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ABSTRACT Although the issue of sparse expert samples at the early stage of training in inverse reinforce-
ment learning (IRL) is successfully resolved by the introduction of generative adversarial network (GAN),
the inherent drawbacks of GAN result in ineffective generated samples. Therefore, we propose an algorithm
for generative adversarial inverse reinforcement learning that is based on deep deterministic policy gradient
(DDPG). We use the deterministic strategy to replace the random noise input of the initial GAN model
and reconstruct the generator of the GAN based on the Actor-Critic mechanism in order to improve the
quality of GAN-generated samples during adversarial training. Meanwhile, we mix the GAN-generated
virtual samples with the original expert samples of IRL as the expert sample set of IRL. Our approach
not only solves the problem of sparse expert samples at the early stage of training, but most importantly,
it makes the decision-making process of IRL occurring under GAN more efficient. In the subsequent
IRL decision-making process, we also analyze the differences between the mixed expert samples and the
non-expert trajectory samples generated by the initial strategy to determine the best reward function. The
learned reward function is used to drive the RL process positively for policy updating and optimization,
on which further non-expert trajectory samples are generated. By comparing the differences between the new
non-expert samples and the mixed expert sample set, we hope to iteratively arrive at the reward function and
optimal policy. Performance tests in the MuJoCo physical simulation environment and trajectory prediction
experiments in GridWorld show that our model improves the quality of GAN-generated samples and reduces
the computational cost of the network training by approximately 20% for each given environment, applying
to decision planning for autonomous driving.

INDEX TERMS Inverse reinforcement learning, generative adversarial networks, deep deterministic policy
gradient.

I. INTRODUCTION
Reinforcement Learning (RL) [1] is a potent paradigm that
studies how the agent interacts with its surroundings during
movement, learning the optimal strategy through continuous
trial and error in a given environment. At the same time,
we anticipate that the agent’s interactions with the environ-
ment would always lead to optimal outcomes under different
driving strategies. However, the reality of autonomous driv-
ing is muchmore complicated than anticipated. The difficulty
of overcoming the sparse reward problem in the learning
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process means that the application of RL directly to the
decision problem in autonomous driving has a limited impact,
which is difficult to achieve the ideal state.

In contrast, inverse reinforcement learning (IRL) avoids
the sparse reward problem of RL to a certain extent because it
does not require reward feedback from the environment [2].
The core idea of IRL is to find the optimal policy dis-
tributed near the expert policy using the learned reward
function so that it is close to or even consistent with
the expert policy. Recent work has addressed many rele-
vant concerns in the area of autonomous driving decision-
making. The maximum entropy principle [3], [4], [5], [6]
has been validated in IRL applications. They learn potential
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reward functions from human demonstrations to complete
the autonomous driving task and obtain optimal driving
strategies. Alternatively, under the feature-based behavior
modeling [7], [8], [9], [10], [11], they designed different
reward functions based on different driving styles by using
the IRL algorithm. It would enhance the adaptability and
accuracy of the prediction model in different scenarios. Addi-
tionally, Sadat et al. [12] have conducted joint perception
and planning for self-driving vehicles to plan the human
driving trajectory with the lowest cost among all possible
trajectories by IRL. Meanwhile, some related work accom-
plishes the updating of reward functions and strategies by
avoiding the computation of the optimal value function [13],
minimizing the loss of risk-sensitive AGENT on behav-
ioral observations [14], and defining new constraints from
the failure demonstration behavior [15]. At the same time,
they completed the decision-making task better under the
state behavior space with continuous demonstration. And
Xue et al. [16] fused inverse reinforcement learning algo-
rithms with optimal control to propose a new model-based
approach that is applied to the field of tracking control for
learning unknown performance objective functions.

However, in inverse reinforcement learning, we need to
utilize the learned reward function to drive reinforcement
learning which accomplishes the exploration of the agent’s
optimal policy trajectory. In the process of exploration, the
agent needs to continuously learn by trial and error with
the environment. Therefore, it would consume greater com-
putational resources. Also, in practical problems, inverse
reinforcement learning causes low learning speed in the
early stage of training due to the lack of expert sample
data. Therefore, Chen et al. [17] has utilized GAN to gen-
erate more expert sample data, which initially solved the
sparse expert sample problem of inverse reinforcement learn-
ing. Generative Adversarial Network (GAN) [18] makes
use of the concept of zero-sum games to complete train-
ing through adversarial learning of generator and discrim-
inator models. Recent related work reconfigures the GAN
through codec structure as well as implements the combi-
nation of GAN and Maximum Entropy modeling strategies.
They achieved learning features of discrete targets during
adversarial training [19], and at the same time maximized
the robustness of the adversarial strategy [20]. Ho and
Ermon [21] have suggested Generative Adversarial Imitation
Learning (GAIL) to obtain a model-free imitation learning
algorithm between imitation learning andGAN. Fu et al. [22]
has proposed Adversarial Inverse Reinforcement Learning
(AIRL), which has been used in OpenAI Gym simulations
of autonomous driving. Both GAIL and AIRL have shown
superior performance as decision frameworks in the field of
autonomous driving decision planning. Several recent works
accomplish motor tasks in IRL by conditioning on reward
adjustment [11], [23], [24], [25], driving style [26], and atten-
tion mechanisms [27], trained by a generative adversarial
framework to learn optimal strategies.

TABLE 1. The comparison of the features of existing methods.

Albeit the successful fusion of GAN with IRL opens up
new possibilities for autonomous driving decision-making
methods, the randomness of the generator of GAN itself
leads to the inefficiency of generating samples. This causes
a significant increase in the training cost of IRL. At the same
time, inefficient samples also cause the interaction process
between the agent and the environment to become more and
more complex, making it difficult for the agent to accomplish
the decision-making task in complex scenarios. Therefore,
considering the limitations of existing methods under real-
world tasks, as demonstrated in Table 1, our goal in this paper
is to solve the sample inefficiency problem caused by adding
GANs during inverse reinforcement learning. We expect that
our approach can be more efficient for decision-making tasks
under continuous state space. We seek to leverage Deep
Deterministic Policy Gradient (DDPG) [28] as an alternative
to the stochastic policy gradient descent of the original GAN
training process.

DDPG is a policy learning method that integrates deep
learning neural networks in Deep Q-Network (DQN) [29]
with Deterministic Policy Gradient (DPG) [30]. Zheng and
Liu [31] have proposed an improved multi-agent deep deter-
ministic policy gradient (IMADDPG) algorithm that enables
the agent to maximize the collaborative planning perfor-
mance during the training period. And Nguyen et al. [32]
have presented two deterministic policy approaches, dis-
tributed deep deterministic policy gradient and shared deep
deterministic policy gradient, addressing the multi-agent
resource allocation problem.

In this work, we present the AC-GAN-IRL algorithm
framework, a DDPG-based approach under GAN to address
the sample inefficiency induced by the randomness of the
generator. Our goal is to improve the IRL method that
incorporates GAN models, enabling our model to solve the
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problem of sparse expert samples at the beginning of IRL
training. At the same time, our method can generate more
efficient samples to optimize the IRL decision-making pro-
cess and reduce the complexity of the agent’s interaction
with the environment during the process of exploring the
state space. Our model reformulates the generator structure
in GAN, using a DDPG deterministic strategy to replace the
random noise input in the original GAN model. The new
generator is defined based on the Actor-Critic mechanism,
which makes the inverse reinforcement learning decision
process with the GAN game mechanism more efficient. Our
approach enhances the quality of GAN-generated samples
and reduces the process of training with invalid samples.
This significantly decreases the computational cost of inverse
reinforcement learning when joining the network training.
Also, the virtual expert samples generated by GAN are mixed
with the initial expert samples as the expert sample set for
IRL. The reward function, which in turn drives the RL pro-
cess for policy updating and optimization, is obtained by
comparing the differences between non-expert and expert
trajectories. And the non-expert trajectory samples are regen-
erated using the new strategy. Finally, our approach evaluates
the difference with the mixed expert sample set again to get
the reward function and optimal policy. Meanwhile, in the
field of autonomous driving decision planning, we have been
exploring the research hotspot of how to realize vehicle safety
decision-making through intelligent technology. Our method
implements a reconstruction of the generator structure of
GAN, which makes the model generate more efficient sam-
ples in adversarial training. We accelerate the learning and
convergence speed of IRL at the initial stage and reduce
the computational cost brought by adding GAN networked
training. Thus, our method can better solve large-scale con-
tinuous state space problems in the IRL domain, making
it applicable to model optimization and safety decisions in
more practical scenarios involving autonomous driving and
robotics. We summarize our contributions as follows:

1) DDPG-based Virtual Expert Sample Construction
under GAN: We reformulate the algorithmic structure
of GAN using DDPG. Our approach is based on the
Actor-Critic mechanism utilizing a deterministic strat-
egy to solve the problem of inefficient generation of
samples caused by the randomness of the generator
itself. Since our model uses DDPG to optimally decou-
ple the generators in the original GAN, it improves
the sampling efficiency of the entire training process.
Meanwhile, our reformulation reduces the complexity
of the agent-environment interaction by providing bet-
ter sample data that approximates the expert trajectory
for IRL. Therefore, our model can be applied to address
the needs of scenarios in decision-making domains
(e.g., autonomous driving or robotics).

2) Trajectory Prediction Based on AC-GAN-IRL Model
under Grid World: Our reconstructed generator based
on the DDPG algorithm completes the adversarial gam-
ing process, generating more efficient samples. And

in the early stage of inverse reinforcement learning,
our model utilizes such mixed sample sets to recover
a reward model in the scenario of autonomous driving.
We obtain the optimal policy based on the recovered
reward model, which infers the ultimate goals of vehi-
cle trajectories in the grid world. Additionally, based on
the action distribution of the relevant sampling policy,
the future vehicle trajectory can be forecast.

II. PRELIMINARIES
This section provides background information and related
works, including the relevant basic algorithms for Inverse
Reinforcement Learning and Generative Adversarial Net-
work. In particular, a brief description of DDPG.

Recently, several models related to inverse reinforce-
ment learning have been proposed successively to optimize
complex decision-making scenarios in artificial intelli-
gence as well as robotics. Shi et al. [33] used the IRL
framework to alternately optimize the reward and pol-
icy functions for diverse text generation tasks. Recent
related work decouples complex tasks through condition-
alized models [34], [35], [36]. They accomplish reward
function optimization for motor tasks related to inverse
reinforcement learning, as well as strategy updating, based
on subtask representation learning framework [35], behav-
ioral fusion [34], and decision preferences [36], respectively.
Alternatively, by fusing IRL processes through adversarial
models [37], [38], [39], they can model the motion task
to complete the zero-sum game training process [37], [38],
while learning a transferable multi-task reward function to
complete sub-tasks in highly complex scenarios [39]. Thus,
recent work has adapted to the task requirements in various
types of scenarios by conditionalizing the IRL process. In this
paper, we aim to decontextualize and optimize the DDPG and
GAN algorithmic framework that solves the sample ineffi-
ciency problem occurring in the training process of inverse
reinforcement learning and improves the computational effi-
ciency of the decision movement process.

A. MDP
We consider a Markov Decision Process as a formal descrip-
tion or modeling of the environment in which an agent
operates. A Markov Decision Process is defined as <

S,A,P,R, γ >, where A is denoted as a finite set of actions.
At each time, the agent chooses an action among the possible
actions a ∈ A. And it moves to the next state s′ ∈ S based on
a policy π

π (a|s) = P[At = a|St = s] (1)

We hope that there always exists an optimal policy π∗ for any
MDP to obtain the corresponding optimal state-value func-
tion Vπ (s) and optimal action-value function Qπ (s, a) [2],
which corresponds to the Bellman Optimality Equation as

V∗ (s) = maxa∈A

(
Ras + γ

∑
s′∈S

Pass′Vπ

(
s′
))

, (2)
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Q∗ (s, a) = Ras + γ
∑
s′∈S

Pass′maxa′∈AQ∗
(
s′ | a′

)
. (3)

B. IRL
In the autonomous driving scenario, we expect to use the
concept of IRL to learn a reward function from the driver’s
decision behavior in order to help self-driving vehicles make
logical planning decisions. At the same time, Inverse rein-
forcement learning considers the expert strategy as the opti-
mal strategy. And the reward function is learned by randomly
generating non-expert trajectories and comparing their differ-
ences with the expert trajectories. Then it drives the reinforce-
ment learning process positively to optimize the behavioral
strategy.

The demonstration trajectories D = {τi}ni=1 for a set of
experts are given, with each expert’s demonstration trajectory
being τi = {(s0, a0) , (s1, a1) , . . . , (sk , ak). We assume that
the expert tries to optimize an unknown reward function. And
the objective of IRL is to find an optimal policy in terms
of performing as well as the expert. Assuming the optimal
strategy is π∗, it follows that

Vπ∗ (s) ≥ Vπ (s) , Qπ∗ (s, a) ≥ Qπ (s, a) . (4)

At this point, according to Bellman Equation

Vπ (s) = R+ γPs′|(s,π∗(s))V π
(s) (5)

to obtain the reward function R. The equation above is speci-
fied as [2]

Ps′|(s,π∗(s))V π
(s) ≥ Ps′|(s,π(s))V π

(s) . (6)

C. GAN
Inverse reinforcement learning initially faces the problem of
lacking expert sample data. Therefore, the introduction of
GAN into IRL can initially solve the problem of sparse expert
samples. Generative Adversarial Network (GAN), as a deep
learning model in unsupervised learning, enables G (Gen-
erator) to generate fabricated samples by the mutual game
of G and D (Discriminator). Initially, the generator needs to
sample a batch of real samples in the real data set. At the
simultaneous time, a random noise vector is generated from
the Z distribution and input to the generator to generate faked
samples, which are jointly input to the discriminator with
the real samples for discriminating. The loss function of the
training G [18] concerning the noise Z is defined as

LG=Ez∼Pz(z)
[
log (1− D (G (z)))

]
. (7)

D. DDPG
Equation (7) involves that GAN creates a random noise
through the Z distribution during the original training process
to generate virtual samples in the generator. Although adding
GAN to IRL can generate more expert samples to overcome
the problem of sparse expert samples, such a training process
optimized by random policy gradients results in inefficient
generated samples and greatly increases the training cost of
the inverse reinforcement learning process. Therefore, our

model uses the deterministic strategy to improve the quality
of the virtual expert samples generated by GAN which mini-
mizes the computational cost.
Deep Deterministic Policy Gradient (DDPG) gives the

agent the ability to keep learning through trial and error
until the action policy and the appropriate state are matched.
DDPG utilizes a deterministic policyµ to select the action at ,
where µθ is used as the parameter to generate the determin-
istic action online µ policy network that defines as

at = µ
(
St | θµ

)
. (8)

Convolutional neural networks are used to simulate the pol-
icy function µ and Q function (action-value). Additionally,
two neural networks, online and target, are created from the
policy network and Q network respectively. Meanwhile, the
performance measure of strategy µ [30] is defined as

Jβ (µ) =

∫
ρβ (s)Qµ (s, µ (s)) ds
= Es∼ρβ [Qµ (s, µ (s))]

. (9)

We reconstructed the algorithmic structure of GAN using
the Actor-Critic idea. Our approach combines DDPG with
GAN to enhance the quality of GAN-generated samples,
which better solves the problems arising from adding GAN
to IRL. It also lessens the complexity of agent-environment
interaction throughout the learning process.

III. PROPOSED APPROACH
The expert strategy is regarded as the best one by IRL, which
recovers the reward function via the expert’s demonstration
trajectory and motivates RL to raise the agent’s strategy level
in turn. Also, IRL needs to include the training process where
RL continuously interacts with the environment in trial and
error, which will result in increased processing costs for
complex environments. Although some researchers [17] have
addressed the issue of sparse expert samples by incorporat-
ing GAN during the initial period of training, the inherent
flaws of the GAN algorithm itself can result in inefficient
sample generation and increase the high complexity of the
agent’s interaction with the environment. Therefore, we pro-
pose a generative adversarial inverse reinforcement learning
algorithm based on DDPG in response to this issue.
We reconstruct the structure of the generator through the

Actor-Critic framework of DDPG so that it completes the
adversarial game with the discriminator. In the Actor model
of the generator, we define a policy network with two fully
connected layers and use the ReLu function for activation.
Finally, we use the linear layer structure of the neural network
to output the action. Similarly, the Critic model defines the
value function network for estimating the value of a given
observed state and behavioral action. It receives observed
states and actions as inputs and performs feature extraction
through two fully connected layers. Finally, we output the
estimated values of the model. Also, we define the discrim-
inator network structure to determine a given observed state
and action whether it is an expert’s demonstrated behavior
or not. It can generate a reward signal based on the observed
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FIGURE 1. Overview: our AC-GAN-IRL model consists of three modules: (1) a generator based on an Actor-Critic framework, (2) a GAN model
combined with DDPG to generate virtual expert samples, and (3) a MaxEnt IRL process for learning reward function and optimal policy.

states and actions of the environment, containing two fully
connected layers. And we use the LeakyReLU activation
function for iterative training with the generator model recon-
structed in the DDPG framework.

Using the Actor-Critic framework based on an off-policy
model-free feature, in Figure 1, our approach addresses the
sample inefficiency caused by the stochasticity of the GAN
generator. By recoupling the generator structure in the GAN,
we utilize the DDPG deterministic strategy to complete the
adversarial training process with the discriminator, which
lessens the complexity of the agent learning process inter-
acting with the environment. The virtual expert trajectory
samples generated by GAN aremixed with the original expert
samples, which would be used as the expert sample set for
inverse reinforcement learning. Furthermore, we generate a
series of non-expert trajectories based on a stochastically
generated strategy πk (τ ) as the initial strategy. It compares
with the mixed expert trajectory samples to complete the
learning of the reward function Rφ. In turn, forward-driven
reinforcement learning is performed to update the policy
πk+1 (τ ). Then it generates new non-expert trajectories with
expert trajectories to update the reward function Rφ itera-
tively. It is stopped when no policy produces a cumulative
reward expectation that is higher than the one generated by
the expert policy.

A. DDPG-BASED VIRTUAL EXPERT SAMPLE
CONSTRUCTION UNDER GAN
To address the intrinsic defect of GAN that leads to inefficient
sample generation, we suggest adding DDPG to the generator

along with the discriminator for accomplishing the adversar-
ial training and enhancing the quality of generated samples.
Ultimately, our method generates more virtual samples that
approximate the expert trajectory to participate in the inverse
reinforcement learning training. With the help of the two
models, the generator and the discriminator, we hope to create
more virtual expert samples that resemble real samples. This
process leads to a Nash equilibrium [18], [21], which can be
characterized as the procedure of resolving a binary-valued
function with a minimax game solution process that defines
as

minGmaxDV (D,G)

= maxDminGEx∼Pdata(x) [logD (x)]

+ Ez∼Pz(z)
[
log (1− D (G (z)))

]
. (10)

We bring in the DDPG Actor-Critic architecture to decou-
ple the generator into two interrelated modules: the policy
module (µθ ) and the Critic module (Qϕ). Within the Actor-
Critic architecture, the agent uses the deterministic policy µθ

to complete its interaction with the environment.We expect to
obtain the optimal policymoduleµθ in the reconstructed gen-
erator, which produces an efficient set of trajectory samples
τi. We store the state transfer process (st , at , rt , st+1) in the
replay buffer R. Sampling random transitions from R, as the
mini-batch training data of strategy µθ and Critic Qϕ . And
the target value yi is given by

yi = ri + γQ′
(
si+1, µ′

(
si+1|ϑµ′

)
|ϑQ′

)
. (11)
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We update the Critic parameterQϕ based on gradient descent
to minimize the loss

L =
1
N

∑
i

(yi − Q (si, ai|ϕ))2 . (12)

And we also utilize policy gradient for the parameter update
of the policy µθ

∇θJ ≈
1
N

∑
i

∇aQ (s, a|ϕ) |s=si,a=µ(si)∇θµ(s|θ) |si , (13)

and we also add learning rate τ using a soft update to renew
the target network µ′ and Q′

ϑµ′
← τϑµ

+ (1− τ) ϑµ′ , (14)

ϑQ′
← τϑQ

+ (1− τ) ϑQ′ . (15)

Our model incorporates the Actor-Critic framework of
DDPG into the GAN generator module to participate in the
adversarial training process. The trajectory samples τi =

{(s0, a0) , (s1, a1) , . . . , (sk , ak) sampled with the determinis-
tic strategy µθ and the real trajectory samples τExp of expert
sampling DExp are used as the input of the discriminator
for discriminating the authenticity of the trajectory samples.
We aim to enable the generator model to produce sample
data that increasingly approximate the expert’s sampling tra-
jectory, providing more efficient samples for the subsequent
IRL decision-making process. We solve for the optimal value
of the GAN’s objective function minGmaxDV (D,G). Then
V (D,G) is converted into a calculus form for the expression
of the expectation

V (D,G)

=

∫ τExp

−τExp

Pdata
(
τExp

) [
logD

(
τExp

)]
dτExp

+

∫ τi

−τi

Pg(τi) [log (1− D (τi))] dτi. (16)

We fix the generator to perform a bias derivative on
V (D,G) concerning the discriminator to obtain the optimal
solution.

D∗
(
τExp, τi

)
=

Pdata(τExp)

Pdata
(
τExp

)
+ Pg(τi)

. (17)

When Pdata
(
τExp

)
= Pg(τi), we expect the trajectory sample

distribution τi generated by the deterministic strategy sam-
pling to be consistent with the true sample distribution τExp.
The output of the discriminator is the probability that the
trajectory samples sampled from the deterministic strategy
µθ are expert, which is used to feedback to the generator to
calculate the loss function of GAN. Then we take backprop-
agation to obtain the gradients of the corresponding nodes
of the network parameters and perform the gradient update
continuously. The parameters of the entire AC-GAN model
are updated according to the respective gradients by selecting
the corresponding optimizer, which will optimize the GAN

model containing the DDPG algorithm. Our approach suc-
cessfully raises the standard of the virtual samples produced
by GAN.

We blend the virtual expert trajectory samples in Figure 2
generated by DDPG-based training under GAN with the
initial expert examples, which serve as the expert sample set
for the IRL process.

Also, the pseudo-code of Algorithm 1 (AC-Generator For
Virtual Sample) provides a more thorough explanation of the
training procedures.

B. PROBABILITY-BASED MODELING IRL
Two modeling processes, the maximal margin-based model
and the probability-based model, are categorized into IRL.
For any policy in themaximalmargin-basedmodel, theremay
bemore than one reward function that makes the resulting tra-
jectory optimal. Therefore, probabilistic model-based model-
ing of IRL from the maximum entropy principle eliminates
the matching ambiguity of such a many-to-one relationship.

We seek a reward function that maximizes the entropy
of the obtained strategy if there is a prospective probability
distribution that generates an expert trajectory D. Also, the
feature expectation of the trajectory generated by the strategy
matching the feature expectation of the expert is theminimum
deviation distribution of the trajectory. Without making any
subjective assumptions about the unknown scenario, we con-
strain the model via the maximum entropy approach. It is
possible to guarantee feature expectation matching with no
more restriction to a specific trajectory. At this point, [40] a
prerequisite is given by∑

τi

P (τi) f = fExp. (18)

Here, f is used to denote the feature expectation and fExp indi-
cates the expert feature expectation. We model a maximum
entropy inverse reinforcement learning model to solve the
optimization problem, enabling the model decision process
to eliminate matching ambiguity. We solve the optimization
problem with maximum entropy, which can be tackled by the
Lagrange multiplier method as follows

min L =
∑
τi

P (τ |φ) logP (τ |φ)

−

n∑
j=1

λj
(
P (τ |φ) fj − fExp

)
− λ0

(∑
τi

P (τ |φ)− 1

)
. (19)

Then the probability P (τ |φ) is differentiated and made its
derivative 0 to obtain the probability of the trajectory satisfy-
ing the maximum entropy

P (τ |φ) =
exp

(∑n
j=1 λjfj

)
exp (1− λ0)

, (20)
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FIGURE 2. Schema for our generator based on an Actor-Critic framework.

Algorithm 1 AC-Generator For Virtual Sample
The critic network Q (st , a |ϕ) and actor µ (st | θ) are stochastically initialized
Set the network weights as ϕ and θ

Initialize target network parameters (θ ′, ϕ′)
Initialize replay buffer R
for m = 1,M do

A random process N is initiated to explore the action
Receive the initial observation state s1
for t = 1, T do
Execute action at and observe reward rt , getting a new state st+1
Store transition (st , at , rt , st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
Update critic Qϕ by minimizing the loss: L = 1

N

∑
i

(yi − Q (si, ai|ϕ))2

Update the actor policy µθ using the sampled policy gradient
∇θJ ≈ 1

N

∑
i
∇aQ (s, a|ϕ) |s=si,a=µ(si)∇θµ(s|θ) |si

Update target network parameters (θ ′, ϕ′) to slowly track ϕ and θ respectively
end for
Collect trajectories τi = {(s0, a0) , (s1, a1) , . . . , (sk , ak) by executing the actor policy µθ

end for

where λj (j = 1, . . . , n) is the auxiliary variable. And Z is the
normalization factor with φ being the parameter of the reward
function.

We utilize the Maximum Likelihood method to find the
reward function φ with parameters [2], [40]

maxφ

1
N

N∑
i=1

logP (τ |φ) = maxφ

1
N

N∑
i=1

rφ (τi)− logZ ,

(21)

in which Z =
∫
P (τ |φ) exp

(
rφ (τ )

)
dτ . We simplify it to

obtain

∇φL =
1
N

N∑
i=1

∇φrφ (τi)

−
1
Z

∫
P (τ |φ) exp

(
rφ (τ )

)
∇φrφ (τi) dτ, (22)

∇φL ≈
1
N

N∑
i=1

∇φrφ (τi)−
1
M

M∑
j=1

∇φrφ
(
τj
)
, (23)

which represents the difference between the reward gradient
summation of the expert sample trajectory and the reward
gradient summation currently obtained.

During the process of updating the parameters of the
reward function φ, on each occasion, we need to find the
optimal policy under the current reward function to make a
policy gradient which requires a significant amount of com-
putational power. Therefore, when instructing RL to solve
the policy, we employ lazy policy optimization that termi-
nates the computation after a certain number of iterations.
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To compensate for the generated loss, an important sample
is used to add weights ω. Accordingly, rather than processing
the distribution of the whole trajectory, we only need to find
one optimal trajectory corresponding to the optimal policy in
the gradient calculation. The gradient function for resolving
the reward function parameter φ is

∇φL ≈
1
N

N∑
i=1

∇φrφ (τi)

−
1∑
j

ωj

M∑
j=1

ωj∇φ
rφ
(
τj
)
, ωj

=
p (τ ) exp

(
rφ
(
τj
))

π
(
τj
) . (24)

C. DDPG-BASED GENERATIVE ADVERSARIAL INVERSE
REINFORCEMENT LEARNING
To address the problem of inefficient samples generated
resulting from the addition of GAN to the IRL process,
we propose a DDPG-based generative adversarial inverse
reinforcement learning algorithm. Our method combines the
Actor-Critic architecture in DDPGwith the original generator
in GAN and then completes adversarial training with the
discriminator Dθ in GAN, aiming to solve the inefficiency
of generated samples caused by the randomness of the orig-
inal GAN generator and improve the quality of generated
samples. Simultaneously, we execute the deterministic policy
module µθ of the AC-GAN generator in Algorithm 1 to
generate the virtual expert sample set Dvir in the iterative
process. We mix the virtual expert sample set Dvir with the
original expert sample DExp,making the mixed sample set D
to fulfill the decision-making task of the IRL process.

We aim to model IRL based on the maximum entropy
mechanism. The optimal parameters of the reward function
φ are solved based on comparing the differences between
the non-expert trajectory samples generated by a stochas-
tic policy and the mixed expert trajectory samples, as well
as finding the optimal policy π (τ). Also, Algorithm 2
AC-GAN-IRL pseudo-code has a more detailed description
of our approach.

IV. EXPERIMENTAL ANALYSIS
A. DIFFERENT ALGORITHM PERFORMANCE
COMPARISON FOR BENCHMARK TASKS
Considering the fact that the actual model of autonomous
driving is relatively huge and requires high computational
efficiency of the network in a realistic environment, our
model is based on the OpenAI Gym interface and uses the
third-party physics engine MuJoCo to create interactive envi-
ronments for validating the performance of our approach.
In our experiments, based on our approach with the exist-
ing framework, three different types of models are built to
enable the agent to accomplish the related motion tasks in
various environments. Also, we evaluate the performance
efficiency of the algorithms for comparison. The total times

of interaction when reaching the value of expert demon-
stration reward is used as the evaluation metric1, which
indicates the basis of whether the performance efficiency of
our model is superior to the existing methods. Meanwhile,
we use the episode reward obtained by the model during
each round of iterative training in different environments as
the model performance evaluation metric2, which indicates
the basis of whether the model can perform as well as the
experts. Three different simulation environment settings—
InvertedPendulum-v2, Hopper-v2, and HalfCheetah-v2—are
sequentially developed in accordance with the motion envi-
ronment’s growing complexity. In Figure 3, we explore how
the algorithm performance of AC-GAN-IRL, GAN-IRL, and
IRL changes in the process of agent-environment interaction.
In differentMuJoCo simulation environments, the three types
of models are trained in an increasing number of iterations
depending on the complexity of the simulation environment.
We expect that within a limited number of iterations, our
method can obtain plot reward values as good as those per-
formed by the expert demonstration. At the same time, we can
complete the decision-making process more efficiently, i.e.,
completing the iterative training faster than the other two
existing methods (GAN-IRL and IRL). In each environment,
different learning rates are set for training to complete a
comparison of the effects of actor loss and critic loss in the
AC-GAN-IRL model.

In order to compare the performance differences between
our approach and the existing models, we provide the cor-
responding sample set of expert trajectories in each envi-
ronment. Accordingly, we train the corresponding algorithm
models in different environments with the same random
seeds. As in Figure 3 (left) where the horizontal coordi-
nates represent the number of iterations, and the vertical
coordinates represent the obtained episode rewards. In each
scenario, we perform the corresponding iterative training
according to the complexity of the environment and display
the experimental data as scatter plots or line plots. The dif-
ferent colored curves represent each episode reward for the
same random seeds, in which the blue curve represents our
AC-GAN-IRL model with DDPG, the red curve represents
the IRL model combined with GAN only, as well as the
green curve represents the IRL model just. In each model,
we keep the training logs saved at every 200 steps and the
number of iterations for each round of training is set to
20 uniformly. At the same time, the discount factor γ is
0.9 and the number of expert trajectories we provide to each
simulation environment is set to 32. In the three types of sim-
ulation environments, we initially set our model to achieve
the desired value by completing 10,000 iterations of training.
However, we find that the experimental models in different
environments with such hyperparameter settings have diffi-
culty in reaching the reward value of the expert demonstration
during the iteration process. Therefore, we consider that in the
comparison experiments between ourmethod and the existing
methods, the number of iterations for model training needs
to be differentiated according to the complexity of the three
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Algorithm 2 AC-GAN-IRL
Obtain initial expert trajectories DExp
Initialize Discriminator Dθ

for nϵ{1, . . . , nmax} do
for t = 1, T do

Collect trajectories τi = {(s0, a0) , (s1, a1) , . . . , (sk , ak)} by executing actor policy µθ

Sample minibatch of k examples τExp = {(s0, a0) , (s1, a1) , . . . , (sk , ak)} from DExp
Train Dθ to classify expert data τExp from samples τi
Update the Discriminator Dθ by ascending its stochastic gradient

LD=EτExp∼Pdata(τExp)
[
logD

(
τExp

)]
+ E

τi∼Pg(τi)

[
log (1− D (τi))

]
end for
Update the Generator by executing Algorithm 1

end for
Initialize πk (τ ) as a stochastic initial policy
Collect virtual samples Dvir by executing Algorithm 1
Append initial expert trajectories DExp and Dvir as a mixed expert sample set D
for m = 1, M do
Generate samples Dtraj by executing πk (τ )

Collect samples Dexp from D
Append samples: Dsamp← Dexp ∪ Dtraj
Use Dsamp to update reward function Rφ with a policy gradient

∇φL ≈
1
N

N∑
i=1

∇φrφ (τi)−
1∑
j

ωj

M∑
j=1

ωj∇φ
rφ
(
τj
)
, ωj =

p (τ ) exp
(
rφ
(
τj
))

π
(
τj
)

Update πk (τ ) using Dtraj and the reward function Rφ to obtain πk+1 (τ )

end for
return optimized rewards function parameters φ and trajectory distribution πk (τ )

different MuJoCo simulation environments. We perform iter-
ative trials and tuning of the experimental model in different
environments with the aim of obtaining an efficient iterative
training interval in which our method always reaches the
expert demonstration reward faster than other existing meth-
ods. In the InvertedPendulum-v2 simulation environment,
we assign the reward value of the expert demonstration to
approximately 1000 and made the three different algorithm
models trained for nearly 10,000 iterations, as shown in
Table 2. Meanwhile, in the Hopper-v2 simulation environ-
ment, the reward value of our expert demonstration is set
to about 600 and we make three different types of models
to perform nearly 20,000 iterations of training in Table 3.
Finally, the reward value for the expert demonstration is set
to around 850 in the HalfCheetah-v2 simulation environment.
Wemade the three different models training for nearly 30,000
iterations with the results shown in Table 4. Meanwhile,
in Table 6, we have summarized the experimental data in
Table 2-4 as well as in Figure 3 statistically. We expect to
illustrate the implementation of the evaluation metrics for the
three types of models to achieve the expert demonstration
rewards in different environments, in Table 6.
And we train each model to learn a given expert trajec-

tory demonstration in different environments, in order to
obtain rewards almost equal to that of the expert trajectory.

Additionally, we modified our AC-GAN-IRL model with
various learning rates in Figure 3 (middle and right), explor-
ing the variations of actor loss and critic loss across the
generator AC framework. In the beginning, our model set
the learning rate of the hyperparameter lr1 to 0.001 in three
different simulation environments, intending to set a larger
value to achieve fast convergence. However, whether in the
simple InvertedPendulum-v2 with Hopper-v2 environment or
the difficult HalfCheetah-v2 simulation environment, we can
find that the convergence effect of our Actor-Critic loss
curves appears to be unstable with large oscillations. And in
the subsequent adjustment process, we found that our model
needed more time to complete trial-and-error learning when
lr3 was set to a smaller value of 0.0001, resulting in an
overall slow convergence rate. Therefore, through constant
trial and error of the model hyperparameters, we compare
the convergence and stability performance of our method in
different experimental settings according to the consequent
changes in different learning rates in Table 5. If our model is
able to achieve both fast convergence aswell as stability under
the coordination of a certain learning rate hyperparameter,
we may try to use it as the optimal learning rate parameter
value.

It has been discovered that 0.0003 as the learning rate lr2 is
a superior choice for rapid convergence of the model making
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FIGURE 3. Different algorithm performance for benchmark tasks: We set the same seeds to randomize different
algorithm models in various environments. In tens of thousands of iterations, we can show that our model (left) can
complete the process of interacting with the environment more quickly and a certain amount of calculation cost is
reduced in this work. Additionally, our model investigates the AC losses at various learning rates (center and right),
illustrating the effects on model convergence.

the loss to be minimized. With the reconciliation effect of the
learning rate on the model, the optimal strategy is fitted faster,
making the learning process more stable. In Figure 3 (middle
and right), we use the blue curve to depict the fluctuation of
the Actor-Critic’s loss curve when using lr2 as the optimal
parameter value for the learning rate. Also, at the best learning
rate lr2, in Table 5, we show the loss results of the training
process of our method.

The comparison of experiments in different environments
shows that our method addresses the sample inefficiency
induced by the stochasticity of the generator. We reconfigure
the generator model of GAN by utilizing the Actor-Critic
framework in DDPG to replace the original generator model.
During the adversarial training with the discriminator, our
approach improves the quality of the samples generated by
GAN to provide more high-quality samples that approxi-
mate the expert trajectory for IRL, making the process of

reward function update and policy optimization more effi-
cient. Therefore, our method AC-GAN-IRL enables the agent
to complete the process of interacting with complex envi-
ronments faster in all three different types of simulation
environments. Compared with the other two existing methods
(GAN-IRL and IRL), the iteration times of our model are
much faster, which significantly lowers the computing cost
of joining the network training. As shown in Table 6, our
approach reduces the computational cost by approximately
20% for each type of given environment, using the iteration
times as the execution of metric1. Meanwhile, in the three
different types of experimental environments, our method
can reach the expert demonstration reward in a shorter time,
which indicates that our method is efficient enough to even-
tually generate trajectory sample data as good as the expert
performance. The episode rewards obtained by our method
are constantly approaching the expert demonstration reward,
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TABLE 2. Model performance comparison in InvertedPendulum-v2 environment.

TABLE 3. The comparison of model performance in Hopper-v2 environment.

TABLE 4. Results of comparing model performance in HalfCheetah-v2 environment.

shown in Table 6. However, the other two types of existing
models sometimes fail to achieve expert performance after
tens of thousands of training sessions.

Meanwhile, considering the safety factor in vehicle driv-
ing while reducing the cost overhead is very important for
the decision domain of autonomous driving, which makes
the idea that our model reduces the interaction process
with the environment more desirable. Thus, in future prac-
tical engineering, our method can be applied to the field
of autonomous driving or even robotics and other potential
development directions in the field of artificial intelligence.
Whether it is to learn the implicit driving behavior laws
from human driver’s trajectory data or to build more accurate
decision-making models to improve the safety of the models
by combining with environment sensing, our method can
better act on practical problems in the IRL field.

B. TRAJECTORY PREDICTIONS IN GRID WORLD
Every grid in the grid world corresponds to a state in the
environment, where the agent can perform four types of
Action operations: up, down, left, and right. Meanwhile, the
agent’s action in each state is reflected as moving one frame

on the grid. In the case that the agent takes an action that will
take it off the grid, the agent’s state remains unchanged with
a penalty of -1. Also, the agent receives the corresponding
reward (0 or 1) at the current State in the process of moving
to the end of the grid world, in which we also set the discount
factor γ to represent the effect on the current node value.
To explore the process of recovering the reward function

for our AC-GAN-IRL model, we set up a basic experiment
based on the grid world. In Figure 4 (left), we set up the
true reward map in the grid world, as well as the initial
value function map (middle-right). In the early stage of the
experiment, we selected a set of expert trajectories as the
initial sample set. Our method utilizes GAN incorporating
the DDPG framework to generate virtual expert samples that
provide more expert trajectory data in IRL. In a 30× 30 grid
world, the initial number of expert trajectories is set to 10,
with the length of the expert trajectory samples set to 50 cells.
Simultaneously, the discount factor γ is 0.9 and the learning
rate is set to 0.01. We visualize the recovery effect of the
reward function in the grid world of Figure 4 (middle-left) via
the training of 1000 iterations of agent-environment interac-
tion. Our model completes the iterative process of the value
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TABLE 5. Model convergence or stability with learning rate adjustment and loss results.

TABLE 6. Results of comparing model performance in different environments.

FIGURE 4. Recovery of reward functions based on the grid world: We obtain the true reward map (left) and value
function map (middle-right) in the grid world. Our model produces more high-quality samples, which makes it better
for IRL to recover the reward function (middle-left). According to the AC-GAN-IRL reward map recovered by our
model, we sum the target state reward of any action. At the same time, through the max operation on the target state
reward values to update the value function, we conduct the value function iteration process to accomplish the
update of the AC-GAN-IRL value map(right).

function (right) by selecting the appropriate set of actions
based on the learned reward update strategy.

Also, to explore the application of our approach in the field
of autonomous driving decision-making, we expect to recover
the reward function of the vehicle trajectory. It enables to
obtain the optimal policy in the grid world where the final
target location of the vehicle trajectory can be inferred.
Meanwhile, we perform policy sampling based on the cor-
responding action distribution to generate reasonable vehicle

prediction trajectories. We test our model on the publicly
available autonomous driving dataset nuScenes [41].
With our model AC-GAN-IRL, we can generate more

virtual expert trajectory samples based on the historical tra-
jectory data of the vehicles, which provides more expert data
for the subsequent learning of the reward function. In addi-
tion, for the trajectory prediction experiments in the grid
world, we created an extractor for scene features based on
convolutional neural networks. We use the feature extractor
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TABLE 7. Results of our model in comparison with existing approaches.

FIGURE 5. Trajectory predictions in the grid world. From top to bottom: Scene input, reward, vehicle trajectory
prediction. With the historical trajectories of the vehicles, our model generates more samples that approximate the
expert trajectories. It also contributes more expert data for recovering the reward function. We have tested our
approach on a public dataset of autonomous driving to achieve superior prediction of vehicle trajectories (bottom)
while visualizing the results of our experiments based on a 25 × 25 grid world.

to extract feature data from historical vehicle trajectories and
current scene information in nuScenes data. With iterative
training of the neural network, we input historical trajectory
data (including virtual samples generated by our model) into
the reward model along with current environmental feature
information (including vehicle and environmental states).
At the beginning of training, our model AC-GAN-IRL set
the value of num of epochs to 200. We expect our method
to recover our reward function better in the grid world after

completing 200 epochs of training. However, in the process
of recovering the reward function, it was found that the loss
of the model did not decrease accordingly after 100 rounds of
training. Therefore, considering the cost of time, we find that
our method does not need to go through the training iteration
process beyond 100 epochs to quickly solve the optimal
reward function. With the learning rate of the model set to
0.001, we set the num of epochs to 100. After completing
100 epochs of training, we recover the reward function of
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the vehicle trajectory and save the loss log of the model at
every 100 steps. In order to determine the terminal target
and sampling trajectory in the grid world, we continuously
update the policy for the final optimal action distribution
based on the learned rewards. The results of vehicle trajectory
prediction based on the grid world are shown in Figure 5
(bottom). We recovered the reward function (middle) and
implemented a reasonable prediction of the future trajectory
of the vehicle depending on the optimal policy for sampling
in the grid world. In addition, we provide a more detailed
analysis of related work in Table 7, including the experi-
mental design of the existing work with our model under the
basic task, and their evaluation metrics defined for the model
experiments. It can be found that we have better designed
several experimental tasks to demonstrate the performance
advantages of our approach. At the same time, according to
the two evaluation metrics of Interaction Time and Episode
Reward, we realized the comparison between our method and
the existing models, as shown in Table 6.

V. CONCLUSION
We propose an AC-GAN-IRL method based on the DDPG
deterministic policy ideology. Our approach reconstructs the
generator in GAN through the Actor-Critic framework to
overcome the inefficiency of generating samples due to the
inherent stochasticity defect of GAN. In the process of
completing adversarial training with the discriminator, our
method generates samples of virtual expert trajectories that
more closely approximate the rewards of expert demonstra-
tions. This will providemore efficient sample data for the IRL
decision-making process occurring under the GAN, dramat-
ically improving the sample sampling efficiency of the IRL
decision-making process. That process provides more expert
samples for the initial phase of inverse reinforcement learn-
ing. At the same time, we complete the recovery of the reward
function for policy updating and optimization. The experi-
mental results demonstrate that our method can accelerate
the convergence speed of the training process and reduce the
complexity of agent-environment interaction. Remarkably,
the computational cost of joining the GAN training is greatly
diminished by about 20%. Also in the grid world, we show
that our method recovers the reward function quite well and
achieves a reasonable prediction of vehicle trajectories under
the publicly available autonomous driving datasets. In future
research work, we will continue to explore the continuous
state space issues, making our model algorithm applicable
to more practical scenarios. At the same time, we expect to
optimize our method even further through more possibili-
ties, so that our model can accomplish the decision-making
task more accurately under different working conditions and
highly complex traffic scenarios in the field of autonomous
driving decision planning.
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