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ABSTRACT Accurate battery state-of-charge (SOC) estimation is important for the efficient and reliable
operation of battery application systems. The extended Kalman filter (EKF), which is based on the battery
model, is widely used as a real-time SOC estimation algorithm; furthermore, its accuracy depends on the
model accuracy. However, the conventional EKF uses one value for each battery parameter (Ri, Rd and Cd )
regardless of the SOC, even though their values change according to the SOC. To address this problem,
this study proposes an improved EKF that applies battery parameters that change according to the SOC of
a battery model. In the proposed method, the entire SOC was divided into several sections considering the
deviation of the parameter values according to the SOC. Subsequently, the average values for each SOC
section were calculated, and the values of the battery parameters were updated with the average values
according to the SOC. To verify the performance of the proposed EKF, the parameters of commercial Li-ion
batteries were extracted with dis-charge currents of 1C- and 2C-rates at ambient temperatures of 0 ◦C, 25 ◦C,
and 45 ◦C, and MATLAB simulations were performed. Compared to the conventional EKF, the proposed
EKF estimated the SOC more accurately under all the simulation conditions. Compared to the conventional
EKF, the maximum reduced root-mean-square error and maximum error of the proposed method were
49.37% and 56.41%, respectively.

INDEX TERMS State of charge, lithium-ion battery, extended Kalman filter, battery parameter, battery
model, battery management system.

I. INTRODUCTION
Currently, lithium-ion batteries are the most widely used
energy sources in eco-friendly industries. Energy storage
devices for storing electric energy obtained through power
generation such as solar, hydroelectric, and wind power, and
battery packs used in electric vehicles require batteries with
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high energy density because it is efficient to store massive
amounts of energy in the same volume. Lithium-ion batteries,
lead-acid batteries, and nickel-cadmiumbatteries have energy
densities of 500 Wh/L, 90 Wh/L, and 100 Wh/L, respec-
tively [1]. Compared to the secondary batteries, lithium-ion
batteries have a high energy density, low self-discharge,
and high rated voltage; therefore, they are widely used in
eco-friendly industries. However, improper charging and dis-
charging can induce ignition and explosion in lithium-ion
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batteries due to thermal runaway. Therefore, a battery man-
agement system is required to improve the performance of
batteries and use them efficiently. A battery management
system (BMS) has various functions to monitor the state of
a battery and operate it in a stable region [2], [3], [4], [5]. The
state of charge (SOC), one of the many important functions
of a BMS, indicates the remaining capacity of the battery and
is an important factor in determining its state. However, the
SOC cannot directly indicate the internal state of a battery;
therefore, it is usually indirectly estimated from the battery
voltage, current, and temperature data [6], [7]. Representative
SOC estimation methods include open-circuit voltage (OCV)
measurements, Coulomb counting, extended Kalman filters
(EKFs), and techniques that incorporate artificial intelligence
algorithms [7], [8]. The OCVmeasurement method estimates
the SOC based on the relationship in which the OCV of the
battery matches the SOC in a ratio of 1:1. Although this
method can be used to easily estimate the SOC, real-time
estimation is impossible because a rest period is necessary
for OCV voltage measurement. Coulomb counting estimates
the SOC by integrating the current used when a battery is
charged or discharged. It is widely used in industry because
it enables real-time SOC estimation with a small amount
of recall. However, it requires accurate information regard-
ing the initial SOC value, and accumulates errors over time
in the sensed current value. As deep learning technology
has recently developed, the deep learning-based data-driven
technique for estimating SOC using measurable battery data
have been studied [9]. It does not require complicated battery
model and electrochemical knowledge for SOC estimation by
learning the relationship between battery data and SOC. As a
result, a large amount of data is required for learning, but there
is no need to model changes in battery parameters as well as
nonlinear characteristics according to operating conditions or
aging [10]. Recurrent Neural Network (RNN), one of these
techniques, has a deep learning model structure that includes
a loop in a hidden layer to maintain sequence information
of the current time step. It can accurately map parameters
such as voltage, current and temperature of the battery to the
SOC. However, when using time-series data with long battery
charge/discharge in the training phase, gradient vanishing
is likely to occur. This makes it difficult to capture long-
term dependencies of battery charge/discharge data, and thus
degrades SOC estimation performance [11]. To solve this
problem, deep learning models with gating mechanisms such
as Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) were proposed. These enable more precise bat-
tery SOC estimation. In the case of the LSTM model, the
long-term dependency problem is improved by determining
valid memory information using an input gate, a forget gate,
and an output gate. In addition, the GRU model improved the
long-term dependency problem by using a reset gate and an
update gate. This has the advantage of lower computational
cost compared to LSTM models. As such, deep learning-
based data-driven techniques are attracting much attention

as future technologies for SOC estimation [12]. The EKF
method estimates the SOC by calculating the OCV using
a battery model. As it is robust against noise and enables
real-time estimation, it is most widely used together with
the Coulomb counting method. However, the battery model
must accurately represent the electrochemical reactions of
the battery and reflect the changes in the battery parameters
according to the operating environment.

Representative battery models that are widely used include
electrochemical model (EM) and electrical circuit model
(ECM). The EM is constructed by interpreting the electro-
chemical action inside a battery cell. Although the accuracy
of estimating the state of the battery is high, it is difficult
to model. However, recently, high-performance electrochem-
ical model-based algorithms based on ensemble Kalman
filters have been proposed and many researches are being
conducted [13], [14]. The ECM includes such electrical
parameters as the resistance and capacitance extracted from
the battery voltage and current waveforms during charging
and discharging and can represent battery characteristics
electrically. Although this model has lower accuracy than
the EM, it is more widely used because of its easy imple-
mentation and applicability. In particular, the EKF usually
uses a simple electrical model with a first- or second-order
resistance–capacitance (RC) ladder, and the battery param-
eters are expressed as a single value regardless of the SOC
section [15], [16], [17].

In the EKF, battery parameters are applied to the SOC
estimation algorithm using the state-space equation. There-
fore, the accuracy of the battery parameter values affects
the battery SOC estimation [18]. Generally, each battery
parameter in the EKF is defined as a single value; however,
it changes according to the ambient temperature, C-rate,
SOC, and charge/discharge cycles [19], [20], [21]. There-
fore, the EKF, which uses a single parameter value without
reflecting parameter changes in the battery, has an SOC
estimation error. To address this problem, studies on EKF
that reflect the changes in battery parameters have been
conducted [6], [22], [23], [24]. In [6], a temperature com-
pensation model, which incorporated temperature-dependent
battery parameter changes into the Kalman filter, was added.
The temperature compensation model expresses the diffu-
sion resistance (Rd ) and diffusion capacitance (Cd ) as a
quadratic expression of the SOCwith coefficients that change
according to the temperature and SOC using the data of
the parameters in an offline experiment. Consequently, it is
possible to estimate the SOC more accurately compared to
that of the conventional method using a single value because
the battery parameters can be updated according to the tem-
perature and SOC. Other studies [22], [23] used dual EKFs
and dual unscented Kalman filters to improve the accuracy
of the battery model. Using dual filters, these methods reflect
the battery parameters that change over time in real time
in the battery model. In another study [24], the recursive
least-squares algorithmwas used to reflect battery parameters
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dependent on the SOC in the model in real time. To improve
the accuracy of the SOC estimation, the aforementioned
methods [6], [22], [23], [24] increased the accuracy of the
battery model; however, the battery model and estimation
algorithm became complicated. As these methods require
hardware such as expensive high-end computers or micropro-
cessors to estimate the SOC of a battery, it is difficult to apply
them to applications that use dozens to hundreds of cells
(e.g., electric vehicles and energy storage systems).

Therefore, in this study, a method is proposed that has
a higher SOC estimation accuracy than the conventional
EKF, while also having a lower complexity than the exist-
ing improved EKF methods. The proposed method divides
the SOC into several sections, and uses the representative
values in each section to adapt the battery parameters Ri,
Rd , and Cd according to the SOC. As the parameter value
of each battery differs based on the SOC, the deviation
of these values was calculated. The SOC was divided into
several sections using the calculated parameter deviations,
and the average value of the parameters was calculated for
each SOC section. the parameters were updated with average
values and reflected in the battery model depending on the
SOC section.

To verify the SOC estimation performance of the proposed
EKF, battery parameters were extracted at various C-rates
and outside temperatures, and MATLAB simulations were
performed using these data. In the simulation, the SOC esti-
mation accuracies and computation times of the conventional
EKF, curve fitting-based EKF, forgetting factor recursive
least squares(FRLS)-based EKF and proposed EKF were
compared. In Section II, the relationship between the bat-
tery parameter values and accuracy of the SOC estimation
is explained using the EKF and battery model. Section III
provides the explanation on extraction of battery parameters
and division of the SOC sections, and the adaptive battery
parameters are defined. Section IV describes the proposed
EKF, to which the adaptive battery parameters are applied.
The SOC estimation accuracies and computation times of
the proposed and previous EKFs were compared through
simulations, as discussed in Section V, and the results were
analyzed. Finally, Section VI summarizes the research con-
tent and describes the future research plans.

II. BATTERY MODELING AND EXTENDED
KALMAN FILTER
A. BATTERY MODEL
A battery model is required to estimate the battery SOC
using the EKF. In many cases, a first-order ECM is used,
which can obtain a relatively high accuracy at a low compu-
tational cost [25]. A first-order ECM is composed of battery
parameters, including the OCV (Voc), internal resistance (Ri),
diffusion resistance (Rd ), and diffusion capacitance (Cd ),
which vary according to the temperature, C-rate, and SOC.
In Fig. 1, Vt , Ib, Vi, and VRC represent the terminal voltage,
battery current, voltage applied to the internal resistance, and
RC ladder, respectively.

FIGURE 1. First-order ECM of battery.

B. EXTENDED KALMAN FILTER FOR SOC ESTIMATION
1) BATTERY STATE-SPACE EQUATIONS
EKF a recursive filter that estimates the state of a non-
linear system through measurements that contain noise. Its
operation is as follows: state-vector prediction, Jacobian
linearization, error-covariance prediction, Kalman gain cal-
culation, calculation of the final estimate using the measured
and predicted values, and error-covariance calculation [26].
Therefore, to estimate the SOC of a battery with nonlinear
characteristics using the EKF, the following discrete state
equations must be obtained:

In Fig. 1, Ib is the sum of the currents flowing through Rd
and Cd , and can be expressed by the continuous state-space
equation in (1).

Ib(t) = Cd
dVRC (t)
dt

+
VRC (t)
Rd

(1)

By sampling (1) at time interval (1t), the discrete state
equation can be obtained as follows.

VRC (k) − VRC (k − 1)
1t

= −
VRC (k − 1)
RdCd

+
Ib(k − 1)

Cd
(2)

By rearranging (2) into VRC (k), the following equation is
obtained.

VRC (k) = (1 −
1t
RdCd

)VRC (k − 1) +
Ib(k − 1)1t

Cd
(3)

The SOC is defined as the ratio of the currently available
battery capacity to the total capacity (Cb). It is expressed as
(4) using the initial SOC (SOC(0)) and battery current (Ib)
integrated during the battery charge/discharge time.

SOC(t) = SOC(0) −

∫ t

0

Ib(t)
Cb

dt (4)

The discrete state equation of the SOC is given by sampling
(4) as follows.

SOC(k) = SOC(k − 1) −
Ib(k − 1)1t

Cb
(5)
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From (3) and (5), the state equation matrix applied to the
EKF is as follows:[

SOC(k)
VRC (k)

]
=

[
1 0
0 1 −

1t
RdCd

] [
SOC(k − 1)
VRC (k − 1)

]
+

[
−

1t
Cb

1t
Cd

]
Ib(k − 1) (6)

The terminal voltage Vt is represented by

Vt = VOC − VRC − RiIb (7)

By linearizing (7) through the Jacobian and sampling it, the
following discrete output equation for Vt can be obtained.

Vt (k) =
[

∂OCV
∂SOC

∣∣
SOC −1

] [
SOC(k − 1)
VRC (k − 1)

]
− RiIb(k − 1)

(8)

The discrete state-space equation of the system commonly
used in the EKF is as follows.{

xk = Axk−1 + Buk−1 + wk−1

yk = Hxk + Duk + vk
(9)

where xk , uk , yk , wk , and wk are the state variable, input
variable, output variable, process noise, and measured noise,
respectively.

To estimate the battery SOC, matrices A, B, H, andD in the
discrete state-equation of (9) are defined by (6) and (8).

The matrices are

A =

[
1 0
0 1 −

1t
RdCd

]
, B =

[
−

1t
Cb

1t
Cd

]
H =

[
∂OCV
∂SOC

∣∣
SOC −1

]
, D = Ri (10)

2) PROCESS OF ESTIMATING SOC USING THE EKF
Fig. 2 shows the battery SOC estimation process using the
EKF. The EKF used in this model predicted and estimated
the state vector and error covariance using the battery param-
eters (Ri, Rd , and Cd ) of the first-order ECM of the battery.
The estimated value of the state vector ([SOC(k) VRC (k)]T )
consists of its predicted value of the state vector ([SOC−(k)
V−

RC (k)]
T ) and the prediction error of the measured value

(Vt (k) − V̂t (k)), which is used to correct the predicted value.
Therefore, the process of calculation and correction of the
accurately predicted values significantly affects the estima-
tion accuracy of the EKF.

The prediction process of the SOC estimation using the
EKF can be expressed by (11) and (12) to calculate the
predicted value of the state vector and of the error covariance,
respectively.[

SOC −(k)
V−

RC (k)

]
=

[
1 0
0 1 −

1t
RdCd

] [
SOC(k − 1)
VRC (k − 1)

]
+

[
−

1t
Cb

1t
Cd

]
Ib(k − 1) (11)

P−(k) =

[
1 0
0 1 −

1t
RdCd

]
P(k − 1)

×

[
1 0
0 1 −

1t
RdCd

]T

+ Q (12)

Equations (11) and (12) provide the accurate mean and vari-
ance of the predicted value of the state vector, respectively.
The equations were calculated using the battery parameters,
and the application of accurate battery parameters increased
the estimation accuracy of the EKF. (8) represents the pre-
dicted value of the battery terminal voltage, and is used to
estimate the SOC by correcting the predicted value, as in (13).[

SOC(k)
VRC (k)

]
=

[
SOC−(k)
V−

RC (k)

]
+ K (k)(Vt (k) − V̂t (k)) (13)

where K is the Kalman gain and is used as a weight for the
predicted value correction. To accurately calculate the predic-
tion error of the measured value, an accurate measured value
of the terminal voltage (Vt ) and the predicted value of the
terminal voltage (V̂ t ) are required. The terminal voltage can
be accurately measured using a sensor with a low error. Thus,
the prediction error of the accurate measurement value was
determined by accurately calculating the terminal voltage.
The terminal voltage is expressed as (14).

V̂t (k)=VOC (k) −

(
1 −

1t
RdCd i

)
VRC (k)−

(
1t
Cd

+ Ri

)
Ib(k)

(14)

The terminal voltage was calculated using the battery param-
eters. The battery parameters varied depending on the SOC.
Therefore, to accurately estimate the SOC using the EKF,
changes in the battery parameters had to be applied. The
estimated values were affected by the predicted value and
prediction error of the measured value, and these values
were calculated based on the battery parameters. Therefore,
to improve the estimation accuracy of the EKF, it is necessary
to apply battery parameters that vary according to the SOC,
rather than single parameters.

III. ADAPTIVE BATTERY PARAMETERS
A. BATTERY PARAMETER EXTRACTION
The battery parameters Ri, Rd , and Cd of the first-order ECM
shown in Fig. 1 can be extracted through a pulse-current
discharge experiment (Fig. 3(a)). The pulse-discharge exper-
iment was performed by repeating the discharging and rest
operations at a constant SOC interval (I ) from the charging
cutoff voltage to the discharging cutoff voltage. For battery
parameter extraction, the total number (Np) of SOC points
is determined by the designated SOC interval (I ) at the dis-
charge and rest operations. Np is 100 divided by I , and the
battery parameters according to the SOC are defined as dis-
crete values at each SOC point. The pulsed-current discharge
experiment cannot obtain continuous parameters according
to the SOC; however, the experiment is simple and widely
used as a battery parameter extraction technique. In this study,
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FIGURE 2. Flowchart of SOC estimation algorithm using the conventional
EKF.

experiments were conducted at 5% SOC intervals, consid-
ering the tradeoff relationship between the accuracy of the
parameters and the amount of computation required for SOC
estimation.

The battery voltage and current waveforms for a single-
pulse discharge are shown in Fig. 3(b). Here, 1v1 is the
voltage drop of the battery at the moment when the battery
starts discharging, 1v2 is the voltage drop that gradually
decreases owing to the battery discharge current Ib, and
τ is the time it takes for the battery to start discharging
and decrease the voltage to 63.2% of 1v2. When a single-
discharge pulse waveform was applied to the battery, the
first-order ECM exhibited five operating modes. Equations
(15)–(17) for extracting the battery parameters can be derived
from the analysis of each operation mode [6], [27].

When the discharge pulse current is applied, it can be
approximated that the Cd of the ECM is shorted owing
to high-frequency operation. Therefore, 1v1 represents the

FIGURE 3. Battery pulse-current discharging experiment for extracting
battery parameters: (a) pulse-current discharge in 5% increments of SOC
and (b) battery terminal voltage (Vt ) response curve at single current
discharge pulse (Ib).

TABLE 1. Main specifications of INR21700-50E.

voltage drop of Ri.

Ri =
1v1
Ib

(15)

Here, 1v2 is the battery voltage drop caused by the first
RC ladder of the ECM, and Rd and Cd can be obtained from
(16) and (17).

Rd =
1v2
Ib

(16)

Cd =
τ

Rd
(17)

The commercial battery model for the experiment was a
Samsung INR 21700-50E, and its main specifications are
listed in Table 1.

To extract the battery parameters (Ri, Rd , and Cd ), pulse-
current discharge experiments were performed at 5% inter-
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vals of the SOC with currents of 1C- and 2C-rates at ambient
temperatures of 0, 25, and 45 ◦C. Fig. 4 shows the battery
parameters obtained from the experiment. The battery model
parameters were changed according to the SOC at different
C-rates and temperatures.

B. PROPOSED SOC SECTION AND ADAPTIVE
BATTERY PARAMETER
As shown in Fig. 4, the battery parameters (Ri, Rd , and Cd )
changed according to the SOC. Therefore, when each battery
parameter was defined as a single value, deviations occurred
between the defined and actual values depending on the SOC.
The deviation in the battery parameters according to the
SOC caused an SOC estimation error when the EKF was
used, as described in section B of part II. To address this
problem, amethodwas developed to apply battery parameters
adapted according to the SOC to the EKF. As in an earlier
report [6], the adaptive battery parameters can be expressed
as functions according to the SOC. However, this method has
a disadvantage in that the number of computations increases
significantly. It is difficult to apply this method to commer-
cial SOC algorithms using the EKF for battery applications.
Therefore, in the proposed method, battery parameters are
defined as constants adapted according to the SOC. To obtain
the adaptive battery parameters, the entire SOC was divided
into several sections considering the deviation of the battery
parameter values according to the SOC. Subsequently, the
average values of the battery parameters for the SOC sections
were calculated, and the adaptive battery parameters were
updated with the average values according to the SOC. The
adaptive battery parameters Ri, Rd , and Cd were individually
defined using the aforementioned methods.

The SOC estimation accuracy can be expressed by SOC
estimation errors, such as the maximum error and root mean
square error (RMSE). The maximum error and RMSE for
the SOC estimation depend on the maximum deviation rate
(DVmax) and standard deviation (SD) between the average and
actual values of the battery parameters, respectively. For the
proposed EKF to have a higher SOC estimation accuracy than
the conventional EKF,DVmax and SD of the proposed method
using SOC section segmentation must be smaller than those
of the conventional method, which uses one value for each
parameter. To satisfy these conditions, SOC section segmen-
tation must be performed according to the seven procedures
given in (Fig. 5).
(1) Set the initial value of number(N ) of SOC sections
In order to start the SOC division of the proposed method,

an initial value of N must set. The proposed method divides
the entire SOC into N sections and applies the average value
of each section to the EKF. Therefore, the initial value of N
is selected as 2, which is the minimum value of the section
division.

(2) Division of the entire SOC into N SOC sections
After N is set, the entire SOC is divided into N SOC

sections as follows: First, the deviation 1P[m] between the

parameter values at two adjacent SOC points was calculated
as follows:

1P[m] = |P[m+ 1] − P[m]| (18)

where P[m] and P[m+1] denote the battery parameter values
at the mth and (m + 1)th SOC points, respectively, for the
entire SOC.

Next, (Np − 1) 1Ps (= 1P [1], 1P [2], · · · 1P[Np−1])
was calculated using (18). Here, Np is the total number of
SOC points. To divide the SOC into N SOC sections, (N−1)
SOC points for the section boundaries were required, and
these were obtained from (N−1) 1Ps. At this time, (N−1)
1Ps were selected in the order of the greatest value among
the (Np−1) 1Ps. This is because the DVmax and SD of
the battery parameters were reduced further when the SOC
sections were divided based on a larger 1P. Among the two
adjacent SOC points for the selected1P, one point that could
more effectively improve the deviation of the parameters was
used as a boundary point. Then, (N−1) boundary points were
selected for (N−1) 1Ps in the same manner.

(3) Calculation of DVmax,pro, and SDpro
To improve the SOC estimation accuracy, the maximum

deviation rate (DVmax,pro) and standard deviation (SDpro) of
the proposed method should be smaller than the maximum
deviation rate (DVmax,con) and standard deviation (SDcon) of
the conventional method. To achieve this, it is first necessary
to calculate the DVmax,pro and SDpro of the proposed method.

Here, Pavg[K ] is the average of the battery parameter val-
ues in the K th SOC section

Pavg[K ] =

nk∑
m=1

P[Km]

/
nk (19)

where P[Km] and nK are the battery parameter values at the
mth SOC point and the total number of SOC points in the K th
SOC section, respectively.

Each SOC section includes the battery parameter values at
the section boundaries.
DV [Km] at the Kmth SOC point is the deviation between

the real value of the battery parameters at the corresponding
SOC point and average value of the battery parameters in the
K th SOC section, and it is calculated using the following

equation:

DV [Km] =

∣∣P[Km] − Pavg[K ]
∣∣

Pavg[K ]
× 100 (20)

Among all the DVs of the proposed method, DVmax,pro had
the largest deviation rate.

As the battery parameter values at the section boundaries
are used in duplicate, the total number of parameter values
becomes (Np + N−1) to calculate the SDpro. The SDpro is

SDpro =

√√√√ N∑
K=1

nK∑
m=1

(P[Km] − Pavg[K ])2
/

Np + N − 1

(21)
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FIGURE 4. Battery parameters according to SOC at different C-rates and temperatures: (a) Ri at 1C-rate, (b) Rd at 1C-rate, (c) Cd at 1C-rate, (d) Ri at
2C-rate, (e) Rd at 2C-rate, and (f) Cd at 2C-rate.

(4) Comparison of parameter deviation between the con-
ventional method and the proposed method

For the proposed EKF to have a higher SOC estima-
tion accuracy than the conventional EKF, DVmax and SD
of the proposed method using SOC section segmentation
must be smaller than those of the conventional method,
which uses one value for each parameter. To compare the
deviation between the conventional method and proposed
method, the DVmax,con and SDcon should be calculated
through (22)-(24).

The average value (Pavg) of the battery parameter in the
conventional method is the average of Np battery parameter
values and is given by

Pavg =

Np∑
n=1

P[n]

/
Np (22)

where P[n] is the battery parameter value at the nth SOC
point in the entire SOC range, and Np is the total number
of SOC points. The average values of Ri, Rd , and Cd were
individually calculated using (22).
DVmax,con and SDcon are given by

DVmax,con =

∣∣P[n] − Pavg
∣∣

Pavg
× 100 (23)

SDcon =

√√√√ Np∑
n=1

(P[n] − Pavg)2
/

Np (24)

The calculated DVmax,pro, SDpro, DVmax,con, and SDcon are
compared using conditional expression (25).

DVmax,pro < DVmax,con andSDpro < SDcon (25)

If the DVmax,pro and SDpro of the proposed method are
greater than the DVmax,con and SDcon of the conventional
method, increaseN by 1 and return to step 2. Otherwise, go to
step 5.

(5) SOC estimation using EKF
If the condition in step 4 is satisfied, the average values of

the battery parameters (Ri, Rd , andCd ) in the divided sections
according to SOC are applied to the battery model. Then, the
SOC is estimated by EKF with this battery model.

(6) Comparison of calculated and target SOCs
Compare whether the SOC calculated through step 5 sat-

isfies the target SOC required by the user or application.
Target SOC is determined within the range of optimal N
shown in Fig. 6 by considering the tradeoff between the SOC
estimation accuracy and the amount of computation.

If the calculated SOC dose not satisfy the target SOC,
increase N by 1 and return to step 2. Otherwise, go to step 7.
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FIGURE 5. Flowchart of verification of the number of SOC sections in the
proposed method.

FIGURE 6. RMSE and computation time according to the section number.

(7) The number of sections is determined as the current
value of N

The optimal N is determined through steps 1 to 6.

In this paper, the proposed method aimed to have a higher
SOC estimation accuracy than the conventional EKF, and to
satisfy this, N was determined as 3 by the flowchart in Fig. 5.
Figs. 7 and 8 show the battery parameters (Ri, Rd , and Cd )
in Fig. 4 divided into three SOC sections using the proposed
method. To divide the SOC into three SOC sections, two SOC
points for the section boundaries were obtained from the first
and second largest1Ps. Among the two adjacent SOC points
for the selected 1P, the SOC point on the left was used as
the section boundary.DVmax,con, SDcon,DVmax,pro, and SDpro
values were calculated by substituting the values of Ri, Rd ,
and Cd in Fig. 4 into (19)-(21) and (22)-(24), are listed in
Tables 2 and 3, respectively. Table 4 shows the percentage
decrease in DVmax and SD of the battery parameters owing
to the proposed method. This satisfies conditional expression
(25). When the optimal N is determined to be 3, the SOC
estimation performances of EKFs are given to the simulation
results of Section V.

IV. PROPOSED EXTENDED KALMAN FILTER WITH
ADAPTIVE BATTERY PARAMETERS
In a conventional EKF, each battery parameter is defined as
a single value regardless of the SOC. Consequently, the SOC
estimation accuracy is reduced. In contrast, the proposed EKF
divides the SOC sections and updates the adaptive battery
parameters according to the SOC. This update process makes
the values of the battery parameters more accurate, which
increases the accuracy of the predicted and estimated values
of the state variables SOC and VRC in the EKF algorithm.
Therefore, the proposed EKF has a high SOC estimation
accuracy. Fig. 9 shows the SOC estimation process using the
proposed EKF.

V. SIMULATION
MATLAB simulations were performed to verify the perfor-
mance of the proposed EKFwith adaptive battery parameters.
For each battery parameter, the proposed method was com-
pared with the conventional EKF using a single value. The
SOC estimation accuracies of the two methods were calcu-
lated using the SOC estimated from the Coulomb counting
method as the reference value. The data for the battery
parameters shown in Figs. 4, 7, and 8 are used in the
simulation. The DVmax and SD of each battery parameter
according to the SOC in the proposed method and conven-
tional EKF were calculated from these data, as shown in
Tables 2 and 3. The DV and SD values in the proposed
method were lower than those in the conventional EKF
under all ambient temperatures and C-rate test conditions
(see Table 4).
Fig. 10 shows the SOC estimation results of the proposed

method and conventional EKF when the battery is discharged
with a 1C-rate pulse current at three ambient temperatures
(0, 25, and 45 ◦C). At an ambient temperature of 0 ◦C, the
RMSE for SOC estimation in the conventional EKF was
1.3578, and that in the proposed EKF was 1.2572, thus
reducing the error by 7.41%. Additionally, the conventional
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FIGURE 7. Battery parameter curves divided into three SOC sections by the proposed method at 1C-rate: (a) Ri at 0 ◦C, (b) Rd at 0 ◦C, (c) Cd at
0 ◦C, (d) Ri at 25 ◦C, (e) Rd at 25 ◦C, (f) Cd at 25 ◦C, (g) Ri at 45 ◦C, (h) Rd at 45 ◦C, and (i) Cd at 45 ◦C.

FIGURE 8. Battery parameter curves divided into three SOC sections by the proposed method at 2C-rate: (a) Ri at 0 ◦C, (b) Rd at 0 ◦C, (c) Cd at
0 ◦C, (d) Ri at 25 ◦C, (e) Rd at 25 ◦C, (f) Cd at 25 ◦C, (g) Ri at 45 ◦C, (h) Rd at 45 ◦C, and (i) Cd at 45 ◦C.

EKF has a maximum SOC estimation error of 5.3596% at the
SOC 5% point, whereas the proposed EKF has a maximum
error of 5.311% at the SOC 5% point, thus reducing the error

by approximately 0.91%, as shown in Figs. 10(a) and (d).
Figs. 10(b) and (e) show the SOC estimation results of the
twomethods at an ambient temperature of 25 ◦C. As shown in
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TABLE 2. Comparison of DVmax and SD of battery parameters between the conventional EKF and proposed EKF at 1C-rate.

TABLE 3. Comparison of DVmax and SD of battery parameters between the conventional EKF and proposed EKF at 2C-rate.

TABLE 4. Percentage decrease in DVmax and SD of battery parameters for the proposed method.

Table 2, as the DV and SD of the battery parameters reduced,
the RMSE and maximum error of the SOC estimation in the
proposed EKF decreased compared with those in the con-
ventional EKF. The RMSE and maximum error of the SOC
estimation in the proposed EKF were 0.752 and 2.8338%
(at the SOC 3% point), respectively. As in the previous two
simulation results, the proposed EKF improved the accu-
racy of SOC estimation by updating the battery parameters

according to the SOC, even under an ambient temperature
condition of 45 ◦C. The RMSE for SOC estimation in the
conventional EKF was 0.6884, and that in the proposed EKF
was 0.4774, reducing the error by 30.65%. Furthermore, the
conventional EKF had a maximum SOC estimation error of
3.8198% at the SOC 5% point, whereas the proposed EKF
had a maximum error of 2.4351% at the SOC 10% point, thus
reducing the error by approximately 36.25%.
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TABLE 5. Comparison of SOC estimation errors between the proposed and conventional EKFs.

FIGURE 9. Flowchart of SOC estimation algorithm using the proposed EKF.

Fig. 11 shows the SOC estimation results of the proposed
method and conventional EKF when the battery is discharged
with a 2C-rate pulse current at ambient temperatures of 0,
25, and 45 ◦C. Under the above test conditions, the proposed
EKF reduced theDV and SD of the parameters compared with
the conventional EKF by updating the battery parameters to
an average value for each SOC section (Table 3). This is
similar to the simulation results at a 1C-rate, the proposed

EKF improved the RMSE and maximum error of the SOC
estimation under all the simulation conditions. The results
are listed in Table 5. RRMSE and RMAX represent the decrease
in percentage in the RMSE and maximum error for the pro-
posed EKF, respectively. Compared to the conventional EKF,
the maximum reduced RMSE and maximum error for the
proposed method were 49.37% (at 2C-rate and 45 ◦C) and
56.41% (at 2C-rate and 0 ◦C), respectively. The simulation
results verify that the proposed method using adaptive battery
parameters can improve the SOC estimation accuracy of
the EKF.

To analyze the estimated performance according to section
number, simulation was conducted on an AMD Ryzen 7
PRO 4750G, 3.60GHz CPU and 16GB RAM PC. The SOC
estimation results and the estimated performance of each
EKF with section numbers 1, 3, and 20 are shown in Fig. 12
and Table 6, respectively.

The RMSE and maximum SOC estimation error of the
EKF with 20 sections are 0.5094 and 2.3504%, respectively.
The computation time was 3.1761 s. As the number of
SOC sections increased, the values of the battery parameters
approached the real values at each SOC, thus resulting in the
increase of SOC estimation accuracy. However, as the number
of SOC sections increased, the amount of computation also
increased, resulting in a longer computation time.

To validate the superiority of the proposed method, it was
compared the improved EKFs in [28] and [29], which use
adaptive battery parameters. For comparison, a battery data
set from the Center for Advanced Life Cycle Engineering
(CALCE) at the University of Maryland was used, which
consists of pulse discharge data and Dynamic Stress Test
(DST) [30]. The model of the battery is INR 18650-20R and
its specifications are given in Table 7.

The battery parameters (Ri, Rd and Cd ) extracted from the
pulse discharge data are given in Fig. 13, and each parameter
is divided into three sections using the proposed method
(Fig. 14). The extracted battery parameters were used for
the conventional EKF, the curve fitting-based EKF of [28]
and the proposed EKF. The forgetting factor recursive least
squares (FRLS) method of [29] estimated the battery param-
eters using the voltage and current of DST. Then, the SOC
RMSE and computation time of these EKFs were compared
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FIGURE 10. Simulation results at 1C-rate: (a) SOC estimation at 0 ◦C, (b) SOC estimation at 25 ◦C, (c) SOC estimation at 45 ◦C, (d) SOC estimation
error at 0 ◦C, (e) SOC estimation error at 25 ◦C, and (f) SOC estimation error at 45 ◦C.

FIGURE 11. Simulation results at 2C-rate: (a) SOC estimation at 0 ◦C, (b) SOC estimation at 25 ◦C, (c) SOC estimation at 45 ◦C, (d) SOC estimation
error at 0 ◦C, (e) SOC estimation error at 25 ◦C, and (f) SOC estimation error at 45 ◦C.

using the DST data (Figs. 15 and 16). Here, the curve fitting
method fitted a battery parameter with the 6th polynomial
using MATLAB‘s cftool and the FRLS method selected a
forgetting factor as 0.99.

As shown in Fig. 15, the FRLS-based EKF has the largest
amount of computation while having the smallest SOC
RMSE. On the contrary, the conventional EKF has the oppo-
site characteristic. Compared to the conventional EKF, the
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FIGURE 12. Simulation result according to section number at 1C-rate
(a) SOC estimation at 25 ◦C (b) SOC estimation error at 25 ◦C.

FIGURE 13. Battery parameters according to SOC of INR 18650-20R.

TABLE 6. Comparison of estimated performance according to section
number at 1C-rate 25 ◦C.

proposed EKF has an increased computational time of 10%.
However, the relative Percentage Difference (RPD) of RMSE
was decreased by 23%, which is greater than the RPD (10%)

FIGURE 14. Battery parameter curve of INR 18650-20R divided into three
SOC sections by the proposed method.

TABLE 7. Main specifications of INR18650-20R.

of computational time. In the comparison of the proposed
EKF and FRLS-based EKF, the RPD of RMSE increased
by 40%, but the RPD of computational time decreased by
100%. If performance is defined as the difference between
RPD of computation time and RPD of SOC RMSE, the
proposed method has the best performance among EKFs.
In addition, the user can adjust the calculation time and SOC
RMSE according to the number (N ) of SOC sections as
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FIGURE 15. Comparison of SOC estimation performance of adaptive
battery parameter-based EKF and conventional EKF: (a) SOC estimation
results, (b) SOC estimation error.

FIGURE 16. RMSE and computation time of adaptive battery
parameter-based EKF and conventional EKF.

shown in Fig. 6. The proposed method can satisfy the SOC
estimation accuracy required by the product with a lower
amount of computation than previous EKFs using adaptive
battery parameters. For this reason, it is more likely to be
applied to commercial products than other improved EKFs.

VI. CONCLUSION
An enhanced EKF with adaptive battery parameters that
change according to the SOC was proposed to improve SOC
estimation accuracy. For this purpose, the entire SOC was
divided into several sections considering the deviation of the

parameter values according to the SOC. Subsequently, the
average values for each SOC section were calculated, and
the values of the battery parameters were updated with the
average values according to the SOC. To verify the perfor-
mance of the proposed EKF, the parameters of commercial
Li-ion batteries (Samsung 21700–50E) were extracted with
discharge currents of 1C- and 2C-rates at ambient tempera-
tures of 0, 25, and 45 ◦C, and MATLAB simulations were
performed. The proposed EKF achieved more accurate SOC
estimation than the conventional EKF under all the simula-
tion conditions by updating the parameters with the average
values of each SOC section according to the SOC. Com-
pared to the conventional EKF, the maximum reduced RMSE
and maximum error of the proposed method were 49.37%
and 56.41%, respectively. The simulation results verify that
the proposed method using adaptive battery parameters can
improve the SOC estimation accuracy of the EKF. In future
research, we intend to verify the performance of the proposed
method using various dynamic battery profiles, such as the
actual operation of an electric vehicle.
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