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ABSTRACT Heating, ventilation, and air conditioning (HVAC) energy consumption now accounts for a
major portion of energy use for buildings. Therefore, finding the optimal energy-saving control strategy for
HVAC systems to optimize energy consumption has become crucial in realizing energy savings, emission
reductions, and green buildings. Traditional methods for HVAC parameter control require complex physical
model calculation; continuous and coupled parameters are handled poorly. Developing deep reinforcement
learning (DRL) methods provides new ideas for HVAC energy consumption optimization. Herein, a DRL-
based energy consumption optimization framework for HVAC systems is proposed. First, an HVAC system
energy consumption prediction model based on a convolutional neural network–long short-term memory
(CNN-LSTM) network is suggested to approximate the real world. This model solves the efficiency
problem of energy consumption prediction while also providing highly accurate predictions of HVAC energy
consumption. We propose an enhanced deep deterministic policy gradient (E-DDPG) energy consumption
optimization algorithm for HVAC systems based on an improved training strategy to obtain the best real-
time energy consumption control strategy for HVAC systems. Finally, experiments using real-world building
HVAC control data sets were conducted to evaluate our models. The experiments show that the CNN–LSTM
model for HVAC system energy consumption prediction outperforms baseline models while reducing
training time by 42.9%. Compared to the baseline algorithm, the E-DDPG algorithm using an improved
training strategy requires 20% fewer iterations for convergence, has a 14.8% narrower fluctuation interval
during the training process, and improves the energy efficiency ratio of HVAC systems by 49%.

INDEX TERMS HVAC systems, DDPG, deep reinforcement learning, energy consumption.

I. INTRODUCTION
At present, buildings are responsible for a major portion
of global energy consumption. Indeed, heating, ventilation,
and air conditioning (HVAC) systems account for about
50%–60% of total building energy consumption [1]. There-
fore, energy-saving HVAC systems are key to reducing
the energy consumption of buildings and realizing energy
savings and emission reduction.
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With the development of Internet of Things (IoT) technolo-
gies, most HVAC systems have been able to automatically
collect system operation data and monitor system operation
in real-time [2]. Among today’s hot research topics is the
use of real-time monitoring data to establish data-driven
models for optimizing and controlling HVAC system energy
consumption [3]. As artificial intelligence (AI) technologies
continue to develop rapidly, new ideas and methods for
managing and controllingHVAC systems continue to emerge,
with two noteworthy trends. First, big data technologies are
now being used to analyze the monitoring and operational
data of HVAC systems to explore the essential characteristics
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of HVAC system operation [4]. Second, deep reinforcement
learning (DRL) technologies are now being used to provide
improved energy consumption optimization strategies for the
intelligent control of HVAC systems [5].

Technologies such as smart appliances and IoT have
reduced the cost of data collection and the large amount of
industrial data requires us to conduct data optimization [6]
and data compression [7] to better meet the requirement
of data mining. The processed industrial data often allows
for more diverse analysis, such as state assessment [8] or
damage detection [9],thus expanded the application areas of
data mining [10]. Relying on a strong data basis, powerful
data-driven models show promise in the field of energy-
saving, optimized operation of HVAC systems. With the
introduction of AlphaGo and AlphaZero, DRL has gradually
become known to the public and has now become a hot
research topic in the field of AI [11]. Reinforcement learning
(RL), as a machine learning method emerging in recent
years, features model-free learning, self-learning, and online
learning. It is a data-driven control method that can achieve
model-free adaptive optimization of controllers. RL-based
controllers have been shown to be able to provide optimal
control strategies in real time in the face of changes in the
system environment. Since RL is model-free, the potentially
complex system modeling process can be avoided under
certain conditions [12]. Therefore, RL-based optimization of
the control strategy for HVAC systems can not only improve
the operational efficiency of HVAC systems but also make
full use of the existing building operation data, exploit the
value of the data, and achieve the ultimate purpose of energy
consumption optimization [13]. Among the existing HVAC
system energy consumption optimization models, the DDPG
algorithm performs best [14]. In this paper, an optimization
framework for HVAC system energy consumption based on
the enhanced deep deterministic policy gradient (E-DDPG)
algorithm is proposed. A convolutional neural network–long
short-term memory (CNN-LSTM) neural network, combin-
ing a CNN and an LSTM model, is used to simulate and
predict the energy consumption environment. The overall
framework succeeds at providing stable, effective energy
consumption optimization and control strategies at a rapid
convergence rate.

The contributions of this paper are as follows.
1) A CNN–LSTM–based energy consumption predic-

tion algorithm is proposed to predict the energy consumption
of HVAC systems, provide a simulation environment for
energy consumption optimization, and facilitate energy con-
sumption optimization in the reducing energy consumption.

2) The training strategy of the DDPG algorithm is
improved, including improvements to the DDPG algorithm’s
sampling method and its network update schedule. The
adopted up and down sampling method solves, at each
time point, the problem of an unbalanced distribution of
agent learning experience. The Critic network is updated
first, and then the Actor network is updated when the loss
value of the Critic network is less than a preset threshold.

By dynamiting the delayed update in such a way, the DDPG
algorithm dynamically updates the network to solve the
problem of wrong direction updating of the network. The
training time is reduced with attendant improvements to
training process stability and model robustness.

3) An energy consumption optimization algorithm
based on E-DDPG is proposed for finding the optimal
parameter values for the HVAC system control unit. The
HVAC system control strategy is optimized and adjusted
in a real-time manner in combination with the energy con-
sumption prediction algorithm for environmental simulation,
achieving energy savings and efficient HVAC system use.

The remainder of this paper is organized as follows.
Section II describes previous work related to the prediction
and optimization of HVAC system energy consumption.
Section III presents the detailed architecture and the process
of the energy consumption optimization framework for
HVAC systems based on deep reinforcement learning.
Section IV describes a series of comparative experiments on
the proposed framework. Section V presents the conclusions
and offers considerations regarding future work.

II. RELATED WORK
The traditional approach to improving HVAC system control
consists of three steps. An equipment model is established
first; then optimal parameters are found using an optimization
algorithm, and finally, an optimized energy-saving control
strategy is developed [15]. Li et al. [16] used a support
vector machine to achieve short-term energy consumption
prediction for HVAC systems, while Lu et al. [17] adopted
a gray prediction method and multiple regression analysis
to predic energy consumption in urban residential buildings.
The difficulties encountered in applying these methods are
due to three factors: i) the system operational parameters are
mutually coupled, ii) the modeling process is complicated,
and iii) the system parameters change slowly over time,
so that models gradually fail to effectively achieve energy-
saving optimization. Moreover, although some models can
optimize the operating parameters online, they are not
capable of self-learning and thus require optimization of
control parameters at each step. As a result, the algorithms
are computationally intensive, making it difficult to meet
the demand for real-time control. In addition, due to
the stochastic nature of the optimization algorithm, the
optimization process can encounter other problems, such as
slowness, hard convergence, and local optimum traps.

HVAC system operation parameter data are time-series
data and vary significantly with time. Therefore, HVAC
system operation prediction is a forecasting problem based on
time series. Popular time-series prediction methods, includ-
ing those based on time-series and neural network models,
have been examined extensively [18]. Alireza et al. [19], [20]
have utilized Multilayer Perceptron (MLP) to predict future
stock movements. While in the field of HVAC system pre-
diction. Kumar et al. [21] and Marino et al. [22] used LSTM
models to predict the power consumption of residential
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buildings, and compared with other models, it was verified
that LSTM outperforms other models in solving nonlinear
problems and memorizing historical data. Kim and Cho [23]
combined CNN and LSTM networks to predict residential
power consumption. However, power consumption predic-
tion for HVAC systems alone has rarely been studied. The
main reason for this is that the HVAC system is part of the
electrical equipment, so its energy consumption is typically
not separately measured or calculated. A typical HVAC
system is relatively complex and consists of a refrigeration
unit, recirculating cooling water circulation system, and
chilled water system [24]. Therefore, it is typically quite
difficult to predict the energy consumption of an HVAC
system. Zhou et al. used the LSTM model to predict
HVAC system power consumption [25], and Kim et al.
used LSTM cells in recurrent neural network algorithms
for dynamic simulation modeling of HVAC system power
consumption [26]. In this paper, we propose to improve the
accuracy of prediction by combining two neural networks,
CNN and LSTM. Specifically, we use the CNN to extract
data features to improve the stability of the model beyond
the training set, while we use the LSTM network to extract
historical features to improve model stability. The combined
CNN–LSTM neural network is used to predict the ratio
of cooling capacity to power, also known as the energy
efficiency ratio (EER) for HVAC systems.

RL algorithms perform well in the field of optimization
and can learn by trial and error. They can obtain knowledge
from the environment by receiving the highest reward to
improve the control scheme. They then give the optimal
control policy in real-time in the face of environmental
changes, thus meeting the demand for real-time control [27].
For example, Yao et al. proposed a model-based reinforce-
ment learning control for electro-hydraulic position servo
systems [28].Building on the intensive study of RL in theory
and practice, we make use of DRL, which has also been
previously applied in this area [29]. The powerful fitting
ability of neural networks in DRL can somewhat reduce the
complexity of modeling.

Dounis et al. [30] used a fuzzy proportional differential
method to optimize and control equipment in buildings
to achieve energy savings. Azuatalam [31] developed a
temperature set-point controller based on the proximal policy
optimization (PPO) algorithm to control the temperature set-
point of a room. Xing et al. [32] used an improved PSO
based algorithm to model energy consumption optimization.
Congradac and Kulic used genetic algorithms to optimize
HVAC control systems to achieve energy savings [33].
This control optimization method requires experts to design
and develop a model and then needs numerous analytical
adjustments in order to find the appropriate parameter
settings. Dalamagkidis [34] developed a linear controller
based on a classical RL algorithm capable of monitoring
energy consumption and policy decisions based on a temporal
difference method. Although the controller performs well

in energy consumption monitoring and control stability, its
algorithm relies excessively on exploratory actions to deter-
mine the optimal policy, allowing incorrect control to occur
in actual operation. Liu et al. [35] applied RL to optimize
the operation of energy storage units for HVAC systems
and pointed out that the classical Q-learning algorithm used
might be inefficient in high-dimensional learning. In contrast,
Hai et al. [36] significantly reduced the dimensionality of the
action space and state space in reinforcement learning by
integrating index selection with deep reinforcement learning
using heuristic rules. Wei et al. [37] proposed a DRL-based
control method for HVAC systems and verified the scalability
of a DRL controller while noting that the required training
time for a DRL controller might be long. TABLE 1 shows a
summary of related algorithms.

Therefore, for a typically highly nonlinear, coupled, time-
varying, uncertain, and complex multivariable system such
as an HVAC system, a DRL [38] algorithm that can self-learn
complex nonlinear relationships and adapt to environmental
conditions to provide strategies in real-time is a suitable
choice for energy consumption optimization and control
strategy design. For example, Gao et al. [39] used the DDPG
algorithm to control the set-point air temperature and
humidity of HVAC system units. However, this method is not
flexible enough to be adapted to the specific circumstances
of the dwelling. Xia et al. [5] proposed a residential HVAC
adaptive scheduling strategy based on the DRL method.
The method assumes constant residential thermal parameters,
but in reality residential thermal parameters vary with time
and environment. Yu et al. [40] presented a multiagent DRL
method involving an attention mechanism to minimize the
energy cost in multizone buildings. However, the algorithm
does not consider the dynamic characteristics of the HVAC
system, which affects part of its robustness. At the scope
of whole-building energy, Zou et al. [41] applied DDPG in
a data-based LSTM environmental model. Ioannis et al, this
method does not preprocess the data and the presence of noisy
data affects the model performance. Reference [42] proposed
a clustering-based DDPG training plan that optimized energy
consumption more effectively than individual DDPG train-
ing. Ding et al. [43] proposed a branching dueling double
Q-network to solve the high-dimensional action problem of
four building subsystems, namely HVAC, lighting, blinds,
and windows. However, this method network is updated in
the wrong direction, leading to the risk of under-optimization
of energy consumption.Yu et al. [44] used DDPG tominimize
the energy cost of smart homes equipped with HVAC and
energy storage systems. However, it takes substantial time for
thesemethods to converge and obtain a stable control strategy.

In order to solve the above problems, the training
strategy is optimized to find a better and more stable
control strategy faster, this paper proposes an enhanced deep
deterministic policy gradient (E-DDPG) algorithm that can
fully learn the relationship between environment and state
by outputting deterministic actions through a neural network
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TABLE 1. Summary of algorithms.

and incorporating mechanisms such as action exploration
and experience playback. Combined with CNN–LSTM for
environmentmodeling, our algorithm shows fast convergence
and generates optimal control policies with continuous states
and actions in a real-time manner to optimize the energy
consumption of HVAC systems.

III. METHODS
In this section, we first introduce our framework for
energy consumption optimization of HVAC systems and then
describe the workflow of the framework in two modules:
energy consumption prediction and energy consumption
optimization.

A. DRL-BASED ENERGY CONSUMPTION OPTIMIZATION
FRAMEWORK FOR HVAC SYSTEMS
To reduce the energy consumption of an HVAC system,
it is necessary to find an appropriate optimization strategy.
The traditional thermodynamic modeling approach is very
difficult in complex systems such as HVAC, which requires
the calculation of a large number of parameters and is hardly
robust. The DDPG algorithm in the context of DRL has
shown good performance in the optimized control of HVAC
systems [9]. The DDPG algorithm for optimized control of an
HVAC system can realize the learning process by exploring
various state–control pairs, with no need to compute complex
thermodynamic models to represent the HVAC system in the
physical world. The DDPG algorithm’s delaying of network
updating can effectively deal with systems such as HVAC
that feature time delays. The DDPG algorithm also works
for continuous and coupled parameters in the sensors and
controllers of HVAC systems. Therefore, we aim here to
apply the DDPG algorithm to the optimization of HVAC
system control.

While there are many benefits of using the DDPG
algorithm to optimize the energy consumption of HVAC
systems, the training process often reveals defects such as
uneven distribution of learning experiences and a tendency
to update the neural network in the wrong direction. For this

reason, we improve the training strategy of the original DDPG
algorithm in our proposed E-DDPG algorithm.

• Experience is collected from the experience replay
pool using up and down sampling. The samples of
the experience pool are divided into intervals based
on the reward value. The oversampling technique is used
for the data in the minority intervals, while the under
sampling technique is used for the data in the majority
intervals. In such a way, the problem of an uneven
distribution of learning experiences can be solved at each
time point to allow the E-DDPG algorithm to learn fully
from the experiences.

• A dynamic delayed updating mode is adopted. The
loss value of the Critic network is used as an indicator
to compare the training results of different activation
functions with the same loss function. The Critic
network is updated first; the Actor network is updated
only when the average variance of the Critic network’s
loss value falls below some threshold. Then the Actor
network is dynamically updated according to the
difference between the two loss values given by the
Critic network. This technique provides for a training
process of enhanced stability.

The training of the E-DDPG algorithm for the energy
consumption optimization of an HVAC system should take
place in a real-world HVAC system control space to ensure
that it can receive real-time feedback on each parameter
of the HVAC system’s sensors and controllers. However,
it is not possible for the E-DDPG algorithm to explore
all the state–control pairs to obtain the reward values.
On the other hand, the alternative control strategy, namely
that obtained by using simulation tools to simulate the
training for the environment, shows poor effectiveness in
practical applications because the simulation tool contains
only limited information. This limit makes it impossible
for simulation tools to realistically restore all the details
of the HVAC system in operation. Therefore, we pro-
pose to use a CNN–LSTM neural network to predict
and simulate the operating environment of the HVAC
system.
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FIGURE 1. Flow chart for the proposed framework.

We first use a CNN to extract data features and then feed
the extracted features into an LSTM network for learning
the data time series. In contrast with a simple CNN or
LSTM model, the CNN–LSTM network can both extract
features and learn time-series trends. It can efficiently learn
the time-series features of the HVAC system parameter data,
thereby accelerating the training process. After training, the
E-DDPG algorithm needs only to input the control parameter
values of the HVAC system into the prediction model to
achieve an accurate prediction of energy consumption at
the next moment. This capability can assist in modeling
using the E-DDPG algorithm and provide a basis for
decisions regarding the optimization of HVAC system energy
consumption.

Combining the above processes, we construct a com-
plete framework for the energy optimization of HVAC
systems based on DRL to achieve energy-efficient oper-
ation. FIGURE 1 shows a flow chart of the framework
implementation.

As shown in the flow of Fig.1, the workflow of the
framework is as follows.

1) Obtain the historical data uploaded by HVAC equip-
ment to the cloud database and input it into the CNN
network for feature extraction.

2) Input the feature extraction results into the LSTM
network to learn the temporal order of the data, and
obtain the trained CNN–LSTM energy consumption
prediction model.

3) Use E–DDPG algorithm for the construction of
energy consumption optimization model, Actor net-
work obtains the energy consumption in various states
by using the trained energy consumption prediction
model.

4) Put it into the experience replay, the Critic network
collects experience from the experience replay by up
and down sampling to obtain its Loss value, when the
Loss value is less than a certain threshold, the Actor
network starts to update dynamically.

Finally, through this process, the HVAC energy consumption
optimization model with robustness and good generalization
ability is trained.

B. CNN–LSTM NEURAL NETWORK FOR HVAC SYSTEM
ENERGY CONSUMPTION PREDICTION
The CNN–LSTM network can learn the long-term time
dependence of the energy consumption of the HVAC system.
However, the simulation of HVAC system energy consump-
tion trends requires very long input sequences, which in turn
require a lengthy training process. To reduce the training
effort while ensuring prediction accuracy, we instead use the
low-dimensional data obtained after feature engineering to
construct our model.

FIGURE 2 shows the CNN–LSTM network structure for
energy consumption prediction. At the top is a set of historical
observations of the energy consumption of the HVAC system.
The EER is used to measure the energy consumption of the
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FIGURE 2. Schematic diagram of the convolutional neural network – long short-term memory (CNN–LSTM) algorithm.

HVAC system; the larger the EER, the lower the energy
consumption of the HVAC system. Green dots indicate the
EER values predicted for time points t . The blue hues of the
dots reflect their time proximity; as the time distance widens,
the temporal correlation becomes weaker, and the blue dots
become lighter in color. Each orange dot indicates a period.
Time series are first input to the convolutional and pooling
layers for feature extraction, and then the CNN output is input
to the LSTM network. The bottom half of FIGURE 2 shows
the output values corresponding to each LSTM cell state. The
input-to-output process can be expressed by the following
four equations:

it = σ
(
Wgi ∗ Gst +Whi ∗ H s

t−1 +WciCt−1 + bi
)

(1)

ft = σ
(
Wgf ∗ Gst +Whf ∗ H s

t−1 +Wcf ◦Ct−1 + bf
)

(2)

Ct = ft◦Ct−1 + it◦ tanh
(
Wgc ∗ Gst +Whc ∗ H s

t−1 + bc
)

(3)

ot = σ
(
Wgo ∗ Gst +Who ∗ H s

t−1 +Wco◦Ct−1 + bo
)

(4)

Here, i is the input gate, j is the forget gate, C is the update
cell, o is the output gate, σ is the activation function, andG is
the input to the LSTM layer at time t . The final LSTM output
is as follows:

H s
t = ot◦ tanh (Ct) (5)

When the input for time t − 1 is completed, the LSTM
network gives the predicted value for time t . The predicted
value is compared with the true value to obtain the loss value
to optimize the Critic network.

Compared with the LSTM model, the CNN–LSTM
network both extracts features and learns time-series trends.
It efficiently learns the time-series features of the HVAC
system parameter data, accelerating the training process.
In addition, it accurately predicts the energy consumption
at the next moment to assist in the enhanced learning
algorithm’s modeling and provide a basis for the subsequent
decisions on energy consumption optimization.

C. IMPROVING THE ORIGINAL DDPG ALGORITHM TO
ACHIEVE ENERGY CONSUMPTION OPTIMIZATION
The basic framework of the RL algorithm is a Markov
decision process (MDP). To design the RL algorithm,
we must first mathematically model the MDP, including the
essential elements of RL, such as states, actions, and rewards.
After the essential framework ismodeled, the training process
for the DDPG algorithm is constructed and improved by
replacing random sampling with up and down sampling
methods. In addition, dynamic delayed network updating
is adopted, and the E-DDPG algorithm is obtained. The
following is a detailed description of the E-DDPG model
framework.
• States (s): The state space determines the content of
the agent’s environmental perception. In the E-DDPG
algorithm, the parameters selected as the state space
of the MDP are those with a high impact on the
energy consumption of the HVAC system in the original
data, i.e., feature importance. Before constructing each
solution, the agent first obtains the current state, i.e., the
current parameters related to the energy consumption
of the HVAC system. Based on these parameters,
the agent then makes energy consumption predictions
and selects the optimized control strategy for energy
consumption.

• Actions (a): The decision action of the agent is the
output of the algorithm, which changes the state of the
environment with probabilityP. Inmost cases, the action
is the result of the decision. To ensure that the HVAC
system can meet the current working requirements and
reduce energy consumption after optimization, only two
relevant parameters are adjusted in this paper. Therefore,
the action here is the adjustment of these two HVAC
system parameters. The action output by the algorithm
according to the current state at each time point is the
result of the energy consumption optimization decision.
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FIGURE 3. Flow chart for the enhanced deep deterministic policy gradient (E-DDPG) algorithm.

• Reward mechanism: Since the goal of this paper is to
minimize the total energy consumption of the HVAC
system, i.e., to maximize the EER, the reward feedback
given by the RL model environment should guide the
neural network to update in the direction of energy
consumption reduction. Therefore, the reward setting in
this model is to optimize the difference between the EER
before and after the control parameters of the HVAC
system. The greater the absolute value of the difference,
the better the optimization performance, which leads to
the greater the reward value.

• Environment: The agent’s interactions with the envi-
ronment provide feedback, i.e., a reward or penalty.
In the energy consumption optimization task, the
environmental feedback required by the agent after
each state update is the energy consumption corre-
sponding to the current state of the HVAC system
and the predicted energy consumption of the HVAC
system at the next moment. Therefore, the above
energy consumption prediction model can be used to
simulate the environment. That is, with corresponding
control parameters of the HVAC system as input, the
energy consumption prediction model gives the energy
consumption corresponding to the next time point as
feedback from the environment. The reward value is
calculated based on environmental feedback.

The overall process of the E-DDPG algorithm is shown
in FIGURE 3. The initial HVAC system control parameter
value (s0) is manually set or is read from the sensor.
The agent takes an action (a) based on the current HVAC
system parameter value (s), and then the state is transferred
to obtain the next HVAC system control parameter value
(s′), which is expected to correspond to the parameter
value after energy consumption reduction. Subsequently, the
energy consumption prediction model calculates the energy

consumption of the HVAC system after 30 s according to
the current control parameter value and the next control
parameter value, respectively, as environmental feedback.
The reward value is calculated based on the environmental
feedback, and the generated state (s), action (a), reward value
(r), and next state (s′) in this calculation are stored in the
experience playback pool until the set maximum number of
steps is reached, thus completing an episode.

The above process is repeated until the maximum data
storage capacity of the experience replay pool is reached.
After that, a step is added at each iteration to update the
network weights. The Actor network is responsible for
learning the optimal policy for successive actions, while the
Critic network maintains the fitting with the real actions.

The online Actor network observes the HVAC system
control parameter state (s) and takes actions based on the
policy. Then, the energy consumption prediction model
simulates the environmental feedback and returns the next
state (s′) and the reward obtained from this action. The target
Actor network also selects the virtual optimal action based on
the state and sends it to the target Critic network to calculate
the target Q-value. When the target Q-value is entered, the
online Critic network calculates the temporal difference error
(TD-error) and completes the gradient update of its network
parameters. The parameter update equation is as follows:

θQ← θQ + αQδ · ∇θQQ
(
s, a | θQ

)
(6)

With feedback from the online Critic network, the online
Actor network also completes the update of the policy, i.e.,
the gradient update of its parameters. Its update equation is
as follows:

θµ
← θµ

+ αµ · ∇aQ
(
s, a | θQ

)∣∣∣
a=µ(δ | θµ)

∇µQ
(
s | θµ

)
(7)
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TABLE 2. Compilation environment.

Finally, a soft update of the target Q-network and the
target policy network is completed. The update equation is
as follows:

{
θQ← τθQ + (1− τ )θQ

′

θµ
← τθµ

+ (1− τ )θµ′
(8)

It is worth noting that the E-DDPG algorithm uses
an experience replay mechanism to break the temporal
correlation of the training samples. At each update, a certain
amount of data is taken out from the experience replay
pool, using up and down sampling to calculate the gradient.
The data, including s and a, generated by each iteration for
network updates are also stored in the experience replay pool
until the corresponding maximum number of iterations is
reached and the model training is complete.

IV. EXPERIMENTS
In this section, we first introduce the development environ-
ment and the data sets used.We then validate the performance
of the proposed framework with experimental results.

A. DEVELOPMENT ENVIRONMENT
System development relies on a computing environment.
Our system development environment, as shown in
TABLE 2, integrates and comprehensively uses various
resources.

B. BASELINE
We compare the neural network part of our proposed method
with three common neural networks, and the performance
of the DRL part with a model that uses the PPO algorithm
to achieve energy optimization. In the experiments with
heterogeneous data, we use the following benchmark model:
• LSTM [25], a commonly used neural network (RNN)
structure, suitable for nonlinear data problems

• GRU [45], a commonly used neural network structure,
simpler compared to LSTM structure

• CNN [23], a deep learning network structure, suitable
for processing topological data

• PPO [31], a reinforcement learning algorithm with good
performance in HVAC energy optimization

TABLE 3. Evaluation indicators for various models.

C. DATA SET
HVAC systems are commonly employed in plants and can
offer typical data on energy consumption. Further, to improve
the robustness of the model, geographical locations that
may influence the performance of HVAC systems must be
considered. Therefore, the data sets used were collected
from five plants in different regions. Noise reduction and
feature filtering were used to select the four most important
features from among their uniform set of 15 features:
compressor suction temperature, evaporator side water outlet
temperature, condenser side water inlet temperature, and
condenser side water inlet temperature. These four features
formed a data set to support the energy consumption
prediction and optimization models.

D. PERFORMANCE IN ENERGY CONSUMPTION
PREDICTION
Four models, namely CNN–LSTM, gated recurrent unit
(GRU), LSTM, and CNN, were used to independently predict
the same segment of data, and their results were compared.

As can be seen from TABLE 3, under the same conditions
for all models, the LSTM model exhibits a relatively small
mean absolute error (MAE) and mean absolute percentage
error (MAPE) but the longest training time and, therefore,
relatively low efficiency. The GRU model has a simpler
internal structure compared with the LSTM due to its
reduced number of gates, and its relatively small MAE and
MAPE values and relatively short training time lend it an
efficiency higher than that of the LSTM. The CNN model
requires the shortest training time but has the worst prediction
accuracy. Finally, the CNN–LSTM model, constructed by
adding the convolutional and pooling layers before inputting
to the LSTM, is relatively fast at the reduced dimensionality
of the input LSTM data due to the convolutional layer.
Compared with the other three models, the CNN–LSTM
model has the smallest MAE and MAPE values and the best
prediction performance. At the same time, the CNN–LSTM
model requires fully 42% less training time than the simple
LSTM model, making the CNN–LSTM model the most
efficient model.

The prediction performance of various models can be
seen in FIGURE 4. The CNN model performs poorly, with
significant differences between true values and predicted
values. As expected, the other three models demonstrate
no such significant gaps. However, many outliers appear in
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FIGURE 4. Comparison of prediction performance among four models.

FIGURE 5. Effect of sampling method on model performance.

epochs 300–500. Outliers can reflect the stability of a model’s
prediction performance. In this framing, the CNN–LSTM
model is more stable than the other two models. The reason
is that the neural network with a convolutional layer not only
improves the training efficiency compared with the simple

LSTM model but also enhances the ability to capture data
features. The noise of the data is further reduced through
the convolutional layer, making the data more suitable for
the model to learn and use in the improvement of prediction
performance.
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FIGURE 6. Effect of dynamic delayed updates on model results.

FIGURE 7. Comparison of energy efficiency ratio (EER) before optimization (red) and after optimization (blue) based on parameter data at various
timescales.

In summary, the CNN–LSTM model provides the best
prediction performance.

E. EFFECT OF IMPROVED TRAINING STRATEGIES
To determine the effects of our optimized up and down
sampling method, the model was trained using each of two
methods: a random sampling method and our optimized
method, separately. FIGURE 5 shows the EER change
after the neural network update once the experience pool
was filled. Panel FIGURE 6(a) shows the training process
corresponding to random sampling, which converges at
the 250th iteration, while panel FIGURE 6(b) shows the
training process corresponding to up and down sampling,
which converges at the 200th iteration. The number of
iterations for convergence was thus reduced by 20%.

Therefore, the experimental results demonstrate that our
sampling method improves the model training speed while
reducing the training time. Under our sampling method,
the training results converge, allowing a stable control
strategy for the HVAC system to be obtained with fewer
iterations.

To determine the effects of our model’s dynamic delayed
updating, we compared the normalized EERs before and
after updating via a dynamic delayed update, with results
shown in FIGURE 6. The EER interval of the model
before the dynamic delayed update was [−1.80,0.16], but the
narrower EER interval of themodel after the dynamic delayed
update was [−1.51,0.16], indicating that dynamic delayed
updating can reduce the fluctuation interval of EER by 14.8%.
Therefore, dynamic delayed updating can make the training
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FIGURE 8. Energy consumption optimization performance: comparison of PPO and enhanced deep deterministic policy gradient (E-DDPG) algorithms.

process more robust by reducing the fluctuation interval of
energy consumption in the training process.

In summary, the optimized training strategy can improve
the training speed while making the training process more
stable and the model more robust.

F. PERFORMANCE IN ENERGY CONSUMPTION
OPTIMIZATION
To test the effectiveness and generalizability of the energy
consumption optimization model based on the E-DDPG
algorithm, experiments with different groups were conducted
using the test data. We selected HVAC system parameter
data at different timescales and on different days for energy
consumption optimization and compared the test results.

FIGURE 7 compares the EERs before and after energy
consumption optimization of 800 pieces of time-series
continuous parameter data at different timescales using the
E-DDPG algorithm. Clearly, optimization greatly improved
the EER. As shown in panel (a), the EER of the original
data began to decline around the 610th piece of data, but the
model managed to adjust the strategy in real-time to improve
the EER and reduce energy consumption accordingly,
indicating that the model was able to make real-time policy
adjustment for different environmental conditions, showing
good generalizability.

To verify the particular effectiveness of the E-DDPG
algorithm, an alternative algorithm was used to learn energy
consumption optimization strategies, and its optimization
results were compared with those of the E-DDPG algorithm.
FIGURE 8 compares the energy consumption optimization
results using the PPO and E-DDPG algorithms, with the red
curve showing the EER before optimization and the blue
curve showing the EER after optimization. The final EER
after optimization using the PPO algorithm is maintained
at a level greater than 10 but occasionally falls below 0.

This behavior indicates that this algorithm cannot offer
an optimized control strategy for the energy consump-
tion of an HVAC system in all cases and thus provides
only mediocre optimization performance. In contrast, the
E-DDPG algorithm maintains the EER at a level of around
10 and improves to 11 at many points. This behavior
shows that the E-DDPG algorithm outperformed the PPO
algorithm. Indeed, the E-DDPG algorithm completed the
energy consumption optimization task while improving the
EER by 49% compared to not optimized.

V. CONCLUSION
In this paper, we proposed an energy consumption optimiza-
tion system for HVAC systems that integrate CNN–LSTM–
based energy consumption prediction and E-DDPG–based
energy consumption optimization. Our key results are as
follows.

1) In contrast with an LSTM model, the CNN–LSTM
algorithm can both extract features and learn time-series
trends. It efficiently learns the time-series features of the
HVAC system parameter data, thus accelerating the training
process by reducing the training time by 42.9% com-
pared with an LSTM model. In addition, the CNN–LSTM
algorithm accurately predicts the energy consumption at the
next moment to simulate the interaction between the agent
and environment in the RL algorithm and assist in the DRL
algorithm’s modeling;

2) During training with the E-DDPG algorithm using
an improved training strategy, the up and down sampling
methods can overcome the problem of uneven distribution of
learning experience of the agents at each time point while
improving model training speed, shortening training time,
and reducing the number of iterations for convergence by
20%. Dynamic delayed updating can reduce the fluctuation
interval of energy consumption during training by 12.5%,
making the training process more stable.
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3) The E-DDPG algorithm for energy consumption
optimization of HVAC systems successfully makes real-time
adjustments to its strategy in different environments, showing
good generalizability. In our modeling experiments, the E-
DDPG algorithm improved the EER of the HVAC system by
49%.

In summary, the CNN–LSTM–based energy consumption
prediction model, with high prediction accuracy and high
speed, successfully simulates the HVAC system environment
and provides a basis for decisions on energy consumption
optimization. The E-DDPG energy consumption optimiza-
tion model finds stable control strategies for HVAC systems
faster and is more robust than traditional models. It can help
HVAC systems better meet the needs of daily operations and
achieve efficient energy use.

Our work focuses mainly on the energy consumption
optimization of HVAC systems. Future efforts may consider
expanding the application of DRL in the optimization sce-
narios of other energy consumption subsystems in buildings,
such as electric vehicles, electric water heaters, and washing
machines. In this way, comprehensive energy consumption
optimization can be realized for energy management systems
in buildings.

Moreover, the present analysis of control and management
of energy systems in buildings has focused mainly on
optimizing energy consumption without considering privacy
leakage during training. In future research, we will consider
introducing federated learning techniques to protect the data
privacy of HVAC systems during training.
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