
Received 14 July 2023, accepted 3 August 2023, date of publication 15 August 2023, date of current version 23 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3305687

A Survey on Microservices Architecture:
Principles, Patterns and Migration Challenges
VICTOR VELEPUCHA AND PAMELA FLORES
Departamento de Informática y Ciencias de la Computación, Escuela Politécnica Nacional, Quito 170517, Ecuador

Corresponding author: Victor Velepucha (victor.velepucha@epn.edu.ec)

ABSTRACT Microservices architecture is a new trend embraced by many organizations as a way to
modernize their legacy applications. However, although there is work related to the migration process,
there is a gap in the body of knowledge related to the principles they should adopt when implementing a
microservices architecture. This work presents a comprehensive survey, gathering literature that explores
the fundamental principles underlying the object-oriented approach and how these concepts are related
to monolithic and microservices architectures. In addition, our research encompasses both monolithic
architectures and microservices, along with an investigation into the design patterns and principles utilized
within microservices. Our contribution is present a list of patterns used in microservices architecture,
the comparation between the principles expounded by the experts in the decomposition of microservices
architectures, Martin Fowler and Sam Neuman, and the forerunner of the Principle of Information Hiding,
David Parnas, who discusses modularization as a mechanism to improve flexibility and understanding
of a system. Additionally, we expose the advantages and disadvantages of monolithic and microservices
architectures obtained from the literature review carried out in summary form, which can help as a reference
for researchers from academia and industry and finally reveal the trends of microservices architectures today.

INDEX TERMS Microservices, monolithic, decomposition, principles, patterns, migration.

I. INTRODUCTION
An application with monolithic architecture is one that,
although it can be composed of several modules, has a
single executable. On the other hand, an application with
microservices architecture is a distributed application where
all its modules or elements are microservices and can be run
independently [1], [2]. Organizations can make the decision
to maintain their monolithic applications by only updating
the SDK and/or programming language version. However,
another path followed by many companies is to undergo a
migration process towards microservices architectures [3],
[4], [5]. This migration process can have several factors that
can influence the migration to microservices. For example,
the complexity of the monolithic architecture, complexity of
the data repository, organizational culture of the company,
experience of the software development team in creating
microservices, and the ability to make a proper division

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

of the monolithic architecture to create the microservices.
Then, migrating monolithic applications to a microservices
architecture can be a challenging process. There is somework
done in this regard; however, to date, there is no consensus
on how to conduct this process successfully [6]. Some
works recommend migrating a monolithic application to
microservices only if it has manymodules and its architecture
is complex [6], [7], [8]. Migration case studies are reported,
where a refactoring of a monolith system has been carried
out, organizing it by business functionality, there are also
recommendations towards reorganizing those monolithic
applications that are small into components since they do not
consider it convenient to migrate it towards a microservices
architecture [9]. From the literature review conducted, few
studies make migrations based on theoretical guidelines that
guide towards a microservices architecture [10], [11]. Based
on this research gap, we set the following research questions:

• RQ1. Are there principles that support the decomposi-
tion of monolithic applications towards microservices?

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 88339

https://orcid.org/0000-0002-7335-2571
https://orcid.org/0000-0002-4536-2780
https://orcid.org/0000-0001-9987-5584


V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

• RQ2. What are the advantages and disadvantages of
monolithic architectures and microservices?

To answer the first research question RQ1, it is proposed to
correlate the principles put forward by authors Martin Fowler
and SamNeuman, scholars of microservices architecture, and
the forerunner of the Principle of Information Hiding, David
Parnas. Our contribution is comparing and correlate these
principles proposed by each author and the expected benefits.
To answer the second research question RQ2, we perform
some literature review regarding about the advantages and
disadvantages of monolithic architectures and microservices
and we our contribution is provide a summary list with
an analysis of each item. Finally, case studies and success
stories of using microservices exposed in the literature by
authors from academia and industry are presented. The article
proceeds as follows. Sections II and III present concepts and
foundations of monolith, microservice, and different patterns
of architecture and design are indicated. In Section IV
the fundamentals of software engineering are exposed; in
Section V the principles that guide the development of
microservices are studied. In SectionVI, a correlation ismade
between the principles for the decomposition of systems
into modules proposed by Parnas and the principles that
guide the development of microservices indicated by Fowler
and Newman. In Section VII a study of the advantages and
disadvantages of developing microservices in a monolithic
and microservices architecture is carried out. In addition,
Section VIII indicates case studies and success stories in
migrating monolithic applications to microservices. Finally,
in Section IX the conclusions and future work are presented.

II. BACKGROUND
Software Engineering is the study of methodologies and prin-
ciples used for the development of computer systems [12].
It is a discipline formed by a set of methods, techniques,
and tools. It is essential to use software engineering when
creating computer systems, since hand in hand with the
software development life cycle, the needs that a client has,
the elicitation of requirements, analysis, design, construction
of the software, functional and non-functional tests to finally
deploy the system in a productive environment to be used
by the end-user and continue with the incorporation of
improvements and maintenance of the software. Without
Software Engineering, creating applications would be a
messy process, having a high probability of failures and
failed attempts [13]. Currently, most software products have
been developed mainly in two paradigms, the structured
and the object-oriented. According to a study conducted
by Ponce et al. [14], 90% of monolithic applications being
migrated to a microservices architecture have traditionally
been written using object-oriented programming languages,
due to the fact that objects allow for greater malleability, and
probably when migrating to microservices architectures, they
will continue under the same object-oriented paradigm [15].
Therefore, we are going to indicate some concepts used

in object-oriented approach and their relationship with
monolithic and microservice architectures.

A. FOUNDATIONS OF THE OBJECT-ORIENTED APPROACH
There are several foundations found in the literature that
guides the object-oriented approach, some state as principles
the concepts of encapsulation, abstraction, polymorphism,
and inheritance [16], while other authors extend these
concepts to decomposition and information hiding [17], [18].
The foundationsmentioned above are used both inmonolithic
and microservices architectures. In the next subsection we
explain in detail each one of these concepts:

1) DECOMPOSITION
Decomposition in software consists of dividing a complex
system into parts that are easier to understand, program, and
maintain over time. In structured programming, algorithmic
decomposition breaks a process into well-defined stages.
In object-oriented programming, decomposition consists of
dividing a large system into small classes that are responsible
for solving a particular business rule or problem [19].
A decomposition paradigm in computer programming is a
strategy for organizing a program as several pieces, and it
usually involves a specific way of organizing a program text.
Generally, using a decomposition paradigm is to optimize
some metrics related to the complexity of the program, for
example, the modularity of the program or its maintenance.
Most decomposition paradigms suggest breaking a program
into parts to minimize static dependencies between parts and
maximize the cohesion of each part. Some popular decompo-
sition paradigms are modules, procedural and object-oriented
abstract data types. [18], [19] The functional, object-oriented,
and database-level decompositions are described in detail
below:

The functional or structured decomposition consists of
creating functions and sub-functions that reduce the com-
plexity of software. These subfunctions can be decomposed
into smaller ones until they reach the degree of primitive
functions, and this process is known as refinement. This
paradigm is based on the idea of ‘‘divide and conquers’’ [20].
In structured decomposition, the decomposition of the system
into small functions, according to steps or functionalities,
can be generated with tools obtaining a structured diagram
that shows the relationships between various functional
elements of an application [18]. A schematic of a functional
decomposition can be seen in Figure 1. Some use cases where
functional decomposition can be applied are in software
development to divide large systems in small modules or
functions. Functional decomposition is also an effective
approach for analyzing and designing complex systems,
breaking down the system into functional components,
it becomes easier to understand.

Oriented Decomposition refers to decomposing based on
the domain of a problem by identifying objects and their
relationships (messages) between them. By having objects

88340 VOLUME 11, 2023



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

FIGURE 1. Functional decomposition example.

FIGURE 2. Object-Oriented decomposition example.

with unique behaviors and capable of solving a specific
problem, this form of decomposition for many is simpler,
both to understand and to use since the way to interact is by
sending messages between objects [18]. Several tools on the
market can generate a class diagram and their relationships
from a conceptual model; some of these tools also serve
to obtain these diagrams through reverse engineering, one
of the best-known being Power Designer. An example of
object-oriented decomposition can be seen in Figure 2.
According to experiences, Functional vs Object Oriented

Decomposition are valid ways of decomposing, however
when complex systems are built, object-oriented decom-
position has advantages over functional decomposition,
since it reduces complexity, which helps to understand it,
an object can be defined through its attributes and behavior,
which allows it to evolve and make changes to it [18].
Both functional and object-oriented programming, we can
create microservices. For example, if we program with
JavaScript using functions, along with Node.js and the
Express package, we can create a microservice that performs
CRUD operations. Alternatively, we can use ASP.NET Core
and create a microservice using classes and methods, with
both approaches being completely valid paths.

2) ABSTRACTION
Another important foundation considered by several authors
is that of abstraction. Abstraction is a mechanism that allows
us to represent a complex reality in terms of a simplified
model to suppress irrelevant or secondary details to improve
understanding [21]. According to Kramer [22], formal
modeling and progressive analysis have shown effective
methods in terms of practicing and developing abstract
thinking and consolidating related cognitive ability to apply
abstraction.

In terms of Software Engineering, Booch [23] mentions
that abstraction focuses on the external view of an object,

focusing only on the similarities of certain objects and
discarding their differences, and therefore serves to separate
the essential behavior of an object of its implementation.
On the other hand, Wing [24] cites abstraction as the
extraction of important information and discarding irrelevant
data from complex systems to generate patterns and find
common ground between different representations.

The human being, due to his learning and memory
limitations, and for a better understanding of complex
systems, has learned to fragment to abstract and then
understand a particular problem. Through abstraction, a piece
of information is taken to analyze and understand it better.

Object-oriented programming makes it easy to apply
abstraction by creating real-world entities that represent a
dense and cohesive grouping of information [18]. The defini-
tion of abstraction for Software Engineering and particularly
in Software Design is evidenced through manifestations such
as the abstract type of data and object-oriented programming.

3) INHERITANCE
Inheritance is a term proper to the object-oriented approach.
In object-oriented programming, inheritance occurs when an
object or class is based on another parent object or class, using
the same implementation or behavior, achieving reusability
and extensibility. Through it, designers can create new classes
starting from a class or a pre-existing class hierarchy, thus
avoiding redesign, modification, and verification of the part
already implemented. Inheritance makes it easy to create
objects from existing ones and implies that a subclass gets
all the behavior (methods) and attributes (variables) of its
parent class. Inheritance is one of the mechanisms used
by object-oriented programming languages, through which
one class is derived from another in a way that extends its
functionality. The class from which it is inherited is often
called the base class, parent, superclass, or ancestor class.
In programming languages with a strong typing system,
inheritance is usually a fundamental requirement to be able
to perform Polymorphism [18]. To validate if we are making
correct use of inheritance, we can check it with the Liskov
principle, which tells us that if in some part of our code
we are using a class, and this class is extended, we have
to be able to use any of the child classes and that the
program remains valid, which forces us to make sure that
whenwe extend a class, we are not altering the behavior of the
parent.

4) POLYMORPHISM
In object-oriented programming, polymorphism refers to the
possibility of defining different classes that have identically
named methods, but that behave differently in execution; in
this way, it is possible to send syntactically the samemessages
to objects of different types, obtaining different results. Some
object-oriented programming languages allow two objects of
different class hierarchies to respond to the same methods
through so-called interfaces. Two objects that implement the

VOLUME 11, 2023 88341



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

same interface can be treated identically as the same type
of object defined by the interface. Thus, different objects
can be exchanged at run time as long as they are of the
same type. When speaking of ‘‘inheritance’’, this concept
is different from ‘‘interface polymorphism’’ because a class
that implements an interface only obtains its data type and
the obligation to implement all its methods; it does not copy
behavior or attributes. However, one or more additional types
can be added to the implemented class, which, together with
the composition, avoids the need for multiple inheritances
and favors a broader use of polymorphism [25].

5) INFORMATION HIDING
Parnas [17] introduced ‘‘The Information Hiding Principle’’
in 1972. It is a principle that consists of: a) ‘‘Allow modules
to be reassembled and replaced without reassembly of the
whole system’’, which refers to create small modules and
that by design, they are displayed and exposed independently
in such a way that they are like a black box, without
having to know what language or technology they are created
with, and b) ‘‘Allow one module to be written with little
knowledge’’, allows internal changes to be made in each
module without the user of the module having to worry about
how the internal implementation is done. Parnas, when rec-
ommending decomposing systems into quasi-decomposable
modules (dividing systems into modules) that have the least
dependence on each other, indicates that these benefits can
be obtained: a) Short development times, b) Flexibility in
the development of a system, c ) Understandability of a
system. Short development times are achieved when it is
possible to separate an application into modules that allow
group work to be carried out with as little communication as
possible. The flexibility is that drastic or high-impact changes
can be made to modules without affecting other modules.
Understandability refers to the fact that you can understand
one module at a time without having to understand the
entire system. This can benefit a development team being
specialized tomaintain and add new functionality in a specific
module [17], [26].

6) ENCAPSULATION
Encapsulation is the mechanism for hiding the data imple-
mentation of an object by restricting its access through public
methods. The packaging of the variables of an object with the
protection of its methods is called encapsulation. Typically,
encapsulation is used to hide unimportant implementation
details from other objects, and implementation details can
change at any time without affecting other parts of the
program. In OOP (Object-Oriented Programming), instance
variables are kept private, and access methods are made
public. The benefit you get is that when you use the class,
you can bypass the implementation of the methods and
properties to focus on how to use them. On the other hand,
the user is prevented from changing his state in unexpected
and uncontrolled ways. [18].

B. MONOLITHIC AND MICROSERVICES WHAT ARE THEY?
Monolithic and microservice architectures are two different
approaches to designing and building software systems. The
choice between monolithic and microservice architecture
depends on several factors, and there is no definitive answer
to which one is the best. Both architectures have their own
strengths and weaknesses, and the decision should be based
on the specific requirements and constraints of the project.

1) MONOLITHIC ARCHITECTURE
A monolithic application is one that has a single executable,
although it can be made up of one or more modules,
with the restriction that these modules cannot be run
independently [1]. An application can be divided into several
logical layers; however, the deployment of all its layers
that contain its functionality is carried out jointly as if
it were a single block, while at the same time a single
process is created unique [27]. Generally, a monolithic
application or monolithic systems have the characteristic
of using a single code base to expose their services or
functionalities. From object-oriented programming, through
application development based on an SOA (Service Oriented
Architecture) architecture, creating monolithic applications
has been the alternative followed by most organizations;
however, as the complexity of these applications increases
due to the rise in business functionalities, maintaining this
type of architecture has become unsustainable, and it is also
difficult to incorporate new cutting-edge technologies in an
application that carries an architecture that is too rigid and
standardized for the use of a single technology.

A reference architecture for monolithic applications is that
of an application that has divisions in several logical layers.
For example, in the 3-layer pattern like the one shown in
Figure 3, a web application can be split into multiple logical
layers in the following order: Presentation, Business and
Data Access layer. In the presentation layer, the logic is
placed to respond to the interactions that the user makes
with the application through a web browser, in the business
layer, the rules and validations of business functionalities are
placed, and in the data access layer has all the mechanisms
to make calls either to databases or external services that the
application needs.

Let’s consider a concrete example where we are responsi-
ble for maintaining a monolithic music streaming application
similar to Spotify. In a requirement, we are asked to scale only
the functionality of the music player as it is the most used
by users. Additionally, we are asked to make a functionality
change to include a new field, which would be the number
of songs plays. In this case, any small change made in the
monolithic application and poorly tested in functional tests
could cause the entire system to be unavailable for minutes or
hours since the monolithic application is deployed as a single
block. Scaling only the music player functionality would
not be possible as scaling is done for the entire monolithic
application rather than individual parts. The deficiencies in

88342 VOLUME 11, 2023



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

FIGURE 3. Monolith architecture reference.

terms of quality attributes for this example would include
difficulties in scalability, maintenance problems, limited
flexibility in making changes, compromised availability and
reliability, and longer development times [4], [28].

In the case of web applications, depending on the number
of concurrent users that can access the application, the
application can be deployed on a web server and configured
so that it can scale horizontally to what is known as
webgarden, with which more than one running process is
created that will allow to attend more requests from users.
Another alternative to meet a high demand from concurrent
users is to deploy the application on several servers, known as
a distributed monolith or vertical scale, and its call is exposed
through a load balancer [27].
The applications after their construction and delivery for

their operation continue to evolve due to requests for changes,
the incorporation of new requirements, or solving bugs.
When an estimate is required to determine the effort of a
change in a monolith application, it is a challenging task
since any change, no matter how small, can affect the entire
system’s behavior, especially in a large and complexmonolith
application, this being its main disadvantage. What demands
more development effort and cost in a monolith application
created is its maintenance. Figure 4 shows an example
of monolithic architecture and microservice architecture,
where it is observed that each microservice can be deployed
independently; in addition, some microservices make calls to
their own database.

2) MICROSERVICE ARCHITECTURE
On the other hand, a microservice is an element of an
application that can be executed independently, unlike a
monolith application, where each microservice is developed
to fulfill a specific business functionality and is not developed
based on logical layers such as a monolith application, has
a flexible coupling and high functional cohesion; they can
interact with each other through a messaging system [1].
These small services can be developed independently and can

FIGURE 4. Monolithic vs Microservice achitecture.

FIGURE 5. Microservice search term trends over time.

FIGURE 6. Microservice reference architecture.

be operated in the same way as in a monolith application [10].
Currently, the use of microservices has become popular due
to the ease of development where each microservice fulfills a
specific business functionality, the comfort of scaling based
on the use of containers, and its ease of deployment in
cloud computing environments. However, challenges such
as managing and monitoring these microservices must be
considered. In the case of a migration from a monolith
application to microservices, the main objective is to
decompose an application into small autonomous services
that function independently.

The term microservice was recently mentioned in 2014 by
Martín Fowler [2], and since that year, interest in this term
has grown, as can be seen in Figure 5.
Microservices architecture is a distributed application

where all its modules or elements aremicroservices, and these
can run independently [1], [2]. A reference architecture of
microservices can be seen in Figure 6.

The current trends are focused on the migration of mono-
lithic applications to microservices and their deployment in
cloud computing [4]. There are also works that mention
automation in the compilation and deployment of migrated

VOLUME 11, 2023 88343



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

applications using DevOps tools [7]. Currently, the number
of proposals for adopting microservices architectures has
been increasing over the years, reducing the complexity of
systems, and achieving greater flexibility than monolithic
architectures [29]. There are studies in the literature that
demonstrate that many companies are migrating their mono-
lithic applications to a microservices architecture [1], [30].
Security in microservices is a crucial aspect that is also gain-
ing momentum, such as employing Mutual Authentication of
Services Using Mutual Transport Layer Security (MTLS),
guidelines, and best practices in designing security in
microservices, utilizing secure protocols, and using security
tokens for authentication [31]. Serverless and Function-as-a-
Service (FaaS) are concepts that are also trending alongside
microservices, as they allow for the development of stateless
functions that can easily be deployed in the cloud computing
environment. These functions automatically scale up or down
based on demand [32].

III. PATTERNS, PRACTICES, AND PRINCIPLES FOR
MICROSERVICES
Each programmer can carry out the implementation of
software differently, having different approaches and points
of view to solve a need or problem posed. However,
it is essential to standardize the design and construction
of the software, with the aim that the application built is
scalable, easy to test, and promote the reuse of components,
for which in the design and construction of the software
it is necessary the use of patterns. It is essential and
important from the beginning of development to establish
correct design patterns. Some of the most important patterns
used when designing microservices are explained below,
especially when migrating from a monolithic application to
microservices.

• Domain-Driven Design

Domain-Driven Design (DDD) is a set of tools that help
design and implement quality and high-value software both
in the strategic and in the tactical part, helping in the
design of software and its integration with the business [33].
The Domain-Driven Design pattern is used to develop a
vision of the system to be developed, generating a business
domain model from where the knowledge of the business
functionalities is extracted, generating for example, ‘‘smart
cases’’, in such a way that it can build a common language
between software developers, architects, and domain experts.
Generating diagrams brings benefits such as identifying
subdomains, identifying functionalities that are closely
related to other functionalities, and identifying functionalities
that are priority or important for the company, dependencies
between functionalities, calls to other external systems or
third-party services, all of which they must be included in the
domain model. By decomposing a system into so many small
microservices that perform a single business functionality
with the support of the DDD to delimit the limits that each

FIGURE 7. Service discovery pattern.

microservice must-have, it is possible to obtain microservices
with high cohesion [34].

• Service Discovery Pattern
When microservices are designed and created, an API is
generally used, which offers the necessary services so that
the application can interact with the backend. Microservices
require knowing where these services are hosted. With the
Service Discovery Pattern, the idea is that the services
themselves, when they are started, are registered in an entity
called Service Registry, which takes control of all active
services in such a way that when you want to consume a
service, you search the Service Registry available instances.
Each service, when starting, indicates its name and the
address where the service is located; in this way, the Service
Registry has a record of all the services that are available.
In addition to the initial registration, the services have to send
signs of life from time to time so that the Service Registry
knows that the service is still available; this is known as
heartbeat. If a service is not reported, the Service Registry
will know that there is something wrong with that service and
will assume that it is not available so that all requests will be
redirected to the other instances. This pattern allows us to run
a specific service without knowing the physical address of the
service; for this, a load balancer is used that will rely on the
Service Registry to know the real location of the service.

An example of this architecture pattern can be seen in
Figure 7.

• Data-Driven Design
Data is one of the most critical assets for any organization;
therefore, being able to collect and manage it correctly gives
a competitive advantage over the competition. Data-driven
design (D-DD) are designs that have been created using
the data collected from the analytics of an application, with
which you can find out information that is important or
relevant from the users who use the application, rethink the
visual design to facilitate the usability and accessibility of
the application, reorder and adapt the content to suit the
user’s needs, thereby being able for example to maximize
sales [35]. If an application has been made using D-DD, there
is better transparency when migrating to microservices; since
the business functionalities are already separated, there is a
loose coupling. Microservices are inspired by the proposals
given in the domain-driven design, where you must first

88344 VOLUME 11, 2023



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

FIGURE 8. BFF pattern example.

define a delimited context to a particular business problem,
which perfectly matches the principle of single responsibility
that is used when creating a microservice.

• Backend for Frontend Pattern

The Backend for Frontend (BFF) pattern is an architectural
software pattern that improves the way in which data is
obtained between clients, be it a browser, mobile application,
or any device connected to the Internet and servers hosted
on-premises or in Cloud. The goal of this pattern is
to decouple the frontend applications from the backend
architecture. When using this pattern, if a new service is
added, there is no need to make any changes between the
frontend applications and the backend, only to adapt the calls
to the BFF service. Its main benefit is allowing you to isolate
the backend from the frontend. An advantage of this pattern is
code reuse because all clients have the ability to get data from
the same BFF server, making it fewer complex [36]. When
creating microservices, an example of this BFF architecture
pattern can be seen in Figure 8.
In this example shown in Figure 8, there are three types of

clients: web application, mobile application, and third-party
external application. You can create one or three different API
Gateways.

• Adapter Microservices Pattern

The Microservices Adapter pattern adapts, as needed,
between a business-oriented API built using light or RESTful
messaging techniques, with the same domain-driven tech-
niques as a traditional microservice, and a legacy API
or traditional SOAP-based service. Improved Webservices
(WS- *). This adaptation is necessary, for example, when
a development team does not have decentralized control
over an application’s data source. An adapter microservice
wraps and translates existing services into an entity-based
REST interface. This type of microservice treats each new
entity interface as a microservice and builds, manages,
and scales it independently. In many cases, converting a
function-based interface (for example, one built with SOAP)
into a business-concept-based interface is easy; it’s like going
from a verb-based (functional) approach to a noun-based
(entity) approach [37].

• Strangler Application Pattern
The strangler pattern helps us manage the refactoring of a
monolithic application in stages. The idea is that it uses
the structure of a web application, the fact that they are
built from individual URIs (Uniform Resource Identifiers)
that are functionally assigned to different aspects of a
business domain, to divide an application into different
functional domains and replace those domains with a new
microservices-based implementation done one domain at
a time. These two aspects form separate applications that
live together in the same URI space. Over time, the new
refactored application replaces the original application until
you can finally shut down the monolithic application. The
strangler pattern includes these steps: Transform, which
consists of creating a new parallel site and transforming
it incrementally Coexist, where you have two sites, the
original one and the migrated one where it is for a while.
It will gradually redirect from the existing site to the new
site for the newly implemented functionality Remove, where
the old functionality of the existing site is removed, and
traffic is redirected away from that part of the old site. The
best way to apply this pattern is to create an incremental
approach to microservices adoption, one in which, if you
find that the method doesn’t work in your environment for
some reason, you have a simple way to change direction if
necessary. There are two ways to apply the Strangler pattern:
Refactoring your back-end for microservices design (the
inner part) or Refactoring your front-end to accommodate the
microservices and also to make any new functional changes
(the outer part) [38].

• Shared Data Microservice Design Pattern
The pattern indicates that in a migration process from a
legacy application to microservices, in the transition phase of
the migration, consider temporarily using the same database
repository so that the migration process is smoother. For this,
the limits of the business functionality must have been clearly
defined previously in such a way that microservices with
loose coupling and high cohesion are created; for this, it relies
on DDD. It must be taken into account that if at the end of the
migration process, a single database repository is maintained,
sharing data in a single repository can be considered an
anti-pattern [39]. An example of this pattern can be seen in
Figure 9.

• Aggregator Microservice Design Pattern
An entity is an object that is distinguished primarily by its
identity. Entities are the objects in the modeling process
that have unique identifiers. Entity objects need well-defined
object lifecycles and a good definition of what the root
identity relationship is. A good entity-relationship model
has well-defined entities, and each entity has a well-known
specific identifier, but they may never live independently.
A combination of entities is an aggregate. In cases where
you have a group of entities that must be kept consistent,
you can refer to those entities as dependent entities, and you
must make sure you know what the root of the aggregate is

VOLUME 11, 2023 88345



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

FIGURE 9. Shared Data Microservice Design Pattern Example.

FIGURE 10. Aggregator microservice design pattern example.

since the root defines the life cycle of the entities dependents.
For development teams, entity and aggregate patterns are
useful for identifying specific business concepts directly
mapped into microservices, performing end-to-end business
functions. Business microservices tend to be stateful and tend
to own their own data in a database managed by [40]. The
Figure 10 show an example of this pattern.

• Summarizing the methodologies and patterns

The different methodologies and patterns mentioned are
summarized in the Table 1, according to their purpose, usage
scenarios, and key benefits.

A. PRINCIPLES THAT GUIDE THE CREATION OF
MICROSERVICES
Multiple principles can be used as a reference when creating
microservices, which have emerged over the years; among the
most important are those proposed by microservices experts
Martin Fowler and Sam Newman [10]. On the one hand,
Fowler exposes nine principles [2] where it indicates the
characteristics that microservices should have when they are
built, emphasizing that not necessarily every microservice

TABLE 1. Summarized methodologies and patterns for microservices.

should have or comply with all these principles. On the
other hand, Newman, in his book ‘‘Building Microservices’’,

88346 VOLUME 11, 2023



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

TABLE 2. Principles comparative by authors.

highlights seven principles [36], in which he includes
guidelines at both a technological and organizational level
on how to create good microservices. When carrying out an
analysis of these principles, we realize that there are points in
common between the principles proposed by these authors.

Considering that microservices are a way of decomposing
architectures, forms of decomposition have been sought in the
literature, one of the most relevant being the decomposition
exposed by Parnas in 1972, in which two principles are
exposed [17] to decompose systems into modules, which we
see that despite having been in effect for many years, we can
also contrast them with the principles set out by Fowler and
Newman. Next, in Table 2 we show a comparative list of these
principles with an explanation of them. A detailed analysis of
these microservices principles is indicated below, taking into
account that the principles presented by Martin Fowler will
be taken as a pivot:

1) Componentization via services
This principle was formulated by Fowler et al. [2] and can

be mapped with the principle of Newman et al. [36] which
indicates ‘‘Hide Internal Implementation Details’’, and with
Parnas [17] ‘‘Allow modules to be reassembled and replaced
without reassembly of the whole system’’ which refers to
creating small microservices and that by their design, these
microservices are independently deployable and exposed in
such a way that they are like a black box, without the need to
know what language or technology they are created with.

2) Organized around business capabilities
This principle was formulated by Fowler et al. [2] and can
be mapped with the principle of Newman et al. [36] Model

Around Business Concepts, and Parnas ‘‘Allow one module
to be written with little knowledge’’. It refers to the fact
that the modular division of microservices should be based
on business capabilities and not on technical layers such as
presentation, business, and data access layers.

3) Decentralized governance
This principle [2] is related to ‘‘Decentralize All the
Things’’ [36] and refers to the fact that microservices must be
autonomous, with autonomous work teams, where each team
is responsible for the group of microservices that correspond
to a product. You can have a shared governance model that
can serve as a reference for different members of the work
teams.

4) Infrastructure automation
This principle [2] is related to ‘‘Adopt a Culture of
Automation’’ proposed by Newman et al. [36] and refers to
using DevOps tools to automate the merge of the source code,
thus having Continuous Integration in an automated way,
as well as using tools for continuous Deployment for test,
pre-production and production environments with which it
can be reached to a Continuous Delivery, getting to release
new versions in an automated, controlled and frequent way.
Automated testing should also include automated functional
and technical testing.

5) Design for failure
Design for Failure [2] relates to the ‘‘Isolate Failure’’
proposed by Newman et al. [36]. It refers to the fact that
given the design of a microservice to work independently
and autonomously, in the event of a failure, only this
microservice will not be available from the entire swarm,
the rest of the microservices being able to continue their
operation, thus having tolerance to failures. By incorporating
mechanisms such asmicroservices deployments in containers
such as Docker, monitoring tools such as GrafanamHeapster,
Prometheus can be had, with which it can be automated that
in the event of a microservice crash, through configurations,
the fallen microservices can be automatically raised.

6) Products not projects
Products not Projects [2]. It refers to creating multifunctional
teams (full-stack developers) with a wide range of skills
that not only build the software but also do the testing,
deployment, monitoring, and solve application issues in
a productive environment. An example of a monolithic
organization and another that works with microservices can
be seen in Figure 14.
7) Smart endpoints and dumb pipes

Smart Endpoints and Dumb Pipes [2] refers to avoiding
creating microservices that are too heavy, since a microser-
vice has to do data transformation, message routing, and
possibly apply business rules, being a recommendation, that
communication mechanisms be light using HTTP messaging
with REST.

8) Decentralized data management
Decentralized Data Management [2]. This principle matches
the principle ‘‘Hide Internal Implementation Details [36]

VOLUME 11, 2023 88347



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

TABLE 3. Principles benefits by authors.

proposed by Newman et al. [36], and also by Parnas [17].
It refers to the fact that each microservice must manage or
administer its own data, which is to say, that in the design of
a microservice, it must connect to its own database or storage.
This makes a great difference with a monolithic architecture,
where there is a single database repository for the entire
application. Figure 4 shows an example of monolithic
architecture and microservice architecture, where it can be
seen that each microservice has a database repository.

9) Evolutionary design
Evolutionary Design [2] refers to the fact that given the
design of a microservice that is autonomous and independent,
its evolution can also occur independently or, if required,
a microservice can be replaced by a new implementation
without affecting service to consumers. It also refers to the
fact that if a microservice is no longer used, it can be safely
terminated.
10) Independently deployable
Independently Deployable [2] refers to the fact that due to
any change either due to code maintenance or evolution
of a microservice, this microservice is capable of being
deployed independently, without affecting other microser-
vices and without affecting the entire application. Likewise,
mechanisms with Docker Swarm allow new versions to be
created as instances, while old versions of microservices live
until they finish serving requests.
11) Highly observable
Reference architecture of microservices indicates that there
must be monitoring tools, so in the design of a microservices
architecture, it must be decided which monitoring tools can
be used; there are various tools on the market such as
Prometheus, Spigo, Heapser, Grafana, Trace, Sensu.

B. EVALUATION AND DISCUSSION OF PRINCIPLES
If the principles mentioned by the authors are maintained,
benefits are obtained, which are mentioned in Table 3 and
detailed below.

In ‘‘Strong Module Boundaries’’, Martin Fowler [2] indi-
cates that microservices reinforce doing work in a modular
way, which is essential whenworking with large development
teams. On the other hand, Newman [36] emphasizes the fact
that having small development teams that work on specific
microservices tend to be more productive, managing to better
align with what the organization needs, which helps us

minimize the number of people working in a particular code
reaching the sweet spot of team size and productivity in
an organization. In Managerial, Parnas [17] refers to being
able to manage development teams that work on specific
modules independently, and that over time these developers
acquire more expertise and at the same time become more
autonomous in the work they do.

For ‘‘Technology Diversity’’, Fowler [2] states that each
microservice is an independently deployable unit, having the
freedom to code a microservice in different programming
languages or use any databases, allowing the developer team
to choose the most suitable tool, language, and libraries
to solve specific problems. Newman [36] also agrees on
this benefit, since having a system made up of multiple
collaborative microservices, you have the flexibility of being
able to decide to use different technologies for each one
according to the work they are going to do, instead of
having to select a more standardized approach. For example,
if an application of the social network type, the interactions
of the users can be stored in a graph-oriented database to
reflect the highly interconnected nature of a social graph,
and for the publications that users would be stored in a
document-oriented data warehouse, resulting in a heteroge-
neous architecture. For Comprehensibility Parnas [17], the
benefit is to be able to study a system module by module
without having to understand the whole system from the
beginning as it can be a complex task. This can benefit that
a development team may be specialized to maintain or add
new functionality in a specific module. Also, understand each
module and create a microservice for each business logic in
any programming language.

Independent Deployment [2] means that microservices,
being modular and simple, are easier to implement, and since
they are autonomous, they are less likely to cause system-
wide failures. In microservices, deployment is carried out in
an agile way, relying on continuous delivery, reducing the
time between the cycle between an idea and the running
software, with the benefit that organizations can respond
quickly to market changes and introduce new features faster
than your competition. On the other hand, Newman [36]
indicates that a change in a line of code in a monolithic
application necessarily implies releasing a new complete
version of the application, having a high impact and risk,
but with microservices, a change can be made in a single
service and deployed independently from the rest of the
system, should a problem occur, this individual service can be
quickly isolated, making fast rollback easy to achieve. It also
means that new functionality can be delivered to customers
faster, which is why many organizations such as Amazon
and Netflix have chosen to use these architectures. Identi-
fying reusable microservices allows them to be reused by
different consumers, for example, web applications, desktop
applications, mobile applications. In the case of resilience,
by configuring monitoring tools, if one microservice fails,
the rest of the system can continue to function. In contrast,
in a monolithic system, if one service fails, everything

88348 VOLUME 11, 2023



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

stops working. Regarding scalability, since microservices are
small, it allows scaling only those services that are most in-
demand, being able to optimize the use of hardware. Finally,
since microservices are small, the cost of replacing them
with a better implementation or eliminating them is much
easier. Development teams using microservices approaches
are more comfortable with either completely rewriting a
microservice or simply removing it when it is no longer
needed, and the cost of replacing it is quite small. Correlating
with what Parnas indicates [17], it refers to having the
flexibility of being able to make changes in a specific
module without causing it to affect other modules. After the
analysis presented, the first research question is answered Are
there principles that support the decomposition of monolithic
applications towards microservices?, We confirmed that
principles were found that lead to the decomposition of
microservices and the decomposition of architectures in
general.

On the one hand, David Parnas, is based on the principles:
‘‘Allow modules to be reassembled and replaced without
reassembling the whole system’’ and ‘‘Allow one module to
be written with little knowledge’’. On the other hand, Martin
Fowler proposes nine principles: Componentization via
Services, Organized around Business Capabilities, Products
not Projects, Smart endpoints and dumb pipes, Decentralized
Governance, Decentralized Data Management, Infrastructure
Automation, Design for failure, EvolutionaryDesign. Finally,
Sam Newman proposes seven principles: Model Around
Business Concepts, Adopt a Culture of Automation, Hide
Internal Implementation Details, Decentralize All the Things,
Independently Deployable, Isolate Failure, Highly Observ-
able.

It was possible to show that the principles proposed by
Fowler and Newman are correlated with the decomposition
proposed by David Parnas when he introduced the Principle
of Information Hiding. At the same time, there is a correlation
between the principles proposed by Fowler and Newman.

The principle proposed by Parnas ‘‘Allow modules to
be reassembled and replaced without reassembly of the
whole system’’ correlates with Fowler’s principle ‘‘Com-
ponentization via Services’’ and Newman’s ‘‘Hide Internal
Implementation Details’’, refers to creating small and that
by design, these microservices are independently and easy to
replace, they are exposed in such a way that there is no need
to know what technology they are created with.

Another correlation exists between the principle proposed
by Parnas ‘‘Allow one module to be written with little
knowledge’’, the principle ‘‘Organized around Business
Capabilities’’ proposed by Fowler, and the principle ‘‘Model
Around Business Concepts’’ indicated by Newman. This
principle refers to creating microservices-based on business
capabilities, which leads us to create small microservices that
fulfill a single functionality.

Between Fowler and Newman, we find the following cor-
relations. On the one hand, Fowler proposes ‘‘Decentralized
Governance’’ while Newman is more radical and proposes

‘‘Decentralize All the Things’’. These principles refer to
the fact that when it comes to creating microservices, the
hierarchical structure of an organization must be changed,
where responsibility is transferred to work teams. These
work teams in turn become autonomous, and each team is
responsible for a group of microservices, which over time
generates advantages such as experience in the business
functionality of the microservices created.

On the other hand, Fowler proposes ‘‘Infrastructure
Automation’’ while Newman indicates ‘‘Adopt a Culture
of Automation’’. Both authors refer to using DevOps tools
to automate the compilation, deployment, and delivery of
software. In addition, it is recommended to use tools to
monitor the correct execution of the microservices. In the
event of a microservice crash, a new one can be automatically
created again.

The last correlation between the principles proposed by
Fowler and Newman is that Fowler proposes ‘‘Design for
Failure’’ and Newman ‘‘Isolate Failure’’ and refers to that
when a microservice is designed, it is considered to have
loose coupling, of such that it works independently. In the
event of a failure, only this microservice will not be available,
and there will be no impact on the entire system.

The purpose of this survey is to evaluate the principles indi-
cated by experts in microservices such asMartin Fowler, Sam
Newman and contrast themwith what David Parnas indicates.
However, to mention some other renowned microservices
experts we have Chris Richardson, who authored the book
Microservices Patterns, that serves as a practical guide for
designing, implementing, and deployingmicroservices-based
systems [37]. Adrian Cockcroft is another prominent figure
in the software industry, particularly known for his advocacy
and promotion of microservices architecture, who played a
significant role in popularizing and advancing the adoption of
microservices, especially during his tenure at Netflix, he was
instrumental in transforming the company’smonolithic archi-
tecture into a highly scalable and resilient microservices-
based architecture. He emphasizes the importance of building
loosely coupled and independently deployable services that
align with the organization’s business domains [41]. Another
expert is Eberhard Wolff, who write the book Microser-
vices: Flexible Software Architecture, that provides valuable
insights and practical guidance for designing, implementing,
and maintaining microservices-based systems, introducing
the fundamentals of microservices architecture and explain-
ing the motivations behind adopting this architectural style,
emphasizing in the benefits of scalability, flexibility, and
autonomy that microservices offer compared to traditional
monolithic architectures [42].

IV. ADVANTAGES AND DISADVANTAGES OF
MONOLITHS AND MICROSERVICES
Monolithic applications, having all their components together
and are easy to develop. However, as new functionality is
added, their degree of coupling increases and becomes com-
plex, making them more challenging to maintain since any

VOLUME 11, 2023 88349



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

change, no matter how small it is, involves the deployment
of the entire application. Microservices have emerged as a
new alternative to handle monolithic application problems.
Microservices consist of decomposing a monolithic appli-
cation into various small services that are responsible for
business functionality. It could be said that microservice
architecture is an evolution of SOA (Service Oriented Archi-
tecture) since each microservice can evolve independently,
which benefits since any change in a microservice does not
affect the other microservices. However, there is complexity
when adopting this new microservices architecture, such as
the difficulty of understanding the business logic of a legacy
application for the migration to microservices and exist a
lack of reporting of migration experience, which makes it
necessary to carry out this process be challenging. Here are a
number of advantages and disadvantages of a monolithic and
microservices architecture.

A. ADVANTAGES WITH MONOLITHS
It cannot be said that an application with monolithic
architecture is bad. Instead, experts recommend sticking
with this architecture if the application is small [43]. Next,
we are going to expose a series of advantages that a monolith
application has.

1) APPLICATION AS A SINGLE BLOCK
When a monolithic application is small, its development
and deployment are simpler because it is treated as a single
block. In addition, a developer can track source code end-
to-end more quickly, which is useful when working in small
development teams. Monitoring can be a simpler task [27].

2) EASE OF CODE REUSE
Another advantage is being able to reuse a specific part of the
code; only a portion is copiedwithin themonolith application,
having control over the changes made, which is simpler than
making changes in distributed systems where it could affect
other consumers [27].

B. ADVANTAGES WITH MICROSERVICES
Through the literature review carried out, many advantages
are found when using a microservices architecture; below,
a list of the advantages found with their explanation is
exposed.

1) ALWAYS ONLINE
When releasing new versions of a microservices, it is not
necessary to decommission the entire system or restart the
service by having a good architecture of microservices,
deployed in containers and by usingDevOpswith Continuous
Integration and Continuous Delivery/Deployment can be car-
ried out hot, in such a way that new requests from new clients
will automatically call the new microservices, while the
existing microservices that are running when their requests
end or reach zero will disappear (shutdown) [44]. Likewise,

in case of failures, only the specific microservice will be
affected, not the entire system, so the rest of the modules
can continue working without problem [1]. Instead of using
virtual machines, using containers to place microservices
has excellent advantages, such as scaling them when there
is more demand for specific microservices. Docker is the
most popular platform used by many companies to create
containers and deploy our microservices, to have efficiency
and speed of provisioning, and together with other tools, it is
possible to obtain metrics of the health of the microservices.
A challenge is for companies to train their employees so
that they can automate most processes with DevOps tools
to perform, for example, Continuous Integration, Continuous
Deployment, shortening development, testing, and delivery
times to different environments such as pre-production and
production [36].

2) CHANGES WITHOUT AFFECTING OTHER COMPONENTS
Since a microservice is a small component that can run
independently, it is easy to maintain it, while in case of a bug,
it is easier to navigate through the source code, find the bug
and fix it, thus facilitating its maintainability, as well as ease
of releasing new versions [1].

3) AUDIT AND MONITORING
Having individual microservices allows us to place security
on specific microservices so that they can be audited,
monitored. Making changes to specific microservices to
incorporate security mechanisms makes it possible to opti-
mize costs [36].

4) EASE OF FUNCTIONAL TESTING AND ERROR
IDENTIFICATION
Because microservices are independent, they do not impact
each other when they are built with a good microservices
architecture. This means that if one part fails, the entire
application does not crash [45]. In addition to using DevOps
practices, they have focused on improving resilience through
automated testing. By making tests part of the build process,
tests are constantly run against code uploaded to a repository,
increasing the chances of finding and fixing bugs in the
code. Some attempts to improve resilience are to deploy new
versions in a small group of users and, if everything goes
well for a period of time, the new version is deployed to all
users; otherwise, it will return to the previous version until
the problems are resolved.

5) SELF-MANAGED TEAMS
Separating a monolith application into microservices brings
us advantages such as creating work teams that take one
or more microservices and take charge of them (take full
ownership), which gives us benefits such as modifications or
evolution of microservices independently and autonomously,
work teams can be in different geographic locations and
can work independently on these microservices. Having

88350 VOLUME 11, 2023



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

small rather than large work teams also brings advantages
such as faster and more frequent development and delivery
times because work teams specialize in knowing in detail a
specific business functionality that they are implementing in
microservices and with each iteration development, deepen
their knowledge further, in addition to the experience
acquired, these small work teams can give more accurate
development estimates, in addition to being able to perform
faster developments [36]. Continuous integration tools bring
us advantages such as obtaining metrics on how the quality
of our code is, shortening delivery times, merging our code
with the rest of the development team’s code in a controlled
way, having version control, traceability of the artifacts
delivered [36].
A microservice being independent, the software develop-

ment team can develop a specific microservice in another
programming language to take advantage of algorithms or
libraries that are incorporated, thus having other alternatives
to innovate, optimize costs and development times.

A microservices architecture supports project managers,
architects, and programmers to correctly build microservices,
have the proper guidelines, carry out a correct design,
coding [1]. The key is to have small and independent
services [2]

C. DISADVANTAGES WITH MONOLITHS
Several disadvantages related to a monolithic architecture
have been identified, such as operating costs, complexity
and scalability costs, difficulty incorporating modern tech-
nologies or using outdated technology, difficulty in hiring
adequate personnel tomaintain thesemonolithic applications.
Below we expose the disadvantages found in more detail.

1) HIGH MAINTENANCE COST
A problem with monolithic applications is the excessive cost
of source codemaintenance, especially when an application is
large and complex. In monolithic systems, given their design,
it can be challenging to maintain. It is difficult to identify
an error in monolith applications, correct it, and publish the
solution in a test and production environment.

Among the disadvantages identified is how difficult it is
to maintain a monolith, since, being a single block, in case
an internal component is modified and a failure occurs in
this maintenance process, the entire monolith application can
reach fail, you also have the problem of introducing new
functionality at the same time you can incorporate new errors
(bugs), and at the same time, it is required to test all the
functionality of the application again [46]. Any change in
a module in the monolith application requires a complete
restart of the application, which requires time to perform the
deployment of the updated version of the application [1].

2) SCALABILITY
Another drawback is in the scalability of a monolithic
application, since while it can be scaled through virtual

FIGURE 11. Monolithic scalability duplicating worker process.

FIGURE 12. Monolithic scalability in servers.

servers and a load balancer, this demands more hardware and
software resources, licensing costs, and time, therefore an
alternative to using containers with microservices is a good
alternative [47]. The disadvantage of a monolith application
is that, for example, if a module is the most used, it is not
possible to scale only this module, but the entire monolith
must be scaled, consequently increasing costs [1].

The scalability in applications at the physical or virtual
server level with technology can be done in two ways:

• Via WebGarden
• Via WebFarm

For example, in web applications with Microsoft technolo-
gies, which are deployed in the Internet Information Server
(IIS), the webserver and its application configuration files
can be configured so that several processes of the same
application are created. This is known as WebGarden or
horizontal scaling. An example of this is shown in Figure 11.

Another alternative is to deploy a web application on
a virtual or physical server farm. In order to have high
availability, a load balancer can be configured so that the
application is always available at all times. This scaling is
known as Web Farm or vertical scaling. An example of how
this scheme works is indicated in the following Figure 12.

Finally, given the technological advances, a current trend
is scalability using containers with Docker technology,
as shown in the following Figure 13.
This scheme has the advantage that new instances of

the monolith application can be created in a matter of
seconds. In addition to having advantages of an application
in a container, given that by the nature of a container,

VOLUME 11, 2023 88351



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

FIGURE 13. Monolithic Scalability in containers.

it is immutable, isolated, and does not depend on any
configuration of the operating system. The use of containers
brings multiple advantages such as provisioning in sec-
onds, automated service monitoring and restoration, version
updates in seconds, all these using container management
tools that exist in the market. The disadvantage of scaling
a monolith is that the entire monolith application is scaled,
regardless of when only a part of the functionality is the most
used.

3) LOK-IN LANGUAGE
Another drawback of monolithic applications is that they
are generally locked (lock-in) to be programmed with a
single programming language [1] while the flexibility of
microservices is that each microservice can be programmed
with a different programming language [2]. However, in large
software factories, despite having this flexibility of each
microservice, program it in any programming language,
due to standardization, training for programmers, learning
curve, for ease of maintenance to correct errors or add new
functionality, it is recommended to standardize and use a
single programming language in the development of large and
complex software [1].

D. DISADVANTAGE WITH MICROSERVICES
When creating an application under the microservices
architecture, a drawback is the high learning curve of this new
architecture, which goes hand in hand with an organizational
change to form autonomous teams that create the new
microservices, possibly in a new programming language
already while using new tools to automate compilation,

deployment, and monitoring, and there is a high possibility
that training will be needed to understand how to deploy
containerized microservices to cloud computing. However,
once this learning curve is overcome, developing microser-
vices will be much faster than working in a monolithic
application.

1) LACK OF EXPERIENCE FROM THE DEVELOPMENT TEAM
Another disadvantage is that an organization when it
begins the incorporation of a new architecture, such as
microservices, does not know if they will be successful due
to factors such as the limited experience of the development
team in working with this new architecture, where for
example Buchgeher et al. [10] in a Case Study indicates that
the migration of a project took eight months to overcome
the learning curve to work with microservices. For a small
company it is easier to organize and form work teams
based on products, not roles, while in large organizations
due to the size of their development team and the silos
that are formed between areas and their billing scheme
for their services provided organizational change is more
complex.

2) NETWORK OVERHEAD
Microservices are characterized by making more calls
to implemented functions, causing communication delays
between microservices and network overheads, which leads
to analyzing the network architecture and possibly imple-
menting changes at the architecture level. Additionally,
optimizations should be considered at the programming level
to be able to make asynchronous calls, parallel processing to
balance the network overheads.

The increase in microservices, even though they are in
containers, can lead to an increase in infrastructure given
the rise in the number of microservices, which is costly to
maintain.

3) DATA DUPLICATION
Since a microservices architecture recommends that each
microservice have its own database, it will be necessary to
duplicate data in the different new databases created, which
will require additional programming mechanisms to guaran-
tee the consistency of the data, increasing the complexity due
to some services will be more difficult to orchestrate, given
the increasing number of microservices [48]. New services
should be developed as compensatory (reverse) mechanisms
since the use of a distributed transaction system is not
recommended.

Since each microservice isolates unique business func-
tionality, testing an entire application increases complexity,
and it will take longer to find and fix bugs with the
new microservices architecture. Working with microservices
without automation would be a severe mistake, so using
DevOps tools to automate code integration, compilation, and
deployments is mandatory.

88352 VOLUME 11, 2023



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

4) INCREASE IN COMPLEXITY
Having many microservices and consuming them from a
Front End when trying to identify an error through traceabil-
ity can be complex and require many hours of searching for
the bug, which is why it can also be expensive [6], [45].

a: SUMMARY
The following Table 4 shows a summary of the advantages
and disadvantages in the monolithic and microservice
architectures found.

b: DISCUSSION
Once the advantages and disadvantages of monolithic
architectures and microservices were exposed, the second
research question was answered What are the advantages
and disadvantages of monolithic architectures and microser-
vices?, Obtaining a list of advantages, disadvantages that they
are in monolithic and microservice architectures. From this
study, it can be found that monolithic architecture presents
several problems that can be covered by microservice
architectures, presenting greater advantages compared to
monolithic architectures. Among the main advantages and
disadvantages that both architectures have, we can highlight
that a monolithic architecture is not a bad choice when you
have a small application. However, if an application over
the years has grown in complexity and the development
team spend more time fixing bugs than incorporating new
business functionality, it is necessary to make a change
towards a microservices architecture. Making this architec-
ture change not only involves breaking an application into
small components but rather relying on the principles of
software engineering and the principles and patterns related
to microservices to perform a good decomposition of a
monolithic application towards a microservices architecture.
Evolving to this architecture will bring advantages in the
short and long term, such as being able to use state-
of-the-art technology, make use of cloud computing with
optimized costs, make deliveries in shorter times, evolving
and replacement of microservices withminimal impact on the
entire application.

V. MICROSERVICES NOWADAYS
Organizations are showing interest in modernizing their
applications towards microservices to have the benefits that
this architecture offers: freedom and flexibility since they
can be written in any programming language and positively
influencing the performance of an application easy to
develop to meet business needs, scalability on demand. Many
organizations are currently migrating their applications to
microservices, while others have migrations to microservices
in their roadmap in the short term.

Francesco et al. [29] has carried out a study where
it mentions that in 2015 show 23 publications related to
microservices were identified, while in 2016, this number
doubled, reaching 41, and to date, this number continues to

FIGURE 14. Monolithic organization vs Microservices organization.

increase. This report also indicates that the studies carried
out by the academy regarding microservices represent four
times more than the studies carried out by the industry. While
organizations have increased experiences of migrations
to microservices, it is expected to have more reference
information on how to carry out this process successfully,
as there are still many challenges to address.

In the case of small organizations, there is a detailed
study carried out by Buchgeher [10] who indicates a Case
Study in a small software development company and shows
the experience of migrating a monolithic sample analysis
application from labs to a microservices architecture. This
study is relevant because they carry out the migration
based on a list of microservices principles and report
their experience. It should be noted that in order to be
successful in this migration, they had to make adaptations
in their organizational structure and assume the high initial
person-hour costs in creating the first microservices due to the
learning of this new microservices architecture, in addition
to learning to incorporate new technologies such as the use
of DevOps automation tools and microservices monitoring
tools. An example of how a small organization working with
a monolithic architecture style would be restructured towards
microservices is seen in Figure 14.

In [9] they report another experience of migration of a
monolithic application called SSaaS towards a microservice
architecture and its deployment of cloud computing. In this
case, the motivator for carrying out this migration was that
when they tried to incorporate a new chat module in the
application and they realized that this service had to be
reusable, with automated deployment and with scalability
capabilities. They realized that performing a refactoring of
your current application to a microservices architecture could

VOLUME 11, 2023 88353



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

TABLE 4. Comparative table of advantages and disadvantages between monoliths and microservices architectures.

meet this requirement. As a report of their experience, they
highlight that it is advisable to carry out an incremental
migration, rely on mechanisms to automate the delivery
process using continuous integration, use Containers for
deployment. In addition, in [9] they indicate that the
migration from a monolithic architecture to A microservices
architecture entails new complexities such as handling new
technology, standardizing the use of different program-
ming languages, reusing components such as Netflix OSS
(Open-Source Software) that already exist so as not to start
from scratch.

On the other hand, Bucciarone et al. [50] reports the
experience of the migration of a banking application that
had a monolithic architecture towards a microservices
architecture, where they indicate that in this migration

process, they did it by implementing one functionality at
a time. The identification of the business functionalities
was carried out through conversations with the business
experts; in this way, the business functionalities that should
be isolated in each service were easily identified, although at
the beginning, some of the microservices they created had
more than one functionality, however as more knowledge
of the business was acquired they were able to divide and
isolate each business functionality in each microservice.
In this experience, he also mentions the use of recent
technologies such as the use of containers, automation tools
for integration, and continuous deployment, so when there
is a more significant number of microservices, the time that
it takes to compile is transparent and faster. In this paper,
they report that having a monolithic application with large

88354 VOLUME 11, 2023



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

components, it is difficult to separate into small modules
due to high coupling between components and overlapping
responsibilities. They realized that the first microservices
were well defined when they realized that they had loose
coupling. Likewise, the migration result revealed that the
architecture was simplified since each component had a clear
and well-defined responsibility.

There is another experience report [51] of the migration
of monolithic applications to microservices carried out in
3 public institutions. This report indicates the benefits of
migrating a monolithic application to microservices. Among
the motivators that led to the migration to microservices is the
lack of freedom of development teams when incorporating
new technologies, duplication of code by copying rigid
components. To carry out this process, they first carried out
a self-observation and then a survey with closed questions
whose purpose was to understand the consequences of
the migration to microservices. Among the advantages
obtained, the development teams have now adopted DevOps
for continuous delivery, carrying out several deployments
in one day from what they previously carried out one
deployment per week. Another advantage obtained was the
improvement in the motivation of development teams since,
with this adoption ofmicroservices, development teams could
now organize themselves into groups to do independent
development of groups of microservices, have the freedom
to use new tools, and technologies. The deployment could
also be done independently for each microservice. Scalability
on demand independently was another benefit, and finally,
another benefit was being able to implement and deliver small
pieces of software (microservices) in short periods of time.

A. SUCCESSFUL MICROSERVICES IMPLEMENTATIONS
The success of a microservices architecture is reflected
in the implementations carried out by large companies
such as Amazon, Netflix, LinkedIn, SoundCloud, Spotify
[3], [4], [5].

For example, the company Spotify, in a conference in 2005,
indicated how they create microservices and demonstrate
the benefits of using microservices instead of monolithic
applications. With the microservices architecture style, they
have also managed to have fewer dependencies between the
components of their product. In addition, they mention that
in their organization, they have formed several autonomous
teams which are free to create and maintain microservices;
each team owns the microservice [52].
Netflix, another pioneer in adopting microservices, which

was initially a monolithic application for DVD movie rental,
reinvented itself to form small work teams responsible
for creating specific microservices. As Netflix engineers
transformed their monolithic application towards a microser-
vices architecture, they established several best practices
for designing and implementing microservices, such as
that each service should have its own database repository
for which they had to denormalize its database. If a

microservice was too large, it had to be divided into several
microservices and use containers. Finally, he released many
of these tools created to create microservices as Open Source
Software [53].
In the case of Amazon, it was in 2002 that it reinvented

itself because by mandate, all work teams had to expose
their data and business functionality through services, and
this was the only form of communication, reaching an SOA
architecture and giving freedom to the tools with which they
would create the services. It can be said that later these
services continued their evolution towards microservices.
The transformation of Amazon was that from what it was a
platform to sell and send books to become one of the first
platforms for the sale of any type of article on the internet,
in addition to offering an entire infrastructure in the cloud
so that any company can reuse its infrastructure to deploy
microservices in the Amazon cloud [54].
SoundCloud is another success story. SoundCloud is a

product by which artists can share their work, collaborate
on the creation of tracks, and be discovered by the industry.
This application was born with a Monolithic architecture.
However, they realized some drawbacks such as scalability
problems and that they were spending too many time-solving
errors instead of incorporating new functionality, so they
decided to adopt a microservices architecture, following an
incremental transformation process, that is, as they needed to
refactor or add new functionality, instead of doing it in the
monolith system, they created a new microservice, and thus
incrementally eliminated functions from the main monolith
application. The main benefit they noticed from using a
microservices architecture is that they were able to create and
release new functionality in short cycles [5].

B. CHALLENGES
The crucial part of migrating monolithic applications to
microservices is understanding the challenges that arise. The
most relevant are detailed below.

• Understanding of business logic
• Understanding the current (as-is) and future architecture
(to-be)

• Understanding only the required business functionality
• Cost optimization
• Rapid reaction to business demand (elasticity)

Some companies, as part of the evolution of their
monolithic applications, are working on migrating them
towards an SOA architecture and others towards a microser-
vices architecture; however, one of the biggest and most
complex challenges that programmers face is breaking
down a monolith system into small ones. and independent
modules [6], [28].
However, decomposing a monolith system into microser-

vices also brings performance-related challenges, given the
inter-microservice calls [28]. Another challenge is that there
are still no tools that allow decomposition, and this task can
be done manually [6], [55]. The tools that exist on the market

VOLUME 11, 2023 88355



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

only allow for static code analysis and dependency scanning,
so proposals for decomposition process frameworks have
emerged in the literature proposals [28], [56].

One of the challenges for which many companies adopt the
new microservices architecture is to generate Fast Time-to-
Marquet; that is, it is possible to incorporate new functional-
ities requested by clients in the applications and deploy them
in a production environment as soon as possible [10]. In the
literature, there are challenges that new developers must face
since the high learning curve must be solved at the beginning
of the adoption of this new architecture [10]. Another
challenge is creating applications that are multitenancy.
Multitenancy is used, for example, in an application like SaaS
(Software as a Service) when the application-level model
allows multiple instances of an application to be shared
by multiple tenants through configurations, and only the
tenant has access to their only information [7]. Through
our research, we provide some advices and perspectives to
consider when undertaking migrations to microservices:

• Using a domain-driven design is crucial in order to
define the boundaries and responsibilities of each
created microservice.

• The use of microservices is ideal when a high level
of scalability is required, especially in IoT systems
where scalability is needed to handle a large number
of interconnected devices, and also to mitigate security
risks and attacks associated with IoT data.

• As the number of microservices increases, it is necessary
to consider implementing a robust testing process
supported by automated testing tools.

• Finally, it is highly recommended to have a solid moni-
toring process for deployed services, allowing operators
to oversee the health status of the microservices.

C. FUTURE DIRECTIONS
Microservices are now a popular architectural style for
building any kind on applications in different programming
languages. They offer a number of benefits, such as
scalability, flexibility, and maintainability. Due to the great
current technological changes, we can predict what or what
is coming in the future about microservices:

• Micro frontends: Micro frontends represent the future
of frontend development and in the next years, more
developers will use micro frontends. This means that
more and more companies are adopting this architecture
because off as microservices architectures become more
complex, micro frontends can help to improve the
maintainability and scalability of these applications.
By dividing large-scale web applications into smaller,
independent frontends now is called micro frontends.
Each micro frontend, which may be designed and
deployed independently, is in charge of a certain aspect
of the user interface. Because individual micro frontends
may be changed without affecting the entire application,
this makes it simpler to manage and expand large-scale

online applications, obtaining the same benefits of
microservices like improved scalability, maintainability,
flexibility. Micro frontends can be integrated with
other technologies, such as microservices, serverless
computing, and artificial intelligence. This will allow
developers to build even more powerful and sophisti-
cated applications [57], [58], [59].

• Containerization evolution: Microservices can run in
lightweight, isolated environments thanks to containers.
For managing and scaling microservices installations,
container orchestration solutions like Kubernetes have
seen a considerable increase in popularity. The
deployment and maintenance of microservices should
become easier in the future because to developments
in containerization technology and orchestration tools
[30], [60].

• Serverless Computing and Cloud-native architecture:
Serverless computing and microservices are likely
to be progressively integrated, opening the door to
deployment approaches that are more effective and scal-
able. Developers may concentrate entirely on building
code for individual microservices thanks to serverless
architectures, which abstract away infrastructure-related
concerns. The future of microservices with cloud-native
architecture appear to have a highly promising future.
Both microservices and cloud-native architecture are
growing in popularity, and they offer a variety of advan-
tages that can help organizations to build more scalable,
flexible, and maintainable applications [30], [61].

• IoT and Edge Computing: IoT and microservices both
have a bright future. Microservices will become a
more crucial architectural pattern for developing IoT
applications as the IoT expands. Scalable, adaptable,
and secure IoT applications can be created using
microservices. Edge computing will be essential in
processing data closer to the source as IoT devices keep
multiplying. By deploying microservices at the edge,
it is possible to provide distributed processing and lower
latency. With this strategy, reliance on centralized cloud
resources can be reduced and reaction times can be
increased [62], [63], [64].

• AI-Enabled Microservices: The future of microservices
in relation to AI (Artificial Intelligence) holds signif-
icant potential. Microservices that are AI-enabled can
use AI’s capabilities to improve their functionality.
To enable intelligent decision-making, predictive analyt-
ics, natural language processing, computer vision, and
other AI-driven tasks, AI algorithms can be integrated
into microservices. Microservices may have access
to cutting-edge capabilities through this integration,
enabling them to offer services that are intelligent and
adaptive [65], [66], [67].

VI. CONCLUSION AND FUTURE WORK
This survey provides a detailed explanation of monolithic and
microservice architectures, as well as clarifies the different

88356 VOLUME 11, 2023



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

foundations on which software engineering is based, high-
lighting important concepts such as abstraction, inheritance,
polymorphism, encapsulation, information hiding and how
these concepts are related to monolithic and microservice
architectures. We also show that there are patterns that can
be used in the design and development of microservices.

We conclude that it is important that microservices are
created using domain-driven design, so that can be easily
replaceable, that hide the details of their implementation
and their use is only through smart endpoints, that each
microservice has one and only one business responsibility,
they are formed Autonomous development teams, which
also involves a change in the organizational structure in
companies, it is also recommended that both the compilation
and deployment of the microservices created to be done
in an automated way and also when the microservices are
created, they must have logs, in such a way that through
monitoring tools the correct operation of the microservices
can be reviewed.

This work can be helpful to those researchers and
professionals looking to carry out migration processes from
architecture from monoliths to microservices since the
theoretical foundations presented here can guide them to
carry out successful migrations. Finally, as future work, it is
proposed to experiment with the migration of a monolith
application towards a microservices architecture, applying
the principles and patterns identified here.

REFERENCES
[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,

R. Mustafin, and L. Safina, ‘‘Microservices: Yesterday, today, and tomor-
row,’’ in Present and Ulterior Software Engineering. Cham, Switzerland:
Springer, 2017, pp. 195–216.

[2] J. Lewis and M. Fowler, ‘‘Microservices: A definition of this new
architectural term,’’ MartinFowler.com, 2014, vol. 25, nos. 14–26, p. 12.

[3] J. Thönes, ‘‘Microservices,’’ IEEE Softw., vol. 32, no. 1, p. 116, Jan. 2015.
[4] M. Villamizar, O. Garcés, H. Castro,M. Verano, L. Salamanca, R. Casallas,

and S. Gil, ‘‘Evaluating the monolithic and the microservice architecture
pattern to deploy web applications in the cloud,’’ in Proc. 10th Comput.
Colombian Conf. (CCC), Sep. 2015, pp. 583–590.

[5] M.Kalske, N.Mäkitalo, and T.Mikkonen, ‘‘Challenges whenmoving from
monolith to microservice architecture,’’ inProc. Int. Conf. Web Eng.Cham,
Switzerland: Springer, 2017, pp. 32–47.

[6] D. Taibi, V. Lenarduzzi, and C. Pahl, ‘‘Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,’’
IEEE Cloud Comput., vol. 4, no. 5, pp. 22–32, Sep. 2017.

[7] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros, ‘‘Migrating
enterprise legacy source code to microservices: On multitenancy, state-
fulness, and data consistency,’’ IEEE Softw., vol. 35, no. 3, pp. 63–72,
May 2018.

[8] A. Carrasco, B. V. Bladel, and S. Demeyer, ‘‘Migrating towards
microservices: Migration and architecture smells,’’ in Proc. 2nd Int.
Workshop Refactoring, Sep. 2018, pp. 1–6.

[9] A. Balalaie, A. Heydarnoori, and P. Jamshidi, ‘‘Migrating to cloud-
native architectures using microservices: An experience report,’’ in Proc.
Eur. Conf. Service-Oriented Cloud Comput. Cham, Switzerland: Springer,
2015, pp. 201–215.

[10] G. Buchgeher, M. Winterer, R. Weinreich, J. Luger, R. Wingelhofer, and
M. Aistleitner, ‘‘Microservices in a small development organization,’’
in Proc. Eur. Conf. Softw. Archit. Cham, Switzerland: Springer, 2017,
pp. 208–215.

[11] O. Zimmermann, ‘‘Microservices tenets,’’ Comput. Sci. Res. Develop.,
vol. 32, nos. 3–4, pp. 301–310, Jul. 2017.

[12] R. S. Pressman, Software Engineering: A Practitioner’S Approach.
London, U.K.: Palgrave Macmillan, 2005.

[13] I. Sommerville, Software Engineering, 9th ed. India: Pearson Education,
2011.

[14] F. Ponce, G. Márquez, and H. Astudillo, ‘‘Migrating from monolithic
architecture to microservices: A rapid review,’’ in Proc. 38th Int. Conf.
Chilean Comput. Sci. Soc. (SCCC), Nov. 2019, pp. 1–7.

[15] D. Shadija, M. Rezai, and R. Hill, ‘‘Towards an understanding of
microservices,’’ in Proc. 23rd Int. Conf. Autom. Comput. (ICAC),
Sep. 2017, pp. 1–6.

[16] D. Kasture and R. C. Jaiswal, ‘‘Pillars of object oriented system,’’ Int. J.
Res. Appl. Sci. Eng. Technol., vol. 7, no. 12, pp. 589–590, 2019.

[17] D. L. Parnas, ‘‘On the criteria to be used in decomposing systems into
modules,’’ Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

[18] G. Booch, R. A. Maksimchuk, andM.W. Engle, ‘‘Object-oriented analysis
and design with applications,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 33,
no. 5, p. 29, 2008.

[19] K. Kwon and J. Cheon, ‘‘Exploring problem decomposition and program
development through block-based programs,’’ Int. J. Comput. Sci. Educ.
Schools, vol. 3, no. 1, pp. 3–16, Apr. 2019.

[20] H. Van Vliet, H. Van Vliet, and J. Van Vliet, Software Engineering:
Principles and Practice, vol. 13. Princeton, NJ, USA: Citeseer, 2008.

[21] I. Hadar and E. Hadar, ‘‘An iterative methodology for teaching object
oriented concepts,’’ Informat. Educ., vol. 6, no. 1, pp. 67–80, Apr. 2007.

[22] J. Kramer, ‘‘Is abstraction the key to computing?’’Commun. ACM, vol. 50,
no. 4, pp. 36–42, Apr. 2007.

[23] G. Booch, Object Oriented Analysis & Design With Application. India:
Pearson Education, 2006.

[24] J. M. Wing, ‘‘Computational thinking,’’ Commun. ACM, vol. 49, no. 3,
pp. 33–35, 2006.

[25] S. Kendal, Object Oriented Programming Using C. London, U.K.:
BookBoon, 2011.

[26] V. Velepucha, P. Flores, and J. Torres, ‘‘MOMMIV: Modelo para
descomposición de una arquitectura monolítica hacia una arquitectura de
microservicios bajo el principio de ocultación de información,’’ Revista
Ibérica de Sistemas e Tecnologias de Informação, vol. 1, no. E17,
pp. 1000–1009, 2019.

[27] S. Newman, Monolith to Microservices: Evolutionary Patterns to Trans-
form Your Monolith. Sebastopol, CA, USA: O’Reilly Media, 2019.

[28] D. Taibi and K. Systä, ‘‘A decomposition and metric-based evaluation
framework for microservices,’’ 2019, arXiv:1908.08513.

[29] P. D. Francesco, I. Malavolta, and P. Lago, ‘‘Research on architecting
microservices: Trends, focus, and potential for industrial adoption,’’ in
Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Apr. 2017, pp. 21–30.

[30] F. Wang and J. Zhang, ‘‘Research on the current situation and future trend
of microservice technology development,’’ in Proc. IEEE 6th Adv. Inf.
Technol., Electron. Autom. Control Conf. (IAEAC), Nov. 2022, pp. 44–54.

[31] T. Yarygina and A. H. Bagge, ‘‘Overcoming security challenges in
microservice architectures,’’ in Proc. IEEE Symp. Service-Oriented Syst.
Eng. (SOSE), Mar. 2018, pp. 11–20.

[32] U. Zdun, E. Wittern, and P. Leitner, ‘‘Emerging trends, challenges, and
experiences in DevOps and microservice APIs,’’ IEEE Softw., vol. 37,
no. 1, pp. 87–91, Jan. 2020.

[33] V. Vernon, Domain-Driven Design Distilled. Reading, MA, USA:
Addison-Wesley Professional, 2016.

[34] M. Richards, Fundamentals of Software Architecture. Sebastopol, CA,
USA: O’Reilly Media, 2020.

[35] A. Kirk, Data Visualisation: A Handbook for Data Driven Design.
Newbury Park, CA, USA: Sage, 2016.

[36] S. Newman, Building Microservices: Designing Fine-Grained Systems.
Sebastopol, CA, USA: O’Reilly Media, 2015.

[37] C. Richardson, Microservices Patterns: With Examples in Java. Shelter
Island, NY, USA: Manning Publications, 2019.

[38] S. D. Santis, L. Florez, D. V. Nguyen, and E. Rosa, Evolve the Monolith
to Microservices With Java and Node. Indianapolis, IN, USA: IBM
Redbooks, 2016.

[39] V. F. Pacheco,Microservice Patterns and Best Practices: Explore Patterns
Like CQRS and Event Sourcing to Create Scalable, Maintainable, and
Testable Microservices. Birmingham, U.K.: Packt, 2018.

[40] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Reading, MA, USA: Addison-Wesley Professional, 2004.

[41] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov,
‘‘Microservices: The journey so far and challenges ahead,’’ IEEE Softw.,
vol. 35, no. 3, pp. 24–35, May 2018.

[42] E. Wolff, Microservices: Flexible Software Architecture. Reading, MA,
USA: Addison-Wesley Professional, 2016.

VOLUME 11, 2023 88357



V. Velepucha, P. Flores: Survey on Microservices Architecture: Principles, Patterns and Migration Challenges

[43] A. Singleton, ‘‘The economics of microservices,’’ IEEE Cloud Comput.,
vol. 3, no. 5, pp. 16–20, Sep. 2016.

[44] L. Chen, ‘‘Microservices: Architecting for continuous delivery and
DevOps,’’ in Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Apr. 2018,
pp. 39–397.

[45] T. Prasandy, D. F. Murad, and T. Darwis, ‘‘Migrating application from
monolith to microservices,’’ in Proc. Int. Conf. Inf. Manage. Technol.
(ICIMTech), Aug. 2020, pp. 726–731.

[46] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, ‘‘The pains and
gains of microservices: A systematic grey literature review,’’ J. Syst. Softw.,
vol. 146, pp. 215–232, Dec. 2018.

[47] D. Namiot and M. Sneps-Sneppe, ‘‘On micro-services architecture,’’ Int.
J. Open Inf. Technol., vol. 2, no. 9, pp. 24–27, 2014.

[48] W. Fan, Z. Han, Y. Zhang, and R. Wang, ‘‘Method of maintaining
data consistency in microservice architecture,’’ in Proc. IEEE IEEE 4th
Int. Conf. Big Data Secur. Cloud (BigDataSecurity) Int. Conf. High
Perform. Smart Comput., (HPSC) IEEE Int. Conf. Intell. Data Secur. (IDS),
May 2018, pp. 47–50.

[49] D. Taibi, V. Lenarduzzi, C. Pahl, and A. Janes, ‘‘Microservices in agile
software development: A workshop-based study into issues, advantages,
and disadvantages,’’ in Proc. XP Scientific Workshops, May 2017, p. 23.

[50] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara,
‘‘From monolithic to microservices: An experience report from the
banking domain,’’ IEEE Softw., vol. 35, no. 3, pp. 50–55, May 2018.

[51] W. Luz, E. Agilar, M. C. de Oliveira, C. E. R. de Melo, G. Pinto, and
R. Bonifácio, ‘‘An experience report on the adoption of microservices in
three Brazilian government institutions,’’ in Proc. 32nd Brazilian Symp.
Softw. Eng., Sep. 2018, pp. 32–41.

[52] B. Linders, ‘‘Microservices at spotify,’’ 2015, vol. 11, p. 18. [Online].
Available: https://www.infoq.com/news/2015/12/microservices-spotify/

[53] T. Mauro. (2015). Adopting Microservices at Netflix: Lessons for
Architectural Design. [Online]. Available: https://www.nginx.com/
blog/microservices-at-netflix-architectural-best-practices

[54] B. Smith and G. Linden, ‘‘Two decades of recommender systems at
amazon.com,’’ IEEE Internet Comput., vol. 21, no. 3, pp. 12–18, 2017.

[55] D. Taibi, V. Lenarduzzi, and C. Pahl, ‘‘Architectural patterns for
microservices: A systematic mapping study,’’ in Proc. 8th Int. Conf. Cloud
Comput. Services Sci., 2018, pp. 221–232.

[56] D. Taibi and K. Systä, ‘‘From monolithic systems to microservices: A
decomposition framework based on process mining,’’ in Proc. 9th Int.
Conf. Cloud Comput. Services Sci., 2019, pp. 1–12.

[57] M. Geers, Micro Frontends in Sction. New York, NY, USA: Simon &
Schuster, 2020.

[58] L. Mezzalira, Building Micro-Frontends. Sebastopol, CA, USA: O’Reilly
Media, 2021.

[59] P. Y. Tilak, V. Yadav, S. D. Dharmendra, and N. Bolloju, ‘‘A platform
for enhancing application developer productivity using microservices and
micro-frontends,’’ in Proc. IEEE-HYDCON, Sep. 2020, pp. 1–4.

[60] G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, and Z. Li, ‘‘Microservices:
Architecture, container, and challenges,’’ in Proc. IEEE 20th Int. Conf.
Softw. Quality Rel. Secur. Companion (QRS-C), Dec. 2020, pp. 629–635.

[61] P. Raj, S. Vanga, and A. Chaudhary, Cloud-Native Computing: How to
Design, Develop, and Secure Microservices and Event-Driven Applica-
tions. Hoboken, NJ, USA: Wiley, 2022.

[62] A. Razzaq, ‘‘A systematic review on software architectures for IoT systems
and future direction to the adoption of microservices architecture,’’ Social
Netw. Comput. Sci., vol. 1, no. 6, p. 350, Nov. 2020.

[63] S. Pallewatta, V. Kostakos, and R. Buyya, ‘‘Microservices-based iot
applications scheduling in edge and fog computing: A taxonomy and future
directions,’’ 2022, arXiv:2207.05399.

[64] S. Pallewatta, V. Kostakos, and R. Buyya, ‘‘Placement of microservices-
based IoT applications in fog computing: A taxonomy and future
directions,’’ ACM Comput. Surveys, vol. 55, no. 14s, pp. 1–43, Dec. 2023.

[65] G. M. Lee, T.-W. Um, and J. K. Choi, ‘‘AI as a microservice (AIMS) over
5G networks,’’ in Proc. ITU Kaleidoscope, Mach. Learn. 5G Future (ITU
K), Nov. 2018, pp. 1–7.

[66] S. Alrubei, E. Ball, and J. Rigelsford, ‘‘A secure distributed blockchain
platform for use in AI-enabled IoT applications,’’ in Proc. IEEE Cloud
Summit, Oct. 2020, pp. 85–90.

[67] F. Al-Doghman, N. Moustafa, I. Khalil, N. Sohrabi, Z. Tari, and
A. Y. Zomaya, ‘‘AI-enabled secure microservices in edge computing:
Opportunities and challenges,’’ IEEE Trans. Services Comput., vol. 16,
no. 2, pp. 1485–1504, Mar. 2023.

VICTOR VELEPUCHA was born in Ecuador,
in 1976. He received the degree in computer
systems fromEscuela Politécnica Nacional (EPN),
Quito, Ecuador, in 2003, and the master’s degree
in project management from Universidad de las
Fuerzas Armadas (ESPE), in 2012. He is currently
pursuing the Ph.D. degree in informatic systems.

Since 2003, he has been working in the systems
engineering area as a programmer, a software
architect, and a project manager, mainly in the

banking and finance enterprises. His research interests include software
development with different technologies, study about different architectures
styles, cloud computing, continuous delivery, DevOps, and microservices.

PAMELA FLORES received the Engineering
degree in computer systems from Escuela Politéc-
nica Nacional (EPN), in 2005, and the master’s
degree in information technologies and the Ph.D.
degree in software and systems from Universidad
Politécnica de Madrid (UPM), in 2011 and 2016,
respectively. She is currently a Professor with
EPN. She also coordinated the Ph.D. degree
in informatics for three years, and she also
coordinates the master’s degree in software with

EPN. Her research area is related with object-oriented approach; she has also
worked on qualitative research in computer science.

88358 VOLUME 11, 2023


