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ABSTRACT An image in a display device under strong illuminance can be perceived as darker than the
original due to the nature of the human visual system (HVS). In order to alleviate this degradation in terms
of software, existing schemes employ global luminance compensation or tone mapping. However, since such
approaches focus on restoring luminance only, it has a fundamental drawback that chrominance cannot be
sufficiently restored. Also, the previous approaches seldom provide acceptable visibility because it does not
consider the content of an input image. Furthermore, because they focus mainly on global image quality,
they may show unsatisfactory image quality for certain local areas. This paper introduces VisibilityNet,
a neural network model designed to restore both chrominance and luminance. By leveraging VisibilityNet,
we generate an optimally enhanced dataset tailored to the ambient light conditions. Furthermore, employing
the generated dataset and a convolutional neural network (CNN), we estimate weighted piece-wise linear
enhancement curves (WPLECs) that take into account both ambient light and image content. TheseWPLECs
effectively enhance global contrast by addressing both luminance and chrominance aspects. Ultimately,
through the utilization of a salient object detection algorithm that emulates the HVS, visibility enhancement
is achieved not only for the overall region but also for visually salient areas. We verified the performance of
the proposed method by comparing it with five existing approaches in terms of two quantitative metrics for a
dataset we built ourselves. Experimental findings substantiate that the proposed method surpasses alternative
approaches by significantly improving visibility.

INDEX TERMS Visibility improvement, ambient light, piece-wise linear curve, salient object enhancement.

I. INTRODUCTION
Thanks to the help of semiconductor technology, mobile
display devices with ultra-high resolution have made
rapid progress. Furthermore, advancements in deep learn-
ing models like Convolutional Neural Networks (CNNs)
have led to the development of many technologies
that outperform traditional image quality enhancement
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algorithms [1], [2], [3]. As a result, we can now easily enjoy
high-resolution videos anytime and anywhere. However,
many display devices are still vulnerable to changes in
ambient light. For example, when the ambient light is stronger
than the display brightness as in an outdoor environment, the
human visual system (HVS) suffers from a phenomenon that
perceives an image on the display device to be darker than the
original (Fig. 1). This degradation becomes more severe as
the brightness gap between the display and the ambient light
increases, which means a decrease in visibility on the display
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FIGURE 1. Visibility comparison under a light box set to indoors and
outdoors.

device. Therefore, a new image enhancement algorithm is
required tominimize visibility degradation due to the ambient
light.

To solve this problem, a hardware-based approach [4] was
presented where the display’s brightness can be augmented
by modulating the current of the back-light unit (BLU) in
response to the measured illuminance. However, in outdoor
settings, it is inevitable to fully eliminate the influence
of ambient light, as noted by Kim et al. [5]. Additionally,
the current hardware-based approach falls short of attain-
ing satisfactory visibility. To overcome these limitations,
alternative algorithmic approaches can be explored. As a
rather trivial one, there are general contrast-enhancement
techniques. For instance, we can increase visibility by using
contrast-enhancement such as histogram equalization [6],
[7] and multi-exposure image fusion [8], [9], [10]. The
contrast of images can be enhanced through general image
enhancement techniques [11], [12], [13] to improve images
taken in diverse challenging environments (e.g., uneven
illumination, complex underexposure, etc). In addition, there
are low-light image enhancement techniques that aim to
enhance the contrast of only images taken in low illumi-
nation environments [14], [15], [16], [17]. However, gen-
eral contrast-enhancement techniques and low-light image
enhancement techniques never consider degradation due to
ambient light. That is, they have a disadvantage in that
they cannot adjust image quality according to ambient light.
Note that our goal is not to improve images captured
in a diverse environment, but to improve images to look
as similar as possible to the source image in a situation
where the displayed image is degraded by ambient light.
A more advanced approach can be ambient-light-adaptive
image enhancement. But it focuses only on the luminance
component, so it may suffer from color distortion [18], or it
does not sufficiently improve the chrominance component(s).
In addition, since the previous approach concentrates on
global compensation only, it can face a decrease in local
contrast [19]. We already proposed a solution [19] to resolve
the limitations of previous works. In [19], we utilized deep
learning techniques to generate pseudo-ground-truths (GTs).
These GTs consist of images that have been adaptively

enhanced to match the ambient light conditions. Drawing
upon the generated dataset, the authors introduced piece-wise
linear enhancement curves (PLECs) to improve global
contrast, and further employed local contrast enhancement
(LCE) techniques to enhance local contrast. However, the
pseudo-GT method proposed by Lee et al. [19] fell short of
effectively enhancing chrominance. Furthermore, both the
PLECs and the LCE approaches have a drawback in that they
do not take into account image content or the characteristics
of the HVS.

This paper proposes the following solutions to overcome
the limitations of our prior work [19]. First, we propose
VisibilityNet to learn even chrominance components. Visi-
bilityNet is trained in two steps: Step 1 enhances luminance
components, and Step 2 trains the chrominance components
by using the enhanced luminance components. Second,
we propose weighted piece-wise linear enhancement curves
(WPLECs). CNN extracts image content and then regress
WPLECs taking the image content into account. Third,
we propose salient object enhancement (SOE) which further
improves the visibility of the main area by introducing
a specific salient object detection (SOD) technique [20].
Therefore, the proposed method can effectively improve both
luminance and chrominance in a content-adaptive fashion.
Experiment results show that the proposed method provides
qualitatively better visibility than previous methods under
several ambient light settings, and they also provide a mean
opinion score (MOS) as high as 0.59.

The contributions of the proposed method are summarized
as follows:

· Using deep learning, we generated a dataset adaptive to
ambient light without reference images.

· We introduced, for the first time, a CNN approach that
enhances global contrast while considering the content
of the image.

· We introduced SOD to achieve better visibility consid-
ering human perception under ambient light.

This paper is organized as follows: Section II introduces
general contrast-enhancement techniques, low-light image
enhancement techniques, and the conventional ambient-
light-adaptive algorithm. Section III describes the pro-
posed method: Section III-A explains our prior work
in detail, Section III-B depicts the ambient-light-adaptive
pseudo-GT generation with VisibilityNet, Section III-C
describes content-aware global contrast-enhancement using
the pseudo-GT, and Section III-D describes SOE to improve
visibility of the main object(s). Section IV presents the
qualitative evaluation results. Section V reports an ablation
study of each step of the proposed method. Section VI deals
with matters to be discussed later in our task and Section VII
gives concluding remarks.

II. RELATED WORKS
A. GENERAL CONTRAST-ENHANCEMENT
The most basic solution to improve visibility may be general
contrast-enhancement. For example, CLAHE [6] divides an
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image into patches and applies histogram equalization on a
patch basis; the logarithmic model [21] properly adjusts the
image histogram through gamma correction; and SEF [8],
[22] fuses multi-exposure images. Ye et al. [23] proposed
LFIENet based on unsupervised learning. LFIENet enhances
images by fusing the 4D light field (LF)-DSLR pair images.
However, these algorithms have an inherent disadvantage in
that they are not adaptive to ambient light.

B. LOW-LIGHT IMAGE ENHANCEMENT
The next thing to consider is low-light image enhancement
(LLIE), which targets only for low-light images. For example,
Li et al. [24] proposed progress-recursive network to enhance
both global and local features. Ren et al. [25] enhanced
low-light images with using the response characteristics of
cameras. Guo et al. [17] proposed a lightweight DCE-Net
which estimates pixel-wise and high order curves for
low-light image enhancement. Xu et al. [26] applied STANet
to preserve structure and texture features of enhanced image.
Ma et al. [27] proposed an unsupervised learning model
based on a cascaded learning process, and generated images
with vivid color and sharp outline. Xu et al. [28] generated
images with noise effectively removed through a model
to which a signal-to-noise-ratio (SNR)-aware transformer
and self-attention module were applied. Yang et al. [29]
proposed a lightingNet consisting of a sub-network and
ViT [30] to enhance local high level features and generate
global fine-tuned features. Wang et al. [31] employed
multi-scale modules to extract local and global features.
And they effectively exploited angular correlation through
3D multi-scale modules based on extracted local and global
information. Note that these algorithms aim to enhance the
contrast of images taken in low light conditions. On the other
hand, our task, i.e., visibility improvement, aims to improve
images that are perceived as dark due to ambient light to look
similar to the source images. Therefore, LLIEs are inevitably
different from our task in terms of not only purpose but also
approach. It is expected that the LLIE techniques can improve
the visibility deteriorated by ambient light to some extent
by enhancing the contrast of low-light images. However,
LLIE does not consider the ambient light at all, so it is not
adaptive to this. Furthermore, it may rather cause unwanted
enhancement in a bright area other than the target.

C. AMBIENT-LIGHT-ADAPTIVE IMAGE ENHANCEMENT
To overcome the shortcomings in contrast-enhancement
and LLIE, a few ambient-light-adaptive techniques have
been proposed. Kim et al. [5] enhanced global luminance
based on a light-adaptation model and compensated for
chrominance according to ambient light. Mantiuk et al. [32]
proposed piece-wise linear curve-based luminance com-
pensation using a display adaptive tone mapping opera-
tion (DATMO), and performed chrominace compensation
through a desaturated color-to-luminance ratio [33]. Wang
and Jung [34] applied low-level enhancement using the

Bartleson-Breneman equation [35] prior to tone mapping.
Su et al. [36] succeeded in formulating constraint optimiza-
tion to find the best trade-off from among luminance
enhancement, contrast-enhancement, and distortion mini-
mization. However, Kim et al.’s method [5] has a color cast
problem [18]. Also, Mantiuk et al. [32], Wang and Jung [34],
and Su et al. [36] simply defined the luminance enhancement
level as a ratio and then compensated for the chrominance
components by applying that ratio to the color channel as
is, so performance is bound to be limited [19]. In summary,
the above techniques made less of an effort to improve
chrominance compared to improving luminance, and the
disadvantage is not sufficiently improving color information.
Furthermore, since they only perform global compensation,
their approaches can lose local details during the process.

III. PROPOSED METHOD
A. PRIOR WORK
Before explaining the proposed method, we briefly introduce
our prior work [19], which consists of a global contrast
enhancement (GCE) step and a local contrast enhancement
(LCE) step. GCE learns piece-wise linear enhancement
curves (PLECs) using pseudo-GTs from pseudo-GT gener-
ation (PGG). Here, to achieve better visibility, PLECs for
luminance and chrominance are regressed together. LCE
detects a local area where the contrast is somewhat reduced
due to GCE, and enhances the contrast of the local area.

1) PSEUDO-GT GENERATION
Any public dataset considering ambient light is not available
yet. So, we generated a dataset according to ambient light by
ourselves. Since reference images for generating pseudo-GTs
do not exist, we used a degradation model, D [37], that
simulates a phenomenon in which visibility of displayed
images deteriorates due to the ambient light. D is calculated
for the purpose of simultaneously reducing the perceptible
contrast range and the noticeable grayscale differences. For
a detailed description of this, please refer to Section 3.3.1 of
Bauer et al.’s [37]. Based on D, we generated a new dataset
considering ambient light without reference images. The
luminance component (Y channel) of the pseudo-GT was
obtained by a neural network model called VENet. VENet
was trained to minimize the difference betweenluminance
YS of source image IS and the D(YP) applied with D to
the enhanced luminance, YP. To restore the chrominance
information lost due to ambient light, we defined Eq. (1) by
modifying the CbCr fusion formula [38], which creates the
color of the image that is fused to the under-exposed and
over-exposed images.We apply this concept to our task. After
designating the under/over-exposed images as the degraded
image and the original image, respectively, in the existing
formula, an improved image is derived by calculating the
inverse function. Eq. (1) is as follows. Here, CP denotes the
enhanced chrominance component:

CP = CIS (1 −
(CD(IS )/CS − 1)|CD(IS ) − τ |

2|CS − τ | − |CD(IS ) − τ |
), (1)
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FIGURE 2. The pseudo-GT from our prior work: (a) shows the Y
components of source image YS and result image YP enhanced by VENet,
and (b) shows the source image IS and result image IP after
concatenating YP with chrominance enhanced by Eq. (1). Here, the
ambient light of D was set to 10,000lux.

where τ was set to 128. First, the chrominance CD(IS ) withD
applied to IS and the chrominance CS of the IS , which have
reduced expressible contrast due to the deterioration model
with the characteristics of under-exposed and fused images,
respectively, are set as inputs. Then, using the above modified
formula, a color with improved contrast is obtained within a
limited range.

Note that the PGG from [19] did not consider the
correlation between chrominance and luminance. Fig. 2
demonstrates the limitation. First, we observe that YP pre-
serves the entire information from YS while greatly enhancing
the luminance component. In D(YP), the luminance is
appropriately enhanced according to the ambient light. On the
other hand, in IP and D(IP), a sort of wash-out phenomenon
is observed. Thus, we require a novel solution beyond PGG
from [19] which can enhance even chrominance reliably.

2) GLOBAL CONTRAST ENHANCEMENT
GCE enhances the global contrast of an image by using
PLECs trained with pseudo-GTs. PLECs are mapping curves
that play a role similar to gamma correction. In this paper,
they are discretely implementedwith seven control points that
equally divide the range of each channel into eight sections.
According to our experiment, if there are too many control
points (e.g., 16 or more), the fitting tends to fail during
learning. That is, it shows high variance. Also, if the number
of control points is too small (e.g., 4 or less), it was rather
difficult to perform proper color correction. That is, the bias
increases. Based on these experimental results, we set the
number of control points to eight. Here, the slope (ai) of each
section is learned so the PLECs-applied image IPLEC is close
to the pseudo-GT. Also, for monotonicity of PLECs, a ReLU
is added so that ai is always positive. Trained slope vectors A
can be expressed by Eq. (2).

Aj = ReLU([a1, a2, . . . , a8]), j ∈ {S,V } (2)

FIGURE 3. Limitations of the previous GCE. (a) Since only average
brightness is considered, the bright area (e.g., the swan) in the image is
not taken into account. (b) With under-enhancement, the low gray scale
region needs to be further enhanced, and with over-enhancement, details
of the dog’s fur or grass disappear.

FIGURE 4. (a) is the input of LCE, (b) is the output of LCE (final output of
prior work), and (c) is the weight map of LCE. (c) only detects the
background, not the salient object. Also, looking at (b) through (c), the
contrast of the horse, which is a salient object, is lowered, and
background noise is amplified. As a result, overall visibility decreased.

In order to prevent color distortion and enhance both lumi-
nance and chrominance, PLECs are learned considering the
correlations between saturation (S) and value (V) channels
of HSV color format. So, two curves exist for each channel.
Meanwhile, since the degree of degradation is affected by
the image brightness, we regress the PLECs for three classes
(dark, medium, bright). The class of an image is determined
by the average brightness of the image.

However, this GCE has the following drawback. In general,
scenes in the wild can be represented with various features
such as context, object, and brightness distribution. So,
if an image is classified by only one scalar, e.g., average
brightness, various other features of the image cannot be
reflected, as seen in Fig. 3 (a). In addition, hard classification
causes a problemwhere images near the decision boundary of
the classifier may be under- or over-enhanced (see Fig. 3 (b)).
Therefore, we need to regress the PLECs optimized for each
image while considering the image content.

3) LOCAL CONTRAST ENHANCEMENT
LCE adjusts pixels where the contrast deteriorates due to
GCE. First, candidate pixels are detected on a patch basis as
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follow: How much the local contrast of D(YPLEC) is lowered
compared to YS is measured.

M = (
local contrast(YS )

local contrast(D(YPLEC)) + 10−7 ), (3)

where the local contrast is the variance of a moving 5 ×

5 window. Then, weight W can be obtained through a
percentile thresholding ofM per class. WithW as a blending
map, we blend IPLEC and the contrast-enhanced image with
CLAHE [6].
However, LCE from [19] has the following two limitations.

First, LCE never considers the characteristics of our HVS.
When people perceive an image, they focus on the salient
object rather than the background. However, LCE determines
the target area only. So, the contrast of the salient object might
be lowered, and the background or noise might be amplified,
which causes degradation in visibility. Fig. 4 shows this
phenomenon. Second, since the old-fashioned CLAHEworks
independently of ambient light, there may be little effect from
contrast enhancement at a certain illuminance.

In the next section, we provide a few solutions to overcome
the limitations of [19], one by one. Fig. 5 illustrates
the whole framework based on the solutions. We gener-
ate an ambient-light-adaptive pseudo-GT considering the
correlation between luminance and chrominance. Using
the pseudo-GT and CNN, image-content-aware contrast-
enhancement of luminance and chrominance is achieved.
Finally, by utilizing salient object detection, contrast in
the salient object is further enhanced. Each step is trained
independently in order. And only (c) and (d) steps are applied
in inference.

B. VisibilityNet
To overcome the disadvantage from the correlation between
chrominance and luminance not being considered in PGG
from [19], we propose a new pseudo-GT generation network
called VisibilityNet. VisibilityNet consists of the two steps as
seen in Fig. 5 (a).

In Step 1, the luminance component (Y channel) is learned
so that the contrast difference between D(YVN) and YS
is minimized. Like PGG’s VENet, we adopt U-Net [39]
as the backbone network. By increasing the number of
channels corresponding to convolution, and by adding batch
normalization, we achieved better stability in learning and
minimized artifacts, which is demonstrated later in Section V.
Loss function LY is as same as LVENet [19] used in PGG, and
the formula forLY is expressed by Eq. (4). Here, the first term
learns the variance within a limited range to be as similar as
possible to the original. In addition, the second term learns
that the local region deteriorated due to D is additionally
improved in terms of SSIM [40].

LY = 2 −
2σYSD(YVN) + ϵ

σ 2
YS + σ 2

D(YVN)
+ ϵ

− SSIM(YmS ,D(YmVN)) (4)

In Step2, using U-Net and the degradation model of the
structure from the previous step, the chrominance component

(Cb/Cr channel) is learned so that contrast is enhanced
considering ambient light while minimizing the chromaticity
distance from the original. In addition, to learn the correlation
with the Y channel from Step 1, the Y, Cb, and Cr channels
of the source image and the Y channel from Step 1 are
concatenated as input. Prior to designing an appropriate
loss function, we need to understand the characteristics
of CbCr channels. Fig. 6 visualizes the CbCr domain.
Fig. 6 (a), representing CbCr in Cartesian coordinates,
shows that learning through simple comparison of CbCr
cannot consider both chromaticity and contrast. On the other
hand, in Fig. 6 (b) showing CbCr in polar coordinate,
each angle θ of Cb and Cr represents chromaticity and
magnitude r represents contrast. So, we transform the CbCr
channels to polar coordinates. As a result, color distortion is
minimized, and chrominance contrast is enhanced according
to the ambient light. The loss function for chrominance
components, LC , consists of two terms. The first term is
the angle loss to minimize the angle difference between
D(CVN) and CS . The angle loss is defined by using the
cosine similarity loss [41] of each chrominance with L2
normalization applied, which is formulated in Eq. (5).

Langle = 1 −
D(CVN) · CS

||D(CVN)|| · ||CS ||
(5)

The second term is the magnitude loss to minimize the
contrast difference between D(CVN) and CS . The magnitude
loss is defined with Eq. (6) by applying SSIM loss [40] to
chrominances:

Lmagnitude = LSSIM(D(CVN),CS ) (6)

The total loss function of chrominance based on the two loss
terms is defined by

LC = λ1Langle + λ2Lmagnitude (7)

Here, λ1 and λ2 are hyperparameters that adjust color
distortion reduction and contrast enhancement, respectively.
We experimentally set λ1 and λ2 to 1.

Fig. 7 shows pseudo-GTs generated by this framework.
IP of PGG suffers from the wash-out phenomenon because
chrominance is enhanced without regard for luminance.
On the other hand, IVN of VisibilityNet shows much better
visual quality.

In summary, VisibilityNet effectively generates luminance
and chrominance suitable for ambient light.

C. CONTENT-AWARE GLOBAL CONTRAST-ENHANCEMENT
In order to overcome the limitations of GCE of [19] caused
by classification considering only average brightness, this
section presents a content-awareGCE, illustrated in Fig. 5 (c).
First, we generate PLECs for each image, (that is, image-

wise PLECs, IIW), which is obtained by overfitting a pair
of ‘IS -IVN’. The independent learning process is illustrated
in Fig. 5 (b). Note that PLECs are generated through a
regression process for the S and V channels of the HSV
color domain. To regress image-specific PLECs, enabling the
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FIGURE 5. Overview of the proposed method. (a), (b), (c), and (d) are the framework of each step, respectively. Note that only (c) and (d) are applied in
inference. Here, IS means the source image. The luminance and chromiance of IS are YS and CS , respectively. HSV channels are represented by H , S,
and V . (a) YVN and CVN mean luminance and chrominance enhanced by VisibilityNet, respectively. IVN is the generated pseudo-GT, and YVN and CVN are
combined. (b) SIW and VIW mean S and V channels enhanced with image-wise PLECs, respectively. H , SIW and VIW are combined to generate image IIW
enhanced with image-wise PLECs. (c) IWPLEC is an image enhanced with WPLECs. (d) ObjS is the salient object of the source image extracted by SOD.
ObjOCE means the object enhanced by OCE, and finally IOurs means our final output.

FIGURE 6. CbCr channels in coordinate systems. (a) Cartesian coordinate
cannot consider both chromaticity and contrast of each chrominance
(Cb or Cr). (b) With polar coordinates, we can check the chromaticity and
contrast of each chrominance through θ and r .

generation of IIW similar to IVN, it is necessary to calculate
the color difference between the two images in the HSV
color domain. Here, the HSV color format is converted to the
Cartesian coordinate system to calculate the color difference
(x = sv · cos h, y = sv · sin h, and z = v). Then, expanding
based on the Euclidean distance, Eq. (2) is derived. Therefore,
the loss function defined below quantifies the color difference
between IIW and IVN.

LPLEC = {(VVN − VIW)2 + S2VNV
2
VN + S2IWV

2
IW

− 2SVNSIWVVNVIW cos (HVN − H )}1/2, (8)

where HVN, SVN, and VVN indicate the H, S, and V channels
of IVN, respectively. H is the H channel of IS , and SIW and
VIW are the S and V channels of IIW. The slope vector of

FIGURE 7. (a) shows source images, (b) and (c) are outputs of PGG and
VisibilityNet, respectively. Both (b) and (c) are enhanced according to
‘sunlight’ condition.

image-wise PLECs is defined by Eq. (9).

Pj = σ (Aj) × 8, j ∈ {S,V } (9)

We set the total sum of Pj to 8 by adding softmax (σ ) to
Eq. (2) and multiplying it by 8, which is the length of Aj.
This way, we can constrain pixel values to be between 0 and
255. Softmax prevents a specific slope of Pj from rapidly
changing or from approaching zero, and it enables learning
that considers the correlation between control points. This
is verified in Section V-B. Fig. 8 (a) illustrates image-wise
PLECs. Note that average brightness and image-wise PLECs
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FIGURE 8. (a) Visualizations of image-wise PLECs in which they are
projected onto a two-dimensional space using PCA. Each point is a
projected image-wise PLECs, and the color of each point indicates the
average intensity of the input image. (b) Classification of image-wise
PLECs when labeling them in terms of average brightness.
(c) Classification of image-wise PLECs through k-means clustering.

FIGURE 9. Example of the base PLECs.

have a low correlation, and the decision boundary of the
intensity-based classifier is unclear, as seen in Fig. 8(b).
This demonstrates that PLEC regression through average
brightness-based classification has its limitations.

To solve this problem, we propose a novel regression
framework, i.e., weighted PLECs (WPLECs) to improve
images in a content-adaptive fashion. We construct the base
PLECs and regress WPLECs in the form of a weighted sum
of the base PLECs, as illustrated in Fig. 5 (c). To determine
the base PLECs, we apply k-means clustering to the image-
wise PLECs. Here, we set k to 3 for a fair comparison with
our prior work. Fig. 8 (c) shows that the decision boundary

is still unclear, but the centroids (black stars) quantize the
overall distribution well. Therefore, we use the centroid of
each cluster as the base PLECs (Fig. 9). Then, to estimate the
weights of base PLECs by taking image content into account,
we use a modified VGG-11 [42]. Some modifications of
the VGG-11 model are as follows: The first is to use two-
dimensional input. Since PLECs are regressed on S and V
channels, the CNN model receives the S and V channels as
input. The second modification is to change the activation
function from a ReLU to tanh. In order to generate weights of
more flexible base PLECs, we use tanh with a range of [-1, 1]
instead of ReLU that always clips negatives to 0. After matrix
multiplication between the weights calculated by VGG-11
and the base PLECs, a softmax operation is applied to obtain
the WPLECs for S and V channels. The loss function for the
WPLECs adopts the L1 loss between the image-wise PLECs
and the WPLECs derived from the weight×base PLECs.

Therefore, unlike PLECs of [19], WPLECs enables to
enhance global contrast considering image content.

D. SALIENT OBJECT ENHANCEMENT
In order to solve the limitation of the previous LCE step
(in which HVS is irrelevant), we propose salient object
enhancement for improving the visibility of the main
object(s) in an image. SOE consists of salient object detection
(SOD) and object contrast-enhancement (OCE). The overall
framework of SOE is illustrated in Fig. 5 (d).

To detect the main object, we utilize the SOD technique
using deep learning. As a computer vision task that extracts
the most attractive region in an image [43], SOD aims to
simulate HVS, which usually focuses on the main object(s).
Comparing the performance of several SOD techniques,
we chose a scene-context-aware SODmodel [20]. In general,
SOD models do not work on images with low brightness or
low contrast. So, we input IWPLEC (with WPLEC applied) to
the SOD model. Then, maskM of the salient object, i.e., the
prediction map is obtained through the SOD model.

Next, we propose OCE to enhance visibility of the salient
object(s) according to ambient light. In order to avoid
over-enhancement of the salient object(s), we define ObjS by
multiplying IS (instead of IWPLEC) byM, and then use ObjS
as input for OCE. Then, OCE is performedwithWPLECs that
is multiplied by a pre-determined coefficient. OCE is defined
by Eq. (10). Here, coef is multiplied to further improve the
visibility of the salient object against the background. In other
words, considering the human visual system that focuses
more on the salient object, the effect of improving visibility
is maximized.

OCE =

{
WPLECs × coef , (coef ≥ 1)
WPLECs, (otherwise)

(10)

where coef is set to log(WPLECs/σ + 1) + α, σ is set to 2,
and α is set to 2.5. An ablation study of OCE is discussed in
Section V-C.
Finally, IOurs is obtained by blending the salient object

ObjOCE with OCE applied and the background from IWPLEC.

87908 VOLUME 11, 2023



J. Lee et al.: Display Visibility Improvement Through Content and Ambient Light-Adaptive Image Enhancement

The blending procedure is defined by Eq. (11).

Blend = MbObjOCE + (1 −Mb)IWPLEC (11)

whereMb denotes the blending map generated by applying
a well-known Gaussian filter to M. When blending an
enhanced salient object and background, artifacts may occur
at object boundaries when discrete binary masks are used.
To prevent this, we use a Gaussian mask to naturally
synthesize the boundary between the salient object and the
background.

Therefore, the proposed method, which is composed
of GCE that considers ambient light as well as image
content, and LCE to further enhance the salient object(s),
accomplishes visibility improvement suitable for our
HVS.

IV. EXPERIMENTS
This section concentrates on qualitative comparison with
previous methods. Section IV-A describes the experiment
configuration, and Section IV-B shows the results in terms
of mean opinion score.

A. EXPERIMENTAL CONFIGURATION
1) DATASET
The dataset for PGG and GCE learning is from our prior
work, consisting of 600 real-world scenes with various
brightness ranges. The training set was built through web
crawling and consists of 500 images in total. The test
set comprised 100 images, 60 sampled from Ward’s HDR
dataset [44], which is also consisted of real-world images, and
40 obtained by web crawling. Here, the image-wise PLECs
has a dimension size of 16 including slopes for S and V.

2) AMBIENT LIGHT
We considered three ambient light conditions for this exper-
iment: The strongest illuminance ‘sunlight’, the medium
illuminance ‘overcast’, and the weakest illuminance ‘office’,
corresponding to 10,000 lux, 2,000 lux, and 500 lux,
respectively. For qualitative evaluation, the degraded images
due to external illuminance are visualized through a degra-
dation model. Also, the experimental environment for MOS
evaluation was set to ‘sunlight’ condition, which is the
strongest illuminance among ambient light condition. For this
experiment, we used a light box that can adjust illuminance
up to 10 levels.

3) MOS
MOS was measured on nine image sets. Each set was
composed by randomly choosing output from the proposed
and other methods. The visibility of each image scored
between 1 (poor) and 5 (very good), and the average score
of all image sets became the final score. Unfortunately,
since the degradation model highly depends on the display,
experiments with various commercial displays would cost too
much. So, we adopted the Samsung Galaxy Tab S7 as the

TABLE 1. MOS evaluation for the ‘sunlight’ condition.

target display for this paper. Official parameters that can be
found out from the manufacturer are set as display parameters
(i.e., maximum contrast, brightness, etc.) for degradation
modeling.

The total number of volunteer participants for MOS
evaluation was 11 (nine males and two females) aged 24
to 30.

B. QUALITATIVE EVALUATION
For benchmarking, we adopted several previous works:
SEF [8], which is a general contrast-enhancement tech-
nique; SCI [27] and SNR [28], which are low-light image
enhancement techniques; DATMO [32], which has the only
code available among the ambient-light adaptive image
enhancement techniques; and our prior work [19]. Here,
we only utilize the official code for fairness of comparison.
Here, the result image for eachmethod is expressed by putting
the corresponding method name in the subscript of I .

Fig. 10 shows the qualitative evaluation results. First,
an LLIE technique ISCI significantly lost image informa-
tion due to over-enhancement in ‘office’ and ‘sunlight’.
In ‘overcast’, ISCI was washed-out compared to the original
image. In case of ISNR, the parking lot was inappropriately
improved in ‘office’. ISNR was over-enhanced in ‘overcast’.
In ‘sunlight’, the color of the car and sky area was not
maintained. IS suffered from some artifacts and distortions
in the sky area under the ‘office’ and ‘sunlight’ conditions.
ISEF suffered from some artifacts and distortions in the
sky area under the ‘office’ and ‘sunlight’ conditions. Also,
in the ‘overcast’ condition, halo artifacts occurred around the
candles. With IDATMO, global luminance was enhanced under
‘office’ and ‘sunlight’ conditions, but the sky area washed-
out. In the ‘overcast’ condition, IDATMO showed halo artifacts
around the candles, like ISEF. With IPrior to which [19]
was applied, the wash-out phenomenon under ‘office’ and
‘sunlight’ conditions was mitigated, and chrominance was
better enhanced, compared to IDATMO. Also, the halo artifacts
under ‘overcast’ condition were properly resolved. However,
IPrior still has limitations. In (a) of office, the contrast
of a salient object, e.g., car, is not sufficiently improved,
so the boundary between the car and the shadow is not
well distinguished in (b). In (b) of overcast, we can observe
a wash-out phenomenon in which color information is not
improved as much as brightness information when compared
to IS of (a). In (a) of ‘sunlight’, the red and blue cars
are not sufficiently improved, so the information of each
car is lost in (b). Especially in the blue car, we cannot
distinguish between the object and the floor. However,
in IOurs, the above problems are successfully solved. From
the qualitative results of IOurs, we can find that WPLECs
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FIGURE 10. Qualitative comparison of the proposed method with previous works. In each condition, (a) is the enhanced image by
each technique, and (b) results from simulating the image degraded by each condition using degradation model, D.

and SOE of the proposed method effectively improved the
luminance and chrominance. Qualitative evaluations from
experiments indicate that traditional image enhancement
techniques that neglect ambient light yield unsatisfactory
results. In contrast, the proposed method demonstrates adap-
tive image quality improvement, effectively accommodating
the image’s specific characteristics across diverse ambient
lighting conditions.

Next, to prove that the proposed method works well even
in a real environment, Table 1 shows evaluation results in
terms of MOS. In this experiment, the visibility scores are
averaged at the actual ‘sunlight’ illuminance where visibility
improvement is most difficult.

As benchmarking techniques, we set up DATMO and
our prior work because they pursue the same task as
ours, that is, image enhancement technique considering
external illumination. Source images show the lowest score
due to degradation by ambient light. DATMO considers
ambient light, so DATMO usually scores 1.7 higher than
source images. However, since DATMO considers only
luminance and not chrominance, it faces a so-called wash-
out phenomenon. Thus, DATMO scores about 0.3 lower than
even our prior work. On the other hand, the proposed method
pursues salient object enhancement considering perception
as well as luminance/chrominance improvement considering
image content. Therefore, the proposed method achieves

87910 VOLUME 11, 2023



J. Lee et al.: Display Visibility Improvement Through Content and Ambient Light-Adaptive Image Enhancement

TABLE 2. Quantitative results of each NR metrics. Note: SUN=sunlight,
OVC=overcast, OFC=office.

the best MOS score while further improving the visibility
of salient object(s). To summarize, compared to source,
DATMO, and our prior work, the proposed method provided
higher MOS by 2.56, 0.86, and 0.58 for the three illuminance
conditions, respectively.

C. QUANTITATIVE EVALUATION
There is no reference image for our result IOurs. So, to quan-
titatively evaluate IOurs, we employ two no-reference (NR)
metrics, i.e., NIQE [45] and MUSIQ [46]. NIQE measures
the quality of an image by computing the degree of distortion
(blur, artifact, etc.) of the image. The lower the NIQE score,
the better the quality. MUSIQ transforms an input image into
multi-scale representations with global and local views to
capture image quality at different granularities. The higher
the MUSIQ score, the better the quality. Since we aim to
improve the visibility of images that are degraded by ambient
light, we measured metric scores after applying a degradation
model D to the resulting images. Table 2 shows the results.
As in the qualitative evaluation, all techniques have lower
scores as the ambient light intensity increases. That is,
visibility is reduced. First, the NIQEs ofD(ISCI) andD(ISNR)
improved by SCI and SNR, which are LLIE techniques, are
4.829 and 7.974 on average, respectively, and their MUSIQs
are 31.998 and 26.901 on average, respectively. That is,
of D(ISCI) and D(ISNR) are worse than D(IS ) to which no
improvement is applied, by 1.86% and 68.19%, respectively
in terms of NIQE and by 6.00% and 20.97%, respectively in
terms of MUSIQ. The LLIE techniques show such results
because they target only low-light images regardless of
ambient light, i.e., because their purpose is clearly different
from ours. Next, in the case of D(ISEF) improved by SEF,
which is a general contrast-enhancement technique that does
not consider ambient light, NIQE and MUSIQ were 1.47%
and 1.14% better than D(IS ), respectively. However, this is
insignificant.D(IDATMO), which enhances only luminance by
considering ambient light, showed better NIQE and MUSIQ
by 13.10% and 5.78%, respectively, than D(IS ). In the case
of D(IPrior ) considering chrominance as well as luminance,
NIQE increased by 14.72% and MUSIQ by 7.49% compared
to D(IS ). Thus, IPrior provides better visibility compared to
DATMO. Finally, in the case of IOurs, NIQE improved by
15.69% and MUSIQ by 9.91% compared to D(IS ). This is
the most significant visibility improvement. Therefore, it is

TABLE 3. Comparisons of model complexities.

experimentally proven that the proposed method has the best
image quality in any ambient light environment.

To analyze the complexity of each model, we compare
the run-time per 1M pixel, the number of model parameters,
and the model size. Table 3 shows the analysis result. SEF,
DATMO, and prior work operate rule-based, so they have
no learnable parameters. Therefore, we measured run-times
on a CPU (i.e. Intel CPU i7-8700@3.2GHz). Note that here,
PLECs of prior work are regressed through deep learning, but
are implemented in the form of a so-called ‘Look Up Table’
by saving slopes during inference. On the other hand, SCI,
SNR, and Ours based on deep learning were tested on a GPU
(i.e., NVIDIA Gefore 1080 Ti).

V. ABLATION STUDY
A. VisibilityNet
This section compares the performance of PGG [19] and
VisibilityNet. First, Fig. 11 demonstrates the structural effect
from VisibiltyNet. That is, it compares YP and YVN, which
are the luminance components output from VENet and
VisibilityNet, respectively. VENet did not fully consider
image content due to an insufficient number of channels and
the absence of batch normalization. This makes learning by
VENet unstable, and artifacts were eventually observed in
the sky area (top row) and shadows area (bottom row) of YP.
On the other hand, in VisibilityNet, the artifact problem was
mitigated by sufficiently considering image content along
with stable learning.

Next, we compare the chrominance components produced
by PGG’s CF and by VisibilityNet. Here, to see only
chrominance, luminance was set to YVN. Fig. 12 shows the
chrominance output from both methods. IVN did not suffer
from the wash-out phenomenon, compared to IP.
Therefore, VisibilityNet generates a pseudo-GT adaptive to

the ambient light and image content, providing content-aware
GCE.

B. CONTENT-AWARE GLOBAL CONTRAST-ENHANCEMENT
In this experiment, we used IIW as the reference image and
employed PSNR and SSIM as evaluation metrics. First, take
a look at Fig. 13, which shows the effect from softmax.
Softmax makes curves smoother by preventing slopes from
becoming zero or changing rapidly in a specific section,
as seen in Fig. 13 (a). Softmax mitigates the contour artifacts
and saturation as in the red boxes of IIW in Fig. 13 (b).
Second, in order to examine the effect from consider-

ing image content, Fig. 14 analyzes IIPLEC and IWPLEC
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FIGURE 11. Performance comparison of PGG’s VENet and VisibilityNet
under ‘sunlight’ condition. (a), (b) and (c) show the Y component of the
source image, the result from VENet of our prior work, and the result from
VisibilityNet, respectively. Both (b) and (c) are enhanced according to
‘sunlight’ condition.

FIGURE 12. (a) is the source image. (b) and (c) shows the output of PGG
and VisibilityNet, respectively. The top and bottom rows correspond to
‘sunlight’ and ‘overcast’ environments, respectively.

from IPLECs and WPLECs, respectively. Here, IPLECs
is regressed through GCE from [19] using IVN. IIPLEC
provided better contrast than IS . However, it shows under-
enhancement under ‘office’ and ‘overcast’ condition, and
suffers from over-enhancement under ‘sunlight’ (red boxes).
On the other hand, IWPLEC stably enhanced both luminance
and chrominance without under- and over-enhancement.
In addition, Table 4 proves that IWPLEC had a higher MOS
than IIPLEC, indicating that IWPLEC provides better visibility
even in an real environment. Third, Table 5 shows that
the PSNR and SSIM of IWPLEC increased by 1.87dB and
0.005 on average, respectively, compared to IIPLEC. This
proves that image content is a better criterion for classi-
fication than average brightness. As a result, we conclude
that content-aware WPLECs quantitatively and qualitatively
outperforms IPLECs.

FIGURE 13. The effect of softmax. (a) curves with or without softmax, and
(b) results from the curves in (a).

TABLE 4. MOS comparison of IPLECs and WPLECs under ‘sunlight’
condition.

TABLE 5. Comparison of PSNR and SSIM from IPLECs and WPLECs
according to ambient light. Note: SUN=sunlight, OVC=overcast,
OFC=office.

TABLE 6. MOS of SOE under ‘sunlight’ condition.

In addition, Fig. 15 analyzes quantitative performance
according to k from content-aware GCE. In this experiment,
the ambient light was ‘sunlight’. We can see that PSNR
and SSIM tended to increase as k increased. Here, k=7 was
the best, but the performance gap based on k was not so
significant. Therefore, we set k to 3 considering the training
cost.

C. SALIENT OBJECT ENHANCEMENT
This section presents two experimental results fromSOE. The
first experiment was to verify the effect of OCE. Specifically,
an ablation study according to the OCE coefficient is
conducted. Here, we considered three types of coefficient.
The first was 1 as the most trivial. This means that OCE
applied WPLECs reflecting the object characteristics as is.
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FIGURE 14. Comparison of IPLECs and WPLECs. The top, middle, bottom rows correspond to the ‘office’, ‘overcast’, and ‘sunlight’ environments,
respectively.

FIGURE 15. Performance according to k under ‘sunlight’ condition (k=3,
5, 7) (a) and (b) show PSNR and SSIM, respectively, when WPLECs is
trained according to k .

The second coefficient experimentally explored was 1.2. The
third coefficient, coef , was adaptively determined with a
logarithmic function. This maintains WPLECs from a point
where coef becomes smaller than WPLECs, which prevents
the under-enhancement phenomenon.

Fig. 16 compares OCE results where the above three
coefficients were applied. For clearer observation, we show
only salient objects cropped from the resulting images.
Fig 16 (a) has better global luminance and chrominance
than IS , but deteriorated in terms of object contrast and
detail. Fig 16 (b) had more brightness and sharper saturation
than Fig. 16 (a), but tended towards over-enhancement.
On the other hand, Fig. 16 (c), to which the proposed OCE
was applied, preserved the original mural pattern (top row)
and maintained details of the structure well (bottom row).
At the same time, contrast improved, resulting in much better
visibility.

FIGURE 16. Images with OCE applied in a ‘sunlight’ condition.
(a), (b), and (c) correspond to three coefficients, i.e., 1, 1.2, and the
logarithmic function, respectively.

The second experiment compared SOE with LCE of [19].
The two methods were applied to IWPLEC. Fig. 17 shows
the results, as well as an additional image to which
D was applied. Note that salient objects are highlighted
properly.

Under ‘office’ condition, IWPLEC+LCE became darker than
IWPLEC because of the characteristics of CLAHE. So, when
D was applied, visibility was somewhat decreased. On the
other hand, looking at the petals of IWPLEC+SOE, we observe
better contrast than IWPLEC. Under ‘overcast’ condition,
the face area of IWPLEC+LCE hardly changed, compared to
IWPLEC. Instead, the contrast of the background seems to have
improved. Even inD(IWPLEC+LCE), it is difficult to recognize
faces as in D(IWPLEC). But IWPLEC+SOE properly enhanced
the face area as a salient object. Also, the face area in
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FIGURE 17. Visual quality comparison of LCE and SOE.

D(IWPLEC+SOE) is recognizable. Under ‘sunlight’ condition,
the salient object (the building) from IWPLEC does not show
acceptable contrast. Although IWPLEC+LCE was better overall
than IWPLEC, D(IWPLEC+LCE) produced less visibility than
D(IWPLEC). On the other hand, the contrast of the building
in IWPLEC+SOE was greatly enhanced, and the building area is
clearly recognized in D(IWPLEC+SOE).
Additionally, Table 6 evaluated the proposed SOE in terms

of MOS. Note that SOE provided a MOS 1.13 higher than
LCE. This proves that SOE outperforms LCE even in the
wild.

VI. DISCUSSION
This paper presents a software solution to mitigate the
phenomenon that the displayed image is perceived as darker
than the source image due to our human visual system when
viewing the displayed image in an ambient light environment.
However, various distortions (e.g., noise) other than ambient
lighting issue can occur. Unfortunately, until now, we have
not been able to find a model that simulates those distortions.
If such a degradation model is available in the future,
a method for improving image quality adaptive to various
distortions can be devised.

Next, the degradation model we used here considers the
brightness (lux) of ambient light and the display specification
to simulate how the displayed image can be perceived at a
specific lux. Accordingly, we designed a model with only
the lux of the ambient light as a parameter, and used a
lighting box for experiments according to lux. That is, only
artificial light sources are considered in this paper. As a
result, the proposed method has limitations in handling
various cases (e.g., non-uniform lighting, backlit scenarios,
etc) that can occur in natural light sources. Since the
variability between natural light source and artificial light
source definitely exists, research on this will be needed in the
future.

VII. CONCLUSION
Our proposed framework presents an adaptive contrast-
enhancement approach that enhances visibility in diverse
ambient light conditions while considering image content.
Initially, a pseudo-ground-truth (GT) dataset is generated,
optimized for external illuminance, through degradation
modeling and neural networks. Subsequently, utilizing the
generated dataset and a convolutional neural network (CNN)
model, mapping curves are trained, considering the image
content. Consequently, global luminance and chrominance
are improved using these mapping curves. Moreover,
leveraging salient object detection techniques that simulate
the human visual system (HVS), the contrast of salient
object(s) is further enhanced. By conducting qualitative
evaluations of image quality, we establish the superiority
of the proposed method over conventional approaches
(including our previous work) across diverse ambient light
environments. Furthermore, MOS evaluations demonstrate
that the proposed method significantly enhances visibility
compared to conventional methods, even in real-world
scenarios. In conclusion, this paper presents an adaptive
solution for visibility improvement that effectively considers
both ambient light conditions and image content.

However, the proposed method does have certain limita-
tions. Firstly, it only considers three specific ambient light
conditions, potentially limiting its generalizability. Secondly,
the modified VGG-11 model used in content-adaptive global
contrast enhancement (GCE) is not specifically optimized
for ambient light and may be too computationally heavy for
mobile environments. Thirdly, there is scope for enhancing
the performance of object contrast enhancement (OCE)
specifically for salient objects. Overcoming these limitations
will be the focus of our future work.
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