we note
that the supplied approach isn’t always constrained to a
few goal features and may be applied to one-of-a-kind test
choice criteria. Furthermore, we count on these results could
be replicated in other application areas. Similarly, further
objectives can be obtained for test case prioritization includ-
ing code coverage, fault detection price, branch coverage,
assertion insurance, and so forth.
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