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ABSTRACT Broad learning system has attracted increasing attention in the hyperspectral image (HSI)
classification, due to its universal approximation capability and high efficiency. However, two main
challenges remained. One is that the mapping from the original BLS input to the mapped feature (MF)
is linear, which is difficult to fully represent the complex spatial-spectral features of HSI. The other is that
BLS fails to explore the local geometric structure relationship between samples within HSI. To overcome the
limitations mentioned above, we propose a local discriminative embedding broad learning systemwith graph
convolutional (GDEBLS). To address the first challenge, GDEBLS utilizes the graph convolution operation
to aggregate the node information in the adjacent graph to learn the context and obtain the rich nonlinear
spatial-spectral features in HSI. To deal with the second challenge, our method utilizes a neighborhood
selection approach based on manifold structure to calculate the true distances between samples in the
manifold space, overcoming the limitations of Euclidean distance measurement. Next, We introduce local
manifold structure and discriminative information into BLS. The experimental results show that the proposed
method significantly surpasses other state-of-the-art methods.

INDEX TERMS Broad learning systems, hyperspectral image, local geometric structure, graph
convolutional.

I. INTRODUCTION
Hyperspectral image (HSI) is obtained by imaging ground
objects simultaneously in hundreds of adjacent narrow bands
by an imaging spectrometer. Using this image can effectively
improve the accuracy of ground object identification. There-
fore, HSI is widely used in the fields of ground component
analysis, target detection, and environmental monitoring,
among which the classification of HSI is a very important
basic problem. In order to complete the classification task,
researchers have proposed many classical classification
methods, such as support vector machine (SVM) [1], multiple
logistic regression (MLR) [2], and sparse representation
classifier (SRC) [3] et al.
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Recently, convolutional neural networks (CNNs) effec-
tively capture local correlations in hyperspectral images
through local connections and weight sharing. Li et al. [4]
proposed a pixel-pair-based CNN, which constructs new data
combinations by pairing any two samples from the available
labeled data. This method enables the construction of a large
number of labeled pixel pairs, ensuring the thorough training
of the deep network. Haut et al. [5] conducted principal
component analysis on hyperspectral image data and used
spatial patches centered around the pixels to be classified
to train a 2D CNN, thereby accomplishing hyperspectral
image classification tasks. While this method extracted rich
spatial features, it overlooked the spectral information. The
3D-CNN network proposed by He et al. [6] jointly extracts
spatial and spectral features by computing multi-scale
features. Li et al. [7] proposed using two consecutive 3D
convolutional layers for hyperspectral image classification.
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This network architecture is simple and requires fewer
parameters, thereby avoiding overfitting issues that may
arise from complex network models. The aforementioned
CNN-based methods have achieved good results. However,
these methods face challenges such as gradient vanishing
and network degradation when the CNN models are trained
to deeper depths. To address this issue, Zhong et al. [9]
utilized residual networks [8] to develop a deep network
model that can continuously learn discriminative features
from both spectral and spatial backgrounds. Song et al. [10]
further improved the performance by incorporating deep
and shallow feature fusion based on the residual network,
to further enhance the utilization of each convolutional
layer and obtain more effective discriminative features,
spatial patches centered around pixels of interest are used
to train a 2D CNN for hyperspectral image classification
tasks. This approach aims to capture more relevant spatial
information and improve the overall performance of the net-
work. In recent years, graph convolutional networks (GCNs)
have been widely applied to semi-supervised classification
tasks in hyperspectral imaging (HSI). GCNs leverage both
the local graph structure and node features to achieve
effective information aggregation, making them well-suited
for HSI analysis and classification. Qin et al. [11] proposed
the spectral-spatial graph convolutional networks (S2GCN).
S2GCN combines spectral information with local spatial
neighborhood information to perform classification tasks on
hyperspectral images. This approach integrates both spectral
and spatial features to enhance the discriminative power of
the model. Ding et al. [12] proposed the Global Consistent
Graph Convolutional Network (GCGCN), the initial graph
generation is treated as an optimization variable, allowing
for the adaptation and refinement of the graph structure.
This approach aims to obtain an adaptive and reliable graph
structure for effective information aggregation in the GCN
model. Wan et al. [13] proposed a model based on dynamic
graphs and graph convolution methods, which were trained
collaboratively. They also improved the model accuracy
by incorporating multiple scales. Sha et al. [14] introduced
a graph attention layer that automatically calculates the
similarity between neighboring nodes and uses the generated
specific weights as the distances between nodes.

Although the above-mentioned deep learning algorithms
have achieved good recognition results, analyzing their
internal structures theoretically is very challenging due
to the complexity of deep learning network architectures
and a large number of hyperparameters. In recent years,
an effective machine learning method called the broad
learning machine (BLS) [15] has been proposed. The
structure of BLS is different from that of deep neural
networks. Compared with the ‘‘deep’’ structure, BLS is
more inclined to construct the network in the direction of
‘‘broad’’. BLS firstly performs random feature mapping on
the original input and enhances the feature mapping to obtain
feature nodes and enhancement nodes respectively; Then the
feature node and the enhancement node are merged into

the input layer and connected to the output layer; Finally,
the connection weights between the output layer and the
input layer are obtained by ridge regression inverse. Only
the connection weights between the input layer and the
output layer need to be calculated, which greatly improves
the training speed of the model. Recently, BLS has been
widely used in HSI classification [16], [17], [18], [19], [20],
[21] once it was proposed. Ma et al. [17] proposed a novel
Multiscale Random Convolution Broad Learning System
(MRC-BLS). This method combines different-sized kernels
to extract multiscale spatial features and then demonstrates
its effectiveness through weighted fusion. Chu et al. [18]
incorporated discriminative information and the manifold
structure of samples into BLS, thereby improving its classifi-
cation performance in hyperspectral images. Wang et al. [19]
proposed a domain-adaptive and manifold-regularized output
layer in the Local Adaptive Broad Learning System, ensuring
the effectiveness of the classification results. Yao et al. [20]
applied local sensitivity discriminant analysis and broad
learning to HSI classification.

The above HSI classification methods based on BLS have
been proven to be useful, however, some obvious issues have
been found in feature representation and local geometric
structure preservation. First, the mapping from the original
BLS input to the mapped feature (MF) is linear, but the HSI
has high-dimensional characteristics and a strong correlation
between adjacent bands. At the same time, the presence
of foreign objects in the same spectrum and in the same
spectrum makes the data structure highly nonlinear. BLS
linear sparse features are difficult to fully represent the
complex spatial-spectral properties of hyperspectral images.
Therefore, the classification of HSI using the original BLS
cannot achieve satisfactory results. Second, as a supervised
classification method, BLS can only conduct supervised
learning on limited labeled samples, resulting in insufficient
learning. At the same time, BLS does not fully consider the
geometric structure between data points and the potential
discriminative information of the data in the learning process,
which limits the generalization ability of this method in HSI
classification.

Recently, GCN [22] have received extensive attention.
GCN provides a powerful and intuitive modeling method,
which can effectively solve modeling problems in non-
Euclidean spaces. Nodes represent data collected by an object
at a specific point in time or data collected in a specific
form within a specific time period. GCN can deal with
complex pairwise interactions and integrate non-Euclidean
spatial data, make full use of the intrinsic relationships
between objects, and extract invisible relationships between
objects. It has been widely used in supervised learning,
unsupervised learning, and clustering. On the other hand,
Manifold learning assumes that high-dimensional nonlinear
data may be embedded in a low-dimensional manifold.
By utilizing the structure of this low-dimensional manifold
for data processing, more efficient and accurate results can
be obtained. Manifold learning is a method for discovering
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the intrinsic geometric structure of sample data. In semi-
supervised learning, manifold learning can be used to
discover the intrinsic geometric structure of data samples
in order to improve learning performance. Melacci and
Belkin [23] have achieved good results by introducing the
Laplacian matrix, which represents the intrinsic geometric
structure of the data, as a penalty term into the regularization
framework of machine learning.

Inspired by graph convolutional neural networks,
Wang et al. [24] combined graph convolution with broad
learning to propose the Graph Convolution Broad Network
(GCBN). This method utilizes graph convolution operations
to extract rich nonlinear spatial-spectral features from
hyperspectral images, instead of relying solely on sparse
autoencoder mapping in original broad learning. Then, the
discriminative spatial-spectral features are expanded using
graph convolution and broadened width, further enhancing
the representation capability of features and improving the
classification ability of BGCN. However, BGCN does not
consider the local manifold of data during the learning
process, which means it cannot reveal the underlying
geometric structure, especially the local structural and
discriminative information of the data. To overcome this
limitation, Tuya [25] introduced the concept of manifold
learning into broad learning and proposed the graph
convolution-enhanced discriminative broad learning system
(GCDBLS). Thismethod utilizes graph convolution to extract
spatial-spectral features from hyperspectral images and then
constructs the local intra-class and inter-class structures
of data samples using manifold learning. It effectively
reveals the local structural and discriminative information
of the data and enhances the discriminative ability of the
broad learning system towards data features. In the case
of GCDBLS, Euclidean distance is used to represent the
similarity between sample points. The smaller the Euclidean
distance between two points, the greater their similarity;
conversely, the larger the distance, the smaller the similarity.
Therefore, the constructed neighborhood graph in GCDBLS
reflects the Euclidean distance relationship between the two
samples. However, for complex hyperspectral image data,
the similarity measure based on Euclidean distance cannot
reflect the true distance between data points because complex
hyperspectral image data satisfy nonlinear structures [26],
while the Euclidean distance measure only satisfies globally
linear structures, which cannot meet the actual requirements.

Motivated by the discussion above, we propose a local
discriminative embedding broad learning system with graph
convolutional (GDEBLS). In view of GCN can describe
complex data relations, GDEBLS expresses the intrinsic
structure of HSI through graphs, so as to capture the context
relations between complex ground objects in HSI. On this
basis, GCLBLS takes into account the local geometric
structure and local discriminative information of the sample
space and introduces a local intra-class graph and a local
inter-class graph. Unlike GCDBLS, our method utilizes a
manifold-based neighborhood selection approach to compute

FIGURE 1. Illustration of the GDEBLS structure.

the true distances between samples in the manifold space
when constructing the local intra-class graph and inter-class
graph. This overcomes the limitations of Euclidean distance
measurements. our contribution is three-fold:

(1) A novel hyperspectral image classification method
is proposed to learn better feature representation and local
geometric structure.

(2) The graph convolutional operation is introduced so that
the information between each node is transferred in the graph,
and then the adjacency information between each node in the
graph is learned to mine the context of HSI.

(3) Introduce local intra-class and inter-class graphs to
describe the local geometric structure and local discrimina-
tive information of HSI data sample input space.

II. PROPOSED METHOD
The framework of our method is shown in Figure 1. The
method mainly consists of three parts: 3D Gabor [27]
texture feature extraction, graph convolutional context feature
extraction, and local discriminative broad learning system
classification. For the original HSI, firstly, texture features
of the HSI are extracted using 3D Gabor filters with different
directions and frequencies. Next, we use PCA to reduce the
dimension of the spatial-spectral feature information after
3D-Gabor filtering; Then, the extracted features are input
into the GCN, and the contextual features of the HSI are
extracted through the graph convolutional operation; Finally,
the extracted context features are input into the discriminative
broad learning system for classification.

A. 3D-GABOR
In order to reduce the dependence of the GCN model on
training samples and the pressure of feature extraction, we use
the Gabor filter to extract spatial information such as edges
and textures of images in an unsupervised manner. Gabor
filter can effectively extract spatial information including
edges and textures, and reduce the difficulty of GCN feature
extraction.

The 3D-Gabor filter can directly extract texture features
from hyperspectral image data with cubic structure, which is
defined as

G (x, y, b) =
1

(2π )3/2σxσyσb

× exp
(

−
1
2

((
x ′

σx

)
+

(
y′

σy

)
+

(
b′

σb

)))
× exp

(
i2π

(
xfx + yfy + bfb

)
+ ϕ

)
(1)
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fx = f sinφ cos θ (2)

fy = f sinφ cos θ (3)

fb = f cosφ (4)

where G (x, y, b) is a 3D-Gabor filter;
(
σx , σy, σb

)
is the

width of the spatial spectral; θ and ϕ are filter directions;
[x, y, b] is the coordinate of a point

[
x ′, y′, b′

]
of the original

image data after rotation by the angles θ and ϕ; f is the
frequency;

(
fx , fy, fb

)
is the component of the frequency in

the spatial spectral dimension. θ and ϕ take values in the set[
0, π

4 , π
2 , 3π

4

]
, but when ϕ = 0 and θ take any value in the

set, the center frequency is equal. There are 13 directions in
total, representing 13 filters.

Assuming the hyperspectral cube data is HSI (x, y, b), the
HSI original cube data is input into the 3D-Gabor Gabor filter,
and the real part is extracted after convolution processing.
Then a new 3D structural data with texture and spectral
features is constructed, namely

HSItexture (x, y, b) = HSI (x, y, b) ⊗ G (x, y, b) (5)

B. GRAPH CONVOLUTIONAL FEATURE EXTRACTION
Since BLS linear sparse features are difficult to fully
represent the complex spatial spectral characteristics of
hyperspectral images, in this paper, we use GCN to extract
contextual features of HSI. GCN is a feature extractor that can
directly operate on graph structure data. It can make full use
of the dependency between nodes and the feature information
of each neighbor node through graph convolutional operation.
As a generalization of CNN, GCN can directly convolution
graphs. Given a graph G = (V ,E,A), where V is the set of
nodes in G (the number of nodes is n); E is the set of edges
in G; A is adjacency matrix. GCN obtains the representation
of hidden layer through the following formula [10]

H (l+1)
= f

(
H l

)
= τ

(
ÂH lW l

)
; l = 1, · · · ,L (6)

where, H l is the feature matrix of layer l,H l
∈ Rn×dl ,

dl are the dimensions of each node of layer l; L is
the number of GCN layers; W l is the trainable weight,
W ∈ Rdl×dl+1 ; Â is the normalized symmetric adjacency
matrix, Â = D̃−1/2ÃD̃−1/2, Ã is the adjacency matrix with
loop, Ã ∈ Rn×n, Ã = A + I . D̃ is the degree matrix of Ã,
D̃ ∈ Rn×n, τ is the nonlinear activation function.
In GCN, a global pooling layer is introduced to aggregate

all node features, and the context features are further com-
pressed through the full connection layer. Finally, the context
features of hyperspectral images are extracted through GCN.

C. LOCATION DISCRIMINATIVE EMBEDDING BROAD
LEARNING SYSTEM CLASSIFICATION
We input the context features of hyperspectral images
extracted by 3D-Gabor and graph convolution into the broad
learning system for classification. However, we noticed
that BLS only pays attention to the separability of various
samples when making classification decisions, ignoring the

geometric structure between data samples and the potential
discriminative information of the data. To some extent, it lim-
its the further improvement of classification performance
and generalization ability of BLS in hyperspectral image
classification. Cover andHart [28] emphasized that half of the
class information of the sample is hidden in its neighborhood.
The manifold learning method proposed in recent years [29]
can effectively reveal the local structural information and
local discriminative information contained in the sample
points. Therefore, in this paper, we introduce the concepts
of local intra-class graph and a local inter-class graph, and
propose a local discriminative embedding broad learning
system (LDEBLS), Unlike GCDBLS, our method utilizes a
manifold-based neighborhood selection approach to compute
the true distances between samples in the manifold space
when constructing the local intra-class graph and inter-class
graph.

Suppose Nk (xi) is the k nearest neighbor set of sample
point xi,G represents the weighted adjacency graph of
hyperspectral image feature XGCN extracted by GCN, where
the i-th vertex represents the sample point G, which is called
a node.

If xi ∈ Nk
(
xj

)
or xj ∈ Nk (xi), the vertices in G are

connected, and its connection weight value can be defined as
Wij.The following thermal kernel function is commonly used
to define the weight

Wij = exp
(
−

∥∥xi − xj
∥∥2/t

)
(7)

where is t > 0 thermonuclear parameter. Then define the
corresponding weight matrix of graph G as

Aij =

{
Wij, xj ∈ Nk (xi) or xi ∈ Nk

(
xj

)
0, else

(8)

In formulas (7) and (8), we need to calculate the distances
between data samples to determine their neighborhoods.
Typically, for complex hyperspectral image data, the neigh-
borhood selection similarity measure relies on metrics based
on Euclidean distance. However, the Euclidean distance
metric fails to reflect the true distances between data points
because complex or high-dimensional data often exhibit
nonlinear structures, while the Euclidean distance measure
only captures global linear structures and cannot meet
practical requirements. To address this issue, we adopt a
manifold-based neighborhood selection method to compute
the true distances between samples in the manifold space,
overcoming the limitations of Euclidean distance measure-
ments. The distance between two points, xi and xj, on the
manifold in the manifold space is shown in equation (9):

L
(
xi, xj

)
= exp

(
D

(
xi, xj

)/
σij

)
− 1 (9)

where D
(
xi, xj

)
= d

(
xi, xj

)/
max

(
xi, xj

)
represents the nor-

malized Euclidean distance, d
(
xi, xj

)
represents the Euclidean

distance between them, and σij represents the adjustable
parameter. According to the formula for calculating manifold
distance, the proximity distance is calculated. The data points
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are viewed as vertices of the graph G (V, E), where V is the set
of vertices and E is the set of edges. Let Rij represent the set of
all paths connecting data points xi and xj in the graph, then the
manifold distance between xi and xj is given by equation (10):

MF
(
xi, xj

)
= min

q∈Qij

|q|−1∑
k=1

L (Qk ,Qk+1) (10)

where q represents a path connecting xi and xj, and |q|
represents the number of nodes on path q. From this equation,
it can be observed that the manifold distance between two
points in space is determined by finding the minimum value
among the sum of the manifold distances of all the line
segments connecting the nodes between the two points. This
minimum value represents the manifold distance between the
two points.

According to spectral graph theory, modeling the internal
geometric structure of input space with a nearest neighbor
graphG can effectively describe the local geometric structure
of samples, but only one global graph is not enough to reflect
the discriminant structure between samples.

Therefore, the weighted adjacency graph G can be further
divided into two complementary weighted adjacency graphs:
intra class graph Gw and inter class graph Gb, and satisfy
that, G = Gw ∪ Gb,Gw ∩ Gb = φ is used to reflect the
local intra-class adjacency relationship and the local inter-
class adjacency relationship respectively. Defined as

Awij =

{
Wij, xj ∈ Nw

k (xi) or xi ∈ Nw
k

(
xj

)
0, else

(11)

Abij =

{
Wij, xj ∈ N b

k (xi) or xi ∈ N b
k

(
xj

)
0, else

(12)

By using equations (9) and (10), we determine the
neighborhoods of Nw

k (xi) and N b
k (xi). Nw

k (xi) ∈ Gw is the
homogeneous k-nearest neighbor data set of sample point xi,
and N b

k (xi) ∈ Gb is the heterogeneous k-nearest neighbor
data set of sample point xi.

In order to better describe LDEBLS, the following
definitions are given. Definition 1. scatter matrix of local
inter-class graph:

Let Lw and Lb be Laplace matrices of intra-class graphs
Gw and inter-class graphsGb, respectively, then matrixHw

=

XLwXT = X (Tw − Aw)XT is called local intra-class graph
scatter matrix, and matrix Hb

= XLbXT = X
(
T b − Ab

)
XT

is called local inter class graph scatter matrix. Where A(·)ij is
the weight matrix of graph G(·); T (·) is a diagonal matrix,
and its diagonal elements define t (·)ii =

∑l
j=1 A

(·)
ij , that is,

T (·)
ii =

∑l
j=1 A

(·)
ij . H

w and Hb are called local dispersion
matrices. In definition 1, the local intra-class graph scatter
matrix describes the local structure information of the input
sample manifold, and the local inter-class graph scatter
matrix describes the local discrimination information of the
input sample manifold.

Define 2. local reserved information difference matrix:
We call matrix M = ςHw-(1-ς )Hb local information differ-

encematrix. ς is the local information balance parameter. The
parameter ς is used to find a satisfactory balance between
the local intra-class compactness and the local inter class
discreteness of the input sample manifold.

Next, we introduce the basic principles of BLS. The
method flow of BLS is described as follows: First, the original
data X is mapped to the Mapped Feature (MF) by random
weightWM . The i-th group MF can be expressed as

Zi = φ
(
XWM

i + βMi

)
, i = 1, · · · , dM (13)

where, Zi ∈ Rn×G
M
and βMi are biases, dM is the number of

groups of feature nodes, GM is the dimension of each group
of feature nodes, and φ (·) is the activation function. Splicing
dM group of feature nodes into Z =

[
Z1,Z2, · · · ,ZdM

]
.

Then, MF is mapped to the enhancement node (EN) through
the random weight WE to realize the width expansion of the
feature

Hj = ϕ
(
ZWE

j + βEj

)
, i = 1, · · · , dE (14)

where, Hj ∈ Rn×G
E
and βEj are biases, dE is the number

of groups of enhancement nodes, GE is the dimension of
each group of enhancement nodes, and ϕ (·) is the activation
function.

Splicing dE group of enhanced nodes into H =[
H1,H2, · · · ,HdE

]
. Let A = [Z |H ], the output of BLS

is Ŷ = AW o, where W o is the weight from the hidden
layer to the output layer. Since WM

i , βMi , WE
j , and βEj

are randomly generated and remain unchanged during the
training process, the weights that the network needs to learn
are onlyW o.Therefore, the objective function of BLS is

min
W

(
∥Y − AW∥

2
2 +

λ

2

∥∥W o∥∥2
2

)
(15)

There are two terms in formula (13), the first is the
empirical risk term, and Y is the given supervision infor-
mation. The function of the first item is to reduce the
difference between the output of the BLS and the supervision
information Y , where Y represents the label of X .The second
term is the structural risk term, which is used to improve the
generalization ability of BLS and reduce the risk of over-
fitting. λ is the regularization parameter.

In the case of keeping the BLS optimization framework
unchanged, LDEBLS adds the maximization of the overall
inter-class interval of data and the local manifold distribution
of data into the BLS objective function. The LDEBLS
objective function can be expressed as:

F = ∥Y − AW∥
2
2 + C1 ∥W∥

2
2 + C2(Tr (M)

= ∥Y − AW∥
2
2 + C1 ∥W∥

2
2 + C2(Tr

(
Hw

− Hb
)

= ∥Y − AW∥
2
2 + C1 ∥W∥

2
2

+ C2(Tr
(
W TA

(
Lw − Lb

)
ATW

)
(16)

the third term Tr (M) is themanifold regularity discriminative
term, Tr (·) represents the trace of the matrix; C1 and C2 are
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TABLE 1. Indian Pines dataset description.

TABLE 2. Kennedy Space Center dataset description.

the regularization coefficients. Solving Equation (14) to get

W o
=

[
ATA+ C1A

(
Lw − Lb

)
AT + C2I

]−1
ATY (17)

where I is the identity matrix, AT is the transpose matrix of A.

III. EXRERIMENTS
In this section, we design comparative experiments and
ablation experiments. The overall accuracy (OA), accuracy
of each category (AA) and kappa coefficient were used as
evaluation metrics. The experiments are implemented using
TensorFlow and Keres deep learning frameworks.

A. DATASETS
The experiments use three hyperspectral datasets1 of Indian
Pines (IP), Kennedy Space Center (KSC) and Botswana
(BS) to verify the effectiveness of the proposed algorithm.

1The four HSI benchmarks are available from: http://www.ehu.eus/
ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes

IP dataset, which contains 220 bands, there are 16 categories
of main features, and the image size is 145 × 145 pixels,
with a spatial resolution of 20m, removing 20 bands with
serious noise to obtain data including 200 spectral bands
for analysis; KSC dataset, which contains 224 bands,
including 13 categories of main features, with an image size
of 512 × 614 pixels, after removing the water absorption
and low SNR spectral bands, the data including 176 spectral
bands are obtained for research and analysis; BS dataset,
which contains 14 object categories, the image size is
1476 × 256, removes uncalibrated, water-absorbing areas
and noise bands, leaving 145 bands. For the three data sets,
we select 5 samples in each class as the training set and
the remaining samples as the test set. Table 1-3 provide
descriptions of three datasets.

B. EXRERIMENTS SETUPS
The following 8 classification methods are selected for
comparison. A method based on CNN: (2D-CNN) [30];
Four GCN based methods: GCN, spatial spectral convolution
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TABLE 3. Botswana dataset description.

TABLE 4. Accuracy comparisons for the Indian Pines (%).

neural network (SSGCN) [11], multiscale dynamic GCN
(MDGCN) [13], graph convolution broad network
(GCBN) [24], GCDBLS [25]; Two BLS based methods:
BLS and semi-supervised broad learning system (SBLS) [7];
A traditional machine learning method: support vector
machine (SVM) and support vector machine [1] based on
composite kernels (SVMCK) [31]. For SVM, BLS, and
SBLS, we use grid search to select the optimal parameters.
For SSGCN, MDGCN, GCBN and GCDBLS, we directly
refer to literature [5], [14], [15], [16], [17] to select the
hyperparameters. The parameters of the proposed method
are set as: In order to extract various types of texture
features, 3D Gabor filter banks with multiple directions and
multiple center frequencies are used. The filter bank includes
13 directions, and the center frequency is set {1/2, 1/4};
In the training process of GCN network, the learning rate

is set to 0.001, the batch size is set to 32, the number of
iterations of the network is 400, the classification accuracy of
the model on the test sample set is recorded every 50 times,
and the learning rate is dynamically attenuated with a cycle
of 50 times. The training loss of the model is optimized by
the Adam function. In the LDEBLS network, the number of
feature nodes is set to 100, the number of feature node groups
is set to 10 groups, and the number of enhanced nodes is set
to 1000; The regularization parameters C1 and C2 included
in GDEBLS are set through 10-fold cross-validation, the
range of parameters C1 and C2 is {2−5, . . . ,25}. In order
to eliminate the influence of experimental randomness, all
experimental results are the mean of 10 results. Tables 4-6
present the experimental results of different algorithms on
the three datasets, and Figures 1-3 display the classification
result graphs of different algorithms.
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TABLE 5. Accuracy comparisons for the KSC (%).

TABLE 6. Accuracy comparisons for the Botswana(%).

FIGURE 2. Classification results of different methods on Indian Pines. (a) False
color image,(b) Ground-truth map (c) SVM, (d) SVMCK, (e) BLS, (f) GCN, (g)
GCDBLS, (h) GDEBLS.

It can be seen from table 4 that our method on the Indian
pines is superior. Among the 16 categories, 8 categories have
the highest classification accuracy, and the OA and kappa

coefficients have reached the highest, which are 85.40%
and 83.49% respectively. From table 4, the classification
effects of SVM, 2D-CNN, BLS and GCN are not ideal,
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FIGURE 3. Classification results of different methods on KSC. (a) False color
image,(b) Ground-truth map (c) SVM, (d) SVMCK, (e) BLS, (f) GCN, (g) GCDBLS,
(h) GDEBLS.

FIGURE 4. Classification results of different methods on Botswana.
(a) False color image,(b) Ground-truth map (c) SVM, (d) SVMCK, (e) BLS,
(f) GCN, (g) GCDBLS, (h) GDEBLS.

and the OA and kappa are lower than those of other
methods. The reason is that SVM and BLS classifiers only
consider the spectral information of the pixel and do not
use the spatial information. Although the 2DCNN method
utilizes the spatial information of HSI, it fails to combine the
spectral information for classification. Overall, although the
Indian Pines hyperspectral dataset has fewer training samples

and complex land cover classes, our method effectively
captures both spectral and spatial information of HSI by
extracting 3D-Gabor texture features, including direction and
scale information. We then use graph convolution to extract
deep-level features of hyperspectral images and introduce
the local geometric structure information into BLS. This
approach achieves high classification accuracy. Visualizing
the classification results of the IP dataset with 5 training
samples per class and comparing them with the ground truth,
our method shows the closest resemblance to the true labels,
as shown in Figure 2.

From table 5, the OA of the GDEBLS method is 96.46%,
and the Kappa coefficient is 96.05%, which are better
than other methods. Compared to SVM and SVMCK, BLS
has higher classification accuracy, the reason is that the
BLS structure has a good feature broad expansion ability.
Compared with BLS, SBLS achieves higher OA and kappa,
and is superior to BLS, this is because that SBLS makes
full use of the unlabeled sample information. GCN, SSGCN
and MDGCN are all graph convolutional network methods,
and the classification accuracy of GCN is lower than that
of SSGCN, MDGCN and GCBN, the reason is that GCN
only considers spectral information. SSGCN and MDGCN
not only utilize the spectral information of hyperspectral
images but also use spatial information. MDGCN makes full
use of the spatial spectral correlation on multiple scales by
establishing multiple input maps at different neighborhood
scales. when visualizing the classification results of the KSC
dataset with 5 training samples per class and comparing them
with the ground truth, our method again exhibits the closest
resemblance to the true labels, as shown in Figure 3.

It can be seen from table 6 that there are 14 categories
in Botswana dataset, and the classification performance
of the proposed method on Botswana dataset is superior.
Among the 14 categories, 12 categories have the highest
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FIGURE 5. Influence of C1 and C2 on OA.

FIGURE 6. Influence of different labeled sample sizes on OA.

classification accuracy, and OA and kappa coefficients have
reached the highest, respectively 97.99% and 97.82%. From
table 6, the results of GCBN have achieved good results.

This is because GCBN also combines the advantages of
GCN and BLS. The difference between our method and
GCBN is that, our method first uses 3D Gabor to extract the
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TABLE 7. Ablation experiment results (%).

local texture features of the image, and uses the K-nearest
neighbor method to compose the image to establish the global
correlation between pixels, where each node contains rich
spatial and spectral information, However, the BGCNmethod
does not consider the local manifold of the data during
the learning process, thus failing to reveal the underlying
geometric structure and local discriminative information.
From table 6, we can observe that the experimental results of
GCDBLS are second only to GDEBLS. GCDBLS uses graph
convolution to extract the spatial features of hyperspectral
images and employs manifold learning to construct the
local intra-class and inter-class structures of data samples,
effectively revealing the local structural and discriminative
information of the data and enhancing the discriminative
ability of the wide learning system for data features.
However, GCDBLS uses Euclidean distance to represent the
similarity between sample points. The smaller the Euclidean
distance between two points, the greater their similarity, and
vice versa. Therefore, the constructed neighborhood graph
of GCDBLS reflects the Euclidean distance relationship
between two samples. However, for complex hyperspectral
image data, using a similarity measure based on Euclidean
distance for neighborhood selection cannot reflect the true
distances between data points. This is because complex
hyperspectral image data exhibit nonlinear structures, while
the Euclidean distance measure only captures global lin-
ear structures and cannot meet practical requirements.
Unlike GCDBLS, our method overcomes the limitations
of Euclidean distance measurements by using a manifold-
based neighborhood selection approach to compute the true
distances between samples in the manifold space. From
Table 6, we can see that our algorithm’s experimental results
are superior to GCDBLS, thus validating the effectiveness
of our approach. Visualizing the classification results of
the Botswana dataset with 5 training samples per class and
comparing them with the ground truth, our method again
exhibits the closest resemblance to the true labels, as shown
in Figure 4.

C. ABLATION EXPERIMENTS
GDEBLS first utilizes 3D-Gabor filters to extract directional
and size information of texture features from hyperspectral
images, enabling the capture of both spectral and spatial
information in the HSI. Then, graph convolution is employed
to extract deep-level features from the hyperspectral images.
Finally, the local geometric structure information of the
hyperspectral images is incorporated into the Backpropaga-
tion Least Squares (BLS) for classification. To validate the
effectiveness of different modules, we refer to the method
of using BLS for classification after feature extraction with

3D-Gabor filters as GBLS. Based on the GBLS algorithm,
we introduce graph convolutional operations, resulting in
GCBLS. On top of GCBLS, we further introduce local
geometric structure information, which we refer to as
GDEBLS. By comparing the experimental results, it can be
observed from Table 7 that GBLS outperforms BLS on the
three datasets, thereby validating the effectiveness of the 3D-
Gabor module. Furthermore, we can observe that GCBLS
yields better results than GBLS, validating the effectiveness
of the graph convolution module. GDEBLS demonstrates
superior performance compared to GCBLS, thus validating
the effectiveness of the local geometric structure module.
Through the aforementioned experiments, the effectiveness
of different modules in the proposed algorithm has been
validated.

D. PARAMETER ANALYSIS
The impact of the regularization parameters C1 and C2 on
overall accuracy (OA) is observed on the three hyperspectral
datasets. In the experiment, different values are chosen for
C1 and C2, while keeping the parameter settings consistent
with table 4. The range of values for C1 and C2 is {2−5, . . . ,
25}. Figure 5 presents the effects of different values of C1
and C2 on OA. It can be observed that when C1 is less than
21, OA increases with the variation of C2. However, when C1
exceeds 21, the variation of C2 leads to poorer classification
performance in terms of OA. Therefore, based on the analysis
of C1 and C2 parameters, the optimal values of C1 and C2 can
be determined to achieve the best classification results.

E. INFLUENCE OF DIFFERENT LABELED SAMPLES SIZES
ON OA
In this section, the influence of varying the number of training
samples on the performance of different methods is analyzed.
For the Indian Pines, KSC, and Botswana datasets, L = {2,
3, 4, 5, 6} samples are randomly selected from each class
as training samples. Figure 6 illustrates the trends in overall
classification accuracy for different methods under different
training sets. It can be observed that increasing the number
of training samples has a positive impact on the classification
accuracy of all methods. Particularly, the proposed GDEBLS
method achieves higher classification accuracy than the five
comparative methods, even with a limited number of training
samples.

IV. CONCLUSION
In this paper, we propose a local discriminative embed-
ding broad learning system with graph convolutional for
hyperspectral image classification. This method aims to solve
the problem that BLS does not make full use of the spatial
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information of the image in hyperspectral classification and
to make full use of the local geometric structure and local
discriminative information of the sample space. GDEBLS
first uses 3D-Gabor filters to extract directional and size
information of texture features from hyperspectral images,
allowing for the simultaneous capture of both spectral and
spatial information in the HSI. Then, graph convolutional
operations are employed to obtain rich nonlinear spatial-
spectral features from the hyperspectral image. Finally, based
on the idea of manifold learning, intra-class and inter-class
graphs are constructed to incorporate these features into
BLS. It is worth mentioning that our method utilizes a
neighborhood selection approach based onmanifold structure
to calculate the true distances between samples in the
manifold space, overcoming the limitations of Euclidean
distance measurement. Experimental results on three widely
used hyperspectral datasets show the superiority of our
method in HSI classification.
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