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ABSTRACT In the Smart Factory environment of the 4th industrial revolution, much data is generated from
equipment, IoT sensors, and a wide range of manufacturing systems. As manufacturing sites are scattered
around the world, information exchange between geographically remote factories is ever more necessary.
Also, higher quality and effectivemanagement can be achieved by integrating and analyzing the collected and
refined data and deriving organic results in the ever-rapidly changing manufacturing environment. However,
as the main factory consists of a separate network with much data generated, it is highly difficult to gather
all data into one and refine it. The most widely used method of data gathering at present has an architecture
where data is linked through integration of the centrally configured solutions for data gathering and linkage.
In other words, legacy systems most commonly used in manufacturing sites such as ERP, MES, WMS, etc.
use the central system called ESB or EAI, to collect data with the SOA method for inter-system data linkage
and collection and pass it on to another legacy system. The centralized method is not suitable for gathering
and converging data generated from dozens or hundreds of different factories that are regionally dispersed
or made up of independent networks and are also extremely vulnerable in terms of security and safety. This
article aims to investigate how to stably and effectively exchange and collect data in geographically remote,
independent networks using Apache Kafka, one of the big data ecosystems, and how to enable easy analysis
of such data so that users can effectively utilize it.

INDEX TERMS Smart factory, Apache Kafka, ESB, EAI, data link, elastic search, Zookeeper, grid network.

I. INTRODUCTION
The entire world is going through an unprecedented environ-
ment, namely, COVID-19. The non-face-to-face operations
due to COVID-19 have led to increased rates of teleworking,
and social change such as work-life balance has also led to
reduced working hours. Furthermore, as global companies
increase in number, geographical boundaries are beginning
to disappear. Amidst the changes in working hours and envi-
ronment, there arose a need for a method that enables quick
and effective work performance. In order to solve the prob-
lems outlined above, companies have introduced a number of
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business systems such as ERP, HR, etc., and the systems have
even been distributed due to globalization.

While manufacturers continue to make further use of solu-
tions in smart factories and non-face-to-face environments,
information is rather more distributed, decreasing work effi-
ciency. Efforts are made to solve this problem and find ways
to integrate the information into one for use and to effec-
tively use diverse systems, and a demand for a system that
accurately and quickly notifies the tasks at hand, rather than
a complex and difficult system, is higher than ever before.
At present, each system separately notifies the tasks; and only
some systems are equipped with such a function.

If a work notification is necessary, additional development
and cost are incurred for each system, and the function is not
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a single, integrated function; rather, it is limited to certain
systems.

If a system is distributed for separate management of
information, much information that is not refined is gener-
ated, which makes its utilization difficult. Or, the resulting
unnecessary data makes it difficult for customers (users) to
accurately identify which task to work on, and how to proceed
with it, greatly lowering work efficiency.

Smart Factory manufacturers make use of an in-house
network system for security reasons, and a wide variety of
data are generated in bulk, in real-time. However, there are
limits to big data processing with existing data link systems
only, such as EAI, ESB, etc. In addition, in the manufacturing
industry, there is a great variety of system types, as well as
data types. If each system has to be modified and developed
for data gathering and utilization for each of these conditions,
much cost is expected to be incurred. Amethod to refine data,
and store it in multiple databases to enable indexing and AI
analysis for quick data extraction is also necessary, where
collected data, not a simple data linkage, is needed.

Therefore, this paper intends to examine a method to
quickly transmit user-required information, facilitate system
linkage and quickly extract (collect) and utilize the gathered
information by gathering various types of data on manu-
facturing systems distributed according to regions (global,
regional smart factory) or purpose, using various means.

II. BACKGROUND KNOWLEDGE
As for the Big Data collection and analysis method, Bajer [1]
studied building, searching, and visualizing a data hub
where various types of data including IoT data are stored,
using Elasticsearch, Logstash, and Kibana (ELK), and Choi,
Bomin et al. [2] used NoSQL-based MapReduce to collect
information for effective firewall log analysis.

In relation to Apache Kafka and Big Data collection,
Hiraman et al. [3] examined the stream data processing of
Apache Kafka and how effective Kafka’s high performance
is for big data stream processing, and Shree et al. [4] showed
that Kafka performs well and is effective for big data analysis
and processing. Bhole Rahul Hiraman, using the advantage
of its scalability, distribution and capability of high pro-
cessing through stable results, checked how Apache Kafka
works in big data stream processing and found that it can
process higher amount than existing messaging systems.
Shree et al. [4], in Kafka: The Modern Platform for Data
Management andAnalysis in BigDataDomain, examined the
performance evaluation and effectiveness of Apache Kafka,
and various ways to bring data between systems and applica-
tions and real-time streaming.

Meanwhile, in Improvement of Apache Kafka Streaming
Using Partition and Multi-Threading in Big Data Environ-
ment, Leang et al. [5] used Hadoop and HBase to handle
large data in a manufacturing environment and used Apache
Kafka as a data streaming pipeline. Also, Apache Spark, with
an Apache Kafka interface, enabled real-time data process-
ing and analysis. Encryption was performed in a manner

that includes a public key and a private key. Through the
aforementioned studies, it has been proven to increase the
performance and accuracy of data storage, processing, and
security in the manufacturing environment.

With regard to big data collection, Xu et al. [6] looked
into the current status of the collection of industrial big data
generated in the Industry 4.0 environment, ontology-based
modeling, prognosis based on industrial big data, AI learning
of equipment, etc. Noac’H et al. [7] researched how the
collection performance can affect the entire stream process-
ing through performance evaluation of Apache Kafka, and
showed which element has the greatest impact by measuring
various elements. Bandi et al. [8] collected big data stream-
ing generated from mobile devices and IoT devices using
the Kafka technology based on the Kappa architecture and
transmitted the tableau in real time using Rockset to examine
a method for visualization. Data was collected from Twitter
at 30-second intervals, using Twitter API. Bandi et al. [8]
linked data using Rockset as middleware and used the Kappa
architecture as the prerequisite for streaming data. However,
it differs from this study in that it collected and visualized
data using Apache Kafka based on a single source.

On the other hand, Lavanya et al. [9] integrated technolo-
gies such as Apache Kafka, Spark,MongoDB, and LSTM for
data collection, in order to effectively forecast the streaming
weather in real-time. Yang et al. [10] investigated the data
collection technology of the smart grid and explained the
diverse effects of energy through the pre-processing and anal-
ysis of power-related data. Such communication using power
lines is considered as the agent of this study that views it as
one of themethods for data collection in areaswhere the Inter-
net is not active if not for power data, and as the topic for new
data collection using power grid through the improved grid
network collection. Moreover, Dhupa et al. [11] researched
how to effectively utilize the Smart Grid through AI com-
parative analysis with the smart grid. Ansari et al. [12] also
examined the real-time anomaly detection framework based
on smart meter data collected from the smart grid big data.
As for the architecture of the study, data was collected
through queues using Mongo DB, Cassandra, elastic, and
Hadoop, and for real-time processing and analysis, Spark was
used. In addition, Apache Kafka was utilized for data linkage
between Spark and the big data framework.

Leang et al. [5] looked into the storage and security of
big data transmission using Apache Kafka and Spark in the
manufacturing environment. And Sahal et al. [18] compared
the open source functions including Kafka to collect and
stream process big data for predictionmaintenance and repair,
and proposed, using cases, the optimal combination of big
data technologies. They differ by industry, but largely pro-
posed three architectures: Apache Kafka, Amazon Kines, and
RabbitMQ in relation to data collection queues.

A. APACHE KAFKA
Apache Kafka, an open-source distributed message process-
ing system developed by the Apache Software Foundation
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FIGURE 1. The architecture of Apache Kafka.

and a type of MOM (Message Oriented Middleware) soft-
ware, asynchronously relays message data generated in bulk
for real-time processing [14]. Apache Kafka is specialized
for real-time processing of large-capacity messages and is
suitable for scaling up the system as it is designed based on
the distributed system [1], [2]. Figure 1 shows the architecture
of Apache Kafka.

Apache Kafka, an architecture that stably transmits data
to the target system while buffering the intermediate data
in the event of large-scale transaction data from the source
system that provides data, is capable of both data collection
and transmission, depending on the utilization. Also, Apache
Kafka operates based on the publish-subscribe model and
is made up of producers, consumers, and brokers [3], [4].
Unlike existing message processing systems where Broker
directly pushes messages to the Consumer, in Apache Kafka,
Consumer directly pulls the needed messages from Broker,
resulting in optimal performance. Apache Kafka guarantees
data permanence as it stores messages in a file format and is
advantageous in that it causes few performance degradations
in case of a large volume of messages, compared to existing
message systems [14].

Meanwhile, Apache Kafka is made up of main elements
such as a broker, topic, provider, consumer, etc. Topic plays
the role of storage for processing of data generation and
consumption in the broker. Broker, meaning a Apache Kafka
server, serves to control the topic and is able to operate
multiple Apache Kafka servers in one cluster. Provider plays
the role of transmitting (publishing) data to a specific topic of
broker and implements it in the application using the Apache
Kafka library. Lastly, the Consumer plays the role of recipient
of data from a specific topic of broker and implements it in
the application using the Kafka library [5].

B. ZOOKEEPER
Zookeeper is a tool to manage multiple Apache Kafka
servers. It facilitates operations such as synchronization or
master election using API, centralizes the information of each

application (Kafka), and provides such services as configura-
tion management, group management naming, synchroniza-
tion, and others [3]. Using Zookeeper, multiple ApacheKafka
servers can be managed in distributed network environments
rather than a single network, which helps the intricate config-
uration of networks. Because the sub-distributed application
(Kafka) fails if Zookeeper fails, Zookeeper should also be
configured as distributed [15].

As shown in Figure 2, Zookeeper configures multiple
servers into a cluster, and distributed applications become
respective clients that provide status and information as con-
nected to Zookeeper servers. In this paper, Zookeeper itself
was configured as a cluster to manage Zookeeper with a
manager server for Zookeeper.

FIGURE 2. Zookeeper server cluster architecture.

C. ELASTICSEARCH
Elasticsearch is an open-source distributed search engine
developed by Shay Banon based on Apache Lucene [16].
Released in 2010 for the first time, it supports distributed
search and analysis for users to search and combine various
types of data such as JSON-based informal data and formal
data, location information, metrics, etc. at their preference.
Capable of quick and near-real-time storage, searching, and
analysis of a large volume of data, it is thus used as a popular
database-type search engine. Elasticsearch can configure a
distributed environment in multiple PCs with a relatively sim-
ple setup. As it modifies the original data and duplicated data
according to the data capacity and PC specifications, it con-
figures a horizontally distributed environment, providing a
more stable operating environment than a single server. Due
to these characteristics, Elasticsearch is used independently
as a search engine, but often linked with Kibana and Logstash
to configure the Elastic Stack System and utilized as a user
application [17].

Elasticsearch Cluster is configured as shown in Figure. 3;
A node is a physical server that makes up a cluster, and each
shard, as a subset of the index, is made up using Lucene.
It stores real data and indexes and is classified into the pri-
mary shard and replica shard. The primary shard is a basic
index that makes up a shard, and a replica shard is a replica
of a primary shard stored in another distributed node. It is
a document type, and logical category/partition within an
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FIGURE 3. Configuration of elasticsearch cluster.

index, similar to a table in DBMS. A document is the basic
unit of data storagemanaged in Elasticsearch and is expressed
in JSON (JavaScript Object Notation). In addition, a field is
an element that makes up a document and consists of a name
and value. A gateway stores information such as cluster status
and index setup. Since Elasticsearch is designed to facilitate
horizontal scaling, in a large-capacity environment, a node
may be added so that the cluster recognizes it to scale it up.

D. AES ENCRYPTION
The Advanced Encryption Standard (AES) is a cryptographic
algorithm chosen to replace DES as a data encryption stan-
dard by the National Institute of Standards and Technology
(NIST). Approved by NSA for top-secret information, this
cryptographic algorithm is highly secure. It is a symmetric-
key algorithm,meaning the same key is used for both encrypt-
ing and decrypting the data.

It allows different key and block lengths: 128bit, 192bit,
or 256bit, and shows outstanding performance in speed and
efficiency. The AES has the SPN (Substitution Permutation
Network) structure - it uses the substitution layer and permu-
tation layer to achieve confusion and diffusion.While parallel
operations can be implemented, a separate decryptionmodule
should be implemented for decryption [18], [19].

III. COLLECTING SMART FACTORY BASED GRID
NETWORKING BIG DATA USING APACHE KAFKA
The prerequisites to gather various types of data (file,
RDBMS, PLC (equipment), DAQ, Web, etc.) distributed
according to regions (global, regional smart factory) or pur-
pose (ERP, MES, WMS, SCM) using various means (FTP,
REST API, etc.) are as follows: First, it should be made
available to collect data from each data source system using
the pull method without additional modification or develop-
ment by taking into consideration various systems. Second,
if collected data is required, data should be refined and stored
in the big data DB such as Redis,MongoDB, etc., and support
should be provided to enable index analyzer (Elasticsearch)
and AI analysis. Third, data should be collected, refined, and
linked for manufacturing of grids (mesh-type) that process
and transmit the necessary information to a specific system.
Fourth, under the premise that each network differs by the
network area or environment, it should be possible to collect
data in the applicable network without any loss of data. Fifth,

cost reduction and stable performance should be guaranteed,
and the stability-assured architecture should be configured.

Figure. 4 proposed Architecture for Big Data Collection to
meet the above conditions, an agent that collects data from
a closed internal network, a middleware server that manages
the agent and relays the data transmission and management,
and a management server/monitoring server that manages
Zookeeper, Apache Kafka, and Agent are required, in addi-
tion to the basic Apache Kafka configuration.

The proposed architecture for big data collection is,
as shown in Figure. 4, configured to collect and transmit
data through the agent at the data source end and to allow
distribution and agent management through the middle trans
server in the middle in charge of agent management and
distribution. The Apache Kafka server was distributed up to
three units or more, and it was set up so that a partition is
automatically generated when a data item is set. Zookeeper
was used tomanage Apache Kafka, and a data refining engine
was added that is capable of processing the Apache Kafka
message again. The refined data was selectively stored in
Redis or Mongo DB in a mapped format, and the key infor-
mation of the data was stored in the Maria DB. Also, it was
designed to provide data if real-time analysis is necessary by
linking Apache Kafka with Spark. The manager server acts
as a center of the server collecting grid-type big data, such
as Apache Kafka, Zookeeper, monitoring, agent, middle trans
server, DB storage, data processing, etc. The data collected as
such is stored in various databases according to the method
set as the monitoring tool of the manager server in units of
agent and topic, or if transmitted to anAI analysis program for
data analysis or another legacy system, it may be utilized for
various applications or to search for data stored in the analysis
and index information according to settings.

Various tools for Big Data collection such as the agent,
middle trans server, broker, Zookeeper, data filtering engine
(RPA), Spark, etc. can be managed through the monitoring
tool of the manager server, and the monitoring tool checks
the status of the agent, broker, and middle trans server in real-
time, and reports any anomaly to the administrator.

The consumer that uses the collected data delivers it as is
or processed or analyzed results to systems such as the web,
mobile application, messenger, legacy system, etc., according
to settings. It also relays services, such as linking different
APIs including Slack, Google Calendar, Okta, etc.

Figure 5 briefly shows the architecture for distributed data
collection. The legacy zone is a separate network environ-
ment where real data is collected and used and is an individual
Smart Factory Plant. The legacy zone has applications in
operation such as WMS, MES, ERP, etc., and is configured
to collect data generated therefrom and deliver it to another
legacy zone or collect data with the same purpose generated
from multiple legacy zones, perform statistical analysis with
the data and deliver it to users.

In order to collect data from a closed network with a
firewall as above, the agent should be installed in the network,
and the agent uses node.js.
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FIGURE 4. Proposed architecture for big data collection.

FIGURE 5. Proposed server configuration for big data collection.

As for an agent developed with node.js, there is no delay
even when multiple data are simultaneously collected and
delivered from one agent, as it is executed immediately with-
out waiting for processing to be done once the I/O operation
starts, thanks to the single through and non-blocking IO,
which are the characteristics of node.js. However, because it

should be executed after registering the job through the event,
the agent status and job schedule should be checked from
the middle trans server and manager server to continuously
deliver and execute events.

The agent can collect data by connecting various databases
such as Oracle, Maria, MySQL, etc., transmitting files using
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FTP protocol, rest API, web crawler, etc., and data meeting
specific requirements may selectively be collected, such as
new data, changed data, entire data, etc.

In addition, as the agent that uses node.js is very light and
can be distributed in combination after separating specific
functions for development, large-capacity functions, such as
the rest API function, may be excluded for distribution, or a
specific function may be improved to configure an agent spe-
cialized for the relevant collection section. As can be seen in
Figure 6, node.js is a tool developed using a simple and light
coding scheme based on javascript and can be distributed
in combination after separate configurations of functions for
each file. Also, when distributed, it is distributed in installable
files such as exe or pkg, eliminating the risk of exposing the
configured source.

FIGURE 6. Program for agent to check Zookeeper status.

The agent can collect data by connecting various databases
such as Oracle, Maria, MySQL, etc., transmitting files using
FTP protocol, rest API, web crawler, etc., and data meeting
specific requirements may selectively be collected, such as
new data, changed data, entire data, etc. The agent’s event
was defined as the interface ID as described in Table 1; the ID
was defined in general for job performance, from the middle
trans server, manager server, monitoring server, and legacy to
application, as well as the agent.

The agent monitors the status of the system where it is
installed at one-minute intervals, and the information can be
checked in the monitoring tool as shown in Figure 7.

The agent monitors the service or program set up for
management and is capable of executing a restart in the event
of an anomaly in the service or program or agent failure.

Through this paper, it was possible to collect, analyze
and manage the data distributed across manufacturers and
systems in an intended format, and even where networks
for each system that are regionally distributed are divided
by the intranet, it was possible to collect the information in
the intranet to the center, enabling integrated analysis of the
data. Furthermore, it was possible to link data through the
central solution for data sharing and collaboration between

TABLE 1. Sample of the interface specification.

organizations and companies and to search and utilize various
heterogeneous system data in an integrated form. In addition,
in practice, analyzing the cause of defects and tracking the
production history in the manufacturing system were config-
ured through Redis DB and Elastic Search Index.

For Apache Kafka management, Zookeeper was placed
in higher locations, and in the testing environment, three
Apache Kafka cluster servers were configured under one
Zookeeper. In the real service operating environment, three
zookeepers were located at another cluster network end, with
three Apache Kafka servers under each Zookeeper. For clear
cluster distribution, the network service ends were separated
with one set configured in Naver Cloud Platform of Korea,
another set in AWS, and the other in Azure, and for fur-
ther distribution, the server locations were distributed across
Korea, China, etc.

The information in each legacy is extracted through the
connected agent, and the extracted information is delivered
to the manager server (Kafka) through the middle trans server
andmessage producer. The relevant information is partitioned
through data classification to transmit the user-required infor-
mation to the user’s app. Also, according to the need of the
gathered data, it may be stored in an unstructured database
such as Oracle, RDB, Redis, or Mongo DB.

Zookeeper manages the Apache Kafka broker master, and
there must be one broker master for each Apache Kafka
cluster. Zookeeper also has a master and slave, and if a failure
occurs in the master, the slave acts as an assistant. For further
scaling up in the grid environment, an additional increase of
Zookeeper is also necessary. Zookeeper controls the broker
through the master broker, and if a failure occurs in the master
broker, another broker becomes the master broker. The broker
cluster is an assembly of brokers, and the broker delivers mes-
sages through the topic. The topic has n number of partitions
and n number of replicas; in general, one partition delivers the
message through one queue. However, if it is designed with
a single partition as above, in the event of a message delay,
the subsequent message is not delivered. As such, three or
more partitions should be set up to contain the message in a
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FIGURE 7. Agent management in the monitoring tool.

queue through the round-robin method to handle the issue of
message delay.

The agent is installed in every Zookeeper and broker server,
and the monitoring server checks the leader and follower
and the usage of CPU, memory and disk according to the
monitoring cycle. If an anomaly is detected, the monitoring
server automatically sends a notification to the person in
charge and is capable of automatic restart to prompt response
to failure, depending on the settings.

Zookeeper and broker (Kafka) settings are managed with a
config file such as server.properties, and the config file set up
in the monitoring server may be distributed through the agent
or to each Zookeeper or broker to individually or collectively
change the settings.

As shown in Figure 8, the monitoring server can be used to
manage the status and settings for Kafka and Zookeeper.

IV. BIG DATA COLLECTION MANAGEMENT SCENARIOS
In grid network Big Data collection, there are a number
of different scenarios between the agent, manager server,
and DB for various purposes, such as data transmission,
result delivery, failure, anomaly detection, etc. The Apache
Kafka cluster and middle trans server were excluded from
the scenarios, because the Apache Kafka cluster serves as the
basis for the scenarios to be executed, and the middle trans
server is weighted toward the purpose of management, such
as agent management, data relay, etc. Therefore, the Apache
Kafka cluster is included in the configuration of the manager

FIGURE 8. Apache Kafka cluster Broker status management UI.

server, and it is deemed that the middle trans server is located
between the manager server and the agent.

Table 2 shows the communication scenarios for big data
collection and processing, agent, zookeeper, broker manage-
ment, and data encryption. As for Zookeeper or broker, the
configure file must be changed, and the module and all func-
tions restarted to operate with the same settings. It is highly
inconvenient and difficult for users. It is almost impossible if
the user is required to manage a large number of Zookeepers,
brokers, and agents.

In this paper, it was configured with the web UX to store
the set information in the database, and a configure file
was created based on the information to change the set-
tings or manage operations by transmission to the broker or
Zookeeper. If configured as above, where an issue occurs in
the settings, it is restored based on the settings information
saved immediately before and allows us to accurately diag-
nose which setting led to the issue. All settings information
is recorded in the database by revision.

The scenarios amount to 21 in number, as shown in Table 2.
Processes are defined for each scenario as in Figure 9, and
the processes are made up of a communication interface as
in Table 1. The scenarios can be utilized to manage the entire
architecture and transmit, refine, or store data.

To bring the regionally analyzed data of A company net-
work zone (A zone) to utilize the B company network zone
(B zone), the agent, as shown in Figure 10, brings the data
of the database in A zone. Here, the agent within A zone
must be able to access the database. To link data fromA zone,
the agent must be able to communicate with the middle trans
server, and the middleware firewall must be open to the agent.

The communication port between the agent and middle-
ware is designed to protect itself from intrusions via default
settings for continuous change. The agent of A zone collects
and transmits the data to the middle trans server by a signal
due to a specific schedule or rest API communication, the
middle trans server transmits the data to the manager server
(Apache Kafka, Zookeeper, monitoring), and the manager
server stores the data in line with the performance process
or transmits it to the agent in B zone through another middle
trans server. The agent in B zone stores the information in the
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TABLE 2. Data collection and management scenarios.

database or notifies the information to the legacy system of B
zone through rest API, etc.

The collected data is not terminated after performing a
single job of data transmission, collection, or refinement, but,
if the performed process is defined, performs data processing
and transmission in the defined order, and passes the com-
pleted result to the next process.

V. RESPONDING TO KAFKA CLUSTER FAILURES
For replicas, it is assumed that one cluster has three brokers,
and if one broker has three partitions, the other two brokers
also have replicas of the same partitions. One of the replicas is
the master (leader), and the remainder are slaves (followers);
if a broker failure occurs, the replica slave becomes the
master. The master broker has the control over topic failures
(master, slave control). If the Apache Kafka cluster is in a
normal condition as shown in Figure 11, it replicates to each
broker for topic A, resulting in duplicate partitions.

As can be seen in Figure 12, if a failure occurs to a broker
that is not a controller among cluster brokers, the controller
checks the status of other cluster brokers, and the leader
partition of the failed broker is redistributed to another broker.

Also, as shown in Figure 13, the information of the newly
elected broker with the leader partition is delivered to all
brokers within the cluster. If a failure occurs in the controller
broker, a new controller is elected as set up in Zookeeper.

One broker out of multiple cluster brokers acts as a coor-
dinator, and if a failure occurs in the consumer group, the
coordinator checks the status of the consumer group, and the
partition assigned to the failed consumer is redistributed and

FIGURE 9. Agent execution scenarios.

assigned to another normally-functioning consumer within
the same consumer group.

VI. DATA SECURITY IN GRID CLUSTERS
The Apache Kafka grid network architecture for big data col-
lection uses AES encryption. For security, the AES encryp-
tion is used to encrypt and decrypt the key, and the randomly
generated security code is additionally inserted into the
encryption details thereafter. During decryption, use the key
to additionally check the security code even after decryption.

The architecture has the message structure and code
defined between systems. Thus, if the structure and code
do not match, it detects that the delivered message is
deformed [20].

Encryption and decryption generate random 16-digit keys
and codes, and the manager server generates the key and
distributes it to all agents and manager servers at a specific
cycle. If the manager server, agent, middle trans server, and
monitoring server restart, themanager server provides the key
and code. If the manager server restarts and there is no key or
code managed, a new code is issued.

Generating and managing the encryption keys are per-
formed on the manager server; the manager server transmits
the key to the agent and monitors the server, as shown in
Figure 14. Between manager servers that are distributed, the
manager server, before generating a key, requests the key
value to another manager server; if there is no key value,
a new key and code are generated.

If there remains a key or code due to synchronization
issues, the outdated key or code is destroyed and a new key or
code is transmitted to all remaining agents, manager servers,
and monitor servers. With reference key and code values
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FIGURE 10. Agent execution scenarios data transmission process between network zones.

FIGURE 11. Kafka cluster in normal condition.

FIGURE 12. Broker failure occurred.

existing across all manager servers, where a request for a key
or code is made, the encrypted key or code is requested.

FIGURE 13. Redistribution of leader (master) partition.

VII. BIG DATA COLLECTION CLUSTER PERFORMANCE
ASSESSMENT
The Kafka grid network architecture for big data collection
evaluated the server performance and transmission speed
of the agent and manager server by the number of data
transmissions. Since the middle trans server had only a few
servers for performance evaluation, it was integrated into
the manager server for evaluation. The monitoring server,
too, was excluded from performance evaluation, as it had
an insignificant impact on performance with its function of
transmitting simple UI processing information to themanager
server.

The AWS was utilized for the performance evaluation
server, and the detailed specifications are shown in Table 3.
For performance evaluation, a functional integrity eval-

uation was first performed; the evaluation was carried out
at an error-free state with a functional integrity evalua-
tion score of 100%. NMON was used as the tool for
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FIGURE 14. AES encryption scenarios.

FIGURE 15. Agent stress load test.

TABLE 3. Specifications of performance evaluation server.

performance evaluation; NMONwas installed in every server
for performance analysis. For performance evaluation, one
unit of agent, broker, monitoring, and manager server were
used. As the network section is easily affected by the section
state and external factors, the transmission speed, load, etc.
of the network section were excluded.

The stress load test result of the agent is shown in
Figure 15. It refers to the number of data processing cases
repeatedly performed by the agent upon receiving perfor-
mance signals. The average size of data was 10MB, and data
processing of 100 cases means the time taken to process data
with a capacity of 1GB in total.

FIGURE 16. Performance evaluation: (a) Agent Stress Load Test; (b) Agent
Free Memory Capacity; and (c) Agent I/O Average Processing Time.

FIGURE 17. Manager server stress load test.

The agent server load generated due to data processing
of 100 to 100,000 cases showed the average CPU usage in
Figure 16 (a), free memory capacity in Figure 16 (b), and I/O
processing speed in Figure 16 (c); the CPUwas less than 10%,
and the memory and I/O also appeared stable up to 20,000
cases. There is little difference in performance up to 200GB
data processing, based on the average 10MB data. In other
words, although the transmission time may differ depending
on the network performance, the optimal volume a single

96140 VOLUME 11, 2023



S. Park, J.-H. Huh: Study on Big Data Collecting and Utilizing Smart Factory Based Grid Networking Big Data

FIGURE 18. Performance load of the manager server: (a) Manager Server
CPU Average Usage Rate; (b) Manager Server Free Memory Capacity; and
(c) Manager Server I/O Average Processing Time.

agent can handle on a single occasion is 200GB, which take
19 minutes to process. Jobs such as described above seem
suitable for batch jobs, and as the capacity of most real-time
data does not exceed 1GB, it may be processed at a very high
speed.

The manager server was evaluated up to the storage of data
received from the agent in the Mongo DB. Since the Mongo
DB is separate, the load due to DB storage was excluded from
this evaluation.

The stress load of themanager server consistently increases
as shown in Figure 17, which also shows the increase of
processing time between 10,000 and 20,000 cases. As agents
processed by a single manager server are as few as 40 and as
many as 400 or even 500, assuming that the agent simulta-
neously processes data and that the manager server processes
the distributed load, the data capable of real-time processing
amount to about 20 MB and 500 units. However, as the
number of agent servers is associated with the delay of
the network section, we cannot determine with performance
alone.

As shown in Figures 18(a), 18(b), and 18(c), the perfor-
mance load of the manager server itself does not significantly
deviate from the average usage rate or capacity. It seems that,
when a load occurs in the manager server, the processing is
divided, resulting in an insignificant impact on the server. For
memory, however, it is advised to secure a sufficient amount
of free memory from the beginning, considering the nature
of data processing; it is also recommended to use a fast I/O
medium for I/O.

VIII. CONCLUSION
The Big Data collection using Apache Kafka enabled the col-
lection of distributed data through the scalability of the agent
and broker. It was therefore possible to prepare a foundation
for analysis of various data. It also enabled data collection,
as well as data linkage and connected analysis.

With the increasing demand for big data collection and AI
analysis by organizations such as companies, public agen-
cies, and schools, a need emerged for a system to collect
and manage the data. However, it was a great challenge to
extract data from legacy systems and refine it. Therefore,
this paper utilized Apache Kafka, Agent, Index Analyzer,
Elastic Search, etc. to propose a function to collect and extract
data. The functions proposed in this article can be utilized by
companies and organizations for diverse purposes including
data extraction, and it is expected that a system compatible
with RDMS, big data DB, etc. will be developed in the
future. For the upcoming research, studies are conducted on
the big data network capable of large-capacity high-speed
communication, which may be used in combination with the
global grid Big Data network.
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