
Received 26 July 2023, accepted 12 August 2023, date of publication 17 August 2023, date of current version 23 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3305945

Matrix Completion of Adaptive Jumping Graph
Neural Networks for Recommendation Systems
XIAODONG ZHU, (Member, IEEE), JUNYU FU , AND CHEN CHEN
Business School, University of Shanghai for Science and Technology, Shanghai 200093, China

Corresponding author: Junyu Fu (fujunyu0319@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 71871144.

ABSTRACT Using graph neural networks to model recommendation scenarios can effectively capture
high-order relationship features between objects, thereby helping the model better handle recommendation
problems. However, the over-smoothing phenomenon poses a performance constraint for recommendation
algorithms based on graph convolutional node aggregation. In realistic recommendation scenarios that
involve social relationships, the imbalance of node degrees can deepen the impact of over-smoothing on
recommendation accuracy. To address these issues, we propose an adaptive matrix completion algorithm
for collaborative filtering recommendation, which is based on the aggregation rules of relational graph
convolutional networks, and introduces jumping knowledge connection for adaptive selection of user-item
feature aggregation results of deep graph convolutional networks. And in order to overcome the limitations
of existing interlayer aggregation mechanisms, we design a self-attention-based aggregation mechanism
to integrate the output of each layer and enhance the generalization ability of the model. In addition,
we introduce normalization in the process of data transmission between layers to ensure the distinguishability
between nodes. Finally, we conduct experiments on three real recommendation datasets to compare the
algorithm’s performance and perform ablation analysis. Our model achieves RMSEs of 0.9058, 0.8346 and
0.7176 on the three datasets respectively. The results show that the recommendation performance of our
model achieves a leading level when compared with current state-of-the-art algorithms and verifies the
influence of node degree distribution on the recommendation process.

INDEX TERMS Feature aggregation, jumping knowledge connections, matrix completion, recommendation
systems, relational graph convolutional network.

I. INTRODUCTION
In the era of big data, themassive amount of data contains rich
value and great potential, but also presents the serious prob-
lem of information overload. As an important tool to address
this problem, recommendation algorithms have become a
hot topic in academia. Currently, recommendation algorithms
have been successfully applied in many fields, including
e-commerce, information retrieval, social networks, location-
based services, news delivery and other fields [1].

Traditional recommendation algorithms are primarily clas-
sified into collaborative filtering recommendation, content-
based recommendation and hybrid recommendation [2].
Among them, collaborative filtering recommendation [3]

The associate editor coordinating the review of this manuscript and

approving it for publication was Taous Meriem Laleg-Kirati .

predicts users’ interests based on the interaction between
users and items, making it one of the most popular algorithms
due to its good performance. Additionally, with the advance-
ment of deep learning technology, some collaborative fil-
tering recommendation algorithms based on neural network
models have been proposed [4]. These algorithms attempt to
solve the recommendation problem from two aspects.

On the one hand, the algorithm models the recommenda-
tion for a certain user as a sequential prediction problem,
where the interaction between the user and different items
is considered as a sequence in a chronological order [5].
The reason behind is that the items chosen by the user are
often related in the dimension of time, and the choices made
by the user within a short time frame can reflect certain
preferences, and the learning of such preferences can help
to provide the user with proper item recommendations. This

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 88433

https://orcid.org/0009-0008-3978-6043
https://orcid.org/0000-0001-5944-0121

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

type of approach draws on the learning ability of recurrent
neural networks for sequential data [6], and learns users’
preferences through their interaction history. Besides, there
are some works that integrate the user’s interaction using the
self-attention mechanism [7] to learn the correlation of his-
torical items and thus select other items in the system that are
suitable for the user. Most of the recommendation methods
for sequential prediction are item-based recommendations,
which calculate the similarity between items based on the
user’s behavior such as ratings for the items. It provides users
with suitable recommendations based on the similarity of
items and their historical behaviors.

On the other hand, with the powerful feature extraction
ability and the nonlinear mapping ability of neural net-
works, some methods find suitable items for users using
hidden features. These methods use neural networks to per-
form nonlinear fitting on the feature vectors of users and
items to accomplish matrix completion task. Commonly used
methods include convolutional neural networks as well as
auto-encoding [8]. To address the sparsity of the recom-
mendation data, some methods enhance the fitting ability
of neural networks by tensor decomposition [51] or data
augmentation [52] to make predictions for missing values.
Meanwhile, researchers have noticed the impact of social
networks or recommendation networks on user preferences,
and hence graph neural networks (GNNs) are applied to
recommendation problems to capture high-order information
in user-item networks [9]. GNNs have demonstrated excellent
topology awareness in areas such as Nonfactoid question
answering [53], traffic flow prediction [54], and edge com-
puting [55]. The community information contained in the
network topology expresses the mutual influence between
nodes [56]. The connectedness between communities, the
activity of nodes, and the social similarity of nodes are used
to measure the interaction between nodes [57], which reflects
the user’s preferred choice of items in a recommendation
scenario. The user-item interaction can be modeled as a het-
erogeneous bipartite graph with different nodes representing
users and items and edges representing ratings. GNNs can
well represent graphs and effectively capture local as well
as global graph features using message aggregation. In the
field of recommendation, this modeling approach captures
the interaction between different objects, which is helpful in
capturing the high-order features of nodes in the network, and
can effectively alleviate the cold start problem of recommen-
dation systems [10].
However, existing recommendation methods based on

GNN have not fully considered the imbalance in the node
degrees in a network. The degrees of nodes in real networks
vary significantly. In Figure 1, we visualize three real-world
datasets: MovieLens 100K, 1M, and 10M. The scatter plot
depicts the distribution of node degrees, where the nodes
closer to the center have higher degrees, i.e., they have more
connected edges. In ML-100K, there are more nodes in the
center, while in ML-1M and ML-10M, a large number of

nodes are distributed at the boundary, indicating that most
nodes in the datasets are low-degree nodes. In the histogram,
the degrees of all nodes are sorted, and nodes in the blue part
in MovieLens 100K, 1M, and 10M account for 10%-30% of
the total number of nodes, but occupy 80%of the connections.
The above phenomenon indicates that there exists imbalance
in node degrees in the real-world recommendation problems,
which may negatively affect the performance of GNN-based
recommendation algorithms.

Graph convolutional networks (GCNs) along with other
GNNs rely mainly on neighborhood aggregation, which
generally suffers from over-smoothing when dealing with
graphs that vary dramatically in local neighborhoods. This
over-smoothing leads to degradation of the model when
increasing the number of GCN layers. The essence of
GCN over-smoothing is that as the number of GCN layers
increases, the node features in the network tend to homoge-
nize during multiple convolutional processing, i.e., the nodes
become increasingly indistinguishable [11]. In the recom-
mendation problem, we regard the different degrees of nodes’
preferences for the same class of items as the difference
between them. Then reflected in the recommendation accu-
racy, when nodes tend to be homogeneous, it is difficult for
us to predict whether some nodes have similar preferences
for the current item, thus reducing the accuracy of the recom-
mendation. In the recommendation scenario, this imbalance
in the degrees of user and item nodes can greatly exacerbate
the over-smoothing of the GCN and therefore introduce per-
formance losses for the GCN-based recommendation model,
as shown by our experiments.

Therefore, in this paper, we aim tomitigate over-smoothing
in GCNs and address the uneven distribution of node degrees
in real-world data. Firstly, when adding multiple convolu-
tional layers, we introduce the jumping knowledge connec-
tion, and node features are obtained by adaptive selection of
the output of each layer, and the outputs between the convo-
lutional layers are normalized using PairNorm [12] to reduce
the similarity of nodes generated in the aggregation process.
Secondly, we design an inter-layer aggregation based on
the self-attention module to adaptively select the appropriate
number of convolutional layers based on the features of the
datasets. Finally, we conduct experiments on three real-world
datasets to verify the impact of node degree imbalance on the
recommendation performance and evaluate the effectiveness
of our proposed mode. Sensitivity of the parameters and the
effectiveness of each module in our model are tested by
parameter analysis and ablation experiments, respectively.

Some related solutions to the GNN over-smoothing prob-
lem have been thought through in terms of GNN message
passing. But when modelling with GNNs in recommendation
scenarios, there are few methods to personalise and improve
these solutions for the real-world problems mentioned. This
paper first demonstrates the prevalence of node imbalance
in recommendation scenarios through visualisation of real-
istic datasets. Then we adapt various over-smoothing coping

88434 VOLUME 11, 2023

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

FIGURE 1. Node degree distribution for different datasets. The node that is closer to the center of the scatter
plot has higher degrees, and the histogram shows degrees of different items, with nodes in the blue part
occupying 80% of the connections.

methods to this feature of the recommendation dataset. The
main contributions of this paper include:

1. We combine over-smoothing coping methods such as
jumping connections and PairNorm in the GNN-based matrix
complementation task, and design a new attention-based
aggregationmechanism in the inter-layer aggregation process
of jumping connections to improve the model performance
while obtaining an acceptable computational overhead.
To our knowledge, such personalised solutions to the prob-
lem of node-degree imbalance in recommendation tasks are
relatively rare.

2. In the process of modeling recommendation prediction
based on social relationships, the different node degree dis-
tributions reflected in the model require us to adopt individu-
alised over-smoothing responses to this data characteristic to
ensure the validity and generality of the model. In terms of
understanding user interaction behaviour, the different node
degree distributions remind us to consider the role of node
influence on interaction outcomes and further understand
user preferences. Our research goes some way to establish
a relationship between user interaction behaviour and recom-
mendation model design.

3. And we demonstrate through rich and well-developed
experiments that personalisation improvements to these
methods in recommendation models are effective, and that
the effectiveness of our models is universal across multi-scale
datasets.

The rest of this paper is organized as follows. Section II
reviews related works. Section III presents the main theoreti-
cal approach of this paper. Section IV describes the modeling
process of the matrix completion problem. A matrix comple-
tion algorithm based on jumping connections with attention
inter-layer aggregation is proposed in Section V. Section VI

presents the results of comparison and ablation experiments,
and analyzes them. Section VII concludes our work.

II. RELATED WORKS
In this section, we will give a brief review of existing graph
neural networks and analyse the advantages as well as the
disadvantages of different graph neural networks. On this
basis, we present a review of recent research on recom-
mendation algorithms and matrix completion models that
incorporate graph learningmethods. Specifically, theseworks
either employ sequentially connected convolutional layers or
utilize mechanisms to address issues such as over-smoothing
and cold-start problems.

GNN is a graph representation learning framework that
follows a neighborhood aggregation scheme. First the graph
convolution network GCN performs convolutional operations
via local fast first-order approximations on the graph [26].
Variants such as GAT [28], which is based on an attention
mechanism, and GraphSAGE [22], an inductive framework
based on neighborhood sampling and aggregation of fea-
tures, have emerged from this foundation. In addition to
this, a number of targeted solutions have been proposed for
different graph neural networks in order to address some of
the problems that exist in GNNs. To address the problem
that GCNs cannot learn to distinguish certain simple graph
structures, GIN [58] designs a message aggregation archi-
tecture that is as powerful as the WL test by conducting a
theoretical analysis of the representational power of GNNs.
Wang et al. [59] show that nonlinearity is unnecessary for
spectral GNNs to reach high expressiveness, and for the first
time build a bridge between the expressivity analyses of
spectral GNNs and spatial GNNs. The ACMP model [60]
simulates attractive and repulsive forces in interacting particle

VOLUME 11, 2023 88435

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

systems via a neural ODE solver, substantially increasing
the number of GNN layers without over-smoothing effects,
and theoretically proving a strict positive lower bound on the
Dirichlet energy. In addition, He et al. [61] address the prob-
lems of over-squashing and poor long-range dependencies in
message aggregation GNNs by fusing the ViT/MLP-Mixer
architecture in computer vision and making the complexity
of the model linear to the number of nodes and edges.

The recommendation model in question utilizes graph con-
volutional networks (GCN) to capture high-order information
about nodes. In addition, the model aggregates embeddings
of entities outside the knowledge base for observed entities,
effectively addressing the cold-start problem.

Previous research has also leveraged GCN for matrix
completion in recommendation systems. For example,
GCMC [13] developed a micro information transferable
graph auto-encoder framework that represents interaction
data as a user-item bipartite graph. However, this frame-
work sequentially connects graph convolution layers with-
out considering the effect of node degrees distribution on
over-smoothing.

NGCF [14], on the other hand, uses GCN to mine asso-
ciation rules between users and items in the recommen-
dation process. NGCF’s three-layer structure incorporates
high-order connectivity to extract useful information in each
layer, following the GCN approach.

Hu et al. [15] proposed the GNewsRec algorithm, which
addresses both the data sparsity problem and changing user
preferences. Specifically, the model analyzes user interests
using an attention-based LSTM model and utilizes graph
convolutional networks to learn user and news embeddings.

IGMC [16] is an inductive recommendation matrix com-
pletion model that trains graph neural networks based on
first-order neighborhood subgraphs. The model maps these
subgraphs to the link predictions of unseen nodes, resulting
in accurate and efficient recommendations.

Finally, graph learning is also used to deal with
multi-modal entity attributes in recommendation scenar-
ios. Guan et al. [17] unify user, item and attribute entities
and relationships by constructing heterogeneous graphs in
the context of personalized fashion compatibility model-
ing. Besides, pre-defined metapaths are adopted to capture
the higher-order relationships between entities, and a con-
trastive regularization is introduced to strengthen embedded
learning. Achieved sota performance. BiHGH [18] integrates
multiple entities into a heterogeneous graph and applies a
bi-directional graph convolution scheme to model multiple
entities in the outfits recommendation scenario, alleviates the
computational cost of big graph convolution. And designs a
dual similarity preserving regularization to enhance the hash
code learning of users and outfits. Chen et al. [62] use the
effective conductance on the user-item bipartite graph as the
hardness score, propose model-agnostic hard negative sub-
sampling methods, provide a sustainable and consistent data
subsampling solution to real-world recommendation systems.
Park et al. [63] devise a novel criteria preference-aware light

graph convolution (CPA-LGC) method, apply GNN to the
multi-criteria recommender system.

To mitigate the over-smoothing problem in graph learn-
ing, Xu et al. [11] consider graph structure and propose a JK
network that can adaptively select network depth to improve
performance. In addition, Zhang et al. [19] propose a stacked
and reconstructed graph convolutional networks to learn node
representations in recommendation scenarios. This approach
addresses the limitations of previous methods, which relied
on a fixed number of sequentially connected graph con-
volution modules. Instead, Zhang et al employ recursive
multi-block graph codecs to stack multiple layers of graph
convolution, allowing the model to learn low-dimensional
user and item potentials as inputs. This limits the spatial com-
plexity of the model and improves performance, particularly
in cold-start environments.

In summary, some recommendation algorithms utilize
stacked GNNs to learn user and item embeddings from vari-
ous perspectives, including link prediction, association rules,
and cold-start mitigation. However, they often pay less atten-
tion to issues such as GNN over-smoothing and the impact of
node degree distribution on the performance of recommenda-
tion models. In addition, some of the graph neural networks
mentioned in this section address some of the key problems in
GNNs including over-smoothing, but there are few methods
to apply these solutions to recommendation models. And the
high complexity of these methods does not help us to design
an efficient and universal recommendation model. Therefore,
we firstly explore the reason why the model is suscepti-
ble to over-smoothing in the recommendation process from
the data level, i.e. the imbalance of the social relationship
node degree distribution. Secondly, we personalise methods
such as jumping connections and design a matrix completion
model that adaptively selects the number of GNN layers,
effectively improving the recommendation accuracy of the
model. Equally important, our model achieves performance
improvements while its computational overhead is effectively
controlled.

III. METHODS
A. GRAPH CONVOLUTION FEATURE AGGREGATION
Graph neural networks(GNNs) are deep learning models
capable of capturing the topology of data by representing
nodes and edges in a graph. There are two ways to represent
graphs in GNNs: node attribute representation and structural
representation of the graph itself [20]. GNNs utilize node
neighborhood aggregation to extract high-dimensional infor-
mation from node neighborhoods and generate dense vector
embeddings [21]. These node representations can be used to
perform various downstream tasks, such as node classifica-
tion and link prediction in recommendation systems [22].

Suppose G(V ,E) denotes the input graph with node vi ∈

V , edge (vi, vj) ∈ E , and size N . X ∈ RN×F is called all
features associated with the graph nodes, and the adjacency
matrix is defined as A ∈ RN×N , associating each edge
(vi, vj) with its element Aij. The node degree is denoted by

88436 VOLUME 11, 2023

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

d = {d1 . . . dN }, where di refers to the sum of the edge
weights connected to node i. Define D as the degree matrix
with diagonal elements of d .

Let L = I − D−
1
2AD−

1
2 be the symmetrically normalized

Laplacian of the graph, the spectral decomposition of L yields

L =

N∑
n=1

λnununT , and we use the graph filter h(λ) to derive

the frequency response for each eigenvalue λn. The filtered
graph signal is:

X =

N∑
n=1

h(λn)ununTX

= Udiag[h(λ1), . . . , h(λn)]UTX (1)

The conventional graph filter is approximated by a polyno-
mial of order K [23]. The filter and the filtered graph signal
are:

h(λ) =

K∑
k=0

αkλ
k . (2)

X = (α0I + α1L + α2L2 + . . . + αKLK)X

=

K∑
k=0

αkLkX (3)

The K-order polynomial approximation avoids the direct
spectral decomposition of the Laplace matrix to derive
the frequency. Also, the Chebyshev polynomial expansion
Tk (x) = 2xTk−1(x) − Tk−2(x) has been used in signal
processing [24], [25], where a local approximation of the
polynomial filter can be performed fast, and the filtered graph
signal is obtained as:

X = σ (
K−1∑
k=0

Tk (̃L)XWk). (4)

where σ is a nonlinear activation function, L̃ = 2L/λmax −

I , and Wk are trainable parameters, and the complexity of
(4) is O(|E|), which is linearly related to the number of
edges [26]. Based on the local Chebyshev-approximation,
Kipf & Welling obtain the graph convolutional network
GCN [24] for the semi-supervised classification task by set-
ting K = 1 andW = W0 = −W1:

X = σ (D̃−
1
2 ÃD̃−

1
2XW). (5)

where the degree matrix and adjacency matrix are regularized

such that D̃−
1
2 ÃD̃−

1
2 = I + D−

1
2AD−

1
2 , the modified degree

matrix and adjacency matrix contain self-loops, and W are
trainable parameters, the complexity of the GCN filtering
operation is O(|E|FC) [26], where C is the number of input
channels and F is the number of feature graphs. According
to the spectral domain of GCN in (5), the aggregation rule of
embedding hv(l) in the l-th convolution is as follows:

hv(l) = ReLU (Wl

∑
u∈N (v)

1
√
deg(v) deg(u)

hu(l−1)). (6)

where deg(v) is the degree of node v in G and N (v) is the set
of nodes in the neighborhood of v.

B. OVER-SMOOTHING OF GRAPH NEURAL NETWORKS
Among deep learning approaches for node representation,
neighborhood aggregation is a popular messaging scheme.
These models iteratively update the hidden feature vector
of each node based on its neighborhood in the aggregation
graph to generate the final node representation [22], [26]
[27], [28]. However, a problem with the common neighbor-
hood aggregation model is that when multiple graph neural
network layers are stacked, the model performance may not
improve, and may even decrease significantly. This is due to
the over-smoothing phenomenon, where the hidden feature
vectors of the nodes at the output become indistinguishable
after deepening the number of network layers.

Existing research on the causes of over-smoothing mainly
considers two aspects. The first aspect is the imbalance of
graph topology [11], i.e., the uneven distribution of graph
node degrees, which is common in the recommendation
scenario, since the system is more likely to be affected by
a small number of high degree nodes. The other aspect is
the overmixing of information and noise during aggregation.
The study of [29] indicates that during node aggregation, the
interaction among nodes of the same class can bring useful
information, while that among nodes of different classes may
lead to homogenization of node representations, which in turn
affects themodel performance. Recommendationmodeling is
usually performed on cross-class interactions, i.e., predicting
the rating between users and items.

In order to alleviate the problem of over-smoothing in
graph neural networks, it is necessary to consider the char-
acteristics of neighborhood aggregation and the resulting
limitations. Among existing approaches, JK-Nets [11] select
the aggregation results for each layer, use jumping connec-
tions to learn representations for different subgraph struc-
tures in different sequences, and finally merge the selected
aggregation results for each layer to generate the final node
embedding. This method can selectively use the information
from neighborhoods at different locations to adapt to drastic
local changes in the graph. The Adaptive Graph Convolu-
tional Neural Network(AGCN) [30] utilizes a new spectral
graph convolutional network to perform adaptive convolution
on the original input data from different graph structures.
AGCNcreates graph-specific Laplacianmatrices for different
samples instead of sharing a spectral kernel. This opera-
tion allows the model to aggregate neighborhood features
according to different topologies. Zhou et al. [31] introduced
two over-smoothing measures by considering the community
structure of node clusters: group distance ratio and instance
information gain, which quantify the over-smoothing of
global topology and local node features, respectively. Based
on these measures, they proposed a differentiable group nor-
malization that can effectively alleviate over-smoothing by
preventing the nodes of different groups from being repre-
sented too similarly.

VOLUME 11, 2023 88437

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

FIGURE 2. Forward propagation process of matrix complement for recommendation system.

The abovemethods propose the solution to over-smoothing
arising from the drastic change of graph topology or the
imbalance of node degree. In the recommendation scenario,
such imbalance is prevalent in user or item nodes, and hence
it is necessary to consider the impact of over-smoothing
generated by such imbalance on the model performance.

IV. PROBLEM FORMULATION
The matrix completion of the recommendation system treats
the rating between user and item as a rating matrix M ∈

R|U |×|V |, where U and V are the sets of user and item,
respectively. The element Mij in the matrix represents the
rating of user i on item j. If user i has no rating on item j
or its rating is not observed, thenMij is represented by 0. The
task of matrix completion for recommendation systems is to
predict the true rating of element 0 of the rating matrix based
on the user and item feature vectors, as well as the existing
rating matrix [13].

Inspired by pre-trained models, GNN-based matrix com-
pletion methods can divide link prediction into upstream and
downstream tasks. In the upstream task, graph node embed-
dings are learned through weighted graph convolutional
networks as encoders. In the downstream task, multilayer
nonlinear neural networks are used as decoders to predict
ratings based on the node embeddings of users and items [32].
Figure 2 illustrates the flow of upstream and downstream
tasks in GNN-based matrix completion for recommendation
systems.

V. OUR MODEL
In order to realistically consider various rating densities and
mitigate over-smoothing in the graph convolution matrix
completion process, we propose the JK-DMC model, whose
forward propagation process is shown in Figure 3. Firstly,
a graph is constructed based on the rating matrix and node
features to be aggregated. The jumping knowledge connec-
tion is introduced to alleviate over-smoothing when increas-
ing the number of aggregation layers. Also, to maintain the
stability of node features in each aggregation layer, the output

FIGURE 3. The complete structure of JK-DMC.

of each layer is PairNorm normalized. Finally, we use mul-
tiple layer aggregation mechanisms to select the output of
each layer of jumping knowledge connection and propose
an inter-layer output fusion strategy based on a self-attention
mechanism. The aggregated node embeddings are then used
to reconstruct the ratings between users and items through
decoders.

A. EMBEDDING LAYER
We preprocess the original user features in the embedding
layer to obtain the feature vector for each user and item.
Suppose the original feature sequence of itemi is I ini =

{q1, q2, . . . , qm}. First, a one-hot vector of length din is used
to represent the original feature qin ∈ Rdin of the item. At this
point, qin is high-dimensional and sparse, and we put qin
into an embedding layer to reduce the feature dimension and
obtain the embedding vector qout = Embedding(qin) ∈ Rdout .
The original features are embedded and put into a fully con-
nected layer for further dimensional organization, and then
processed by sigmoid activation function and BatchNormal-
ization at the output of the fully connected layer.

88438 VOLUME 11, 2023

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

After processing each original feature of item j in the
abovementioned way, they are concatenated to obtain a com-
plete vector Iiout . For the original user features, we follow
the same process. It is worth noting that overfitting, which
is prevalent in graph tasks, may make the model generalize
poorly to the testing data and aggravate the cold-start prob-
lem [33]. Therefore, in this paper, a method of randomly
masking the input node features based on a certain ratio
is used to alleviate the cold-start problem during the train-
ing process [19], [34], and the masked node feature matrix
Fdrop ∈ RN×C is:

Fdrop = F × NMASK . (7)

where F = {I1, . . . , IN } ∈ RN×C is the input node feature
matrix and NMASK ∈ RN×C is the mask matrix used to zero
out the feature vectors in F randomly at a certain ratio. The
mask matrix is randomly initialized and randomly masked
for the input features during training, but we retain all node
features during inference.

B. HETEROGENEOUS CONSTRUCTION
The recommendation scenario contains two roles, user and
item, which are considered as two types of nodes. Since there
are different levels of ratings for user to item, the connections
between the two nodes are considered as multiple classes of
edges. Modelling the user-item interaction results in a graph
structure where both node and edge have multiple categories,
and are therefore a heterogeneous graph.

In the upstream task, JK-DMC generates new node embed-
dings by adding multiple GNN node aggregation layers. The
graph structure composed of recommendation data contains
both user and item nodes, and there are different kinds of
connections between nodes according to the ratings.

We use relational graph convolutional network(R-GCN)
[36] as the node aggregation rule in the rating prediction
process. Compared with normal GCNs, GCNs focus only
on message transfer between nodes and cannot be adaptive
to different edge types. R-GCN is specifically designed to
handle multi-relational data in realistic knowledge bases, and
R-GCN introduces relation-specific transformations on top of
GCN. For each type of relationship present in the system, i.e.,
the edge type in the graph, R-GCN uses a separate weight
matrix for processing. Thus during the neighborhood aggre-
gation of a node, node features from the same connection
type are treated separately, which allows the node to perceive
the corresponding relationship type. In the recommendation
problem, the interaction between user and item is more than
just information transfer. Different ratings of item by user
represent different types of interactions and reflect the interest
preferences of user on item. Therefore, R-GCN is suitable
for learning diverse user-item ratings in recommendation
systems, which helps users’ adaptive selection of items.

Let the edge from user to item be of type rating-r and
the edge from item to user be of type rev-rating-r, with r
representing the rating value. In this paper, we construct a
directed weighted graphG(I ,U ,R) for feature aggregation of

nodes using the user-item rating relationship [13], [35], where
I and U represent item and user nodes, respectively, and R is
the edge, i.e., the rating relationship. We use an independent
weight matrix Wr for each type of rating r. Node features
from the same connection type will be treated separately from
others during the neighborhood aggregation of a node. Let
h(l)useri be the node embedding obtained by useri aggregation
at layer l, then the aggregation result h(l+1)

useri ∈ RN×d at layer
l + 1 is:

h(l+1)
useri = σ (

∑
r∈R

∑
itemj∈N r

useri

1
cij
W (l)
r h(l)itemj +W (l)h(l)useri). (8)

where N r
useri is the set of indexes in the neighborhood of node

useri under r ∈ R and cij = |N r
useri | is the normalization

constant.

C. ADAPTIVE JUMPING GRAPH NEURAL NETWORK NODE
AGGREGATION
In recommendation systems, for matrix completion mod-
els that sequentially connect multiple GNN layers for node
aggregation, increasing the number of GNN layers can lead
to a degradation of model performance, i.e., over-smoothing.
This phenomenon is caused by two factors. First, similar to
deep CNN models, a large number of parameters brought
by too many layers can lead to severe overfitting. However,
unlike residual networks [37] that can effectively improve
the generalization performance of deep CNN models, this
approach does not play a significant role in deep GNN
models. Second, unlike CNN models, which process data in
Euclidean space, GNNs are affected by the graph topology
during node aggregation. Specifically, the radius of influence
of nodes is different for nodes that have high degree and are
near the center of the graph compared to nodes that have
low degree or are at the edge of the graph. For nodes that
have high degree and are near the center of the graph, they
have a strong ability to influence other nodes, and when
the number of aggregation layers is high, it can lead to too
much similarity between other nodes and such nodes. On the
other hand, for nodes that have low degree or are at the
edge of the graph, using fewer aggregation layers will lead
to insufficient information aggregation. The effect of graph
topology on GNN matrix completion is more obvious in
the recommendation scenario due to the diffusion effect of
information propagation.

To alleviate over-smoothing, we introduce jumping knowl-
edge connection [11] in the node aggregation process to select
themost suitable aggregation depth for different nodes, which
is adaptively adjusted according to the effective neighbor-
hood size of the nodes. Two concepts are defined in JK-net:
influence distribution and random walks. Where influence
distribution is used to measure the effect of node x on node y,
indicating how much the change in the original input features
of x affects the representation of y in the final layer of the
network. Suppose h(0)x is the input feature of node x and
h(k)x is the hidden feature of x learned by the model at the

VOLUME 11, 2023 88439

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

k th layer. Then the influence score I (x, y) of node x on
node y is the sum of the absolute values of the entries of

the Jacobian matrix [∂h(k)x
∂h(0)y

], and the influence distribution of

x to y is Ix(y) = I (x, y)/
∑

z I (x, z). Also, random walks
denote starting at a node v0; if at step t we are at a node
vt , we move with equal probability to any neighbor of vt
(including vt). Then the t-step random walks distribution
Pt for v0 is Prob(vt = i). As mentioned earlier, nodes
have different degrees, which gives them different influence
scores, and the number of model layers required for their
features to radiate to a certain range is also different. The
literature [11] proves theorem: assume that all paths in the
graph of the model are activated with the same probability
of success ρ. The influence distribution Ix in expectation of
any node x ∈ V is then equivalent to the distribution of
k-step random walks on G̃ starting from node x. The role of
the inter-layer aggregation function in JK-net is to determine
the importance of a node’s sub-graph features at different
ranges after looking at the features learned on all layers, rather
than optimizing and fixing the same weights for all nodes.
Taking the Max-pooling aggregation function as an example,
on the basis of the above theorem literature [11] proves
that under a k-layer JK-Net with inter-layer max pooling,
the influence score I (x, y) for any x, y ∈ V is equivalent
in expectation to 0, . . . , k-step random walks starting from
x, a mixture of k-step random walks distributions whose
coefficients depend on the value of the layer feature h(l)x .
This gives the model the ability to adaptively select the layer
depth based on the features h(l)x of different nodes at each
layer, i.e. learning the corresponding weight coefficients for
each layer feature h(l)x of the node. This avoids a situation
where the model is overly disturbed by high-influence nodes
due to the use of the same weights resulting in final node
features that are indistinguishable from each other, i.e. over-
smoothing. Figure 4 shows the forward propagation process
of this connection.

In the process of computing node embedding, first k GNN
layers are connected sequentially, and the message passing in
(8) is performed in each layer, and the output of the previous
layer is the input of the next layer. Instead of taking the
output of the last layer as the final representation of the
nodes, jumping knowledge connection performs a merging
process on the set C = {h(1), h(2), . . . , h(k)} of outputs of
all layers to obtain the final node embedding matrix. The
merging process selects the aggregation results for each layer,
and selects the aggregation results with the appropriate depth
for the nodes according to their radius of influence, which
allows the model to be more adapted to the topology of the
recommendation datasets.

For the output set C = {h(1), h(2), . . . , h(k)}, the output
results of the k GNN layers can be selected using a variety of
aggregation functions to compute the final node embedding.
The selectable aggregation functions include Concatena-
tion, Max-pooling, and Average-pooling [11]. Among them,
Concatenation is the simplest aggregation method which

FIGURE 4. Introducing jumping knowledge connection in the node
aggregation process. The node representation is calculated from the
output of the last layer and the output of each intermediate layer.

directly concatenates the output set and then performs a linear
transformation on the concatenated results. Concatenation is
expected to be used for small graphs and graphs with regular
structure, because such graphs do not require strong adaptive
capabilities. Max-pooling and Average-pooling are two types
of pooling operations. Max-pooling applies to the feature
vector coordinate dimension, where the largest value in each
feature coordinate is selected for each layer. Average-pooling
is to average all elements in C and calculate the average
value of each layer’s output, including the hidden layer.
Additional parameters are not required for Max-pooling
and Average-pooling, and the calculation process is as
follows:

Max(C) = max({h(1), h(2), . . . , h(k)}). (9)

Average(C) =
1
k

k∑
i=1

h(i). (10)

In addition, we have also designed an aggregation function
based on multi-headed self-attention [38]: Attention-pooling.
The multi-headed self-attention module can better learn
sequence information and has stronger adaptability when
dealing with complex sequences. Specifically, the selection

88440 VOLUME 11, 2023

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

Algorithm 1 JK-DMC Node Aggregation
1: Input: The heterogeneous graph G(I ,U ,R);
2: Output: Node representations h(final) = {h(final)user , h(final)item }

by aggregation.
3: Initial input feature h(0) = {h(0)user , h

(0)
item} of the user and the

item;
4: Matrix of rating AR, Number of convolution layers k;
5: LayerAggregation={Concatenation, Max-pooling,
Average-pooling, Attention-pooling}.
6: for i = 1,. . . ,k do:
7: h(i−1)

= PairNorm(h(i−1))
8: h(i) = AGGREGATE i(h(i−1))
9: end for
10: Node representation of every layer C =

{h(1), h(2), . . . , h(k)}.
11: Selection of results h(final) = LayerAggregation(C).
12: return h(final).

FIGURE 5. Node aggregation process based on JK-net and PairNorm.

process for the output set C can be formulated as follows:

Attention(Q,K ,V) = softmax(
QKT
√
dk

)V , (11)

hi = Attention(CWQ
i , CWK

i , CWV
i),

(12)

Attention− pooling(C) = [h1; h2; . . . ; hH]WO. (13)

where H is the number of self-attention module heads and
dk =

d
H , WQ

i ,WK
i ,WV

i ∈ Rd×dk , WO
∈ RHdk×d is the

parameter matrices. The complete procedure of JK-DMC
node aggregation is shown in Algorithm 1 and Figure 5.

D. INTER-LAYER NORMALIZATION
During the process of node aggregation using multilayer
graph convolutional networks, we apply normalization to the
output from each GCN layer before passing the results to
the next layer of the network. We use PairNorm [12] for this
purpose. PairNorm is a normalization layer that improves the
robustness of the algorithm. Its main idea is to maintain a
constant total pairwise feature distance between the output
results of each network layer. This ensures that nodes from
different clusters are less likely to fuse features with each
other, thereby preventing nodes from different clusters from
becoming indistinguishable.

PairNorm normalization processes the output of each layer
of node aggregation, which is also the input of the next layer
of node aggregation, such that the total pairwise squared
distance (TPSD) of the node embedding after each processing
is the same. Let the input and output of PairNorm be X and X̃ ,
respectively. We want to ensure that TPSD(X̃) = C , where C
is a constant and more specifically, a hyperparameter that can
be adjusted according to the dataset. TPSD(X) can be written
as:

TPSD(X) =

∑
i,j∈n

||xi − xj||22

= 2n2(
1
n

n∑
i=1

||xi||22 − ||
1
n

n∑
i=1

xi||22). (14)

where n is the number of nodes. The normalization process
for X can be divided into two steps: centering and rescale:

xci = xi −
1
n

n∑
i=1

xi. (15)

x̃i = s ·
xci√

1
n

∑n
i=1 ||xci ||

2
2

= s
√
n ·

xci√
||X c||2F

. (16)

First (15) is centering on xi to get the embedded vector

xci after translation, and the term ||
1
n

n∑
i=1

xci ||
2
2 in (14) will be

0 after processing, thus, TPSD(X c) is the squared Frobenius
norm of XC , which is O(nd). The output x̃i of PairNorm can
be obtained by (16).
Rescale allows TPSD(X̃) to be changed to a constant with

respect to n and s, where s is the hyperparameter that can be
used to determine C :

TPSD(X̃) = 2n
∑
i

||s ·
xci√

1
n

∑
i ||x

c
i ||

2
2

||
2
2

= 2n
s2

1
n

∑
i ||x

c
i ||

2
2

∑
i
||xci ||

2
2 = 2n2s2 (17)

E. RATINGS FORECAST
In the upstream task, we obtain the node embeddings huseri
and hitemj of users and items by aggregating graph nodes
containing jumping structures and PairNorm. Next, we will

VOLUME 11, 2023 88441

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

predict users’ preferences for different items based on node
embedding vectors in the downstream task by constructing
a decoder capable of reconstructing node links. Using a
decoder structure similar to the GCMC [13] model, we let the
set of possible ratings between nodes be R = {1, 2, . . . , |R|}

and the predicted preference rating of useri for itemj be r̂ij,
which is calculated as:

huseri = σ (Wuhuseri), hitemj = σ (Wihitemj). (18)

p(r̂ij = r) = sofmax(hTuseriQrhitemj)

=
eh

T
useri

Qrhitemj∑
s∈R

eh
T
useri

Qshitemj
(19)

r̂ij =

∑
r∈R

r · p(r̂ij = r). (20)

where Wu ∈ Rd×duser ,Wi ∈ Rd×ditem are two trainable
projection matrices, projecting huseri and hitemj to the same
length d , which are then processed by the activation function
σ (·) respectively.Qr is the parameter matrix corresponding to
the rating r . The output after multiplying with huseri and hitemj
will be fed into the softmax function to produce a probability
p(r̂ij = r) that r̂ij is equal to the rating r ∈ R and finally r̂ij
is obtained by weighting the sum of the possible ratings with
their corresponding probabilities.

F. MODEL TRAINING
The ratings in the training and testing data are discrete integer
values, and the loss is calculated during training using a
cross entropy loss function and back propagation. Let the true
rating between useri and itemj be rij, and the predicted rating
be r̂ij, then the loss between the predicted and true values is:

L = −
1

|Q|

∑
[i,j]∈Q

|R|∑
r=1

I [r = rij] log(p(r = r̂ij)). (21)

where Q is the set of rating pairs observed in the training

set and the function I [a = b] =

{
1, a = b,

0, a ̸= b.
. In the back

propagation process, we use Adam algorithm to minimize
the loss L of the predicted samples. In addition, to alleviate
the possible overfitting during the training process, we regu-
larize the model parameters with L2 regularization [39] and
add penalty terms to the loss function to make the learned
parameter smaller. The penalty term is set as the product of
the sum of squares of the weight parameter and a positive
constant to obtain a new loss function L = L +

λ
2|Q|

||ω||
2,

where λ is the hyperparameter to be set and ω is the weight
parameter vector.

VI. EXPERIMENTS
In this section, we experimentally validate the performance of
our model with different node degree distribution and analyze
the effect of hyperparameters on the model performance. Our
experiments are conducted under Ubuntu OS with NVIDIA

TABLE 1. Dataset of rating prediction.

GeForce RTX 2080 Ti GPU. The experimental environment
is based on Python 3.7, Pytorch 1.9.0 and DGL 0.9.0. DGL
provides versatile control over message passing with auto-
matic batch processing and a highly tunable sparse matrix
kernel for speed optimization.

A. DATASET
The rating prediction task in this paper is performed on the
MovieLens and Douban. The MovieLens dataset is sourced
from the research project GroupLens at the University of
Minnesota and is widely used in fields such as information
filtering and recommendation systems. The dataset contains
different numbers of rating pairs, i.e., 100K, 1M. Statistics
for ML-100K, ML-1M and Douban are shown in Table 1,
where U and I represent the number of users and items in
both datasets, R stands for the rating categories, C denotes
the number of rating pairs, andD represents the average rating
density of users.

B. EXPERIMENT SETTINGS
We consider the dataset ML-100K as a small dataset and
ML-1M as a large dataset. For the small dataset task, we set
the node embedding dimension of the GCN hidden layer to
300, the final output dimension of node embedding to 75,
and the random masking ratio of node features to 0.5. For
the large dataset task, we set the node embedding dimension
of GCN hidden layer to 500, the final output dimension of
node embedding to 75, and the randommasking ratio of node
features to 0.3.

Also for all tasks, we use the ReLU function as the acti-
vation function in the experiments, Adam as the optimizer,
and set the learning rate to 0.02, which gradually decays
with a decay rate of 0.5 and finally stops at 0.001. The
maximum threshold for gradient clipping is set to 0.9 and
the early stopping patience is set to 1000. The parameters
to be optimized in the model are initialized by Xavier [40]
method, which aims to keep the variance of the inputs and
outputs as consistent as possible and prevent all output values
from converging to 0. The parameters W initialized by the
Xavier method follow the uniform distribution shown in (22),
where ni and ni+1 denote the input dimension size and output
dimension size of the i-th layer, respectively. Other important
hyperparameters, such as the number of convolutional layers
and the number of attention heads, will be determined by
experimental comparison in Section VI-E.

W ∼ U [−

√
6

√
ni + ni+1

,

√
6

√
ni + ni+1

]. (22)

88442 VOLUME 11, 2023

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

In this study, we use the root mean square error RMSE and
the mean absolute error MAE as measures the effectiveness
of the model. The RMSE and MAE reflect the deviation
between the predicted rating r̂i and the true rating ri. The
smaller the deviation is, the better the model works. The
RMSE and MAE are calculated in the following way:

RMSE =

√
1
N

∑N

i=1
(r̂i − ri)

2
. (23)

MAE =
1
N

∑N

i=1
|r̂i − ri|. (24)

In addition, in the inference stage, we add another metric
Recall@10 to test the prediction effect of the model. Larger
value of Recall@10 metric indicates better inference effect.

C. COMPARISON MODELS
In order to verify the validity of the model, some advanced
algorithms are selected for comparison. To ensure a com-
prehensive comparison, different baselines are selected, and
we consider both traditional models and advanced mod-
els. In addition, the choice of the baseline is also affected
by the dataset and metrics used in this study. We clas-
sify the selected baseline models into three categories:
traditional collaborative filtering algorithms(PMF, BiasMF,
DST-HRS), neural network-based recommendation algo-
rithms(ConvMF, Factorized EAE, NNMF, NMTR, DBC-AF,
RConvMF&VConvMF, JODIE); and graph learning-based
recommendation algorithms(GCMC, sRMGCNN, IGMC,
STAR-GCN, GRALS, DeepCoevolve, CoPE). A detail
description of all baseline models is provided below:
PMF [41]: Probabilistic Matrix Factorization (PMF) is a

collaborative filtering recommendation model that models
the user preference matrix as the product of two low-rank
user and movie matrices, and extends it to include adaptive
priors on movie and user feature vectors, which is suitable
for handling large-scale, sparse and unbalanced data.
BiasMF [42]: BiasMF interprets ratings from the perspec-

tive of biases, and the observed ratings are decomposed into
four components: global mean, item bias, user bias, and user-
item interaction. This allows each component to interpret
only those parts that are relevant to it.
DST-HRS [43]: DST-HRS extracts embeddings by captur-

ing the semantics of textual information from the perspective
of solving the sparsity problem of recommendation data. And
further integrates these embeddings into probabilistic matrix
factorization(PMF), thus effectively exploiting the semantics
of item text information to overcome the sparsity problem.
ConvMF [44]: Convolutional Matrix Factorization

(ConvMF) is a context-aware recommendation model that
combines a convolutional neural network (CNN) with prob-
abilistic matrix factorization(PMF). ConvMF captures the
contextual information of a document and improves the
accuracy of rating prediction.
Factorized EAE [45]: Factorized EAE is a matrix com-

pletion algorithm based on parameter sharing, which proves
that Permutation Equivariant is important in limiting the

expressiveness of themodel and achieves good generalization
performance on the matrix extrapolation task.
NNMF [46]: NNMF replaces the inner product in matrix

factorization with a multilayer feedforward neural network
model to achieve advanced performance by optimizing the
network to obtain fixed latent features.
NMTR [47]:NMTR is a neural networkmodel that focuses

on learning user preference frommulti-behavior data. NMTR
learn a data-dependent interaction function for each behavior
type, and correlate themodel prediction of each behavior type
in a cascaded way.
DBC-AF [48]: DBC-AF aims to develop a movie rec-

ommendation system by the use of density based clustering
(DBC) with artificial flora (AF). The model gets rid of spar-
sity problem by applying the content-boosted collaborative
filtering technique.
JODIE [65]: JODIE employs two recurrent neural net-

works to not only update user and item embeddings at every
interaction, but also to model the future embedding trajecto-
ries of users/items.
RConvMF&VConvMF [49]:RConvMF andVConvMF are

based on convolutional matrix factorization to extract textual
and multi-level visual features from descriptive texts and
posters, respectively. RConvMF integrate the recurrent struc-
tures into convolutional layers to further improve the quality
of word representations. VConvMF combines both textual
features and multi-level visual features by convolutional neu-
ral networks.
GCMC [13]: GCMC represents the interaction data as a

user-item bipartite graph and considers matrix completion
for recommendation systems from the perspective of link
prediction of graphs.
sRMGCNN [50]: sRMGCNN combines a multi-graph

convolutional neural network and an RNN and it has a con-
stant number of parameters, which is independent of the
matrix size.
IGMC [16]: IGMC is an inductive matrix completion

method that learns local graph patterns and can generalize to
new local graphs for inductive learning.
STAR-GCN [19]: STAR-GCN learns node representa-

tions in recommendation scenarios by stacking reconstructed
graph convolutional network structures. The previous lim-
itation on the number of tandem graph convolution mod-
ules is alleviated by stacking or recursive multi-block graph
encoders.
GRALS [64]: GRALS relies on efficient Hessian-vector

multiplication schemes, provides a scalable algorithm for
matrix completion graph with structural information.
DeepCoevolve [66]:DeepCoevolve is an RNN-based deep

coevolutionary network model for learning user and item
features based on their interaction graphs.
CoPE [67]: CoPE uses graph neural networks based

on ordinary differential equation to model information
propagation and more complex evolution patterns, and
uses metalearning to ensure fast adaptation to the latest
interactions.

VOLUME 11, 2023 88443

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

TABLE 2. Result of ML-100K.

D. RESULTS AND ANALYSIS
1) RESULTS ANALYSIS
For the dataset ML-100K, the performance of JK-DMC and
baseline models in u1.base(training)/u1.test(testing) is shown
in Table 2.

Where the training set accounts for 80% and the test set
accounts for 20% of the dataset. Firstly, for the baseline
model, the results of ConvMF and GCMC are obtained in
the local environment in order to make a more fair compar-
ison with the model proposed in this paper and to reduce
the impact of environmental factors on the results. Other
results of the baseline models are reported from the rel-
evant literature. Our model JK-DMC uses four different
aggregation methods, where the best results are obtained
in Attention-pooling. Overall, the best performing model
in terms of RMSE and MAE metrics is IGMC, which is
an advanced matrix completion algorithm with its predom-
inance in RMSE. However, JK-DMC also achieves com-
parable results, and JK-DMC based on Attention-pooling
and Average-pooling is better than all the baseline models
except IGMC. In terms of the Recall@10 metric, the best
performance is achieved by CoPE, and JK-DMC(Attention-
pooling) achieves the second best performance among all
models.

The experimental results on the dataset ML-1M are shown
in Table 3. The setup and the baseline models for this task
are basically the same as ML-100K. The results suggest that
the best performing model is the JK-DMC(Concat) model
based on Concatenation aggregation, which is better than
other models in both RMSE and MAE metrics. In addition,
JK-DMC(Attention-pooling) also outperforms all other base-
lines. In terms of Recall@10 metric, JK-DMC is also ahead
of the other comparison models. Among them, the JK-DMC
model based on Attention-pooling and Concatenation both
achieve the leading level.

The results of the experiments on the dataset Douban are
shown in Table 4. Again 80% of the data are classified as
the training set and 20% of the data are classified as the test

TABLE 3. Result of ML-1M.

TABLE 4. Result of Douban.

set. The four JK-DMC models are compared with STAR-
GCN, sRMGCNN, GRALS, GCM, and IGMC. In the results,
JK-DMC based on Attention-pooling achieves the best per-
formance. IGMC achieves the next best level, while JK-DMC
(Max-pooling) and JK-DMC (Avg-pooling) achieve an accu-
racy close to that of IGMC.

2) DATA SIZE ANALYSIS
As mentioned in Figure 1, different datasets have different
distributions of node degrees. JK-DMC wants to address the
negative impact of this nodal degree imbalance on the rec-
ommendation effect. Therefore, we also consider the effect of
dataset size on model effectiveness. We randomly select data
with proportions [20%,40%,60%,80%,100%] in the dataset
ML-100K for experiments using GCMC and JK-DMC,
respectively. Among them, we choose Attention-pooling,
which has the best performance in Table 2, as the aggregation
function of JK-DMC. The experimental results are shown in
Figure 6. The recommendation effects of both JK-DMC and
GCMC are gradually improved in 20%-100%ML-100K, but
JK-DMC shows a higher improvement. At 20%-60%, GCMC
shows better results. However, starting from 60%, JK-DMC
outperforms GCMC and keeps leading at 60%-100%. The
potential reason is that JK-DMC takes more into account the
over-smoothing arising from the difference in the influence of

88444 VOLUME 11, 2023

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

FIGURE 6. Performance of JK-DMC and GCMC at different proportions of ML-100K. The subplot on the right shows a specific
comparison when the node proportion exceeds 60%.

nodes. Larger datasets have a greater variety of nodes and a
higher possibility of aggregation of ordinary nodes to high
nodes. This makes it easier to produce over-smoothing in
large datasets, and the role of JK-DMC is more obvious in
large datasets. As a result, JK-DMC achieves a suboptimal
level in the relatively small ML-100K, but leads all other
models in the ML-1M with larger data volume.

3) TRAINING PROCESS
In addition, the training process of JK-DMC on ML-100K
and ML-1M is shown in Figure 7. Based on the performance
of JK-DMC on the experimental dataset and the training
process, we have the following analysis:

(1) In the results on both datasets, JK-DMC as well as the
graph learning-based GCMC, sRMGCNN and IGMC out-
performed the traditional collaborative filtering algorithms
PMF andBiasMF, as well as the neural network-based recom-
mendation algorithms ConvMF, Factorized EAE and NNMF,
indicating the importance of utilizing high-order information
of social networks in the recommendation process. On the
other hand, when compared to GC-MC, sRMGCNN and
IGMC, JK-DMC also achieved leading or similar results,
which verifies the improvement of jumping connection struc-
ture and self-attention-based inter-layer aggregation func-
tion on recommendation matrix completion. This approach
addresses the node degree imbalance prevalent in social net-
works by increasing the node aggregation depth through the
use of jumping connection structure, enhancing the model’s
fitting ability. The inter-layer selection strategy based on
self-attention further improves the model’s adaptivity, mak-
ing it more stable to noise when facing recommendation tasks
of different sizes, and better able to capture the global graph
structure.

(2) The comparison of the four inter-layer aggregation
methods, namely Concatenation, Max-pooling, Average-
pooling and Attention-pooling, reveals that models using
Max-pooling and Average-pooling are more streamlined

and converge faster because they do not introduce
extra parameters. Therefore, JK-DMC(Max-pooling) and
JK-DMC(Average-pooling) reach the optimal state faster
compared to JK-DMC(Concat) and JK-DMC(Attention-
pooling). In contrast, the convergence process of JK-DMC
based on Concatenation and Attention-pooling is relatively
slow and unstable due to the need of additional parameters,
which, however, also leads to greater fitting. In ML-100K
JK-DMC(Attention-pooling) achieves the best results. In the
large dataset task ML-1M, JK-DMC(Concat) achieves the
best and JK-DMC(Attention-pooling) achieves the second
best results. Our findings suggest that the optimal results can
often be obtained by using JK-DMC(Attention-pooling) in
small datasets due to its greater fitting. For large datasets that
consumemore time and computational resources, satisfactory
results can be obtained by using JK-DMC(Concat) due to
its slightly lower complexity or JK-DMC(Max-pooling)/
JK-DMC(Average-pooling) since they do not introduce addi-
tional parameters.

4) TRAINING TIME CONSUMPTION
Finally, we consider the time consumption by JK-DMC for
model training when using different aggregation functions.
We conduct experiments on ML-1M to compare with the
GCMC model and the results are shown in Figure 8. The left
side (red) represents the final RMSE of JK-DMC, and the
right side (blue) represents the average time (sec/epoch) for
JK-DMC to perform an epoch during training.

Consistent with the results in Table 2, JK-DMC (Concat)
achieves the best results inML-1M, and JK-DMC (Attention-
pooling) achieves the second best results. However,
JK-DMC (Attention-pooling) consumes substantially less
training time than JK-DMC (Concat) while achieving results
closer to those of JK-DMC (Concat). JK-DMC (Concat)
consumes the most training time. It shows that the aggre-
gation function based on multi-headed self-attention has
higher training efficiency. In large-scale datasets that are

VOLUME 11, 2023 88445

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

FIGURE 7. In ML-100K and ML-1M, the RMSE and MAE of the JK-DMC
model on the test set converge gradually with the increase of training
times. The experiments test the convergence when different aggregation
methods are used, and the EarlyStopping mechanism is introduced.

prone to over-smoothing, JK-DMC (Attention-pooling) can
have lower time complexity while achieving good prediction
results. In addition, although JK-DMC based onMax-pooling
and Average -pooling takes less time, its effectiveness lags

FIGURE 8. Results and training time consumption of different
aggregation functions. The blue bars represent the time consumed per
epoch during training and the red bars represent the RMSE of the model.

behind JK-DMC (Concat) and JK-DMC (Attention-pooling).
It shows that the additional parameters introduced in the
aggregation function play a role in the prediction of complex
datasets. Regarding the comparison models, GCMC has a
simple structure and has the lowest time consumption among
all models, close to JK-DMC (Average-pooling). However,
its prediction effect is also relatively backward.

E. SENSITIVITY TO HYPERPARAMETERS
In this section, we investigate the sensitivity of the hyper-
parameters in the model. The hyperparameters in JK-DMC
model are set to different values to oberseve the change in
performance on the datasets ML-100K and ML-1M.

1) NUMBER OF NODE AGGREGATION LAYERS
First, we investigate the effect of the number of hidden layers
during node aggregation on themodel performance. JK-DMC
model uses different aggregation methods to integrate the
results of each layer, and for each aggregationmethod, we test
the prediction when the number of hidden layers is set to
[2, 3, 4, 5], and the results on ML-100K and ML-1M are
shown in Figure 9.
The results show that the best performance of the

four aggregation methods, i.e., Concatenation, Max-
pooling, Average-pooling, Attention-pooling, on ML-100K
is achieved when 4, 3, 4, 2 hidden layers are used, respec-
tively, while the best results in ML-1M dataset are achieved
when 2, 3, 3, 3 layers are used. The aggregation depth is
significantly higher for these models whey they achieve the
best results, and most of the results are better than in the
GCMC model with only one aggregation layer, indicating
that over-smoothing due to the imbalance of node degree has
a significant impact on the model performance, and thus it is
necessary to consider such imbalance in the recommendation
scenario.

2) NUMBER OF ATTENTION HEADS H
In the JK-DMCmodel based on Attention-pooling inter-layer
aggregation, we set the number of heads in the Multi-head
self-attention module to [2,4,6,8,10,12,14,16] and observe

88446 VOLUME 11, 2023

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

FIGURE 9. Effect of the number of GCN aggregation layers on model
performance. Variation of RMSE and MAE metrics when different numbers
of R-GCN aggregation layers are applied to JK-DMC based on different
inter-layer aggregation methods on ML-100K and ML-1M datasets.

FIGURE 10. Parametric analysis of the number of Multi-headed attention
heads. The optimal results are obtained when the number of attention
heads of JK-DMC on ML-100K and ML-1M are set to 8 and 10, i.e. the
position of the red line in the figure.

the model performance on ML-100K and ML-1M. The
results are shown in Figure 10.

It can be observed that as the number of Multi-headed
attention heads increases, the RMSE of the model gradually
decreases in both datasets, indicating an improvement in
the model’s performance. This suggests that increasing the
number of attention heads can enhance the model’s abil-
ity to select the output of the hidden layer. However, the

TABLE 5. Ablation analysis of ML-100K, ML-1M and Douban.

model’s performance degrades significantlywhen the number
of attention heads exceeds a certain threshold. Finally, the
optimal results are obtained when the number of attention
heads of JK-DMC on ML-100K and ML-1M are set to 8 and
10, respectively.

F. ABLATION TEST
In order to investigate the contribution of each module in
JK-DMC on the results, we conduct ablation experiments by
removing specific components from the model and observe
the results. The outcomes of these experiments are presented
in Table 5. The results of JK-DMC are obtained when the
optimal number of aggregation layers, aggregation method
and number of Multi-headed attention heads are used, and
we also consider the following settings for other models in
the experiment:
W/O PairNorm: Remove the PairNorm layer between hid-

den layers.
W/O JK: Remove jumping knowledge Connection, hid-

den layers are sequentially connected, and keep PairNorm
between layers.
W/O PairNorm, JK: Remove jumping knowledge con-

nection with PairNorm. Hidden layers are sequentially
connected.
W/O Fea: Remove the original feature embedding with

node features randomly masked, and randomly initialize the
input features.

(1) When removing jumping knowledge connection or
inter-layer PairNorm normalization in JK-DMC, the per-
formance of the model decreases significantly, indicat-
ing that these two methods can effectively alleviate the
over-smoothing problem caused by graph convolution in
the recommendation scenario. In recommendation scenarios,
where node degrees vary dramatically, this approach can
achieve outstanding performance.

(2) Simultaneous removal of jumping knowledge connec-
tion and PairNorm normalization produces a more severe
degradation in the performance of JK-DMC. This reflects
that keeping the total pairwise feature distances constant
during inter-layer transfer can amplify the effect of jumping
connections.

(3) Finally, a small decrease in model performance is also
observed when randomly initializing JK-DMC input features
and dropping the random masking of node embeddings,
which illustrates the role of the original feature embeddings
of user and item on preference selection. The random mask-
ing of node features can also alleviate the effect of overfitting
and over-smoothing.

VOLUME 11, 2023 88447

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

FIGURE 11. Experimental analysis of the model’s cold start. Red bars
represent the user-based cold start and blue bars represent the
item-based cold start.

G. COLD START EXPERIMENT
To verify the cold start capability of the proposed recommen-
dation model and the generalization effect of this architecture
in real networks, we conduct a cold start experiment using
ML-100K. Using GCMC compared to JK-DMC with RMSE
as the comparison metric.

The experiment divides 20% of the rating pairs in
ML-100K into test set, but the users or items in the test set
cannot have appeared in the train set. Therefore, in the user-
based cold start experiment, we delete all the rating pairs
in the training set that contain the users of the test set and
obtain 47,533 training rating pairs; in the item-based cold
start experiment, we delete all the rating pairs in the training
set that contain the items of the test set and obtain 872 training
rating pairs. The experimental results are shown in Figure 11.

In user-based cold start experiments, we simulate the sce-
nario of a new user’s first appearance in the system. The
experimental results show that the scores of all four JK-DMC
models have significant advantages over GCMC. Among
them, JK-DMC(Attention-pooling) achieves the best result,
1.24% ahead of the second place JK-DMC(Max-pooling),
and improves 12.92% over GCMC. In the item-based cold
start experiments we mask certain items during the training
process, and the effectiveness of several models declines as
the train set size is only 872 after removing all rating pairs
containing items from the test set in the train set. Among
them, JK-DMC(Attention-pooling) is still the best performer,
leading the second place JK-DMC(Concat) by 5.35% and
improving 16.46% over GCMC. JK-DMC exhibits better
cold start capability thanks to the increase of its neighbor
aggregation layers, which widens the scope of message deliv-
ery. And the introduction of jumping connections alleviates
the over-smoothing caused by the increase in the number of
layers.

H. COMPUTATIONAL OVERHEADS
In this section, we experimentally observe the computational
overheads of our model. We perform experiments on the
dataset ML-100K, using JK-DMC based on four interlayer
aggregation functions compared to GCMC. We use two

FIGURE 12. Comparison of the computational overheads of the models.
Red bars represent the FLOPs of the models and blue bars represent the
Params of the models.

metrics to evaluate the computational overheads of our mod-
els: FLOPs(floating point operations), which are the number
of floating point operations and represent the amount of
computation in the model, and FLOPs are used to measure
the computational complexity of the model; Params are the
total number of parameters in the model, with larger values
representing more complex models. We calculate the values
of FLOPs and Params for all models when performing an
epoch to analyse the computational complexity of the model.
The experimental results are shown in Figure 12, where red
bars represent the FLOPs of themodel and blue bars represent
the Params of the model.

From the experimental results, JK-DMC(Avg-pooling)
and JK-DMC(Max-pooling) use pooling operations for
inter-layer aggregation and there are no other structural dif-
ferences between them, so the FLOPs and Params values
of the two models are equal. Both Avg-pooling and Max-
pooling do not introduce additional parameters, which allows
both models to achieve the lowest FLOPs and Params.
JK-DMC (Attention-pooling) has an increase in FLOPs
and Params due to the introduction of a multi-headed
attention mechanism, and is slightly higher than GCMC.
However, JK-DMC(Attention-pooling) achieves good perfor-
mance on all three datasets, and the performance is more
stable, which reflects the effect brought byAttention-pooling.
The model with the highest computational complexity is
JK-DMC(Concat), with much higher FLOPs and Params than
the other models, and as expected, the vector concatenation
results in a large number of parameters.

VII. CONCLUSION
This paper presents an overview of collaborative filter-
ing recommendation algorithms based on graph learning.
We observe the imbalance of node degree in realistic inter-
action networks and how it can negatively impact recom-
mendation performance through over-smoothing during node
aggregation. To address this, we propose a matrix completion
algorithm that utilizes jumping connections for node feature
aggregation and a layer-layer aggregation mechanism based
on self-attention to adaptively select the depth of the graph

88448 VOLUME 11, 2023

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

convolution network. We also use PairNorm normalization to
integrate input and output data between graph convolutional
layers. In experimental results on three real datasets, our
model achieved leading or equivalent performance compared
to several collaborative filtering recommendation models and
advanced recommendation algorithms based on graph learn-
ing.Moreover, our self-attention-based approach has stronger
generalization performance and is more adaptive to deep
graph convolutional aggregation than other inter-layer aggre-
gation mechanisms. Finally, we verified the importance of
each model component through ablation experiments, which
indicated the value of considering the degree distribution of
network nodes for improving recommendation model per-
formance. The model in this paper adaptively improves a
variety of over-smoothing coping methods and applies them
to the recommendation process to address the characteristics
of unbalanced node degrees in the recommendation dataset.
Experimental results show that the application of these tech-
niques has significantly enhanced the model’s performance.
Nonetheless, as the model’s complexity increases, so do its
computational overheads. To mitigate this issue, we intro-
duce a novel, attention-based aggregation mechanism in the
interlayer aggregation of jumping connections. This helps
to improve the model’s performance while maintaining an
acceptable level of computational overhead. In future work,
we will consider applying parameter sharing mechanisms to
reduce model complexity and further improve its generaliza-
tion performance.

REFERENCES

[1] S. Wang, L. Hu, Y. Wang, L. Cao, Q. Z. Sheng, and M. Orgun, ‘‘Sequential
recommender systems: Challenges, progress and prospects,’’ in Proc. 28th
Int. Joint Conf. Artif. Intell., Macao, China, Aug. 2019, pp. 6332–6338.

[2] S. Zhang, L. Yao, A. Sun, and Y. Tay, ‘‘Deep learning based recommender
system: A survey and new perspectives,’’ ACM Comput. Surv., vol. 52,
no. 1, pp. 1–38, Feb. 2019.

[3] Y. Hu, Y. Koren, and C. Volinsky, ‘‘Collaborative filtering for implicit
feedback datasets,’’ in Proc. ICDM, Pisa, Italy, 2008, pp. 263–272.

[4] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, ‘‘Graph neural networks
in recommender systems: A survey,’’ ACM Comput. Surv., vol. 55, no. 5,
pp. 1–37, Dec. 2022.

[5] Y. Tao, C. Wang, L. Yao, W. Li, and Y. Yu, ‘‘Item trend learning for
sequential recommendation system using gated graph neural network,’’
Neural Comput. Appl., vol. 35, pp. 13077–13092, Feb. 2021.

[6] B. Hidasi andA.Karatzoglou, ‘‘Recurrent neural networkswith top-k gains
for session-based recommendations,’’ in Proc. 27th ACM Int. Conf. Inf.
Knowl. Manag., Turin, Italy, Oct. 2018, pp. 843–852.

[7] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, ‘‘Neural attentive
session-based recommendation,’’ in Proc. ACM Conf. Inf. Knowl. Manag.,
Singapore, 2017, pp. 1419–1428.

[8] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. S. Chua, ‘‘Neural
collaborative filtering,’’ in Proc. 26th Int. Conf. World Wide Web, Perth,
WA, Australia, 2017, pp. 173–182.

[9] J. Chicaiza and P. Valdiviezo-Diaz, ‘‘A comprehensive survey of knowl-
edge graph-based recommender systems: Technologies, development, and
contributions,’’ Information, vol. 12, no. 6, p. 232, Jun. 2021.

[10] L. A. Gonzalez Camacho and S. N. Alves-Souza, ‘‘Social network data
to alleviate cold-start in recommender system: A systematic review,’’ Inf.
Process. Manag., vol. 54, no. 4, pp. 529–544, Jul. 2018.

[11] K. Xu, C. Li, Y. Tian, T. Sonobe, K. I. Kawarabayashi, and S. Jegelka,
‘‘Representation learning on graphs with jumping knowledge networks,’’
in Proc. ICML, Stockholm, Sweden, 2018, pp. 8676–8685.

[12] L. Zhao and L. Akoglu, ‘‘PairNorm: Tackling oversmoothing in GNNs,’’
in Proc. Int. Conf. Learn. Represent., New Orleans, LA, USA, 2019,
pp. 1–17.

[13] R. Berg, T. N. Kipf, and M. Welling, ‘‘Graph convolutional matrix com-
pletion,’’ in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
London, U.K., 2018, pp. 1–9.

[14] X. Wang, X. He, M. Wang, F. Feng, and T. S. Chua, ‘‘Neural graph
collaborative filtering,’’ in Proc. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr.,
Paris, France, 2019, pp. 165–174.

[15] L. Hu, C. Li, C. Shi, C. Yang, and C. Shao, ‘‘Graph neural news recom-
mendation with long-term and short-term interest modeling,’’ Inf. Process.
Manag., vol. 57, no. 2, Mar. 2020, Art. no. 102142.

[16] M. Zhang and Y. Chen, ‘‘Inductive matrix completion based on graph
neural networks,’’ in Proc. Int. Conf. Learn. Represent., Addis Ababa,
Ethiopia, 2020, pp. 1–14.

[17] W. Guan, F. Jiao, X. Song, H. Wen, C.-H. Yeh, and X. Chang, ‘‘Person-
alized fashion compatibility modeling via metapath-guided heterogeneous
graph learning,’’ in Proc. 45th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retr., Jul. 2022, pp. 482–491.

[18] W. Guan, X. Song, H. Zhang, M. Liu, C.-H. Yeh, and X. Chang, ‘‘Bi-
directional heterogeneous graph hashing towards efficient outfit recom-
mendation,’’ in Proc. 30th ACM Int. Conf. Multimedia, Lisboa, Portugal,
Oct. 2022, pp. 268–276.

[19] J. Zhang, X. Shi, S. Zhao, and I. King, ‘‘STAR-GCN: Stacked and
reconstructed graph convolutional networks for recommender systems,’’
in Proc. 28th Int. Joint Conf. Artif. Intell., Macao, China, Aug. 2019,
pp. 4264–4270.

[20] P. W. Battaglia, J. B. Hamrick, and V. Bapst, ‘‘Relational inductive biases,
deep learning, and graph networks,’’ 2018, arXiv:1806.01261.

[21] Z. Yang, W. Cohen, and R. Salakhudinov, ‘‘Revisiting semi-supervised
learning with graph embeddings,’’ in Proc. Int. Conf. Mach. Learn.,
New York City, NY, USA, 2016, pp. 86–94.

[22] W. Hamilton, Z. Ying, and J. Leskovec, ‘‘Inductive representation learning
on large graphs,’’ in Proc. Adv. Neural Inf. Process. Syst., Long Beach, CA,
USA, 2017, pp. 1025–1035.

[23] N. Tremblay, P. Gonçalves, and P. Borgnat, ‘‘Design of graph filters and
filterbanks,’’ 2017, arXiv:1711.02046.

[24] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Proc. Adv.
Neural Inf. Process. Syst., Barcelona, Spain, 2016, pp. 3844–3852.

[25] D. K. Hammond, P. Vandergheynst, and R. Gribonval, ‘‘Wavelets on graphs
via spectral graph theory,’’ Appl. Comput. Harmon. Anal., vol. 30, no. 2,
pp. 129–150, Mar. 2011.

[26] M. Welling and T. N. Kipf, ‘‘Semi-supervised classification with graph
convolutional networks,’’ in Proc. Int. Conf. Learn. Represent., Toulon,
France, 2017, pp. 1–14.

[27] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, andG. E. Dahl, ‘‘Neural
message passing for quantum chemistry,’’ in Proc. ICML, Sydney, NSW,
Australia, 2017, pp. 2053–2070.

[28] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
‘‘Graph attention networks,’’ inProc. Int. Conf. Learn. Represent., Vancou-
ver, BC, Canada, 2018, pp. 1–12.

[29] D. Chen, Y. Lin,W. Li, P. Li, J. Zhou, andX. Sun, ‘‘Measuring and relieving
the over-smoothing problem for graph neural networks from the topologi-
cal view,’’ in Proc. AAAI, New York, NY, USA, 2020, pp. 3438–3445.

[30] R. Li, S.Wang, F. Zhu, and J. Huang, ‘‘Adaptive graph convolutional neural
networks,’’ in Proc. AAAI, New Orleans, LA, USA, 2018, pp. 3546–3553.

[31] K. Zhou, X. Huang, Y. Li, D. Zha, R. Chen, and X. Hu, ‘‘Towards deeper
graph neural networks with differentiable group normalization,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2020, pp. 4917–4928.

[32] C. Shang, Y. Tang, J. Huang, J. Bi, X. He, and B. Zhou, ‘‘End-to-end
structure-aware convolutional networks for knowledge base completion,’’
in Proc. AAAI, Honolulu, HI, USA, 2019, pp. 3060–3067.

[33] J. Gope and S. K. Jain, ‘‘A survey on solving cold start problem in
recommender systems,’’ in Proc. Int. Conf. Comput., Commun. Autom.
(ICCCA), Greater Noida, India, May 2017, pp. 133–138.

[34] Y. Rong, W. Huang, T. Xu, and J. Huang, ‘‘DropEdge: Towards deep graph
convolutional networks on node classification,’’ in Proc. Adv. Neural Inf.
Process. Syst., Addis Ababa, Ethiopia, 2020, pp. 1–18.

[35] C. Yuan, J. Li, W. Zhou, Y. Lu, X. Zhang, and S. Hu, ‘‘DyHGCN:
A dynamic heterogeneous graph convolutional network to learn users’
dynamic preferences for information diffusion prediction,’’ in Proc. Joint
Eur. Conf. Mach. Learn. Knowl. Discovery Databases (Lecture Notes in
Computer Science), 2021, pp. 347–363.

VOLUME 11, 2023 88449

X. Zhu et al.: Matrix Completion of Adaptive Jumping GNNs for Recommendation Systems

[36] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, ‘‘Modeling relational data with graph convolutional net-
works,’’ in Proc. Eur. Semantic Web Conf. (Lecture Notes in Computer
Science), Heraklion, Greece, 2018, pp. 593–607.

[37] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[38] A. Vaswani, N. Shazeer, N. Parmar J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., Long Beach, CA, USA, 2017, pp. 5999–6009.

[39] I. Loshchilov and F. Hutter, ‘‘Decoupled weight decay regularization,’’
in Proc. Int. Conf. Learn. Represent., New Orleans, LA, USA, 2019,
pp. 1–19.

[40] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif. Intell. Statist.,
Sardinia, Italy, 2010, pp. 249–256.

[41] R. R. Salakhutdinov and A. Mnih, ‘‘Probabilistic matrix factorization,’’
in Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2007,
pp. 1–8.

[42] Y. Koren, R. Bell, and C. Volinsky, ‘‘Matrix factorization techniques for
recommender systems,’’ Computer, vol. 42, no. 8, pp. 30–37, Aug. 2009.

[43] Z. Khan, N. Iltaf, H. Afzal, and H. Abbas, ‘‘DST-HRS: A topic driven
hybrid recommender system based on deep semantics,’’ Comput. Com-
mun., vol. 156, pp. 183–191, Apr. 2020.

[44] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, ‘‘Convolutional matrix factor-
ization for document context-aware recommendation,’’ in Proc. 10th ACM
Conf. Recommender Syst., Boston, MA, USA, Sep. 2016, pp. 233–240.

[45] J. Hartford, D. Graham, K. Leyton-Brown, and S. Ravanbakhsh, ‘‘Deep
models of interactions across sets,’’ in Proc. Int. Conf. Mach. Learn.,
Stockholm, Sweden, 2018, pp. 3050–3061.

[46] G. K. Dziugaite and D. M. Roy, ‘‘Neural network matrix factorization,’’
2015, arXiv:1511.06443.

[47] C. Gao, X. He, D. Gan, X. Chen, F. Feng, Y. Li, T.-S. Chua, and
D. Jin, ‘‘Neural multi-task recommendation from multi-behavior data,’’ in
Proc. IEEE 35th Int. Conf. Data Eng. (ICDE), Macau, China, Apr. 2019,
pp. 1554–1557.

[48] J. Parthasarathy and R. B. Kalivaradhan, ‘‘An effective content boosted
collaborative filtering for movie recommendation systems using density
based clustering with artificial flora optimization algorithm,’’ Int. J. Syst.
Assurance Eng. Manag., pp. 1–10, Jun. 2021.

[49] Z.Wang, H. Chen, Z. Li, K. Lin, N. Jiang, and F. Xia, ‘‘VRConvMF: Visual
recurrent convolutional matrix factorization for movie recommendation,’’
IEEE Trans. Emerg. Topics Comput. Intell., vol. 6, no. 3, pp. 519–529,
Jun. 2022.

[50] F. Monti, M. Bronstein, and X. Bresson, ‘‘Geometric matrix completion
with recurrent multi-graph neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., Long Beach, CA, USA, 2017, pp. 3698–3708.

[51] B. Cao, J. Zhao, Z. Lv, and P. Yang, ‘‘Diversified personalized recommen-
dation optimization based on mobile data,’’ IEEE Trans. Intell. Transp.
Syst., vol. 22, no. 4, pp. 2133–2139, Apr. 2021.

[52] X. Liu, J. He, M. Liu, Z. Yin, L. Yin, and W. Zheng, ‘‘A scenario-
generic neural machine translation data augmentation method,’’ Electron-
ics, vol. 12, no. 10, p. 2320, May 2023.

[53] Y. Deng, W. Zhang, W. Xu, Y. Shen, and W. Lam, ‘‘Nonfactoid question
answering as query-focused summarization with graph-enhancedmultihop
inference,’’ IEEE Trans. Neural Netw. Learn. Syst., early access, Mar. 28,
2023, doi: 10.1109/TNNLS.2023.3258413.

[54] Z. Qu, X. Liu, and M. Zheng, ‘‘Temporal–spatial quantum graph con-
volutional neural network based on Schrödinger approach for traffic
congestion prediction,’’ IEEE Trans. Intell. Transp. Syst., vol. 24, no. 8,
pp. 8677–8686, Aug. 2023.

[55] Y. Wang, X. Han, and S. Jin, ‘‘MAP based modeling method and perfor-
mance study of a task offloading scheme with time-correlated traffic and
VM repair in MEC systems,’’ Wireless Netw., vol. 29, no. 1, pp. 47–68,
Jan. 2023.

[56] Q. Ni, J. Guo,W.Wu, and H.Wang, ‘‘Influence-based community partition
with sandwichmethod for social networks,’’ IEEE Trans. Computat. Social
Syst., vol. 10, no. 2, pp. 819–830, Apr. 2023.

[57] X. Zenggang, Z.Mingyang, Z. Xuemin, Z. Sanyuan, X. Fang, Z. Xiaochao,
W. Yunyun, and L. Xiang, ‘‘Social similarity routing algorithm based on
socially aware networks in the big data environment,’’ J. Signal Process.
Syst., vol. 94, no. 11, pp. 1253–1267, Nov. 2022.

[58] K. Xu,W.Hu, J. Leskovec, and S. Jegelka, ‘‘How powerful are graph neural
networks?’’ 2018, arXiv:1810.00826.

[59] X. Wang and M. Zhang, ‘‘How powerful are spectral graph neural net-
works,’’ in Proc. Int. Conf. Mach. Learn., Baltimore, MD, USA, 2022,
pp. 23341–23362.

[60] Y. Wang, K. Yi, X. Liu, Y. Guang Wang, and S. Jin, ‘‘ACMP: Allen-Cahn
message passing for graph neural networks with particle phase transition,’’
2022, arXiv:2206.05437.

[61] X. He, B. Hooi, T. Laurent, A. Perold, Y. LeCun, and X. Bresson, ‘‘A gen-
eralization of ViT/MLP-mixer to graphs,’’ 2022, arXiv:2212.13350.

[62] X. Chen, J. Sun, T. Wang, R. Guo, L.-P. Liu, and A. Zhang, ‘‘Graph-based
model-agnostic data subsampling for recommendation systems,’’ 2023,
arXiv:2305.16391.

[63] J.-D. Park, S. Li, X. Cao, and W.-Y. Shin, ‘‘Criteria tell you more than
ratings: Criteria preference-aware light graph convolution for effective
multi-criteria recommendation,’’ 2023, arXiv:2305.18885.

[64] N. Rao, H F. Yu, PK. Ravikumar, and I. S. Dhillon, ‘‘Collaborative filtering
with graph information: Consistency and scalable methods,’’ in Proc. Adv.
Neural Inf. Process. Syst., Montreal, QC, Canada, 2015, pp. 2107–2115.

[65] S. Kumar, X. Zhang, and J. Leskovec, ‘‘Predicting dynamic embedding tra-
jectory in temporal interaction networks,’’ in Proc. 25th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Anchorage, AK, USA, Jul. 2019,
pp. 1269–1278.

[66] H. Dai, Y. Wang, R. Trivedi, and L. Song, ‘‘Deep coevolutionary net-
work: Embedding user and item features for recommendation,’’ 2016,
arXiv:1609.03675.

[67] Y. Zhang, Y. Xiong, D. Li, C. Shan, K. Ren, and Y. Zhu, ‘‘CoPE: Modeling
continuous propagation and evolution on interaction graph,’’ in Proc. 30th
ACM Int. Conf. Inf. Knowl. Manag., Oct. 2021, pp. 2627–2636.

XIAODONG ZHU (Member, IEEE) received the
B.S. degree from the School of Management,
Anhui University, in 2002, the M.S. degree from
the School of Computer Science and Technology,
Anhui University, in 2005, and the Ph.D. degree
from the College of Computer Science and Tech-
nology, Nanjing University of Aeronautics and
Astronautics, in 2009. He was a Visiting Scholar
with the Swinburne University of Technology,
Melbourne, Australia, from 2015 to 2016. He is

currently an Associate Professor with the University of Shanghai for Science
and Technology. His research interests include big data management and
deep learning.

JUNYU FU received the B.S. degree in informa-
tion management and information system from
Qingdao University, China, in 2021. He is cur-
rently pursuing themaster’s degree inmanagement
science and engineering with the University of
Shanghai for Science and Technology, China. His
research interests include deep learning, recom-
mendation systems, and graph neural networks.

CHEN CHEN received the Ph.D. degree from
Tongji University, China. She is currently an
Assistant Professor with the Business School, Uni-
versity of Shanghai for Science and Technology,
Shanghai, China. She has published several arti-
cles in refereed journals, such as Journal of Retail-
ing and Consumer Services, Asia-Pacific Journal
of Operational Research, and INFOR: Information
Systems and Operational Research. Her research
interests include social networks, platform busi-

ness models, and operations management.

88450 VOLUME 11, 2023

http://dx.doi.org/10.1109/TNNLS.2023.3258413

