IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 29 June 2023, accepted 3 August 2023, date of publication 15 August 2023, date of current version 22 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3305483

== RESEARCH ARTICLE

Cooperative Spectrum Sensing Based on
LSTM-CNN Combination Network in
Cognitive Radio System

LIUWEN LI™, WEI XIE, AND XIN ZHOU

College of Information and Communication, National University of Defense Technology, Wuhan, Hubei 430000, China

Corresponding authors: Liuwen Li (liliuwen@nudt.edu.cn) and Wei Xie (xieweil97466@ 163.com)

ABSTRACT Cognitive radio (CR), as an emerging technology to improve the utilization of radio spectrum,
the fundamental of CR technology is spectrum sensing, due to the detection performance being affected
by various factors, spectrum sensing is challenging to achieve accurately. In recent years, many spectrum
sensing algorithms have been proposed, such as energy detection algorithm, matched filter detection
algorithm, cyclic stationary detection algorithm, etc. However, these algorithms are model-driven and require
certain prior information. If the model assumptions are inaccurate or the prior information is challenging to
obtain, the algorithms’ detection performance will be degraded. The development of artificial intelligence
technology and deep learning provides a new way to realize spectrum sensing. In this paper, we design
a cooperative spectrum sensing model based on the parallel connection of convolutional neural network
(CNN) and long-short-term memory (LSTM), which makes full use of the complementary feature extraction
capabilities of CNN and LSTM networks. Among them, CNN is used to extract hidden spatial features,
and LSTM network is used to extract time features. Both CNN and LSTM can process the original dataset
directly avoiding information feature loss when the network is connected serially. Experimental result shows
that the detection performance of the proposed algorithm outperforms the conventional cooperative detection
algorithm under low SNR condition. For example, when the number of cooperative users is 9 and the transmit
power is 10, the detection probability of the proposed algorithm in this paper can reach more than 90%, which

is much higher than the detection performance of other spectrum detection algorithms.

INDEX TERMS Cooperative spectrum sensing, cognitive radio, CNN-LSTM combination network.

I. INTRODUCTION

Due to the proliferation of wireless communication service,
spectrum resources have become highly scarce [1], [2], in the
fixed-allocation spectrum allocation policy, spectrum is allo-
cated to fixed users and precludes other users from utilizing
it, but in some spectrum slots, the licensed user is inactive,
which leads to low efficiency of spectrum utilization [3],
the overall utilization of spectrum band varies from 7% to
35% under the fixed-allocation spectrum policy [4], In order
to improve the efficiency of spectrum utilization, Mitola
and Maguire proposed the concept of CR in his doctoral
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thesis [5], the underlying principle of CR is unlicensed users
reuse spectrum hole when the licensed user is absent, and
none-interfering the licensed manner. Detecting the state of
licensed users efficiently and accurately is the premise of
CR communication [6]. By sensing these temporary spectrum
holes and opportunity access to it, CR technology provides a
potential solution to the trade-off between spectrum resource
limitation and its demanding growth [7].

A. CURRENT STATE OF THE ART AND MOTIVATION

Spectrum sensing algorithms can be categorized into two
kinds: parametric sensing model and non-parametric sensing
model [8]. The parametric sensing method needs some prior
information on the primary user(PU) signal, however, prior
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information about PU activity is difficult to obtain in prac-
tice. Therefore, the non-parametric detection method is more
suitable in the cognitive radio system.

There are many parametric sensing algorithms being pro-
posed recently, including energy detection algorithm [9],
matched filter algorithm [10], cyclostationary detection [11],
periodogram-based algorithm [12], and likelihood detection
algorithm [13], each of these algorithms has different advan-
tages/disadvantages and requirements. Likelihood ratio test
[14] in theory has the best detection performance, but it
needs distribution information of PU signal and noise, which
leads to difficulty realizing in practice. MF-based detection
algorithm requires perfect knowledge of PU signal chan-
nel response and accurate synchronization [15], if the PU
and secondary user(SU) do not cooperate, this algorithm
may be not impossible. CSD needs the cycle period of the
PU signal, which is unrealistic for many applications [16],
ED algorithm does not need any prior information on the
PU signal and is simple to realize, it was widely used in
CR systems [17]. However, noise uncertainty has a great
influence on the performance of ED detection algorithm [18].
Otherwise, spectrum sensing methods based on the received
signal sampling covariance matrix has developed rapidly
[19]. The covariance absolute value detection algorithm is
proposed in [20], and the simulation result shows that the
detection performance outperforms energy detection in the
noise uncertainty condition. The literature [21] proposed the
minimum eigenvalue and the maximum eigenvalue detection
algorithm. Under the condition of noise uncertainty and low
SNR, the detection method based on the covariance matrix
has better detection performance. However, these methods
need to calculate the covariance matrix, resulting in high com-
putational complexity [22]. In addition, the threshold setting
is gradual and the detection performance of the algorithm will
be seriously affected if the threshold setting is imprecise.

The Non-parametric spectrum sensing method is data-
driven and is not required any prior information on PU activ-
ity [23]. In recent years, the non-parametric spectrum sensing
method has attracted extensive attention from academia and
industry, there are many non-parametric spectrum sensing
algorithms have been proposed, for instance, three spec-
trum sensing algorithms based on machine learning methods(
KNN, logistic regression, and neural network) were proposed
in the literature [24], and The experimental results show
that the neural network has the best detection performance
when the decision threshold is unclear, the author in literature
[25] proposed a spectrum sensing methods based on sup-
port vector machine(SVM) and K-nearest Neighbor(KNN).
the SVM-Radial Bisis Function(RBF) Based spectrum sens-
ing was carried out in [26]. The authors in [27] proposed
an unsupervised learning algorithm for spectrum sensing,
using various statistic features of the received signal as the
training dataset, spectrum sensing algorithm based on the
convolutional neural network was proposed in [28], [29],
and [30], the LSTM network used in spectrum sensing was
proposed in [31], [32], and [33]. Although these methods
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have good detection performance in spectrum sensing, they
are all single-node sensing and cannot overcome the influence
of multipath fading and hidden terminal. In order to improve
the reliability of sensing results and reduce the effect of
multipath fading and hidden terminal, scholars have proposed
many cooperative spectrum sensing (CSS) algorithms, for
example, the author in [34] proposed an unsupervised learn-
ing CSS method based on k-means clustering, CSS based
on CNN was proposed in [35], and CSS methods based on
LSTM neural network were proposed in [36], the simulation
results show that the detection performance of CSS outper-
forms conventional single-node sensing algorithm. One type
of network structure can only extract one feature, and dif-
ferent features contain different knowledge of the PU signal
[22]. Using the combination of multiple features can let SU
acquires more knowledge about PU signals, and improve
the detection performance. To obtain the different features
of the signal, it is necessary to combine several different
types of neural networks. The spectrum sensing model based
on the serial connection of CNN and SVN is proposed in
[1], and the serial combination of CNN and LSTM spec-
trum model is proposed in [37], and the result indicates that
the multi-feature combination network generally outperforms
conventional single-node methods at a low SNR.

Although these spectrum sensing models based on
multi-feature combination networks have achieved good
detection results, most of these models are series connected
with each other, and the feature information will inevitably
be lost in the extraction process. To solve this problem,
we proposed a muti-features combination network based on
a parallel CNN-LSTM network, and simulating results have
proven it was feasible, Multifeaturs Combination Network
consists of a “CNN-LSTM” module and a combination-net”’
module. The CNN-LSTM model extracts the hidden spatial
and temporal features. then the Combination-net receives the
features and merges the Multifeatures, finally completing the
spectrum sensing.

B. CONTRIBUTIONS
The contribution of this paper can be summarized as:

o This paper proposes a new spectrum detection model
based on the parallel combination of the CNN net-
work and LSTM, which is a special network structure.
Although cooperative spectrum sensing has been exten-
sively studied, as far as the author knows, it is the first
time that parallel combines CNN and LSTM for cooper-
ative spectrum sensing.

o To make the proposed CNN-LSTM model robust and
unbiased in the large SNR range. The SNR of the train-
ing dataset varies at large ranges, which ensures that the
detection performance of the proposed algorithm does
not degrade at the low SNR.

o This algorithm uses data-driven to overcome the diffi-
culty of obtaining prior information in reality. It uses the
SU receives signal to calculate the cycle and duty cycle
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of spectrum occupancy, which solves the problem of
threshold calculation difficulty in conventional detection
algorithms.

o Through simulation, we confirm that the proposed
method can achieve a higher detection accuracy than
conventional CSS approaches, especially under hard
decision conditions. Moreover, our simulation results
show that the computational intensity is low enough,
which facilitates the method deployment of the proposed
method in practice.

C. PAPER ORGANIZATION

The rest of this paper is organized as follows, some previous
related works are summary in Section II, Section III provides
a definition of spectrum sensing, which include theories, and
basic concepts. The system model describes in Section IV,
while Section V describes the experiment’s setup. Section VI
discusses the simulating results and draws a conclusion of the
paper in section VII.

Il. RELATED WORK

Convolutional Neural Networks(CNN) have an outstanding
ability to extract hidden spatial correlation features of data,
conventional CNN has the structure of sparse connections,
pooling, and weight sharing. A feedforward CNN consists of
an input layer, some convolutional layers, a pooling layer, and
a fully connected layer, the complete convolutional layer’s
operation is shown as follows:

xL :f(W(L) ®@XL-D b(L)) )

where L represents the layers series number, X“~1 is the
previous layer output feature map, X0 denotes the result
of current layer network functional mapping; W) means
layer’s convolution kernel, The bias value is shown as pD,
f () indicates the activation function, which can improve the
nonlinearity representation ability of the network. In this
study, the Relu activation function is used in each hidden
layer, which is shown as:

x x<0

J () = relu(x) = [ 0 other 2
Long-term and short-term memory(LSTM) network is a
kind of gated recurrent unit. It has an overall framework
basically consistent with standard recurrent neural networks,
but the internal calculation unit is designed more subtly and
ingeniously. LSTM network can remember information for a
long time, which can avoid the phenomenon of gradient van-
ishing and gradient explosion in RNN. Many works show that
researchers have improved and extended the network based
on LSTM to get a more complex and complete function, and
achieved good results in respectively practical applications
task.
The multi-feature combination network based on different
network types can extract the data features map from multiple
dimensions, obtain more information about the spectrum state
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from the received signal, and improve the detection accuracy.
In addition, LSTM network is good at extracting temporal
features from time series signals, but not good at processing
correlation signals, while CNN is good at extracting features
from correlation data. The feature extraction capabilities of
LSTM network and CNN are complementary, and the com-
bination of CNN and LSTM can significantly improve the
ability of the algorithm to extract hidden feature maps from
the received signal. At present, the common combination
method is to connect LSTM network at the back of CNN,
but this combination method has obvious defects. The data
processed by LSTM network is previously processed by
CNN, and the signal’s temporal information is inevitably lost.
If the LSTM network and CNN are combined in parallel,
both LSTM and CNN can directly extract the hidden features
from the original data, then combine the features extracted
from the respective networks to avoid feature information loss
during serial connection. The parallel processing method also
shortens the time delay of calculation data and improves the
spectrum sensing efficiency. The simulation results prove that
the parallel connects LSTM and CNN method outperforms
conventional methods.

The spectrum sensing problem is a classical binary hypoth-
esis testing problem, and the design of the classifier has an
indispensable effect on the sensing results. The softmax func-
tion is the most popular output function for two categories of
classification tasks, which are shown as:

exp(W, - x)
POlx) = g 3)
> exp(We - x)
Cross entropy loss is the loss function corresponding to the
softmax function, which can be written as:

M
L=—> xlog(P) &
k=1

Ill. PROBLEM STATEMENT
As the key technology to improve the utilization of wireless
radio spectrum, CR has acquired much attention in recent
years. Moreover, spectrum sensing is fundamental to the CR,
during the spectrum sensing process, SU receives the signal
from receiving antenna, then detects the status of the PU,
when the PU state is inactive, each SU can access the specific
spectrum hole. while the PU signal is existence, the spectrum
state is considered as occupied under the H; hypothesis, if the
PU signal is absent, the spectrum state is considered idle
under the Hy hypothesis. the spectrum sensing process is to
find a method to accurately detect the PU activity.
Conventional spectrum sensing algorithms design test
statistics based on the distribution information of noise or
signal, then use the received signal to calculate the test
statistics and compare it with the preset threshold A\. When
the test statistic T'(y) is greater than the threshold value ),
it means that the spectrum is occupied, otherwise, it is an idle
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spectrum, which can be represented as:

T(y) = AH
T(y) > A\ H| Q)

The realization of single node sensing method is simple,
and each node can complete spectrum sensing independently,
however, the practice has proved that multi-path fading and
shadow fading have a great influence on single-node spec-
trum sensing algorithms’ performance, to improve the relia-
bility of detection results, cooperative spectrum sensing(CSS)
algorithm has been proposed.

Compared with single-node spectrum sensing, CSS merges
data from different sensing nodes through a fusion center
which can improve reliability. The most commonly used
CSS algorithm can be divided into three categories: central-
ized cooperative spectrum sensing, distributed cooperative
spectrum sensing, and relay cooperative spectrum sensing.
Centralized cooperative spectrum sensing is the most widely
used algorithm because of its low computational complexity
and deployment difficulty. The centralized cooperative spec-
trum sensing algorithm can be divided into hard fusion and
soft fusion when it comes to data fusion algorithms. Hard
fusion requires the local node to judge spectrum state and
only transmits 1-bit information to the fusion center, which
has less channel occupancy. Soft fusion does not need the
local node to make a judgment of the spectrum state, so it has
lower requirements on the local node. However, the whole
received signal needs to be transmitted in reporting channel,
which will occupy more spectrum. hence choosing a suit-
able date merge method is a compromise between spectrum
occupied and detection accuracy, In general, the hard fusion
process can be divided into And rules, k-out-N rules, and or
rules.

And criterion: All local decision results are uploaded to the
Fusion center by a reporting channel, if all the SUs determine
that the PU signal exists, the fusion center will determine the
spectrum state as occupied, otherwise it is judged that the
PU is inactive The detection probability P; and false alarm
probability Py can be respectively expressed as:

HPd i (6)

CSSand

With Py:

CSSand

= HPf i (7)

OR criterion: As long as one of the local user’s spectrum
sensing results is occupied, the fusion center determines the
PU active, otherwise PU inactive, the P; and Py of the OR
Criterion can be said to as:

N

— [ = Pas) ®)

i=1

PES |
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With Py:

PEr =1 — H<1 — P ©)

K-out-of-N criterion: in the CR network with N cognitive
users, if the K or more among the N SUs detection results
supports the decision of the PU signal existence, the final
decision of the spectrum band is occupied. The detection
probability and false alarm probability of this method are
respectively:

P{SS = Z]'[Pd,]"[a —Pax) (10)

i=k j=1

With Py:

PES% ZHPf]Ha — Py ) (11)

i=k j=1

where N is the total number of SUs, j is the current number of
SUs that decision spectrum occupied K represents the number
of SUs decision threshold that determine the spectrum occu-
pied which can be said as:

N +1
- riw (12)

With the development of deep learning, many cooperative
spectrum sensing algorithms based on deep learning have
been proposed. Neural networks can automatically learn the
hidden features of the received signals and find the difference
between the SUs received signal data under the two condi-
tions of spectrum occupied and spectrum idle, then use this
difference feature to complete spectrum sensing.

IV. SYSTEM MODEL

A. SCENARIOS MODEL

In this subsection, we introduce the proposed cooperative
spectrum sensing system model. The key to spectrum sensing
is to obtain the frequency usage of PUs in a specific frequency
band. Assuming that the SU senses the spectrum periodically,
during each sensing period the channel is time-invariant.
There are two types of signals received by the SU. One is
the signal received when the spectrum is occupied, at this
time, the signal received is the superposition of the signal
transmitted by the PU and noise, The other is received when
the spectrum is idle, the received signal contains only noise.
The spectrum sensing problem can be modeled as the classi-
cal binary hypothesis testing problem, which corresponds to
spectrum occupancy and spectrum idle respectively.

[ wi(n) Hy
yi =

(13)
s(mhi(n) +vi(n) H

where A; is the channel gain from the PU-TX to the I;;, SU-
RX, s(n) is the PU signal, w;(n) denotes the additive Gaussian
white noise with 0 means and variance 82.
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FIGURE 1. System model for cooperative spectrum sensing.

The system model studied in this paper is shown in
Figure 1. It is composed of K PUs, M SUs, and a fusion
center. In this paper, we assumed that the probability of each
of the PUs occupying the spectrum is 50%, signal power
decreases with the square of the distance between transmitter
and receiver, and the fusion center selects a specific frequency
band and controls the SUs to sensing this spectrum band.
secondary, the CR users upload the received data through
the reporting channel, Finally, the fusion center randomly
selected several SUs to cooperate to complete the spectrum
sensing. The power of the received signal can be expressed
as follows:

P Tx
PRcv_s[gnal = 7 (14)
The matrix of the received signal is:
YO T i 3@ ... @)
¥(2) y2(1) y2(2) ... y»2(N)
Y= . = } ) ) (15)
Y(N) ym(D) ymu(2) ... yuy(N)

where N is the size of the sample, M denotes the number of
the SU, and the signal received by the single antenna SU can
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be expressed as:

y(n) = HX(n) + W(n)

[ hi Hiz ... hiy x1(n) wi(n)
B hy1 Hy ... hoy x(n) wa(n)
b oz | || | e
[ S1(n) wi(n)
Sa(n) wa(n)
= . (16)
sum | | v

where y(n) is the SU received signal, Each column represents
sample signals received simultaneously by different SU, and
each row represents the SU received signal series.

B. PROPOSED SPECTRUM SENSING MODEL

In order to overcome the loss of information feature when
different types of network serial connections, we connected
LSTM network and CNN network in parallel, After multiple
simulations, the model with optimal spectrum sensing results
is shown in Figure 2. The details of the model hyperparame-
ters are shown in Table 1.

TABLE 1. Hyperparameter of proposed LSTM-CNN.

Serial number ~ Network layertype ~ Output feature dimension ~ kernel size ~ stride

| InputLayers 256X 2xX N - -
2 Convolutionld_1 layer 248 x 128 9 l
3 Convolutionld_2 layer 244 x 128 5 1
4 MaxPoolingld layer 122 x 128 2 2
5 Flatten layer 15616 - -
6 LSTM_1 256 x 128

7 LSTM_2 128

8 Concatenate 15744

9 Fully connected layer 1 256

10 Fully connected layer 2 128

11 Fully connected layer 3 64

12 Softmax layer 2 2

V. EXPERIENTIAL SETUP

We build a small-scale CRN to generate a dataset. In this
paper, we assumed that the PU randomly occupies the spec-
trum band, and each SU can receive signals from PU. noise
power and channel conditions are time-invariant during a
sensing period. the signal sent by each PU transmitter mod-
ulated with BPSK. The power of the PU signal decays
inversely with the square of the distance, and the position of
PU and SU remains constant during sensing.

During the simulation time, the PU-TX randomly trans-
mits 256 byte-length frame to the SU-RX, SU observes and
extracts features from these received signals for spectrum
state decision-making. In our simulation, we assume that the
probability of PU-TX occupies is 0.5.

We aim at studying the performance of the pro-
posed LSTM-CNN-based algorithm and several other CSS
algorithms in a conventional CRN scheme. In spectrum
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FIGURE 2. Architecture of the proposed model.

sensing problems, detection probability P, and false alarm
probability Py are usually used to evaluate the detection
performance. In this study, we also use these two metrics
to evaluate the proposed model. Detection probability refers
to the probability that the detection result is occupied when
the spectrum is occupied, and false alarm probability refers
to the probability that the detection result is occupied when
the spectrum is idle. The higher the detection probability
is, the stronger protection for PU will be, but it will also
increase the false alarm probability and reduce the spectrum
utilization rate. Spectrum sensing is a trade-off between Py
and Py to meet the different system requirements. The knowl-
edge about false alarm probability and detection probability
is discussed in [38].

VI. SIMULATION RESULT AND DISCUSS

As shown in Figure 6, the whole process of spectrum sensing
using deep learning technology can be divided into three
parts: data generation, offline network training, and online
spectrum sensing.

A. DATESET GENERATION

In this paper, the dataset for training and testing are generated
under different SNR levels, the SNR range is [-20dB, 10d4B],
step is 2, Monte Carlo simulation is carried out 5000 times
under each SNR. and the parameters of the dataset are shown
in Table 2, The location Settings for PU and SU are shown
in Table 3. we assumed that during the spectrum sensing
period, the power of noise and the distance between the SU
and the PU is remaining unchanged. Different SNR can be
obtained by changing the transmitting power of PU, in this
paper, the signal power range is [0, 100]W, and the noise is
the additive white Gaussian noise with a mean value of 0 and
a noise power of —143dbm/Hz. The SU receives different
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signal power due to the distance from the PU, the SNR on
each sensing node is different.

The mathematical expression of the PSK signal can be
described as:

x(t)=A Z ang(t — nTy) cosQufot + &, + 0)

n

a7

where ¢, is the modulation phase, ¢, € {2”—’", m =
0,1,...,M — 1}, M is the modulation order of signal.

The noise received by each SU is additive white Gaussian
noise with the same power. It is assumed that the noise power
does not change during the whole spectrum sensing period.
When the number of SU is 3, the pure noise signal received
by each node is shown in Figure 3.

When the number of PU is 1 and the transmitting signal
power is 100w, the PU pure signal received by each sensing
node is shown in Figure 4. As can be seen from the figure,
when the distance between the sensing user and the PU-TX
is further away, the received signal attenuation is more serious
and the power is smaller. At this time, at the same noise power
lever the node farther away from the PU user is more likely
to be submerged in the noise.

When the number of PU users is 1 and the PU transmitting
power is 100W, the signals received by three different PU are
shown in Figure 5. From the Figure, we can see that when
added noise, the amplitude of the SU received signal will
fluctuate. The farther SU is from the transmitting antenna,
the smaller the power of the received PU signal, the smaller
difference between the PU signal and noise signal, and the
more difficult it is for the algorithm to identify the two
signals. After the distance is large enough, the algorithm will
be completely unable to complete the classification of the two
signals.

Accurately labeling the received signal data set is the basis
of applying deep learning model to spectrum sensing. There
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are two types of signals received by the SU, one is that the
received signal contains only noise, and the other is composed
of PU signal and noise. In the received signals with PU
signals, the SNR range is [-20dB, 10dB], and the required
SNR of the SU terminal can be achieved by changing the
transmitting power. When labeling the SU signal, the signal
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TABLE 2. Dataset parameters.

modulation type BPSK
size of samples 256
number of SU 1,3,5,7, 10, 15
Samples per SNR 50000
Train dataset ratio 0.7
Validate dataset ratio 0.2
Test dataset ratio 0.1
PU signal power range [0,100] step 5
SNR range —20dB ~ 0dB in 2dB increments
TABLE 3. Position of PU and SU.
PU Position | SU Position
1 (0,0] 1 [0,0.5]
2 [0,0.5] 2 [0,0.75]
3 [0,0.75] | 3 [0,1]
- - 4 [0,1.25]
- - 5 [0,0.5]
- - 6 [0,0.75]
- - 7 [0,1]
- - 8 [0,1.25]
- - 9 [0,1.5]
- - 10 [0.1]
PU Transmit power range | OW ~ 100W in 5W increments

containing PU signals is labeled as 1, and other noise signals
are labeled as 0. 70% of the labeled data is randomly selected
as the training dataset and 20% as the validation dataset.
10% as the test dataset, the process of producing dataset for
LSTM-CNN is described in Algorithm 1.

B. TRAIN THE LSTM-CNN MODEL

The training process of the algorithm is shown in algorithm 2.
The 70% labeled data set is randomly selected as the training
data set of the model. At each epoch, a Batch_size of data
is randomly selected from the training data set to train the
model, calculate the error between the model output and the
labeled data, and backpropagate the error, separately calculat-
ing the gradient of the error at each layer to update the model
parameters. After the model is trained, the validation data
set is used to verify the model to check whether the model
is overfitting. If the model performs well in the validation
data set, the model is saved and used for spectrum sensing
in online detection.

C. MODEL EVALUATION

Once the model is well-trained, we use the test dataset to eval-
uate the detection performance of the model. The evaluation
process is shown in algorithm 3. The dataset under different
SNR conditions is input into the algorithm one by one. After
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FIGURE 6. Process of the proposed LSTM-CNN methods.

Algorithm 1 Dataset Generated for Proposed LSTM-CNN
CSS Algorithm

Algorithm 2 Training of Proposed LSTM-CNN CSS
Algorithm

Require: Rcv_signal y
Ensure: Dataset Y <« [y, label]
1: Procedure of Create Dataset(rcv_signal, N, Label)
2: frame_len< va
3: noise_signal «<— AWGN with the power of —143dbm
4: PU_signal < BPSK signal with dimensions 1 x N and
the power is 1

5: for SNR in —20dB ~ 10dB do

6: forie MC_num do

7: if randn>0.5 then .
snr_in_decimal <« 10 10
PU_TX_Power < snr_in_decimal x d*
PU_TX _signal< PU _signal x/PU_TX_Power
Rev_signal <— PU_TX_signal + noise_signal
label < 1

8: else if randn<0.5 then

9: Rcev_signal < noise_signal
label < 0

10: end if

11: return {Rcv_signal,label}

12:  end for

13: end for

forwardpropagation, the model will output a decision result,
then the result is compared with the input dataset’s label.
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1: Procedure Train(X, y, o, Batch_size,Epochs)
2: for iin Epochs do
Train_data, label < extract(Dataset, Batch_size)
output < forward(LSTM-CNN,Train_data)
error < ||label — output”2
Eorror < backwardpropagate(LSTM-CNN,error)
hyperparameter<— Updata(LSTM-CNN,Eorrors, o)
3: end for

If the output result is the same as the data label, it means
that the decision is correct; if the output result is different
from the data label, it means that the spectrum sensing result
is wrong. Detection probability and false alarm probability
are two commonly used evaluation indicators in cognitive
radio. Detection probability represents the probability that
the output result of the model is 1 when the input dataset
is labeled as 1, and false alarm probability represents the
probability that the output result of the model is 1 when the
input dataset label is 0. During model evaluation, if the label
of the input data set is 0 and the output result of the model
is 1, the number of false alarms is increased by 1. If the input
dataset is labeled 1 and the output result is 1, the number
of correct detections increases by 1. Then the false alarm
probability of the model is obtained by calculating the ratio
of the number of false alarms to the total number marked 0,
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Algorithm 3 Training of Proposed LSTM-CNN CSS
Algorithm
1: Procedure test(LSTM-CNN_model,Dataset)
2: for i < test_num do
test_data, label < extract(Dataset, 1)
Hy_num <0
Hi_num < 0
Hy_error_num < 0
H_correct_num < 0
result < predict(LSTM-CNN,Dataset)
3:  if label is O then
Hy_num < Hy_num + 1
4: if result is 1 then
Hy_error_num < Hqy_error_num + 1
end if
end if
if label is 1 then
Hi_num < Hi_num + 1
8: if result is 1 then
H\_correct_num < H;_correct_num + 1
9: end if

10:  end if
__ Hjp_correct_num
Pd - o H|_num
__ Hy_error_num
P ;= Hy_num
11: end for

and the detection probability is obtained by calculating the
ratio of the total number correctly detected to the total number
labeled 1. The Py and P, of the spectrum sensing model
proposed in this paper are denoted in equations 18 and 19,
respectively:

Hy_error_num

Pr = (18)

Hy_num

Hi_correct_num

P; = (19)

Hi_num
The detection probability and false alarm probability of dif-
ferent spectrum sensing algorithms under the same SNR are
calculated to evaluate the detection performance of different
algorithms. Under the same SNR, the algorithm with a higher
detection probability and lower false alarm probability has
better detection performance.

D. EXPERIMENT RESULTS AND DISCUSS

In this part, some simulation experiments are carried out to
analyze the performance of the proposed algorithm. The spe-
cific parameters are set as follows. Unless otherwise stated,
the number of PU is P = 3, and the number of SU users partic-
ipating in cooperative spectrum sensing is [1,3,5,7,9, 11].
it is assumed that the noise is additive white Gaussian noise
and the transmitted signal is a BPSK signal. During the
experiment, each SNR was simulated 5000 times. The Adam
optimization algorithm is used to enhance the robustness
and convergence of the proposed CNN-LSTM model, which
reduces the model’s training time and the classification error

VOLUME 11, 2023

1

095

Training accuracy

09l
085
o8t
oo
075 |
ort

065

0.6 . . . . . . . .
0 10 20 30 40 50 60 70 80 90
Training Epoch

FIGURE 7. Relationship between training cycle and P4.

Pd vs SNR

adaptive threshold Ed
ED algorithm
05 CM maxmin eigenvalue

CM-CNN algorithm
LSTM algorithm
Proposed algorithm LSTM-CNN

Probability of detection Pd

20 -18 -6 14 12 -10 -8 6 -4 -2
SNR

FIGURE 8. Detection probability of each algorithm under different SNRs.

of the proposed model. Finally, good detection performance
is obtained.

1) RELATIONSHIP BETWEEN TRAINING CYCLES AND Py

As shown in Figure 7, the detection performance P; of
the spectrum sensing algorithm which based on the combi-
nation of parallel LSTM and CNN proposed in this paper
is fluctuates at the beginning of the training process, with
the increase of the training epoch, the detection probability
of the algorithm gradually stabilizes at about 98.64%, This
detection probability basically meets the detection standard
of cognitive communication.

2) COMPARISON OF ALGORITHM PERFORMANCE

Different spectrum sensing algorithms have different detec-
tion performances at the same SNR level. The P, the Receiver
Operations Characteristics(ROC) of the single-node energy
detection, adaptive threshold energy detection, CM maxi-
mum eigenvalue, CM-CNN, SVM, LSTM, LSTM-CNN are
shown in Figure 8. As can be seen from Figure 8, the detec-
tion performance of the LSTM-CNN algorithm significantly
outperforms other spectrum sensing algorithms at lower SRN
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lever, such as when SNR is —16dB, the detection probability
of the proposed algorithm can reach more than 90%, which
is much higher than other detection algorithms.

Then the 3 SUs cooperative sensing detection ROC is
expressed in Figure 9, the 7 SUs cooperative sensing detec-
tion ROC is expressed in Figure 10, and the 9 SUs cooperative
sensing detection ROC is expressed in Figure 11. As shown in
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this figure, under the and criterion, the more users participate
in cooperative spectrum sensing, the lower the probability of
spectrum occupation as a result of detection; under the or
criterion, the more users participate, the higher the probability
of spectrum occupation as a result of the detection. However,
the proposed parallel spectrum sensing method, no matter
whether at low SNR, or high SNR, the detection accuracy
is higher and the detection performance is better than other
detection methods. For example, when the cooperative user
is 7 and the transmitting power is 20W, the accuracy of the
proposed LSTM-CNN method can reach 94.6%, which is
significantly higher than other detection algorithms.

VIl. CONCLUSION

This paper presents a spectrum sensing model of CNN-
LSTM, detecting the state of PU activity through the received
signal, using parallel CNN network and LSTM network to
extract different features of the received signal, make full
use of the advantages of CNN network and LSTM network,
and solving the problem of feature information loss in serial
connection by using a parallel connection. This algorithm
realizes spectrum perception by learning the labeled his-
torical data without computing the decision threshold. The
simulation results have proven that the spectrum sensing
methods based on the CNN-LSTM network investigated in
this paper has a higher detection probability than CNN and
LSTM algorithms at the low SNR, and the detection per-
formance of the algorithm increases with the number of
cooperate SU.
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