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ABSTRACT Learning activities are considerably supported and improved by the rapid advancement of
e-learning systems. This gives students a tremendous chance to participate in learning activities worldwide.
The Massive Open Online Courses (MOOCs) platform has emerged as one of the most significant platforms
for e-learning as a result of the rapid growth of network information technologies. Due to the increased num-
ber of online courses available, it is harder for individual learners to choose the appropriate courses, activities,
and learning paths for the actual necessities they want, which reduces their learning performances. Moreover,
a sequential Recommender System (RS) can identify the learner’s future interest and suggest the subsequent
item or learning content given a sequence of past interactions. This is in contrast to interactive recommen-
dation methods that can create recommendations based on the learner’s feedback via constant interactions.
To address these challenges, the goal of this paper is to propose a Reinforcement Learning (RL) based smart
e-learning framework with Markov Decision Process (MDP) that has the potential to enhance the learning
experience for each student by providing them with a personalized and effective learning path. Applying
the MDP and RL-based techniques such as Q-learning for Sequential Path Recommendation (SPR) and
learning development is more achievable. This is because theMDP allows for adjusting the recommendations
method to find new activities and learning paths based on the learners’ feedback on recommendations results.
Experimental findings reveal that the suggested model obtains significant improvements and provides viable
performance under different parameters optimization. Furthermore, we also show that the proposed method
outperforms a long session (long-term rewards such that they maximize learning progress while minimizing
frustration and disengagement). This demonstrates the model’s improvements in simulating the learner’s
sequential behavior, learning activities, various learning materials, and learning paths simultaneously. These
promising initial results provide a possible solution to assess this challenge further in future work.

INDEX TERMS Markov decision process, reinforcement learning, Q-learning, e-learning, adaptive learning,
sequential behavior, MOOC, recommender systems.

I. INTRODUCTION
Personalized learning is an approach to education that empha-
sizes tailoring instruction to the unique needs, interests, and
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abilities of each student. This method tries to give students a
personalized learning experience that caters to their individ-
ual needs while acknowledging that they have diverse learn-
ing preferences, methods, and goals. Personalized learning
can be implemented in a variety of educational settings, from
traditional classrooms to online learning environments. It has
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the potential to improve student engagement, motivation, and
learning outcomes by providing students with a more person-
alized and relevant learning experience. However, it requires
careful planning, ongoing assessment, and skilled facilitation
to be successful. While adaptive learning is a method of
education that uses technology to personalize the learning
experience for each student. It involves using data analytics
and machine learning techniques to gather information about
each student’s learning style, pace, and performance and then
adjust the content and difficulty level of the course material to
match their individual needs in the online learning platform.

MOOC is one of the most significant approaches of online
learning platforms as a result of the quick advancements
in network information technologies. Due to the increased
number of online courses available, it is harder for leaners
to choose the courses they want. This reduces their learning
performance. Since RSs [1], [2] can handle the issue of
information overload [3], [4], personalized course recom-
mendation [5], [6], [7] has emerged as the primary research
area to tackle the aforementioned challenges in recent years.
MOOC platforms offer a variety of different courses. It is
essential to recommend someone on the best course to take by
developing the abilities required for the learner’s ideal future
career. For instance, the course’s learning achievement can
indicate the degree to which a student possesses a particular
credential or expertise. Based on the learning results of the
courses, the competencies, abilities, and knowledge can be
compared required by the workforce with those offered by
online courses. Moreover, sequential RSs [8], identify the
learner’s future interest and suggest the subsequent item or
learning content given a sequence of past interactions. This
is in contrast to interactive recommendation methods that
can create recommendations based on the learner’s feedback
via constant interactions. However, the application of AI
in delivering distance learning education will become more
common in the future as academic institutions place a greater
emphasis on personalized and adaptable learning. With the
help of AI-powered technologies, students can enrol/register
in any program (course) anywhere in the world.

To analyze the learning activities of students in e-
learning [9], a few techniques take into consideration the
adaptability of the RS. For example, Pang et al. [10] designed
a method termed adaptive recommendation for MOOC.
Adaptive RS uses grades and study timeframes as parame-
ters for a recommendation. Parameters must be present for
an item to be recommended since the learning activity has
not yet occurred. In the opinion of a similar leaner, one
is with collaborative-based filtering’s recommendation. The
second involves the time series in the adaptive perspective.
It takes just asmuch creativity to suggest integrating the target
learner’s time series of learning behaviors with the grades and
study timeframes of similar learners. With the development
of information technology, MOOC has quickly turned into
essential forums for knowledge development. Although it
is regarded as a multi-criteria challenge, finding acceptable

learning resources from a vast variety of academic tools has
become more challenging for learners as a result of the grow-
ing amount of information available. Utilizing a Personalized
Recommender System (PRS) based on RL is one approach to
get around this problem.

PRS [11], [12] are capable of delivering interesting con-
tent that corresponds to users’ interests, hence reducing the
issue of information overload. The majority of the time,
recommendation algorithms use a variety of data to present
users with potential things. In real-world circumstances, the
RS makes suggestions for things based on the history of
user-item interactions and then collects input from the user
to refine those recommendations [13]. In other ways, the RS
seeks to learn about users’ interests through interactions and
make suggestions for products they would find interesting.
In order to achieve this, the initial recommendation study
mainly concentrates on designing content-based filtering and
collaborative-based filtering techniques [14], [15].

Traditional course RSs [16], [17] employed collaborative-
based filtering methods [10], [18] to collect implicit feedback
that indirectly indicates a learner’s preferences. Recently,
deep learning-based neural recommendation algorithms have
surpassed these methods [18], [19]. One such model is
the neural attentive session-based RS [20], which replicates
users’ sequential actions and derives users’ primary goals
from their learning patterns. In addition, the fundamental
RS based on the attention network and the profile reviser
simultaneously developed by the hierarchical RLmethod [21]
reduces noisy courses. However, when students are registered
in multiple courses, the course recommendation performance
can be enhanced. Since hierarchical RL does not take into
account the student’s explicit demands or implicit prefer-
ences, it could also yield poor recommendation outcomes.

The aforementioned techniques are competent in terms of
course recommendations to some point, however, they all
have the flaw of ignoring the users’ shifting preferences in
sequential learning ability/activities. Moreover, these tech-
niques might not accurately reflect the user’s preferences
for each content, particularly if the users’ preferences are
being changed over time across a variety of courses. In this
instance, these techniques fall short of offering the RS adap-
tivity efficiently; specifically, they are weak at tracking the
variations in users’ preferences adaptively. Traditional RS
suffers from the data sparsity challenge in real-world appli-
cations. In other words, only a small part of all course
material in the RS can be found in a user’s list of highly-
rated/studied courses. Nevertheless, all potential candidate
courses should be explored in order to retrieve learning
materials that are relevant to the learners’ interests and pref-
erences. With the help of the users’ sequential interaction
data, sequential recommendations aim to determine their
subsequent decision. Markov chains can be used to model
sequential behaviors efficiently [22]. Particularly, a variant
of the Markov chain known as the Markov Decision Process
(MDP) (covered in more detail in section III-B), offers a
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FIGURE 1. Overview of RL’s structure.

mathematical formulation for simulating scenarios involving
decision-making. Nearly all RL issues may be formulated as
MDP issues. For this, five key components, including state,
action, reward, transition, and discount factor can be used to
represent MDP. The ability to deliver a personalized experi-
ence to the diverse demographics that MOOC aspires to serve
has been constrained, which has impeded the development of
a more democratic learner management framework.

To solve the aforementioned problems, this paper develops
a personalized adaptive and SPR framework in e-learning and
proposes a framework based on RL with MDP techniques.
Specifically, a significant problem in the learning process
is adapting elements, including reading, listening, quizzes,
assignments, entertainment, playing games, etc. to possible
variations in learners’ states and desires, incorporating earlier
study or learning process. RL is frequently used to create RS
when the user’s behavior is dynamic. Therefore, deploying
an RL agent can be quite helpful in those situations because
the agent continuously learns by interacting with the envi-
ronment. The agents should dynamically modify information
based on the user’s preferences and temporal variations as
well as from time to time in online course recommendations.

RL is a type of machine learning that involves an agent
(in our case, a computer program in the e-learning plat-
form that decides what to display next) taking actions in an
environment (the e-learning content) to maximize a reward
signal (the student’s learning progress). A general structure
of RL is shown in Figure 1. Where Agent is a program
(algorithm) that decides what to display next in a collection
of e-learning; Environment is a learning framework; Action
is used to recommend a new class tutorial or reading notes,
do an assignment, take a quiz, exams, or an advertisement,
etc.; State: a learner’s interaction features are depicted as a
state. The state-value can be defined to evaluate the good-
ness of the current state (e.g., the current position of the
learner) and Rewards are the feedback signals provided by
the environment to the agent after it takes an action. Rewards
indicate the desirability of the agent’s action in a particular
state. In our context, it is positive if the learner decides to
watch the class video; the reward is more positive if the
learner chooses to take exams; if the learner exits, plays a

game, or becomes bored, the result can be negative. In the
context of personalized adaptive sequential learning, the goal
is to use RL to recommend the most effective sequence of
learning activities for each student, such that they maximize
their learning progress while minimizing their frustration and
disengagement.

For example, if a student is struggling with a particu-
lar concept, the system may present additional examples or
resources to help them master the material. Alternatively,
if a student is progressing quickly through the material, the
system may challenge them with more advanced content.
Overall, personalized adaptive sequential learning and SPR
is a powerful approach to e-learning that can help learners
achieve their goals more effectively and efficiently. By tai-
loring the learning experience to the individual needs and
preferences of each learner, this approach can help increase
engagement, motivation, and learning outcomes.

The following list highlights the primary contributions of
the proposed model.

1. To propose a novel virtual environment using RL with
MDP terminologies that will make sequential decisions
adaptively in multipath navigation and recommend the
most suitable learning content based on the unique
characteristics of each learner.

2. To create a personalized adaptive sequential learn-
ing and SPR method that effectively tracks a user’s
changing preferences. During each iteration/cycle of
recommendation, it dynamically modifies the need for
the relevant learning paths.

3. To signify a long-term student outcome by maximiz-
ing long-term rewards, accounting for possibly slow
or average learning effects and influences on future
learning choices.

4. The learner’s feedback is collected by the agent. The
agents should dynamically modify information based
on the learner’s preferences as well as from time to time
in online learning and SPR.

5. To adapt elements such as reading, listening, assign-
ments, quizzes, games, etc. to possibly dynamic
changes in learners’ states and preferences, including
earlier study or learning experiences.

The remainder of this article is systematized in the fol-
lowing manner. The relevant work on literature is discussed
in Section II, and the proposed methodology is presented in
Section III. Section IV presents the experimental outcomes.
The conclusions and prospective improvements of the pro-
posed methodology are covered in Section V.

II. LITERATURE REVIEW
In this section, the current relevant studies are reviewed
in the following research topics: (A) personalized recom-
mendations, (B) Sequential recommendations, (C) RL for
recommendations, and (D) Sequential personalized course
recommendations.
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A. PERSONALIZED RECOMMENDATIONS
Personalized recommendations [11], [12] are capable of
delivering interesting content that corresponds to users’
interests, hence reducing the issue of information over-
load. Various practical RS are developed based on users’
preferences [23], [24], improving community membership
information [25], deep neural network method with item
embedding [26], hybrid RS for patron-driven library collec-
tion and pruning [27], [28], and a travel planning system
using clustering to provide personalized point-of-interest rec-
ommendations [29]. However, the main technical issues that
restrict the widespread deployment of the RS are still issues
with data sparsity, cold start, and interpretability [30], [31].

B. SEQUENTIAL RECOMMENDATION
In RS, users develop a vast number of interaction behaviors
over time. The process of sequential recommendations identi-
fies the user’s subsequent interaction item by extracting infor-
mation from these behavioral patterns. The user’s historical
behaviors are crucial in RS for simulating the user’s interests.
Numerous widely used recommendation techniques, such as
collaborative filtering [32], [33], develop the model using
samples of user behavior.

Based on Markov chains, a sequential RS predicts users’
subsequent actions based on their previous behavior [34]. The
MDP presented by Moling et al., [36], is designed to deliver
recommendations in a session-based way, and the most basic
MDP is the first-order Markov chains in which the following
recommendation can be easily calculated using the transition
probabilities between items. Contiguous sequential patterns
are better suited for sequential prediction tasks than generic
sequential patterns.

In the context of tailored sequential pattern mining for
next-item recommendations, Yap et al., [35] present a new
competence score measure. As Markov chains, playlists are
modelled by Shambour [3] who also suggest logistic Markov
embeddings to learn song representations for playlist predic-
tion. When trying to incorporate all conceivable sequences
of probable user selections over all objects, the state space
quickly becomes unmanageable, which is a significant prob-
lem when employing Markov chains to the session-based
recommendation task.

Markov chains are a useful tool for modelling sequential
behaviors [8], [22]. For instance, Moling et al., [36] designed
a channel RS using implicit feedback from user hearing
behavior. Given that the learning process is comparable to
the Markov chain of sequential actions, sequential recom-
mendation techniques can likewise be successfully applied
to e-learning environments [37], [38]. To find the learner’s
context and sequential access behavior, Tarus et al., [39]
suggested a sequential recommendation architecture that
includes context awareness, sequential pattern mining, and
the collaborative-based filtering technique. In order to update
the user profile, Zhang et al., [21] proposed a hierarchical
sequential decision mechanism. This aids the sequential RS

in making more appropriate course recommendations for the
users.

C. REINFORCEMENT LEARNING FOR
RECOMMENDATIONS
RL has been widely used in developing various domains.
By offering actual paths with the RL method over a knowl-
edge graph, Xian et al., [40] designed an RL-based knowl-
edge graph reasoningmethod that combines recommendation
and interpretability.

When developing an RS where the user’s behavior is
dynamic, RL is frequently utilized. For instance, the user’s
preferences or behavior may occasionally alter while using
a music recommendation engine [41], [42]. Although RL
agents constantly learn by interacting with their environ-
ment, using RL in those situations can be highly helpful.
Recurrent RL is superior in stock trading [43] and investing
decision-making [44]. For example, Ji et al., [50] proposed
a prototype RL structure to produce sentence interpretations
with a customizable attention-based neural network, which
dynamically regulates the explanatory performance.

Since a machine learning technique emphasizes how an
intelligent agent engages with its surroundings, RL [45], [46],
develops the policy through trial and error exploration,
which is advantageous to sequential making decisions. As a
result, it may offer methods for modelling the interactions
between the user and the agent. A recent research trend in
RS is the use of RL to overcome recommendation chal-
lenges [47], [48], [49], [50], [51]. To determine the best
recommendation strategy, the recommender agent can fre-
quently interact with the environment (such as users or
collected data). In real-world applications, RL-based RS has
been used in numerous specific contexts [52], [53], [54],
such as health care [55], [56], [57], movie recommenda-
tion [58], [59], personalized music recommendation [41],
e-commerce [60], [61], and e-learning [6], [21], [62].

D. SEQUENTIAL PERSONALIZED COURSE
RECOMMENDATION
In order to recommend courses, traditional approaches [16],
[63] typically use feature engineering. The following
categories apply to the sophisticated course recommen-
dation techniques currently in use [64]; collaborative-
based filtering [65], content-based filtering [19], [66],
hybrid RS [67], [68], semi-supervised [69], ontology-
based [70], [71], and sequence mining-based [72], etc. Addi-
tionally, Bousbahi and Chorfi [16] proposed a model by using
a case-based reasoning method and a distinctive information
retrieval algorithm, the system suggests the most suitable
MOOC for the learners.

Hybrid course recommendation techniques have emerged
as a standard response to difficult problems in order to
meet the demands of individualized learning. To address the
issues of sparsity and the cold start problem in course RS,
Jing and Tang [17] integrated collaborative-based filtering
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FIGURE 2. Flowchart of the proposed Q – Learning algorithm.

and content-based techniques. To explain multisource het-
erogeneous data, Zhu et al., [64] suggested a hybrid RS
that made use of a graph-structured teaching assessment
network. To understand the user’s relationship structure,
a neural network made up of random walks was used, and
a Bayesian probabilistic tensor factorization was used for
course recommendation.

In this proposed work, we offer a personalized adaptive
learning and SPR framework that uses an RL method with
MDP terminologies and a dynamic attention mechanism as
inspiration from the aforementioned research. As opposed to

earlier dynamic attention techniques, the suggested frame-
work automatically records the user’s dynamic preferences
during each session and adaptively modifies the attention
weights of associated items at each session in the RS.

To the best of our knowledge, this is the novel approach
to overcoming the difficulty of designing a real-time, per-
sonalized adaptive solution in an e-learning environment.
The proposed approach tackles the requirement to discover
a means to support students in improving their effectiveness
in navigating the learning materials. Since previous research
demonstrated, there is a significant correlation between
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TABLE 1. List of states, actions, and rewards assigned to each action.

e-learning learner’s success (as measured by course com-
pletion) and the qualities of their learning journey through
the course. As a result, a new method for helping e-learning
students is introduced in the proposed SPR. Furthermore, the
adaptive learning and sequential learning framework uses RL
basedmodel (Q-learning) to track each student’s progress and
adapt the content and pace of instruction in real-time based
on their responses. The goal of this approach is to use RL
techniques to recommend the most effective learning path
for each student, based on their learning history, goals, and
preferences.

III. PROPOSED METHOD
This section discusses the use of dynamic programming to
resolve real-world issues where the environment is perfectly
modelled. Dynamic programming is a generic strategy for
solving issues by decomposing them into smaller issues that
can be resolved independently, processed, and then merged
to solve the larger issue. The flowchart of the proposed
Q-learning algorithm is depicted in Figure 2, which is covered
in detail in the following subsections.

A. STUDY FRAMEWORK (SIMULATION FRAMEWORK)
For simulations, a virtual environment is built tomake/produce
states and outcomes based on certain actions. The virtual
framework is formed based on the learning states (activities)
of the learner in an online learning scenario, including watch-
ing a video lesson, ‘‘reading’’, ‘‘writing’’, ‘‘getting bored
or frustration’’, ‘‘resting/sleeping’’, ‘‘entertaining’’, ‘‘playing
a game’’, ‘‘clicking on ads’’, ‘‘course completion’’, and
‘‘quit study or disengagement’’. Figure 3 reveals the different
stages of the proposed framework. Due to the randomness in
various transitions, designing a virtual SPR approach makes
the problem more challenging. The proposed framework is
developed in a 2D network where the students can adaptively
change their learning path (see Figure 3).
The framework is deliberately developed to grasp the best

policy for personalized adaptive learning and recommenda-
tions, as depicted in Figure 3. Here, states are represented as
S ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, where each number of

states reflects the position of each learner during the learning
process. Then, rewards are assigned to each state-action pair
based on the problem and learning context. The proposed
states and their corresponding reward values are listed in
Table 1. Higher rewards encourage the agent to priorities
certain actions or states that are more valued and attrac-
tive than others. Average rewards can be utilized to offer
modest rewards for actions that are generally positive but
not necessary. Without overly favoring or ignoring certain
actions, medium rewards can assist the agent in exploring
and learning a balanced policy. Negative/Lower rewards can
assist the agent in learning to ignore the actions that result
in undesirable outcomes or learning in the incorrect direc-
tion. The problem is solved by leveraging one-shot policy
recommendations for the modelling of SPR and personalized
learning. The set of actions followed in the development of
the proposed framework are recommending the next course,
next video, recommending a game or ad, suggesting future
influence for personalized learning, improvement in rec-
ommending suitable content, influence on future learning
choices, and attempting to maximize the learner’s satisfac-
tion and minimize learner interactions to learn in light the
learner’s performance features and design personalized adap-
tive paths by plummeting negative experiences.

B. MARKOV DECISION PROCESSES (MDP)
Figure 4 illustrates an MDP, which is a fundamental frame-
work of RL and fulfills a Markov property. A Markov prop-
erty is one where the agent just cares about the current state
of the process and has no curiosity about the entire history
[73]. Mathematically, it is defined in Equation (1).

P (st+1|s0, a0, s1, a1, ............, st , at) = P (st+1|st , at) (1)

Here P is the probability of a state transition, s shows the
state, a represents action and t shows time. Every epoch,
the agent performs an action that modifies its surroundings
and yields a reward. Value functions and the best policy are
suggested as additional processing methods for the reward
value.
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FIGURE 3. Proposed framework – personalized adaptive learning and SPR.

In this paper, a discrete time stochastic control method
known as MDP is employed for simulation. It offers a
mathematical formulation for simulating decision-making in
contexts where results are partially determined by chance
and partially operated by the decision-maker. When a
decision-maker engages sequentially with the environment,
MDP is a useful framework for simulating those sequential
decision-making challenges. An MDP presents a framework
to the RL agent as depicted in Figure 4. First, we study the
foundations of MDP to understand the framework.

According to the Markov property, the present is the only
factor that affects the future and not the past. The Markov
chain is a probabilistic technique in which the future is condi-
tionally independent of the past and only relies on the current
state, not on any prior states. Transition is the act of changing
from one state to another, and its probability is referred to as
a transition probability, where the next state solely depends
on the current state.

Moreover, Markov property only considers the current
state and not previous states (e.g., it makes the supposition
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Algorithm 1 Pseudocode for Calculating Transition Probability Using MDP
initialize: states, actions, transition probability
define: transition probability matrix

trans_prob = {}
initialize: transition probabilities

for state in states:
transprob[state] = {}

for action in actions:
trans_prob[state][action] = {}

assign: transition probability
trans_prob[’reading’][’stay’][’ Course completion ’] = 0.05
trans_prob[’reading’][’Additional content ’][’Course completion ’] = 0.1
trans_prob[’reading’][’Do assignment/quiz ’][’Course completion ’] = 0.3
trans_prob[’reading’][’Move to exams ’][’Course completion ’] = 0.5
trans_prob[’reading’][’ Move to social media’][’Course completion ’] = 0.05

compute: transition probability for a state-action pair
def comp_trans_prob(state, action, next_state):

if next state in trans_prob[state][action]
return trans_prob[state][action][next_state]

else
return0

calculate:
result← comp_trans_prob(state, action, next_state)

end

that the past is completely represented in the present.).
In other terms, considering present circumstances mean that
the future is independent of the past. A Markov Process is
a process that possesses such a feature. A set of states with
a Markov property, such as S1, S2, S3 . . . ,Sn is referred to
as a process in this context. The transition function P, or the
transition probability to move from one state to another, and
the state S are the two parameters used to define it. The reward
collected for a Markov process is defined as a Markov reward
process. It is formulated as State S, Transition Function P,
Reward R, and Discount factor γ . Considering a reward in
the present, the discount factor explains the rewards in the
future. If γ is 0, the agent simply considers the subsequent
reward. If γ is 1, the agent is concerned with all potential
future rewards.

In MDP [73], a state S, transition function P, reward R,
discount factor γ , and a collection of actions a serve as its
representation. One could imagine an MDP as the interac-
tion between an agent and its surroundings. An environment
responds to an agent’s specific set of activities by rewarding
it and changing its state. Only the prior state and action
have any bearing on the subsequent state and reward. The
mathematical formulation of the RL framework is shown in
Figure 4 provided byMDP. TheMDP environment comprises
Markov states, which follow the Markov Property: the state
contains all the data necessary for predicting the future from
the past. The property of MDP is formally stated as follows
(see Figure 1):

FIGURE 4. Representation of the MDP architecture.

Agent:A program (algorithm) that decides what to display
next in a collection of e-learning.

Environment: The learning framework.
Action: Recommending a new class tutorial or reading

notes, doing an assignment, taking a quiz, exams, or an
advertisement, etc.

State: A learner’s interaction features are depicted as a
state. The state-value v (S) can be defined to evaluate the
goodness of the current state (current position of the learner).

Reward: Positive if the learner decides to watch the class
video; the reward is more positive if the learner chooses to
take exams; if the learner exits, plays a game, or becomes
bored, the result can be negative.

Transition: is the process of moving from one state to the
next.

Transition Probability: the likelihood that the agent will
switch from one state to another. Mathematically it can be
specified as follows (Equation. 2).

P [St+1|St ] = P [St+1|S1, . . . .., St ] (2)
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The agent’s present state is indicated by St, while the sub-
sequent state is shown by St+1. According to this formula, the
change from state St to St+1 is completely independent of the
previous state. P shows the notation for transition probability.
Therefore, if the model has aMarkov Property, the right-hand
side of the equation signifies the same as the left-hand side.
It follows logically that the current state has knowledge about
previous ones.

State Transition Probability: The state transition proba-
bility for a Markov State from St to St+1, or any additional
beneficiary state, is mentioned in Equation (3).

Pss′ = P
[
St+1 = s′|St = s

]
(3)

The state transition probabilities can be represented in a
state transition probability matrix as given below:

P =



p11 p12 p13 . . . p1n
p21 p22 p23 . . . p2n
p31 p32 p33 . . . p3n
. . . . . . .

. . . . . . .

. . . . . . .

pn1 pn2 pn3 . . . pnn


It can be noted that pij ≥ 0, and for all i, as stated in
Equation (4).

r∑
k=1

pik =
r∑

k=1

P (Sm+1 = k|Sm = i)

r∑
k=1

pik = 1 (4)

Each row in the matrix represents the probability of transi-
tioning from the initial state i to any subsequent one k.

∑
is

the sum of each row in the transition matrix. The aggregate of
each row is equal to 1. Algorithm 1 illustrates the proposed
pseudo-code of MDP for calculating transition probability.

C. Q - LEARNING
Q-learning benefits from its previous behaviour, as well as
those it does in the future to draw lessons from the past and
choose the optimal course of action [73], [74].
In the aforementioned hypothetical context, all the tran-

sitions and their accompanying actions from one state to
another are possible. In the simulations, the learner can allot
a positive reward or a negative reward (penalty/punishment)
to each action by employing the Q-table matrix also known
as the brain of the Q-table. Using the Q-table or R-matrix,
where each component shows the reward of a transition
from one state to another (action). Moreover, the rows of
the Q-table are represented as states (in our case learners’
features) and the columns of the Q-table are represented as
actions. These actions consider measurable positive effects,
for instance, an increase in watching tutorials, doing assign-
ments, or taking exams as well as an increase in reading
or writing and so forth. In these situations, the actions get
a positive reward that is proportional to the positive reward

FIGURE 5. Representation of Q-learning structure for the proposed
adaptive sequential learning path recommendations.

FIGURE 6. Example of a state diagram of student behavior (the sequence
of the changing state in the form of student preferences).

perceptible consequences that have been generated. In other
way, transitions that generate negative consequences (such as
being idle, clicking on an ad, or switching to social media
applications during studying time) get negative rewards, as in
the case of a decrease in study time. Thus, if an action
generates positive results, but an increase in the use of social
media and playing games or entertainment at the same time
then the reward is still positive, but it can be reduced by the
collateral negative effects. The elements used in Q-learning
are determined by Equation (5).

Q (st , at) = Q (st , at)+ α

×
[
Rt + γmaxQ′ (st+1, at+1)−Q (st , at)

]
(5)

where α denotes learning rate (0 ≤ α ≤ 1); R (st , at) +
denotes the observed reward, st+1 denotes the new state, γ<1
denotes a discounted factor for the future rewards attained
as a result of the action chosen. The highest reward that the
system can quantify by performing some future action in the
state st+1 is estimated as Q (st+1, at+1) .
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FIGURE 7. State diagram of MDP for personalized adaptive learning and SPR.

The suggested method can exhibit better efficiency and can
enhance the learning condition for SPR inside the learning
framework. Figure 5 depicts the framework of Q-learning
while algorithm 2 illustrates the proposed pseudo-code.
Example: Let us suppose a moment when a student/learner

logs into a system and loads a page. Links on a page can be
seen as actions of states, and the pages themselves can be
seen as the system’s states. The system’s positions/sets are the
changing value between states in the Q-matrix as indicated
in Table 2, and the state diagram (course-to-course in our
case) is illustrated in Figure 6. Figure 6 depicts the sequence
of the changing state in the form of student preferences as:
A→C, A→E, B→D, C→D, C→G, D→G, D→I, E→F,
F→B, F→E, F→G, F→H, F→Z, G→E, G→H, H→I,
H→Z, I→D, and I→H. Table 2 reports a Q-matrix of a
student who has changing state as in Figure 6. The student

TABLE 2. Q-matrix of student: Highlight cell indicates the
chosen/selected course ‘G’.

logs into a website and selects course A. Then the values of
the sequence of changing state e.g., A→C, A→E, B→D,
C→D, C→G, D→G, D→I, E→F, F→B, F→E, F→G,
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TABLE 3. An example of a Markov table with the current state, next state, and transition probability for the design of personalized adaptive SPR.

F→H, F→Z, G→E, G→H, H→I, H→Z, I→D, I→H and
select course G. Themodel will update the Q-matrix by plus 1
when a student clicks on each designed course and by plus 5
when they select the course’s materials (see table2).

D. MARKOV DECISION PROCESS (MDP) FOR SEQUENTIAL
LEARNING PATH AND SPR
The issue we are facing is as follows: we have a framework
of 11 states, one of which is an impediment initial state
(state 5), and two of which are end states (states 10, 11).
We want to determine the optimal policy to apply for reward
collection for each state as reported in Table 3. Table 3 lists
an example of a Markov table with the current state, next
state, and transition probability for the design of the proposed
framework. The transition probability is determined using
MDP mechanisms as illustrated in Algorithm 1.
It should be determined the optimum course of action for

each state that the students are in, including whether they
should continue to the previous or subsequent course, move
on to tests or assignments, skip classes/stop studying, use a
social media application, or stop completely. In other words,

the model aims to reach state 10 (course completion) as soon
as possible. Here and foremost, we must design a student
class that will serve as the learning environment for the
problem. The student class should be designed as follows.

The elements of MDP used in the proposed framework are
defined as follows (S,A,R,P, γ ):
State (s) :< s0, s1, s2, . . . . . . , s10 >

Action (A) :< A1,A2, . . . ..,A10 >

Rewad (R) :< 10, 20, 50, 60, 100, 100, 70,−10 >

Probability (P) :< 0.1, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 >

Discount Factor (γ ) : 1; determines how important cur-
rent and future rewards are.

E. STATE DIAGRAM OF MDP FOR LEARNING PATH
RECOMMENDATION
In this section, an intuition about MDP for personalized
adaptive learning and SPR to pick up suitable course content
and learning path is illustrated as follows.

Using the terminologies of MDP, we first define the MDP
states and actions. Next, we initialize an empty transition
probability matrix. Then, we manually assign the transition

VOLUME 11, 2023 89779



S. Amin et al.: Smart E-Learning Framework

Algorithm 2 Q-Learning Algorithm for Adaptive Sequential Learning Path Recommendations
initialize: Q -value function Q(s, a), discount factor (γ ), learning rate (α), exploration function ϵ

output: optimal sequential path recommendation in e-learning
initialize: Q-table with 0
initialize: states st
while learning do
for t → 1 to T do
choose an action a at maxQ′ (st+1, at+1) with probability 1 - ε or explore using
recommendsequential learning path or learning course content (at ) as per estimated failed competencies
choose learning content (at ) as per their desire: Adaptability selection
move into the subsequent state (st+1):
compute reward Rt
compute Q-value using Bellman technique: Q (st , at) = Q (st , at)+ α

[
Rt + γmaxaQ′ (st+1, at+1)−Q (st , at)

]
if au gives a positive response to ac then

set st+1←
else

set st ← st+1
update Q−table : update(initial_state, action, γ )
end for
end while

probabilities for each state-action pair based on the prob-
lem’s dynamics and domain knowledge (see Algorithm 1).
Algorithm 1 demonstrates the assignment of transition proba-
bility and their computations using MDP mechanisms. Addi-
tionally, following the transition probability, Figure 7 exhibits
the scenario of learning paths. The circles illustrate the states
in which the learner can be and the values in the red are
the transitions probability that the agent can take depending
on the state the learners are in. For example, in the state 0,
learners can choose whether they want to study (e.g., taking
an exam, reading, writing, watching lectures, taking a quiz,
doing assignments), click on ads, or get bored/not study, idle,
or switch to social media applications (Facebook, Twitter,
Instagram, LinkedIn, etc.) or playing games, or refresh-
ment/entertaining by opening different entertainment appli-
cations, and depending on what actions the learner performs,
a reward is assigned to each action. There is also an action
node (end node) from where a learner can end up in different
states depending on the transition probability; for instance,
after deciding to go to writing from reading, or watching
tutorials, the learner has a 0.4 probability of getting into an
assignment or taking exams. This node shows the randomness
of the environment over which learners have no control. In all
other cases, the transition probability is 1 and if the discount
factor is 1 then MDP can be defined as; since maximizing
the total of rewards is the aim of solving RL challenges,
now MDP is implemented to choose the best learning path.
Formally, the best possible policy can be determined that will
increase an agent’s potential cumulative reward.

Now, to signify a random process, the edges of the tree
represent the likelihood of a transition. Take a sample from
this chain into consideration. Now it can be supposed that
while a learner was watching a tutorial, there is a 0.7 percent
chance that he/she would do an assignment, a 0.1 percent

chance that he/she would watch longer, 0.1 percent chance
that they would write something, 0.05 probability that they
quit the study, and a further 0.05 probability that they would
switch to social media. According to this, we can come up
with other sequences from this chain to sample (Figure 7).

F. SETTING UP THE TRANSITION MATRIX OF THE STATE
DIAGRAM FOR PERSONALIZED ADAPTIVE LEARNING AND
SEQUENTIAL PATH RECOMMENDATIONS
Afterward, the reward mechanism is formed, which was set
to a maximum of 100. If learning proceeds without interrup-
tion during all iterations, the maximum reward will be 100,
as depicted in the matrix produced (Matrix 1). The starting
component of the initialized probabilities is also this matrix.
The matrix’s columns represent actions, while its rows repre-
sent states. We can create the matrix of the ideal learning path
and compute the required rewards by setting the feedback
value at 0.75 and running 100, 200, and 500 simulations of
iterations, (as illustrated in Figures 11-13).
Matrix 1: Reward table of assumed state-action

combinations

P =

S0
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10



A1 A2 A3 A4 A5 A6 A7 A8
10 0 50 0 0 0 70 − 10
10 0 50 60 100 0 0 0
10 0 50 0 0 0 0 − 10
0 20 0 60 100 0 0 − 10
0 20 50 60 100 100 70 0
0 20 50 60 0 0 0 − 10
10 0 50 0 0 0 0 0
10 0 50 60 100 100 70 0
0 20 0 60 0 0 0 − 10
0 20 0 60 0 0 70 0
10 20 50 60 100 100 70 − 10
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TABLE 4. Formulation of parameters settings.

G. PARAMETERS SETTINGS
Following the aforementioned strategy, the Q-learning
algorithm is trained against 100, 200, and 500 iterations. The
formulation of the parameters is listed in Table 4. The training
of the Q-learning algorithm uses the Belman technique (dis-
cussed above). We will alter epsilon throughout training to
strike a balance between exploration and exploitation. To pro-
gressively transition from pure exploration to exploitation,
we will start with epsilon=1 (pure exploration) and let it
decrease to 0.8 with each episode as we progress from pure
exploration to exploitation.

IV. EMPIRICAL SIMULATIONS AND EVALUATIONS
The proposed method has been designed in a Python pro-
gramming language and can be used to compare various
simulating policies. The simulations that are produced can
then be used to assess well-known policies and contrast them
with potential alternatives.

From the simulations, we obtained an optimal actions
workflow that starts from state 0 and goes through states 1,
5, and 6. We can understand the meaning of the output, just
by looking at the definitions assigned above to these States’
labels. Briefly, we moved from watching video lessons
(State 2) towards course completion (State 9), going through
states 1, 4, and 6. That path corresponds to the focus on
study policy in e-learning at the beginning, followed by a
very aggressive policy to contain the quitting study. It can
be imagined that the proposed decisional strategy is changed
for accelerating the solution of the problem. This is what
can happen in some real cases: at the beginning, we hope
that the learning difficulties evolve spontaneously towards a
natural solution, as happens for many students learning every
time. However, if this does not happen, then we apply opti-
mal actions to reduce negative experiences during training
and with boring situations and quit studying. To optimize
personalization of the learning path that tries to improve
the learner’s performance by leveraging the RL technique
(Q-learning) while decreasing the demand for actual interac-
tion with the learning mechanism throughout training. This is
what happened in online learning, for example for the average
learning student. Of course, the output of the model depends
on the rewards that are assigned to each possible action. If the
values in the R Matrix are modified, the output can be very
different. Consequently, the crucial point is how to define,
properly, the correct rewards and punishments/penalties in

FIGURE 8. The students-course network – Number of 6,000 students and
a default assumed daily learning rate of 600 content (the virtual
environment comprises 6,000 students).

the R-Matrix, to optimize the sequential decisional pro-
cess. This is the first fundamental question to be solved
when moving from simplistic simulations to real-world
applications.

Figure 8 exhibits the students-course networkwith a virtual
number of 6,000 assumed students and a default assumed
daily learning rate of 600 content. This network is randomly
generated with 600 pieces of content and 6,000 students,
distributed randomly across those contents. Table 5 reports
the generated rewards value over 100 iterations. The best
reward in Q-learning is the maximum possible reward that
can be obtained in an environment. In other words, it is
the reward that the agent would receive if it always chose
the optimal action in each state. The optimal action is the
one that maximizes the Q-value for a given state. Over
100 iterations, Table 6 reveals the trained Q-table (matrix) –
a value of the state-action pair. Additionally, the outcomes of
the Q-Learning simulations are reported in Table 7 (Trained
Q-table) and Table 8 (Generated rewards) and Table 9
(Trained Q-table), and Table 10 (Generated rewards) over
200 and 500 iterations, respectively. The best reward achieved
is 85.743 and 100.00 for tables 7 and 9 over 200 and 500 iter-
ations, respectively.

The Q-table is acquired as output after training. Nonethe-
less, it is challenging to determine whether it is optimum.
As a result, we will need to conduct some further analy-
sis. An excerpt from a post-training Q-table is exhibited in
Tables 5-10.

The outcomes of implementing the algorithm are shown
in tables 5-10. The output displays the possible decisions
the learner could make in a given situation. A value of zero
(0) indicates that this state cannot be affected by the taken
action. Performing this activity now when the value is low
is preferable to pursuing other actions. The best path for the
active learner is 0-1-2-6-9. The algorithm shows us a stu-
dent’s preferred path of study for a given course. Moreover,
the Q-learning algorithm also considers the student’s learn-
ing style, preferences, and knowledge level when making
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FIGURE 9. Example of personalized adaptive learning and suggesting sequential learning path to a learner/student.

recommendations. Figure 9 exhibits the scenario of learning
paths. The circles illustrate the states in which the learner can
be and the words in red are the actions that the agent can take
depending on the state the learner is in. For instance, if a stu-
dent prefers visual learning, the algorithm may recommend
videos or interactive visual content. If the student is struggling
with a particular concept, the algorithm may recommend
additional resources or activities to reinforce that concept (see
Figures 7 and 9).
The framework also uses an adaptive learning approach,

which means that the learning path can be adjusted in real-
time-based on the student’s progress (Figure 9). For instance,
if the student is struggling with a particular concept, the
framework may recommend additional resources or activities
to help them master that concept (see Figure 7).
In conclusion, an RL-based personalized adaptive learning

and SPR framework can provide a highly personalized and
effective learning experience for students. By tailoring the
learning path to each student’s needs and preferences, the
framework can improve engagement, motivation, and knowl-
edge retention, leading to better overall learning outcomes.
Now let us execute 500 episodes to gauge the agent’s effec-
tiveness because it is challenging to assess the outcome by
looking at the Q-table. Together with the distribution graph,
we will use metrics such as mean, standard deviation, and
min/max of the rewards.

The statistical performance outcomes of the Q-learning
in executing and recommending the sequential learning

path over 100, 200, and 500 times are reported in
Tables 11, 12, and 13, respectively. To investigate the impact
of the learning environment on Q-learning performance, sim-
ulation experiments were carried out over 100, 200, and
500 iterations, and the corresponding experimental results
are displayed in tables 11, 12, and 13. According to Table 11,
the mean reward is 4.50 ± 2.50. It suggests some fluctu-
ation in rewards, but this is because of the positions of a
learner’s study, and a drop-off change at the beginning of each
iteration. As a result, each time the recommendation is per-
formed, it takes the model longer and does not always get the
same reward (each move is minus 1 point). The Q-learning’s
performance metrics increased as the number of iterations
increased, as illustrated in Tables 11-13. During this period,
the Q-learning algorithm over 500 iterations outperformed
the Q-learning with 100 and 200 iterations. The performances
of Q-learning with 100 iterations were lower than those of
Q-learning with 200 and 500 iterations. In terms of training
time, the Q-learning with 100 iterations was always better
than the other two characteristics. The other performance
indices of the Q-learning with 500 were all better than those
of the other two iterations, despite the training time not being
as outstanding as that of the Q-learning with 100 and 200 iter-
ations. The proposed method exhibited the lowest average
number of turning times over 500 iterations. In terms of aver-
age success rate, Q-learning with 500 iterations outperformed
Q-learning over 100 and 200 iterations by 11.66 and 7.7,
respectively.
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TABLE 5. Generated rewards value over 100 iterations.

TABLE 6. Trained Q-table (matrix) – value of state-action pair over 100 iterations.

TABLE 7. Generated rewards value over 200 iterations.

The proposed method with 100, 200, and 500 iterations
may miss the efficient learning content in terms of average
step size and the number of times it is encountered, however,
the Q-learning approach with 500 iterations outperformed the
other two episodes.

The fact that a positive reward is always received and that
the minimum reward is -10. As depicted in Figure 10, it can
be quickly determined that it requires 7 steps (11 transitions
plus 1 recommendation action) if the learner is in an opposing
situation (i.e., switching to social media or quitting the study)
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TABLE 8. Trained Q-table (matrix) – value of state-action pair over 200 iterations.

TABLE 9. Generated rewards value over 500 iterations.

TABLE 10. Trained Q-table (matrix) – value of state-action pair over 500 iterations.

being in the same state. The action for selecting the ideal path
in the farthest case would thus be 2 (11 - 9).

To checkwhy any greater rewards cannot be expected since
the limit is 7. When a learner is started in the exam state,

the episode terminates right away (i.e., not a valid scenario,
so there is no hope for scoring 20). So, initializing the student
and course in the same state is the best-case scenario that
we can aim for. Exams and quizzes are the two closest state
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TABLE 11. Performance of Q-learning (100 episodes).

TABLE 12. Performance of Q-learning (200 episodes).

TABLE 13. Performance of Q-learning (500 episodes).

transitions; therefore, the agent would need to make 5 moves
(1 pick-up and 4 moves) to transfer the learner from the exam
state to the high-level course, giving the student themaximum
reward for state 7 (11 - 4).

A nearly normal distribution of rewards is seen in the
reward distribution graph (Figure 10). As such, it shows
that the agent is acting logically, even though it does not
demonstrate that we have an ideal policy. The reward for
each episode is represented by Figures 11, 12, and 13.
The proposed model’s rapid convergence may be seen in
these Figures and that is one of the principal benefits of
the Q-learning method. With a smoothing threshold of 20,
Figure 11 shows the smoothed reward for the Q-learning
algorithm across the first 100 episodes. As can be observed in

Figure 13, the reward converges after 100 episodes, indicating
that the best learning strategy has been discovered after the
Q-learning has been trained with 500 episodes.

Figures 14, 15, and 16 show the cumulative rewards for
100, 200, and 500 iterations, respectively. The cumulative
reward is the total reward accumulated by the agent over a
sequence of actions taken in an environment. The expected
cumulative reward is the sum of all future rewards dis-
counted by a factor gamma. The discount factor gamma is
used to weigh future rewards less than immediate rewards,
to account for the fact that the agent may receive delayed
feedback. Figure 16 exhibits the highest cumulative reward
(35831.24957762145) achieved over 500 iterations and
Figure 15 exhibits the total cumulative (22704.01361296278)
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FIGURE 10. Path length – reward distribution from evaluation.

FIGURE 11. Rewards achieved for each episode (over 100 iterations).

FIGURE 12. Rewards achieved for each episode (over 200 iterations).

rewards achieved over 200 iterations and the total cumulative
reward for 100 iterations is 9400.400471514848 and can be
seen in Figure 14.

The optimal policy is the one that maximizes the expected
cumulative reward over time. The Q-learning algorithm is
one way to learn the optimal policy in a given environment.

FIGURE 13. Rewards achieved for each episode (over 500 iterations).

FIGURE 14. Expected total (9400.400471514848) rewards achieved over
100 iterations.

FIGURE 15. Expected total (22704.01361296278) rewards achieved over
200 iterations.

The Q-value function learned by Q-learning estimates the
expected cumulative reward for each state-action pair as
exhibited in Figures 14-16. The optimal policy can be derived
from the Q-value function by choosing the action that maxi-
mizes the Q-value for each state.
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FIGURE 16. Expected total (35831.24957762145) rewards achieved over
500 iterations.

The state transition path exhibited in Tables 6, 8, and 10
illustrates how the hidden qualities change as a result of a
sequence of decisions (actions) made using the Q-learning
strategy produced without taking estimating error into
account. As an illustration, consider the assignment and writ-
ing task. To start, the learner’s watching skills are improved
by continually choosing the initial learning resource. The
third writing and assignment-related resource are then cho-
sen. The second learning resource is picked in the final
few rounds to further develop the learner’s writing skills/
abilities.

Furthermore, the learning curve of the rewards
(Figures 11, 12, and 13) and expected cumulative rewards
(Figures 14, 15, and 16) show how the agent’s performance
improves over time. These figures are based on metrics such
as the average reward per episode or the success rate of
achieving specific goals. As the learning curves show an
upward trend at a high level and suggest that the agent is
effectively learning and improving its decision-making.

The best reward is important because it provides an upper
bound on the performance of the agent. If the agent is able
to achieve the best reward, it means that it has learned the
optimal policy for the environment. However, in many envi-
ronments, it may not be possible for the agent to achieve
the best reward due to the stochastic nature of the environ-
ment or the limitations of the agent’s actions. Therefore,
in practice, the goal of Q-learning is not to achieve the
best reward but rather to learn a policy that maximizes the
expected cumulative reward over time. Figures 14-16 exhibit
the expected cumulative rewards achieved over 100, 200, and
500 iterations, correspondingly. This requires balancing the
exploration of new actions with the exploitation of the current
knowledge to obtain the maximum possible reward. It can be
observed that the Q-learning algorithm over 500 iterations
outperformed the Q-learning with 100 and 200 iterations.
Also, the performances of Q-learning with 100 iterations
were lower than those of Q-learning with 200 and 500
iterations.

TABLE 14. List of acronyms used in this paper.

TABLE 15. List of notations used in this paper.

V. CONCLUSION AND FUTURE RESEARCH DIRECTION
RL can be used in developing adaptive SPR for academia
by training an agent to make recommendations based on the
actions and feedback of users. The agent can learn to optimize
recommendations over time by adjusting its behavior based
on the rewards or penalties it receives for each recommenda-
tion. In this paper, we proposed a framework that could be
used to create personalized and adaptive recommendations
for students based on their individual goals and preferences,
as well as the overall context of their academic journey.
By continuously learning and adapting, the agent can improve
the quality and effectiveness of its recommendations, ulti-
mately leading to better outcomes for students.

The proposed framework’s primary functionality is to rec-
ommend learning paths based on sequential behavior, learn-
ing style/paths, learning activities, various learning materials,
adaptive difficulty levels, personalized feedback, preferences,
competency, and knowledge level simultaneously using the
Q-learning algorithm. It can be observed that the Q-learning
algorithm over 500 iterations outperformed the Q-learning
with 100 and 200 iterations. The proposed method exhibited
the lowest average number of turning times over 500 iter-
ations. In terms of average success rate, Q-learning with
500 iterations outperformedQ-learning over 100 and 200 iter-
ations by 11.66 and 7.7, respectively. The framework allows
for the personalization of the learning experience and offers
learning objects that are tailored to the demands and char-
acteristics of the students. It is a distributed framework com-
prising autonomous agents that interact continually to address
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learners’ requests. Furthermore, Any learning management
system can be incorporated with the suggested solution. This
system can easily interface and interact with other systems
due to the functions it has implemented.

Future activities shall include numerous actions for each
state and as numerous states as necessary to enable the explo-
ration of the best course of action for each learner. The wide
range of potential states or action values of the state, however,
is the fundamental issue. Precisely if the approach is to be
applied online by employing conventional RL, it would result
in complexity and convergence problems.

For possible future research work, the following research
gaps are suggested.

i. For problemswith complexity, convergence, andmodel
efficiency, employing deep Q-learning as an alternative
would be a nice idea.

ii. Traditional RL approaches have many difficulties,
including the risk of algorithmic inefficiency if the
action space is too big because the algorithm evalu-
ates all actions as a whole. To address this problem,
Deep Deterministic Policy Gradient seems to be a good
solution.

iii. For future research, we also aim to consider more
states and actions to find the optimal learning paths
on the learner’s adaptive sequential behaviours, learn-
ing style/paths, learning activities, various learning
materials, adaptive difficulty levels, optimal learning
paths, personalized feedback, preferences, compe-
tency, knowledge level, etc. simultaneously when
making recommendations by using multi-agent RL
techniques.
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