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ABSTRACT Utilizing derivations for the properties of a symmetric Toeplitz matrix, we obtain analytical
expressions for the performance evaluation of wireless communication systems using multiple antennas at
the transmitter and/or the receiver, including those for keyhole channels, beamforming, and noncoherent
detection. Our derivations of the analytical expressions are based upon closed form expressions we have
obtained for the eigenvalues and eigenvectors of the L × L symmetric Toeplitz matrix whose element in the
ith row and the jth column is given by C i−j

+ C j−i, where C ∈ C \ {−1, 0, 1}, with C denoting the set of
complex numbers. Each element of this matrix can be expressed as a polynomial inC+1/C . Furthermore, the
special cases of real nonzeroC and of complexC with magnitude one are discussed. Using these new results,
analytical expressions for the performance of wireless communication systems using multiple antennas at
the transmitter and/or the receiver can be obtained.

INDEX TERMS Applications in wireless communications, eigenvalues, eigenvectors, symmetric Toeplitz
matrix.

I. INTRODUCTION
Toeplitz matrices play an important role in engineering appli-
cations, such as in the correlation structure of wide sense
stationary colored noise, in the discrete-time modeling of
linear time-invariant systems, and in the modeling and anal-
ysis of shift-invariant imaging systems. There are only a few
analytical results available for Toeplitz matrices and therefore
the study of these systems inevitably requires further inves-
tigations into the analysis of such matrices. An algorithm
for inversion Toeplitz matrices has been presented in [1].
Properties of special types of Toeplitz matrices, such asmatri-
ces generated by rational functions [2], symmetric matri-
ces [3], [4], tridiagonal and other bandedmatrices [5], [6], and
real symmetric matrices with linearly increasing entries [7],
have also been studied.

In this paper, we present analytical expressions in closed
form for the eigenvalues and eigenvectors of the L × L
complex symmetric Toeplitz matrix whose element in the
ith row and the jth column is given by C i−j

+ C j−i, where
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C ∈ C \ {−1, 0, 1}, with C denoting the set of complex
numbers. Each element of this matrix can be expressed as a
polynomial inC+1/C . For L = 2, the rank, eigenvalues, and
eigenvectors, obtained in a simple manner, are presented. For
L ≥ 3, using a second order linear homogeneous recurrence
followed by the matrix elements, the rank is found, and, from
the structure of the characteristic polynomial, closed form
expressions for the eigenvalues are obtained; furthermore,
closed form expressions for the eigenvectors for the cases of
even L and odd L are given by Propositions 1 and 2, respec-
tively. Complex orthogonal symmetric and skew-symmetric
eigenvectors corresponding to the eigenvalue zero for L =

4 and L = 5 are presented; and, by using the symmetric
and skew-symmetric properties of the eigenvectors, a method
of obtaining complex orthogonal eigenvectors corresponding
to the eigenvalue zero for L ≥ 4 is described. Furthermore,
the special cases of real nonzero C and of complex C with
magnitude one are discussed. The results are applied to the
performance evaluation of wireless communication systems
using multiple antennas at the transmitter and/or the receiver;
this is an important application in the area of electrical com-
munication engineering. The results may also be able to assist
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in the analysis of other important engineering applications
and provide expressions for analytical bounds and tradeoffs
on performance.

The organization of the paper is as follows. Some prop-
erties of the matrix elements and the rank are presented in
Section II. The eigenvalues are obtained in Section III and
the eigenvectors are presented in Section IV. In Section V,
the special cases of real nonzero C and of complex C with
magnitude one are discussed. Section VI shows applications
of the results in the area of wireless communications. Some
concluding remarks are given in Section VII.

II. THE MATRIX ELEMENTS AND RANK
Consider the L × L symmetric Toeplitz matrix TL(C) whose
element in the ith row and the jth column is given by[

TL(C)
]
i,j

= C i−j
+ C j−i

= C |i−j|
+ C−|i−j|,

i = 1, . . . ,L, j = 1, . . . ,L,

C ∈ C \ {−1, 0, 1}. (1)

It is clear from (1) the matrix TL(C) has twos as its diagonal
elements. Furthermore, note that TL(C) is a persymmetric (a
Toeplitz matrix is persymmetric, that is, symmetric across its
lower-left to upper-right diagonal) matrix, apart from being
symmetric.

Define the function g(C, ν) as

g(C, ν)
△

= Cν
+ C−ν, C ∈ C \ {−1, 0, 1}, ν ∈ R, (2)

with R denoting the set of real numbers, which implies that
(1) can be expressed as[

TL(C)
]
i,j = g(C, i− j) = g(C, j− i),

i = 1, . . . ,L, j = 1, . . . ,L. (3)

We find from (2) that g(C, ν) has the properties

g(C, −ν) = g(C, ν), (4a)

g(−C, ν) = (−1)νg(C, ν), (4b)

g
(
C−1, ν

)
= g(C, ν), (4c)

g(C, ν1)g(C, ν2) = g(C, ν1 − ν2) + g(C, ν1 + ν2), (4d)

|g(C, ν)| ≥ 2, (4e)

and that g(C, ν) follows the second order linear homogeneous
recurrence (in terms of ν) [8]

g(C, ν) =

(
C + C−1

)
g(C, ν − 1) − g(C, ν − 2). (5)

We find from (5) that each element of TL(C) can be
expressed as a polynomial in C + C−1, that is, C + 1/C ;
for example,[

TL(C)
]
j,j = g(C, 0) = 2,[

TL(C)
]
j+1,j = g(C, 1) = C +

1
C

,

[
TL(C)

]
j+2,j = g(C, 2) =

(
C +

1
C

)2

− 2,

[
TL(C)

]
j+3,j = g(C, 3) =

(
C +

1
C

)3

− 3
(
C +

1
C

)
,

and so on. Using [8, Proposition 9], we can express the
element in the (j+ k)th row and the jth column of the L × L
symmetric Toeplitz matrix TL(C) as[

TL(C)
]
j+k,j

= g(C, k)

=

(
C +

1
C

)k

+

⌊
k
2

⌋∑
m=1

(−1)m
[(
k − m
m

)
+

(
k − m− 1
m− 1

)]

×

(
C +

1
C

)k−2m

,

j = 1, . . . ,L − k, k = 0, . . . ,L − 1. (6)

Thus each element of TL(C) is generated by C + 1/C .
Since C ∈ C \ {−1, 0, 1}, TL(C) is a complex symmetric

Toeplitz matrix. Furthermore, since the elements of TL(C)
are polynomials (in C + 1/C) given by (6), TL(C) is a real
symmetric matrix if and only if C + 1/C is real, and this
happens under either one of the following two conditions on
C :

1) ℑ(C) = 0 and ℜ(C) ̸= 0, where ℑ(·) and ℜ(·) denote
the imaginary part and real part operators, respectively,
that is, C ∈ R \ {−1, 0, 1};

2) |C| = 1 and ℑ(C) ̸= 0, that is, C is on the unit circle
centered at the origin on the complex plane, excluding
the points −1 and 1.

A. RANK
The element is the ith row and the jth column of TL(C) is
g(C, i− j). For L = 2,

T2(C) =

[
2 g(C, 1)

g(C, 1) 2

]
=

[
2 C + C−1

C + C−1 2

]
, (7)

and it is clear that its rank is 2.
To obtain the rank of TL(C) for L ≥ 3, for each m =

1, . . . ,L − 2, we apply the following row operation on the
(L + 1 − m)th row of TL(C), starting with the Lth row and
ending with the 3rd row:

rowL+1−m −

(
C + C−1

)
rowL−m + rowL−1−m

−→ rowL+1−m.

The element in the (L + 1 − m)th row and jth column is
replaced by

g(C,L + 1 − m− j)

−

(
C + C−1

)
g(C,L − m− j) + g(C,L − 1 − m− j),

which is zero from recurrence (5), for m = 1, . . . ,L − 2,
implying that the rank of TL(C) is at most 2. Since the first
two rows ofTL(C) are linearly independent, we conclude that
its rank is 2.
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Thus the rank of TL(C) is 2 for L ≥ 2.
Alternatively, if we express the L × 1 vectors uL(C) and

uL(1/C) as

uL(C) =


C
C2

...

CL

 , uL(1/C) =


C−1

C−2

...

C−L

 , (8)

then TL(C) can be written as

TL(C) = uL(C)uTL (1/C) + uL(1/C)uTL (C)

=
[
uL(C) uL(1/C)

] [ uTL (1/C)
uTL (C)

]
, (9)

where (·)T denotes the transpose operator, which implies that
the rank of TL(C) is 2.

III. EIGENVALUES
Consider the matrix λIL − TL(C), where λ is an eigenvalue
of TL(C) and IL is the L × L identity matrix.

For L = 2, we find from (7) that

det
(
λI2 − T2(C)

)
= (λ − 2)2 −

(
C + C−1

)2
,

implying the characteristic equation

(λ − 2)2 −

(
C + C−1

)2
= 0, (10)

which can be rewritten as

λ2 − 4λ +

(
2 −

(
C2

+ C−2
) )

= 0. (11)

Solving (10) for λ, we obtain the eigenvalues of T2(C) as

λ = 2 ±

(
C + C−1

)
. (12)

Denote the two-sided sequence rk as

rk = g(C, k) = Ck
+ C−k , k ∈ Z, (13)

where Z denotes the set of integers. Note from (5) that rk
follows the recurrence

rk =

(
C + C−1

)
rk−1 − rk−2, k ∈ Z, (14)

with conditions

r0 = 2, r1 = g(C, 1) = C + C−1. (15)

Furthermore, (4a) implies

rk = r−k , k ∈ Z. (16)

For L ≥ 3, we apply on TL(C) − λIL the row operations

rowL+1−m −

(
C + C−1

)
rowL−m + rowL−1−m

−→ rowL+1−m, m = 1, . . . ,L − 2,

starting with the Lth row and ending with the 3rd row. This
results in the characteristic polynomial

det
(
λIL − TL(C)

)
= (−1)Ldet

(
TL(C) − λIL

)
= λL−2

∣∣∣∣M11 M12
M21 M22

∣∣∣∣ , (17)

where

M11 =

[
2 − λ r1 r2 · · · rL−3
r1 2 − λ r1 · · · rL−4

]
, (18)

M12 =

[
rL−2 rL−1
rL−3 rL−2

]
, (19)

M22 =

 0L−4 0L−4
1 0

−r1 1

 , (20)

with 0L−4 being the (L−4)×1 vector of zeros, andM21 is an
(L−2)× (L−2) upper triangular triple-band Toeplitz matrix
whose element in the ith row and the jth column is given by

[
M21

]
i,j

=


1 if j = i,

−r1 if j = i+ 1,
1 if j = i+ 2,
0 otherwise,

i, j = 1, . . . ,L − 2. (21)

Now∣∣∣∣M11 M12
M21 M22

∣∣∣∣ = det(M21) det
(
M12 − M11M−1

21 M22

)
= det

(
M12 − M11M−1

21 M22

)
, (22)

since, from (21), we get det(M21) = 1.
It is clear from (17)-(21) that TL(C) has eigenvalue zero

with multiplicity L − 2 and 2 nonzero eigenvalues; therefore
det
(
M12 − M11M−1

21 M22

)
is a polynomial of degree 2 in λ.

From (3) and (13), we can express the element in the ith
row and the jth column of TL(C) as[

TL(C)
]
i,j = ri−j = rj−i,

i = 1, . . . ,L, j = 1, . . . ,L. (23)

Let λ(+) and λ(−) denote the two nonzero eigenvalues of
TL(C), where λ(+) is the eigenvalue associated with the posi-
tive square root of the discriminant and λ(−) is the eigenvalue
associated with the negative square root of the discriminant
of the quadratic equation (in λ)

det
(
M12 − M11M−1

21 M22

)
= 0, (24)

where M11,M12,M22, andM21 are given by (18), (19), (20),
and (21), respectively. Now

λ(+) + λ(−) = trace
(
TL(C)

)
,

λ2(+) + λ2(−) = trace
(
T2
L(C)

)
, (25)

which results in

λ(+)=
1
2
trace

(
TL(C)

)
+

√
1
2
trace

(
T2
L(C)

)
−

1
4

(
trace

(
TL(C)

))2
,

λ(−)=
1
2
trace

(
TL(C)

)
−

√
1
2
trace

(
T2
L(C)

)
−

1
4

(
trace

(
TL(C)

))2
. (26)

From (23), we get

trace
(
TL(C)

)
= 2L (27)

and

trace
(
T2
L(C)

)
=

L∑
i=1

L∑
j=1

r2i−j. (28)

Using (13), (28) can be expressed as

trace
(
T2
L(C)

)
=

L∑
i=1

L∑
j=1

[
2 + C2i−2j

+ C2j−2i
]
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= 2L2 + 2

[
L∑
i=1

C2i

] L∑
j=1

C−2j


= 2L2 + 2

[
C2
(
C2L

− 1
)(

C2 − 1
) ]

×

[
C−2

(
1 − C−2L

)(
1 − C−2

) ]

= 2L2 +
2
(
C2L

+ C−2L
− 2

)(
C2 + C−2 − 2

) ,

and this can be rewritten as

trace
(
T2
L(C)

)
= 2L2 +

2
(
CL

− C−L
)2(

C − C−1
)2 . (29)

Substituting (27) and (29) in (26), we get

λ(+) = L +

(
CL

− C−L
)(

C − C−1
) ,

λ(−) = L −

(
CL

− C−L
)(

C − C−1
) . (30)

Note that (30) for L = 2 results in (12).
From (30), we obtain the eigenvalues of TL(C) for L ≥ 3 in

closed form as

λ=0 (with multiplicity L − 2), L ±

(
CL

− C−L
)(

C − C−1
)

=0 (with multiplicity L − 2), L ±

L−1∑
k=0

CL−1−2k . (31)

Denote the two-sided sequence vk as

vk =

(
Ck

− C−k
)(

C − C−1
) , k ∈ Z. (32)

It can be easily from (32) shown that vk follows the recurrence

vk =

(
C + C−1

)
vk−1 − vk−2, k ∈ Z, (33)

with conditions

v0 = 0, v1 = 1. (34)

Note that from (32) we also get

vk = −v−k , k ∈ Z, (35)

and

v2 = r1 = C + C−1. (36)

Furthermore, it can be easily shown from (13) and (32) that

rk = vk+1 − vk−1, k ∈ Z. (37)

Applying (32) and (13) to (31), the eigenvalues can alter-
natively be written as

λ = 0 (with multiplicity L − 2), L ± vL
= 0 (with multiplicity L − 2),

L ±


(
(−1)L − 1

)
2

+

⌊
L−1
2

⌋∑
k=0

rL−1−2k

 . (38)

Note from (9) that λ(+) and λ(−), given by (30), are the two
eigenvalues of the 2 × 2 matrix[

uTL (1/C)
uTL (C)

] [
uL(C) uL(1/C)

]
=

[
L uTL (1/C)uL(1/C)

uTL (C)uL(C) L

]
.

IV. EIGENVECTORS
For L = 2, the two eigenvalues of T2(C), denoted as λ(−) and
λ(+), are given by (see (12) and (30))

λ(−) = 2 −

(
C + C−1

)
, λ(+) = 2 +

(
C + C−1

)
. (39)

We find from (7) and (39) that the eigenvector e(−) of T2(C)
corresponding to eigenvalue λ(−) and the eigenvector e(+) of
T2(C) corresponding to eigenvalue λ(+) are given by

e(−) =

[
1

−1

]
, e(+) =

[
1
1

]
, (40)

and these are complex orthogonal (eT(−)e(+) = 0), as well as
orthogonal (eH(−)e(+) = 0, where (·)H denotes the Hermitian
(complex conjugate transpose) operator).
Closed form expressions for the eigenvectors of TL(C)

when L ≥ 3 for the cases of even L and odd L are given
by the following two propositions.
Proposition 1: When L is even, such that

L = 2M , M ∈ N − {1}, (41)

where N denotes the set of natural numbers, the eigenvectors
e(−), e(+) corresponding to the eigenvalues

λ(−) = 2M − v2M = 2M −

(
C2M

− C−2M
)(

C − C−1
) , (42a)

λ(+) = 2M + v2M = 2M +

(
C2M

− C−2M
)(

C − C−1
) , (42b)

respectively, and the 2M − 2 eigenvectors
e0(1), . . . , e0(2M − 2) corresponding to the eigenvalue zero
of multiplicity 2M − 2, are given by

e(−) =

 e1,−
...

e2M ,−

 , e(+) =

 e1,+
...

e2M ,+

 , (43a)

where

ek,−
= vM+1−k + vM−k

=

( [
CM+1−k

− C−(M+1−k)
]
+
[
CM−k

− C−(M−k)
] )(

C − C−1
) ,

k = 1, . . . , 2M , (43b)

ek,+
= vM+1−k − vM−k

=

( [
CM+1−k

− C−(M+1−k)
]
−
[
CM−k

− C−(M−k)
] )(

C − C−1
) ,

k = 1, . . . , 2M , (43c)
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and

e0(j) =

 e1,0(j)
...

e2M ,0(j)

 , j = 1, . . . , 2M − 2, (44a)

where

ek,0(j) =


1 if k = j,

−
(
C + C−1

)
if k = j+ 1,

1 if k = j+ 2,
0 otherwise,

k = 1, . . . , 2M , j = 1, . . . , 2M − 2. (44b)

Proof: The proof is presented in Appendix A.
Proposition 2: When L is odd, such that

L = 2M + 1, M ∈ N, (45)
the eigenvectors e(−), e(+) corresponding to the eigenvalues

λ(−) = 2M + 1 − v2M+1

= 2M + 1 −

(
C2M+1

− C−(2M+1)
)(

C − C−1
) , (46a)

λ(+) = 2M + 1 + v2M+1

= 2M + 1 +

(
C2M+1

− C−(2M+1)
)(

C − C−1
) , (46b)

respectively, and the 2M − 1 eigenvectors
e0(1), . . . , e0(2M − 1) corresponding to the eigenvalue zero
of multiplicity 2M − 1, are given by

e(−) =

 e1,−
...

e2M+1,−

 , e(+) =

 e1,+
...

e2M+1,+

 , (47a)

where
ek,− = vM+1−k

=

(
CM+1−k

− C−(M+1−k)
)(

C − C−1
) ,

k = 1, . . . , 2M + 1, (47b)

ek,+ = rM+1−k = vM+2−k − vM−k

= CM+1−k
+ C−(M+1−k),

k = 1, . . . , 2M + 1, (47c)

and

e0(j) =

 e1,0(j)
...

e2M+1,0(j)

 , j = 1, . . . , 2M − 1, (48a)

where

ek,0(j) =


1 if k = j,

−
(
C + C−1

)
if k = j+ 1,

1 if k = j+ 2,
0 otherwise,

k = 1, . . . , 2M + 1, j = 1, . . . , 2M − 1. (48b)

Proof: The proof is presented in Appendix B.

A. COMPLEX ORTHOGONALITY AMONG EIGENVECTORS
FOR L ≥ 3
Using Propositions 1 and 2, it can be shown that for L ≥ 3,

eT(+)e(−) = 0,
eT(−)e0(j) = 0, j = 1, . . . ,L − 2,
eT(+)e0(j) = 0, j = 1, . . . ,L − 2.

(49)

Thus, for L ≥ 3, {e(−), e(+), e0(j)} is a set of complex
orthogonal eigenvectors for each j ∈ {1, . . . ,L − 2}. How-
ever, {e0(1), . . . , e0(L − 2)} for L ≥ 4 is a set of linearly
independent eigenvectors which are not complex orthogonal.

B. SYMMETRIC AND SKEW-SYMMETRIC EIGENVECTORS
Let x = [x1, · · · , xL]T be an eigenvector ofTL(C); it is called
symmetric if it satisfies

xk = xL+1−k , k = 1, . . . ,L,

and it is called skew-symmetric if it satisfies

xk = −xL+1−k , k = 1, . . . ,L.

Since TL(C) is a complex symmetric Toeplitz matrix,
its eigenvectors form a complex orthogonal basis consist-
ing of ⌊L/2⌋ symmetric and L − ⌊L/2⌋ skew-symmetric
eigenvectors.

From (40), (43), and (47), we find that for L ≥ 2, e(−) is
skew-symmetric and e(+) is symmetric.

For L = 3, we find from (48) that e0(1) is symmetric,
and we find from (49) that {e(−), e(+), e0(1)} is a set of three
orthogonal eigenvectors: of these, one is skew-symmetric and
two are symmetric, and, from Proposition 2, they can be
expressed as

e(−) =

 1
0

−1

 , e(+) =

 r12
r1

 ,

e0(1) =

 1
−r1
1

 , (50)

where r1 = C + C−1.
For L = 4, we find from (44) that e0(1) and e0(2) are

linearly independent but not complex orthogonal. However,
e0(1) − e0(2) and e0(1) + e0(2) are complex orthogonal, and
therefore {e(−), e(+),w0(1),w0(2)}, where w0(1) = e0(1) −

e0(2) and w0(2) = e0(1) + e0(2), is a set of four complex
orthogonal eigenvectors: of these, two (e(−) and w0(1)) are
skew-symmetric and two (e(+) and w0(2)) are symmetric,
and, from Proposition 1, they can be expressed as

e(−) =


r1 + 1

1
−1

−(r1 + 1)

 , e(+) =


r1 − 1

1
1

r1 − 1

 ,

w0(1) =


1

−(r1 + 1)
r1 + 1
−1

 ,
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w0(2) =


1

−(r1 − 1)
−(r1 − 1)

1

 . (51)

For L = 5, we find from (48) that e0(1), e0(2), and
e0(3) are linearly independent but not complex orthogonal.
However, e0(1) − e0(3) and e0(1) + e0(3), and also e0(1) −

e0(3) and e0(2), are complex orthogonal pairs. We can get
complex orthogonal eigenvectors w0(1),w0(2),w0(3) from
e0(1), e0(2), e0(3) as

w0(1) = e0(1) − e0(3),

w0(2) = e0(1) + e0(3),

w0(3) =

(
e0(1) + e0(3)

)T (e0(1) + e0(3)
)

2

×

[
e0(2) −

(
e0(1) + e0(3)

)T e0(2)(
e0(1) + e0(3)

)T (e0(1) + e0(3)
)

×
(
e0(1) + e0(3)

)]
.

Note that w0(3) is obtained by a method similar to Gram-
Schmidt orthogonalization. Therefore {e(−), e(+),w0(1),
w0(2),w0(3)} is a set of five complex orthogonal eigen-
vectors: of these, two (e(−) and w0(1)) are skew-symmetric
and three (e(+), w0(2), and w0(3)) are symmetric, and, from
Proposition 2, they can be expressed as

e(−) =


r1
1
0

−1
−r1

 , e(+) =


r21 − 2
r1
2
r1

r21 − 2

 ,

w0(1) =


1

−r1
0
r1
−1

 , w0(2) =


1

−r1
2

−r1
1

 ,

w0(3) =


2r1

−
(
r21 − 3

)
−
(
r31 − r1

)
−
(
r21 − 3

)
2r1

 . (52)

Now consider the general case of even L, such that
L = 2M , M ∈ N − {1}. Let the skew-symmetric eigenvec-
tors h0,skew−symm(1), . . . ,h0,skew−symm(M−1) and symmetric
eigenvectors h0,symm(1), . . . ,h0,symm(M − 1) of T2M (C) cor-
responding to the eigenvalue zero be given by

h0,skew−symm(j) =

[
a(j)

−JMa(j)

]
,

h0,symm(j) =

[
b(j)

JMb(j)

]
, j = 1, . . . ,M − 1,(53)

where JM is the M ×M exchange matrix, and

a(j) =

 a1(j)
...

aM (j)

 , b(j) =

 b1(j)
...

bM (j)

 . (54)

Note that each of the M − 1 skew-symmetric eigenvectors
is complex orthogonal to each of the M − 1 symmet-
ric eigenvectors. Multiplying the first row of T2M (C) with
h0,skew−symm(j), we get

M∑
k=1

(rk−1 − r2M−k )ak (j) = 0, (55)

while multiplying the first row of T2M (C) with h0,symm(j),
we get

M∑
k=1

(rk−1 + r2M−k )bk (j) = 0. (56)

From (13), we obtain

rk−1 − r2M−k = −

(
CM−

1
2 − C

−

(
M−

1
2

))
×

(
CM−k+ 1

2 − C
−

(
M−k+ 1

2

))
, (57a)

rk−1 + r2M−k =

(
CM−

1
2 + C

−

(
M−

1
2

))
×

(
CM−k+ 1

2 + C
−

(
M−k+ 1

2

))
. (57b)

Substitution of (57a) in (55) and (57b) in (56) results in
M∑
k=1

(
CM−k+ 1

2 − C
−

(
M−k+ 1

2

))
ak (j) = 0, (58a)

M∑
k=1

(
CM−k+ 1

2 + C
−

(
M−k+ 1

2

))
bk (j) = 0. (58b)

We can choose linearly independent a(1), . . . , a(M − 1)
and linearly independent b(1), . . . ,b(M − 1) from (58a) and
(58b), respectively, as

ak (j) =



1 if k = j,

−

(
CM−j+ 1

2 − C
−

(
M−j+ 1

2

))
(
C

1
2 − C−

1
2

) if k = M ,

0 otherwise,
k = 1, . . . ,M , j = 1, . . . ,M − 1, (59a)

bk (j) =



1 if k = j,

−

(
CM−j+ 1

2 + C
−

(
M−j+ 1

2

))
(
C

1
2 + C−

1
2

) if k = M ,

0 otherwise,
k = 1, . . . ,M , j = 1, . . . ,M − 1. (59b)

By complex orthogonalizing a(1), . . . , a(M − 1) whose
elements are given by (59a), we obtain a complex
orthogonal set {acporth(1), . . . , acporth(M − 1)}, and by
complex orthogonalizing b(1), . . . ,b(M − 1) whose ele-
ments are given by (59b), we obtain another complex
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orthogonal set {bcporth(1), . . . ,bcporth(M − 1)}. A set
{w0(1), . . . ,w(2M −2)} of complex orthogonal eigenvectors
corresponding to the eigenvalue zero can now be expressed
as

w0(j) =

[
acporth(j)

−JMacporth(j)

]
,

w0(M − 1 + j) =

[
bcporth(j)

JMbcporth(j)

]
,

j = 1, . . . ,M − 1, (60)

where w0(1), . . . ,w0(M − 1) are skew-symmetric and
w0(M ), . . . ,w0(2M − 2) are symmetric.

Next consider the general case of odd L, such that
L = 2M+1,M ∈ N−{1}. Let the skew-symmetric eigenvec-
tors h0,skew−symm(1), . . . ,h0,skew−symm(M−1) and symmetric
eigenvectors h0,symm(1), . . . ,h0,symm(M ) ofT2M+1(C) corre-
sponding to the eigenvalue zero be given by

h0,skew−symm(j) =

 a(j)
0

−JMa(j)

 , j = 1, . . . ,M − 1,

h0,symm(ℓ) =

 b(ℓ)
bM+1(ℓ)
JMb(ℓ)

 , ℓ = 1, . . . ,M , (61)

where

a(j) =

 a1(j)
...

aM (j)

 , b(ℓ) =

 b1(ℓ)
...

bM (ℓ)

 . (62)

Note that each of theM − 1 skew-symmetric eigenvectors is
complex orthogonal to each of theM symmetric eigenvectors.
Multiplying the first row of T2M+1(C) with h0,skew−symm(j),
we get

M∑
k=1

(rk−1 − r2M+1−k )ak (j) = 0, (63)

while multiplying the first row of T2M+1(C) with h0,symm(ℓ),
we get

rMbM+1(ℓ) +

M∑
k=1

(rk−1 + r2M+1−k )bk (ℓ) = 0. (64)

From (13), we obtain

rk−1 − r2M+1−k = −

(
CM

− C−M
)

×

(
CM−k+1

− C−(M−k+1)
)

, (65a)

rk−1 + r2M+1−k =

(
CM

+ C−M
)

×

(
CM−k+1

+ C−(M−k+1)
)

. (65b)

Substitution of (65a) in (63) and (65b) in (64) results in
M∑
k=1

(
CM−k+1

− C−(M−k+1)
)
ak (j) = 0,

(66a)

bM+1(ℓ) +

M∑
k=1

(
CM−k+1

+ C−(M−k+1)
)
bk (ℓ) = 0.

(66b)

We can choose linearly independent a(1), . . . , a(M − 1)
and linearly independent b(1), . . . ,b(M ) from (66a) and
(66b), respectively, as

ak (j) =


1 if k = j,

−

(
CM−j+1

− C−(M−j+1)
)(

C − C−1
) if k = M ,

0 otherwise,
k = 1, . . . ,M , j = 1, . . . ,M − 1, (67a)

bk (ℓ) =


1 if k = ℓ,

−
(
CM−ℓ+1

+ C−(M−ℓ+1)
)
if k = M + 1,

0 otherwise,
k = 1, . . . ,M + 1, ℓ = 1, . . . ,M . (67b)

By complex orthogonalizing a(1), . . . , a(M − 1) whose ele-
ments are given by (67a), we obtain a complex orthogonal set
{acporth(1), . . . , acporth(M − 1)}, and by complex orthogonal-
izing appropriately b(1)

bM+1(1)
JMb(1)

 , . . . ,

 b(M )
bM+1(M )
JMb(M )


whose elements are given by (67b), we obtain another com-
plex orthogonal set

 bcporth(1)
bM+1,cporth(1)
JMbcporth(1)

 , . . . ,

 bcporth(M )
bM+1,cporth(M )
JMbcporth(M )

 .

A set {w0(1), . . . ,w(2M − 1)} of complex orthogonal
eigenvectors corresponding to eigenvalue zero can now be
expressed as

w0(j) =

 acporth(j)
0

−JMacporth(j)

 , j = 1, . . . ,M − 1,

w0(M − 1 + ℓ) =

 bcporth(ℓ)
bM+1,cporth(ℓ)
JMbcporth(ℓ)

 ,

ℓ = 1, . . . ,M , (68)

where w0(1), . . . ,w0(M − 1) are skew-symmetric and
w0(M ), . . . ,w0(2M − 1) are symmetric.

V. SPECIAL CASES OF REAL NONZERO C AND COMPLEX
C WITH MAGNITUDE ONE
We consider two special cases of the results obtained for
C ∈ C \ {−1, 0, 1}, which are C ∈ R \ {−1, 0, 1} and
|C| = 1, ℑ(C) ̸= 0. In both of these cases, C + 1/C is real,
which implies TL(C) is real.
In the case of C ∈ R \ {−1, 0, 1}, observing from (1) that[
TL(C)

]
i,j

=
(
sgn(C)

)i−j [exp((i− j) ln |C|

)
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+ exp
(
− (i− j) ln |C|

)]
= 2

(
sgn(C)

)i−j cosh((i− j) ln |C|

)
,

i = 1, . . . ,L, j = 1, . . . ,L, (69)

where sgn(·) denotes the signum or sign function which takes
the value 1 for positive argument, 0 for zero argument, and
−1 for negative argument, we can express (38) as

λ=0 (with multiplicity L − 2),

L ±
(
sgn(C)

)L−1

[
sinh

(
L ln |C|

)
sinh

(
ln |C|

) ]
=0 (with multiplicity L − 2),

L ±



(
(−1)L − 1

)
2

+ 2
(
sgn(C)

)L−1

×

⌊
L−1
2

⌋∑
k=0

cosh
(
(L − 1 − 2k) ln |C|

)


. (70)

Furthermore, we obtain from (13)

rk = 2
(
sgn(C)

)k cosh(k ln |C|
)
, k ∈ Z, (71)

and from (32)

vk =
(
sgn(C)

)k−1

[
sinh

(
k ln |C|

)
sinh

(
ln |C|

) ] , k ∈ Z, (72)

and the eigenvectors are obtained from Propositions 1 and 2
with appropriate substitutions using (71) and (72).

In the case of complex C with magnitude one, ℑ(C) ̸= 0,
putting

C = exp{ȷ2}, 2 ∈ (0, 2π ) \ {π},

where ȷ =
√

−1, gives[
TL (exp{ȷ2})

]
i,j

+ 2 cos
(
(i− j)2

)
i+ 1, . . . ,L, j = 1, . . . ,L,

2 ∈ (0, 2π ) \ {π}. (73)

The eigenvalues of TL (exp{ȷ2}) are obtained from (70) as

λ = 0 (with multiplicity L − 2), L ±
sin
(
L2

)
sin2

= 0 (with multiplicity L − 2),

L ±



(
(−1)L − 1

)
2

+ 2

⌊
L−1
2

⌋∑
k=0

cos
(
(L − 1 − 2k)2

)
 . (74)

Furthermore, we obtain from (13)

rk = 2 cos
(
k2
)
, k ∈ Z, (75)

and from (32)

vk =
sin
(
k2
)

sin2
, k ∈ Z, (76)

and the eigenvectors are obtained from Propositions 1 and 2
with appropriate substitutions using (75) and (76).

VI. APPLICATIONS IN WIRELESS COMMUNICATIONS
We present here some applications of the results obtained
to the performance evaluation of wireless communication
systems using multiple antennas at the transmitter and/or the
receiver.

A. CHANNEL CAPACITY AND TRANSMIT WEIGHT VECTOR
OF OPTICAL WIRELESS COMMUNICATION SYSTEM
Consider a multiple-input multiple-output (MIMO) optical
wireless communication system using intensity modulation
with symbol-by-symbol transmission, L transmit antennas,
and L receive antennas [9], [10], [11]. The L transmit anten-
nas are separated from the L receive antennas by an opaque
wall having two keyholes [12], [13] through which transmis-
sion occurs, resulting in a double-keyhole channel, with a
deterministic (not random or stochastic) L × L real-valued
channel matrix H. If the transmitted information-bearing
symbol (a non-negative real number) over a symbol time
interval is s and the L × 1 real-valued transmit weight
vector is t (t is a unit vector, that is, it has Euclidean
norm of 1), then the L × 1 received signal vector r is
given by

r = Hts+ n, (77)

where n is the L×1 real-valued additive white Gaussian noise
(AWGN) vector which has L independent and identically
distributed (i.i.d.) random elements, each having a Gaussian
or normal distribution with mean zero and variance σ 2

n , that
is, the N

(
0, σ 2

n
)
distribution.

The L × L channel matrix H of this MIMO system is
expressed as

H =
1
2

(
xyT + yxT

)
, (78a)

where x and y are real-valued L × 1 vectors which are given
by

x =


1
h
h2
...

hL−1

 , y =


1
h−1

h−2

...

h−(L−1)

 , h > 1; (78b)

this implies H = (1/2)TL(h) with h > 1, where TL(·)
is given by (1). The channel state information, which is
the value of H, is known to both the transmitter and the
receiver.

The information-bearing symbol s takes one of a finite
numberM of distinct real non-negative values S1, . . . , SM,
therefore the intensity modulation isM-ary and it is a digital
communication system. One of theseM values is transmitted
with probability 1/M in a symbol interval, resulting in an
average symbol energy Eav given by

Eav =
1
M

M∑
i=1

|Si|2. (79)
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One of the important performance measures of this system
is the channel capacity (in bits/channel use), which, as a
function of the transmit weight vector t, is given by

C(t) = log2

(
1 +

Eav
σ 2
n
tTHTHt

)
. (80)

Since H is a symmetric matrix, (80) can be rewritten as

C(t) = log2

(
1 +

Eav
σ 2
n
tTH2t

)
. (81)

We choose t such that the capacity is maximized. Let λmax
denote themaximum eigenvalue ofH and tmax the normalized
eigenvector corresponding to this eigenvalue. The capacity
(81) attains a maximum Cmax when t = tmax , which results in

Cmax = C(tmax)

= log2

(
1 +

Eav
σ 2
n

λ2max

)
. (82)

From (70) and (78), we get

λmax =
1
2

(
L +

[
sinh

(
L ln h

)
sinh

(
ln h

) ]) . (83)

Substitution of (83) in (82) gives the maximum capacity as

Cmax = log2

1 +
Eav
4σ 2

n

(
L +

[
sinh

(
L ln h

)
sinh

(
ln h

) ])2
 . (84)

Furthermore, from Proposition 1, Proposition 2, (71), (72),
and (78), we get the capacity maximizing normalized transmit
weight vector as

tmax =
1√∑L
ℓ=1 e

2
ℓ

 e1
...

eL

 , (85a)

where

ek =



sinh
( [L

2 + 1 − k
]
ln h

)
− sinh

( [L
2 − k

]
ln h

)
if L is even,

cosh
( [

(L+1)
2 − k

]
ln h

)
if L is odd,

k = 1, . . . ,L. (85b)

B. TRANSMIT BEAMFORMING AND RECEIVE COMBINING
IN OPTICAL WIRELESS COMMUNICATION SYSTEM WITH
INTERFERER
Consider a MIMO optical wireless communication system
using intensity modulation with symbol-by-symbol trans-
mission, with K transmit antennas and L (L ≥ 3) receive
antennas [9], [10], [11] in the presence of an interferer. The
channel between the transmitter and the receiver is charac-
terized by a deterministic L × K real-valued transmitter-
receiver channel matrix G (with non-negative elements),
while the channel between the interferer and the receiver is

characterized by a deterministic L × L real-valued double-
keyhole interferer-receiver channel matrix H as in (78)
of Subsection VI-A. If the transmitted information-bearing
symbol (a non-negative real number) over a symbol time
interval is st , the K × 1 real-valued transmit weight vector
or transmit beamforming vector is v, and the L × 1 symbol
vector of the interferer is sint , then the L × 1 received signal
vector r is given by

r = Gvst + Hsint + n, (86)

where n is the AWGN vector with L i.i.d. random elements,
each distributed as N

(
0, σ 2

n
)
. It is assumed that the trans-

mitter and receiver have knowledge of the channel matrices
G and H. From (78), the element in the ith row and the jth
column of the interferer-receiver channel matrix H is given
by [

H
]
i,j

=
1
2

(
h|i−j|

+ h−|i−j|
)

,

i = 1, . . . ,L, j = 1, . . . ,L, h > 1. (87)

It is clear from (44) and (48) that the L − 2 eigenvectors
f0(1), . . . , f0(L−2) ofH corresponding to the eigenvalue zero
are given by

f0(j) =

 f1,0(j)
...

fL,0(j)

 , j = 1, . . . ,L − 2, (88a)

where

fk,0(j) = 0, k ∈ {1, . . . ,L} \ {j, j+ 1, j+ 2},

fj,0(j) = fj+2,0(j) = 1, fj+1,0 = −

(
h+ h−1

)
,

j = 1, . . . ,L − 2. (88b)

The information-bearing symbol st belongs to a one-
sidedM-ary amplitude-shift keying (ASK) constellationSM
given by

SM =

{√
E1, . . . ,

√
EM

}
. (89)

Note that Ei is the energy of the ith symbol, i = 1, . . . ,M.
The symbol energies E1, . . . ,EM are in ascending order, that
is,

0 ≤ E1 < E2 < · · · < EM. (90)

In each symbol interval, one of the one-sidedM-ASK sym-
bols is transmitted with probability 1/M.

One of the objectives of the receiver is to cancel the inter-
ference and create a situation when the signal-to-noise ratio
(SNR) is the maximum, so that the best error performance
of symbol-by-symbol detection of the information-bearing
symbol st can be attained. This objective is achieved by the
following:

1) The receiver linearly combines the elements of r using
a receive weight vector or receive combining vector
w in such a way that the interference term Hsint is
nullified through the operation wT r. This can be done
by choosing w as any one of f0(1), . . . , f0(L−2), since
fT0 (j)Hsint = 0 for all j ∈ {1, . . . ,L − 2}.
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2) Now

fT0 (j)r = fT0 (j)Gvst + fT0 (j)n, j = 1, . . . ,L − 2,

(91)

and the SNR as a function of j, which we denote as γ (j),
is given by

γ (j) =

(
fT0 (j)Gv

)2
s2t

E
[∣∣fT0 (j)n∣∣2] , j = 1, . . . ,L − 2, (92)

where E[·] denotes the expectation operator. For a
given j, the numerator on the right-hand side of (92)
is maximized by choosing the transmit beamforming
vector v as

v = GT f0(j). (93)

Moreover, we have

E
[∣∣∣fT0 (j)n∣∣∣2] = fT0 (j)E

[
nnT

]
f0(j)

= σ 2
n

[
2 +

(
h+ h−1

)2]
= σ 2

n

(
4 + h2 + h−2

)
. (94)

Substituting (93) and (94) in (92), we get

γ (j) =

(
fT0 (j)GGT f0(j)

)2
s2t

σ 2
n
(
4 + h2 + h−2

) , j = 1, . . . ,L − 2.

(95)

3) Let the L×K transmitter-receiver channel matrixG be
expressed in terms of its rows as

G =

 gT1
...

gTL

 , (96)

where gk is K × 1 and gTk denotes the kth row of G for
k = 1, . . . ,L. Substituting (88) and (96) in (95), we get

γ (j) =

∥∥gj − (
h+ h−1

)
gj+1 + gj+2

∥∥4 s2t
σ 2
n
(
4 + h2 + h−2

) ,

j = 1, . . . ,L − 2, (97)

where ∥ · ∥ denotes the Euclidean norm. The SNR γ (j)
in (97) is maximized when j = jmax, where

jmax = arg max
j∈{1,...,L−2}

∥∥∥∥ gj − (
h+ h−1

)
gj+1

+ gj+2

∥∥∥∥2 .

(98)

We therefore choose the transmit beamforming vector
as v = vmax, where

vmax = gjmax
−

(
h+ h−1

)
gjmax+1 + gjmax+2, (99)

and the receive combining vector as w = wmax, where

wmax = f0(jmax). (100)

From (88), (91), (96), (99), and (100), we get

wT
maxr = ∥vmax∥

2 st + wT
maxn, (101)

wherewT
maxn ∼ N

(
0, σ 2

n
(
4 + h2 + h−2

) )
. Using the condi-

tional probability density function of
(
wT
maxn

)2, conditioned

on st , the decision rule for the optimum noncoherent one-
sidedM-ASK symbol detector is obtained as

ŝt = arg max
st∈{

√
E1,...,

√
EM}

exp

{
−

s2t ∥vmax∥
4

2σ 2
n
(
4 + h2 + h−2

)}

× cosh

(
st ∥vmax∥

2
∣∣wT

maxr
∣∣

σ 2
n
(
4 + h2 + h−2

)) . (102)

C. LOW SNR APPROXIMATION OF MUTUAL
INFORMATION OF ONE-SIDED ASK IN RAYLEIGH FADING
WITH NONCOHERENT ENERGY DETECTION
Consider a single-input multiple-output (SIMO) digital wire-
less communication system in flat Rayleigh fading, with
one transmit antenna and L receive antennas, that performs
noncoherent energy detection of one-sided M-ASK sym-
bols from the M-ary constellation SM given by (89) and
having symbol energies E1, . . . ,EM in ascending order as
in (90). If the transmitted information-bearing one-sided
M-ASK symbol (a non-negative real number) over a sym-
bol time interval is s, then the L × 1 complex baseband
received signal vector r for this SIMO system is given
by [14]

r = hs+ n, (103)

where h is the random complex normal fading gain vector
distributed as CN

(
0L , σ 2

h IL
)
and n is the complex normal

AWGN vector distributed as CN
(
0L , σ 2

n IL
)
, with 0L denot-

ing the L × 1 vector of zeros and IL denoting the L × L
identity matrix. The signal-plus-noise ratios over consecu-
tive symbols are assumed to have a common ratio R given
by

R =

(
Ei+1σ

2
h + σ 2

n
)(

Eiσ 2
h + σ 2

n
) , i = 1, . . . ,M− 1. (104)

It is clear from (90) and (104) that R > 1. Let the M × 1
input probability vector p be expressed as

p =

 Pr
[
s =

√
E1
]

...

Pr
[
s =

√
EM

]
 =

 p1
...

pM

 , (105)

where

M∑
i=1

pi = 1, 0 ≤ pi ≤ 1, i = 1, . . . ,M. (106)

Themutual information between the input s and the output
r under the low SNR condition (R−1) ≪ 1, which is denoted
as IloSNR(s; r), is expressed as [14, eq. (50)]

IloSNR(s; r) = −
L

2 ln 2
+

L
4 ln 2

pTTL(R)p, (107)

where TL(·) is given by (1). The mutual information in (107)
can be maximized over p subject to the constraints (106) to
obtain the channel capacity.
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VII. CONCLUSION
For the L × L rank-two matrix TL(C), where
C ∈ C\ {−1, 0, 1}, closed form expressions for the eigenval-
ues and eigenvectors are presented. For L ≥ 4, a method of
complex orthogonalization of the eigenvectors corresponding
to the eigenvalue zero by using the symmetric and skew-
symmetric properties of the eigenvectors is described. The
special cases ofC ∈ R\{−1, 0, 1} and |C| = 1, ℑ(C) ̸= 0 are
discussed, and applications of the results to the performance
evaluation of wireless communication systems usingmultiple
antennas at the transmitter and/or the receiver are shown.

APPENDIX A
PROOF OF PROPOSITION 1
Proof:We have L = 2M , where M ∈ N − {1}. Consider the
eigenvector e(−). The ith row element of T2M (C)e(−), where
i = 1, . . . , 2M , is

∑2M
k=1 ri−kek,−, which can be expressed

using (13), (32), and (43b) as
2M∑
k=1

ri−kek,− =
1(

C − C−1
)

×

2M∑
k=1

(
C i−k

+ Ck−i
)

×

(
CM+1−k

− Ck−M−1

+CM−k
− Ck−M

)
= 2M (vM+1−i + vM−i)

+
CM+i+1(
C − C−1

) 2M∑
k=1

C−2k

+
CM+i(

C − C−1
) 2M∑
k=1

C−2k

−
C−M−i−1(
C − C−1

) 2M∑
k=1

C2k

−
C−M−i(
C − C−1

) 2M∑
k=1

C2k . (108)

Now
2M∑
k=1

C−2k
=

C−2
(
1 − C−4M

)(
1 − C−2

)
= C−2M−1v2M , (109a)

2M∑
k=1

C2k
=

C2
(
C4M

− 1
)(

C2 − 1
)

= C2M+1v2M . (109b)

Substitution of (109) in (108) and subsequent simplification
results in

2M∑
k=1

ri−kek,− = (2M − v2M )(vM+1−i + vM−i)

= λ(−)ei,−, i = 1, . . . , 2M . (110)

Now consider the eigenvector e(+). The ith row element of
T2M (C)e(+), where i = 1, . . . , 2M , is

∑2M
k=1 ri−kek,+, which

can be expressed using (13), (32), and (43c) as
2M∑
k=1

ri−kek,+ =
1(

C − C−1
)

×

2M∑
k=1

(
C i−k

+ Ck−i
)

×

(
CM+1−k

− Ck−M−1

−CM−k
+ Ck−M

)
= 2M (vM+1−i − vM−i)

+
CM+i+1(
C − C−1

) 2M∑
k=1

C−2k

−
CM+i(

C − C−1
) 2M∑
k=1

C−2k

−
C−M−i−1(
C − C−1

) 2M∑
k=1

C2k

+
C−M−i(
C − C−1

) 2M∑
k=1

C2k . (111)

Substitution of (109) in (111) and subsequent simplification
results in

2M∑
k=1

ri−kek,+ = (2M + v2M )(vM+1−i − vM−i)

= λ(+)ei,+, i = 1, . . . , 2M . (112)
Consider next the eigenvector e0(j), where

j = 1, . . . , 2M − 2. The ith row element of T2M (C)e0(j),
where i = 1, . . . , 2M , is

∑2M
k=1 ri−ke0(j); this can be

expressed using (44b) as
2M∑
k=1

ri−kek,0(j) = ri−j −
(
C + C−1

)
ri−j−1 + ri−j−2.

(113)
Applying recurrence (14) to (113), we get

2M∑
k=1

ri−kek,0(j) = 0,

i = 1, . . . , 2M , j = 1, . . . , 2M − 2. (114)
From (110), we conclude that e(−), given by (43a) and

(43b), is the eigenvector corresponding to the eigenvalue λ(−),
given by (42a); from (112), we conclude that e(+), given
by (43a) and (43c), is the eigenvector corresponding to the
eigenvalue λ(+), given by (42b); and from (114), we con-
clude that e0(1), . . . , e0(2M − 2), given by (44), are the
2M − 2 eigenvectors corresponding to the zero eigenvalue
of multiplicity 2M − 2. This proves Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2
Proof: We have L = 2M + 1, where M ∈ N. Consider
the eigenvector e(−). The ith row element of T2M+1(C)e(−),
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where i = 1, . . . , 2M + 1, is
∑2M+1

k=1 ri−kek,−, which can be
expressed using (13), (32), and (47b) as

2M+1∑
k=1

ri−kek,− =
1(

C − C−1
) 2M+1∑

k=1

(
C i−k

+ Ck−i
)

×

(
CM+1−k

− Ck−M−1
)

= (2M + 1)vM+1−i

+
CM+i+1(
C − C−1

) 2M+1∑
k=1

C−2k

−
C−M−i−1(
C − C−1

) 2M+1∑
k=1

C2k . (115)

Now
2M+1∑
k=1

C−2k
=

C−2
(
1 − C−4M−2

)(
1 − C−2

)
= C−2M−2v2M+1, (116a)

2M+1∑
k=1

C2k
=

C2
(
C4M+2

− 1
)(

C2 − 1
)

= C2M+2v2M+1. (116b)

Substitution of (116) in (115) and subsequent simplification
results in

2M+1∑
k=1

ri−kek,− = (2M + 1 − v2M+1)vM+1−i

= λ(−)ei,−,

i = 1, . . . , 2M + 1. (117)

Now consider the eigenvector e(+). The ith row element of
T2M+1(C)e(+), where i = 1, . . . , 2M+1, is

∑2M+1
k=1 ri−kek,+,

which can be expressed using (13) and (47c) as
2M+1∑
k=1

ri−kek,+ =

2M+1∑
k=1

(
C i−k

+ Ck−i
)

×

(
CM+1−k

+ Ck−M−1
)

= (2M + 1)rM+1−i

+ CM+i+1
2M+1∑
k=1

C−2k

+ C−M−i−1
2M+1∑
k=1

C2k . (118)

Substitution of (116) in (118) and subsequent simplification
results in

2M+1∑
k=1

ri−kek,+ = (2M + 1 + v2M+1)rM+1−i

= λ(+)ei,+,

i = 1, . . . , 2M + 1. (119)

Consider next the eigenvector e0(j), where
j = 1, . . . , 2M − 1. The ith row element of T2M+1(C)e0(j),

where i = 1, . . . , 2M + 1, is
∑2M+1

k=1 ri−ke0(j); this can be
expressed using (48b) as

2M+1∑
k=1

ri−kek,0(j)

= ri−j −
(
C + C−1

)
ri−j−1 + ri−j−2. (120)

Applying recurrence (14) to (120), we get
2M+1∑
k=1

ri−kek,0(j) = 0,

i = 1, . . . , 2M + 1, j = 1, . . . , 2M − 1. (121)

From (117), we conclude that e(−), given by (47a)
and (47b), is the eigenvector corresponding to the eigen-
value λ(−), given by (46a); from (119), we conclude that
e(+), given by (47a) and (47c), is the eigenvector cor-
responding to the eigenvalue λ(+), given by (46b); and
from (121), we conclude that e0(1), . . . , e0(2M − 1), given
by (48), are the 2M − 1 eigenvectors corresponding to
the zero eigenvalue of multiplicity 2M − 1. This proves
Proposition 2.

REFERENCES
[1] W. F. Trench, ‘‘An algorithm for the inversion of finite Toeplitz

matrices,’’ J. Soc. Ind. Appl. Math., vol. 12, no. 3, pp. 515–522,
Sep. 1964.

[2] W. F. Trench, ‘‘Solution of systems with Toeplitz matrices generated
by rational functions,’’ Linear Algebra Appl., vol. 74, pp. 191–211,
Feb. 1986.

[3] W. F. Trench, ‘‘Spectral evolution of a one-parameter extension of a real
symmetric Toeplitz matrix,’’ SIAM J. Matrix Anal. Appl., vol. 11, no. 4,
pp. 601–611, Oct. 1990.

[4] Y. I. Kuznetsov, ‘‘An eigenvalue problem for a symmetric
Toeplitz matrix,’’ Numer. Anal. Appl., vol. 2, no. 4, pp. 326–329,
Dec. 2009.

[5] R. K. Mallik, ‘‘The inverse of a tridiagonal matrix,’’ Linear Algebra Appl.,
vol. 325, nos. 1–3, pp. 109–139, Mar. 2001.

[6] S. E. Ekström and S. Serra-Capizzano, ‘‘Eigenvalues and eigenvectors of
banded Toeplitz matrices and the related symbols,’’Numer. Linear Algebra
Appl., vol. 25, p. e2137, Oct. 2018.

[7] F. Bünger, ‘‘Inverses, determinants, eigenvalues, and eigenvectors of real
symmetric Toeplitz matrices with linearly increasing entries,’’ Linear Alge-
bra Appl., vol. 459, pp. 595–619, Oct. 2014.

[8] R. K. Mallik, ‘‘On the solution of a second order linear homogeneous dif-
ference equation with variable coefficients,’’ J. Math. Anal. Appl., vol. 215,
no. 1, pp. 32–47, Nov. 1997.

[9] S. M.Moser, L.Wang, andM.Wigger, ‘‘Capacity results on multiple-input
single-output wireless optical channels,’’ IEEE Trans. Inf. Theory, vol. 64,
no. 11, pp. 6954–6966, Nov. 2018.

[10] A. Chaaban and S. Hranilovic, ‘‘Capacity of optical wireless communi-
cation channels,’’ Philos. Trans. Royal Soc. A, Math., Phys. Eng. Sci.,
vol. 378, no. 2169, 2020, Art. no. 20190184.

[11] L. Li, S. M. Moser, L. Wang, and M. Wigger, ‘‘On the capacity of
MIMO optical wireless channels,’’ IEEE Trans. Inf. Theory, vol. 66, no. 9,
pp. 5660–5682, Sep. 2020.

[12] D. Chizhik, G. J. Foschini, M. J. Gans, and R. A. Valenzuela, ‘‘Key-
holes, correlations, and capacities of multielement transmit and receive
antennas,’’ IEEE Trans. Wireless Commun., vol. 1, no. 2, pp. 361–368,
Apr. 2002.

[13] P. Almers, F. Tufvesson, and A. Molisch, ‘‘Keyhole effect in MIMO wire-
less channels: Measurements and theory,’’ IEEE Trans. Wireless Commun.,
vol. 5, no. 12, pp. 3596–3604, Dec. 2006.

[14] R. K. Mallik and R. Murch, ‘‘Channel capacity of an asymmet-
ric constellation in Rayleigh fading with noncoherent energy detec-
tion,’’ IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7375–7388,
Nov. 2021.

VOLUME 11, 2023 88487



R. K. Mallik, R. Murch: Properties and Applications of a Symmetric Toeplitz Matrix

RANJAN K. MALLIK (Fellow, IEEE) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology Kanpur, Kanpur,
in 1987, and the M.S. and Ph.D. degrees in elec-
trical engineering from the University of South-
ern California, Los Angeles, in 1988 and 1992,
respectively.

From August 1992 to November 1994, he was
a scientist with the Defence Electronics Research
Laboratory, Hyderabad, India, working on missile

and EW projects. From November 1994 to January 1996, he was a faculty
member of the Department of Electronics and Electrical Communication
Engineering, Indian Institute of Technology Kharagpur, Kharagpur. From
January 1996 to December 1998, he was a faculty member of the Depart-
ment of Electronics and Communication Engineering, Indian Institute of
Technology Guwahati, Guwahati. Since December 1998, he has been a
faculty member of the Department of Electrical Engineering, Indian Insti-
tute of Technology Delhi, New Delhi, where he is currently an Institute
Chair Professor. His research interests include diversity combining and
channel modeling for wireless communications, space-time systems, cooper-
ative communications, multiple-access systems, power line communications,
molecular communications, difference equations, and linear algebra.

Dr. Mallik is a member of Eta Kappa Nu, the IEEE Communications,
Information Theory, and Vehicular Technology Societies, the American
Mathematical Society, the International Linear Algebra Society, and the
Association for Computing Machinery; a fellow of the Indian National
Academy of Engineering, the Indian National Science Academy, The
National Academy of Sciences, India, Prayagraj, the Indian Academy of
Sciences, Bengaluru, The World Academy of Sciences–for the advancement
of science in developing countries (TWAS), The Institution of Engineering
and Technology, U.K., The Institution of Electronics and Telecommunica-
tion Engineers, India, The Institution of Engineers (India) (IEI), and the
Asia–Pacific Artificial Intelligence Association; and a life member of the
Indian Society for Technical Education. He is a recipient of the Hari Om
Ashram Prerit Dr. Vikram Sarabhai Research Award in the field of electron-
ics, telematics, informatics, and automation, the Shanti Swarup Bhatnagar
Prize in engineering sciences, the Khosla National Award, the IEI-IEEE
Award for Engineering Excellence, and the J. C. Bose Fellowship. He has
served as an Area Editor and an Editor for the IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, and as an Editor for the IEEE TRANSACTIONS ON

COMMUNICATIONS.

ROSS MURCH (Fellow, IEEE) received the
Bachelor’s and Ph.D. degrees in electrical and
electronic engineering from the University of
Canterbury, Christchurch, New Zealand.

He is currently a Chair Professor with the
Department of Electronic and Computer Engineer-
ing, The Hong Kong University of Science and
Technology, HongKong, where hewas theDepart-
ment Head, from 2009 to 2015. He has taken
sabbaticals with the Imperial College London,

London, U.K., MIT, Cambridge, MA, USA, Allgon, Akersberga, Sweden,
and AT&T, Newman Springs, NJ, USA. His unique expertise lies in his
combination of knowledge from both wireless communication systems and
electromagnetic areas. He has over 200 publications and 20 patents on
wireless communication systems and antennas with over 19000 citations. His
current research interests include multiport antennas, RF energy harvesting,
the Internet of Things, acoustics, and RF imaging.

Dr. Murch is a recipient of several awards, including the Computer Sim-
ulation Technology (CST) University Publication Award, in 2015, and two
teaching awards. He has served the IEEE in various positions, including an
Area Editor, the Technical Program Chair, a Distinguished Lecturer, and a
member of the Fellow Evaluation Committee.

88488 VOLUME 11, 2023


