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ABSTRACT Arrhythmias are a significant class of cardiovascular diseases, and timely and accurate detection
is critical in preventing high-risk events such as sudden cardiac death. Despite the attention that automatic
detection of arrhythmias based on electrocardiogram (ECG) has received, static features used in traditional
methods fail to adequately describe the various weak changes of the ECG, resulting in significant but weak
pathological information being overlooked. Although deep learning (DL) extracted features demonstrate
efficiency in arrhythmia classification, the interpretability of DL methods remains challenging. In this study,
we propose a novel and efficient interpretable feature for arrhythmia classification, heartbeat dynamics.
It models morphological changes in the heartbeat, and is more sensitive to weak heartbeat variations, and
reflects underlying dynamical changes throughout the cardiac cycle at the electrophysiological level. To eval-
uate its efficiency for arrhythmia classification, we conducted experiments on the MIT-BIH arrhythmia
database, using three classical classifiers: k-nearest neighbor (KNN), random forest (RF), and support vector
machine (SVM). Our proposed method achieves 99.41% accuracy, 99.10% precision, 98.84% recall, and
0.9897 F1 score with KNN as the classifier, comparable to or better than most DL-based methods. These
results indicate that heartbeat dynamics has a strong ability to discriminate between different classes of
heartbeats. We anticipate that the heartbeat dynamics feature will enhance the generalization capacity of the
arrhythmia detection algorithm when integrated with other static features.

INDEX TERMS ECG, heartbeat dynamics, arrhythmia detection, deterministic learning.

I. INTRODUCTION
Cardiovascular disease is a leading disease that threatens
human life and health worldwide. The annual report on car-
diovascular health and diseases in China (2021) shows that
the prevalence of cardiovascular disease in China is rising,
with a projected 330 million people suffering from cardiovas-
cular disease [1]. More importantly, cardiovascular disease is
the leading cause of death in the population, accounting for 2
out of every 5 deaths. Statistics show that more than 80%
of cardiovascular patients suffer from arrhythmias, which
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can easily lead to stroke, sudden cardiac death and other
malignant events. Therefore, timely and rapid detection of
arrhythmias and intervention before serious events occur is
critical to prevent high-risk events such as heart attack, stroke
and sudden cardiac death.

As an electrophysiological signal capable of characteriz-
ing the state of the heart, ECG signals are essential for the
detection and diagnosis of cardiovascular diseases. Because
ECG is non-invasive, cost-effective and simple, it is the most
commonly used clinical tool to target arrhythmias. How-
ever, this process requires cardiologists to observe long-term
ECG recordings, which are undoubtedly subjective, time-
consuming and labor-intensive. Therefore, computer-aided
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automatic ECG signal classification systems have emerged
as an essential aid for arrhythmia analysis.

Machine learning, the most active research area of artifi-
cial intelligence, has been widely and successfully applied
to the analysis of medical signals such as ECG and elec-
troencephalogram [2], [3]. In the field of ECG analysis,
researchers have proposed various methods for automatic
detection of cardiac arrhythmias using traditional machine
learning approaches. Typically, these methods involve three
main steps: signal preprocessing, feature extraction, and pat-
tern recognition and classification. Feature extraction plays a
crucial role in improving the performance of heartbeat classi-
fication. Popular feature extraction techniques include princi-
pal component analysis (PCA) [4], [5], [6], wavelet transform
(WT) [7], [8], [9], discrete wavelet transform (DWT) [10],
[11], [12], independent component analysis (ICA) [13],
[14], and additional hand-crafted features [15], [16], [17],
[18], [19], [20], [21], [22]. For example, Martis et al. [5], [6]
used PCA for feature extraction and compression in ECG
analysis. Abdelazez et al. [9] used WT for feature extrac-
tion from compressed ECG signals and constructed an AF
detector using random forests. Rai et al. [10] introduced
another feature extraction approach combining DWT with
morphology and achieved good performance when combined
with an artificial neural network (ANN) classifier. Specially,
WT has been considered particularly suitable for ECG sig-
nal analysis due to the inherent non-stationarity of ECG
signals [23]. Li et al. [13] proposed a novel multi-domain
feature extraction method combining kernel ICA and WT,
followed by PCA for feature compression. In [14], ICA was
employed for the purpose of dimensionality reduction and
feature extraction of the ECG signal Hand-crafted features are
usually selected through experience. Those features usually
include entropy-based features [15], linear and nonlinear fea-
tures [16], higher order spectra [17], [18], [19], higher order
statistics [20], [24], statistical features [21], [22], and sparse
features [25].

Once features have been extracted from ECG arrhythmia
signals, classification models can be developed to iden-
tify different types of arrhythmia. Support vector machines
(SVM) [26], [27], [28], [29], [30] and ANN [10], [31] are
two popular algorithms commonly used for classification.
For example, Mondejar et al. [29] proposed a method for
automatic classification of ECG signals by combining sev-
eral SVMs. Geweid et al. [30] used a hybrid approach with
dual SVMs to detect atrial fibrillation. Multilayer perceptron
(MLP) is the most widely used ANN architecture for arrhyth-
mia classification. Rai et al. [10] used back-propagation
neural networks, feed-forward networks andMLPs to classify
ECG signals into normal and abnormal classes. In another
study [31], arrhythmias were detected by using feature vec-
tors as input to the MLP model.

The remarkable success of DL in machine vision,
image recognition, and speech recognition has prompted
extensive research exploring its potential in arrhythmia

classification [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41]. For instance, Hannun et al. [32] developed a deep
neural network (DNN) capable of classifying 12 differ-
ent rhythm classes. Khan et al. [34] implemented a long
short-term memory network (LSTM) DL approach for
arrhythmia classification. In [33], a 1D-convolutional neu-
ral network (CNN) model was proposed for the automatic
classification of cardiac arrhythmia. Li et al. [37] proposed
a 2D-CNN model that employs overall feature maps of
heartbeats generated through empirical modal decomposi-
tion for arrhythmia classification. Recurrent neural networks
(RNNs) were employed for differentiating between normal
and abnormal heartbeats in [39], whereas [41] presented an
improved deep residual network for arrhythmia classification.
Additionally, DenseNet [42] and ResNet [43] have also been
employed in the classification of arrhythmias.

DL-based approaches integrate feature extraction and clas-
sification as a whole, rather than explicitly describing them as
two separate modules. DL models can automatically identify
the features needed for classification by using large amounts
of ECG data. However, the automatic learning of features
from raw data rather than doing it manually makes the inter-
pretability of DL methods still a general challenge, which is
especially critical for medical applications, as the mysterious
process may not be accepted by medical professionals [44].
More importantly, although researchers have continued to use
various advanced DL models for arrhythmia classification,
there has been no qualitative improvement in classification
performance. This suggests that DL-based methods may have
reached their limits. Moreover, DL-based approaches suf-
fer from complex network structures with a large number
of parameters, which limits their deployment to wearable
devices with limited memory and power consumption.

Since it is difficult to make further improvements in
arrhythmia classification by static feature-based machine
learning methods and DL-based methods, it is necessary to
study it from a different perspective. Indeed, ECG is a class of
morphologically variable temporal patterns that are not ade-
quately described by static features alone. The ECGdynamics
proposed in the literature [45] is a fresh perspective charac-
terization of the ECG that provides a more comprehensive
description of the ECG than static features. It is the accurate
modeling of the various morphological changes in the ECG
that reflect the depolarization and repolarization processes of
cardiomyocytes [46], [47], [48], which makes it interpretable.
The main purpose of this paper is to evaluate the abil-

ity of heartbeat dynamics to discriminate between differ-
ent classes of heartbeats. It is expected that the heartbeat
dynamics feature will enhance the generalization capacity
of the arrhythmia detection algorithm when integrated with
other static features. We first preprocess the single-lead ECG
with denoising, R-peak detection, and heartbeat segmenta-
tion. Then deterministic learning (DetL) is applied to extract
heartbeat dynamics. To reduce the consumption of computa-
tional resources, we use principal component analysis (PCA)
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methods to reduce the dimensionality of the extracted heart-
beat dynamics and obtain low-dimensional feature vectors for
classification. In the classification stage, we use three sim-
ple and classical classifiers, KNN, SVM and RF to classify
heartbeats.

In contrast to other machine learning based approaches, the
highlights of this study can be summarized as follows.

• Heartbeat dynamics is a novel way to describe ECG
more comprehensively and is used as an exclusive clas-
sification feature.

• It is interpretable compared to DL-extracted features as
it is the accurate modeling of various morphological
changes in the ECG.

• It has good discriminating for different classes of heart-
beats, making it easy to deploy into wearable devices
with simple classifiers.

The rest of the paper is organized as follows. Section II
is devoted to the materials and methods, including the
databases and techniques used in this paper. Section III
presents the experimental results. In Section IV, we discuss
and analyze the experimental results. A conclusion is given
in Section V.

II. MATERIALS AND METHODS
A. MATERIALS
1) MIT-BIH ARRHYTHMIA DATABASE
This study evaluated the classification performance of the
proposed method on the benchmark MIT-BIH arrhythmia
database [49]. It was created in 1980 to motivate the develop-
ment of techniques for automatic detection and classification
of arrhythmia. 48 ECG recordings taken from 47 individuals
are available in this database. Each recording contains two-
lead (40 recordings: modified lead II and lead V1, 2 record-
ings: modified lead II and lead V5; 2 recordings: modified
lead II and lead V2; 2 recordings: lead V5 and lead V2;
1 recording: lead V5 and modified lead II; 1 recording: mod-
ified lead II and V4) 30-minute ECG signals. In the exper-
imental section, heartbeat classification experiments based
on single-lead ECGs will be performed on each lead ECG
separately, and the two leads will be denoted as lead 1 and
lead 2 in the following for simplicity. The ECG recordings
were independently annotated by at least two cardiologists
with temporal information and heartbeat classes, and the
entire database has approximately 109000 manually anno-
tated heartbeat labels.

2) DETERMINISTIC LEARNING
The deterministic learning (DetL) theory was introduced
in 2007 by Wang and Hill [50] and focuses on problems such
as accurate identification and rapid temporal pattern recog-
nition. In DetL theory, temporal patterns are time-varying
regression trajectories typically generated by the following
dynamical system:

ẏ = F(y; p), y(t0) = y0 (1)

where y = [y1, . . . , yn]T ∈ Rn is the system state with
regression characteristics, p is a unknown parameters vector,
and F(y; p) = [f1(y; p), . . . , fn(y; p)]T is the unknown system
dynamics.

From the dynamical system equation (1), it can be seen that
the system state y is completely determined by the system
dynamics F(y; p). In other words, the dynamics of the sys-
tem is the most essential characteristic of such a dynamical
system. To achieve an accurate identification of the unknown
system dynamics F(y; p), we use the following estimation
system:

˙̂yi = −ci(ŷi − yi) + ŴiSi(y), (2)

where ŷi is the estimator state, yi is the system state of
the dynamical system (1), ci > 0 is the design constant,
ŴiSi(y) is the RBF network for approximating the unknown
dynamics fi(y; p) of the dynamical system (1), with Ŵi =

[ŵi1, . . . , ŵiN ]T ∈ RN and Si(y) = [si1(∥ y−ξ1 ∥), . . . , siN (∥
y− ξN ∥)]T , sij(·) is the Gaussian function, ξj (j = 1, . . . ,N )
are distinct centers.

The weight estimate Ŵi is updated according to the follow-
ing law:

˙̂Wi = −0iSi(y)ỹi − σi0iŴi, (3)

where 0i = 0T
i > 0, ỹi = ŷi − yi and σi > 0 is a small

constant.
DetL theory has shown unknown dynamics fi(y; p) can be

accurately identified along almost all temporal patterns with
regression trajectories [50], [51], [52] and expressed as the
following equation:

fi(y; p) = W̄iSi(y) + ϵi, (4)

where W̄i is a constant weight vector, and ϵi is the approx-
imation error. Thus, the system dynamics F(y; p) can be
accurately modeled and expressed as follows:

F(y; p) = W̄S(y) + ϵ (5)

where W̄S(y) = [W̄1S1(y), · · · , W̄nSn(y)]T , ϵ =

[ϵ1, · · · , ϵn]T . That is, the system dynamics is accurately
identified and stored in W̄S(y), which can be directly used
for classification and recognition of temporal patterns.

B. METHODS
In this subsection, we outline the proposed method in three
main steps. The first step is to preprocess the ECG signal,
which involves both denoising and segmenting the heartbeat.
Second, DetL theory is used to extract heartbeat dynamics.
Third, the extracted heartbeat dynamics are used as input to
KNN, SVM, and RF classifiers for heartbeat classification.

1) PREPROCESSING
The ECG is susceptible to contamination by various noises
during the measurement. Removing such noise is cru-
cial for accurate recognition and classification. We prepro-
cessed the ECG by using the approach proposed by [53].
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All ECG signals in the MIT-BIH database were first prepro-
cessed using a 200-ms width median filter to remove P-wave
and QRS complexes, followed by a 600-ms width median
filter to remove T-wave. The resulting signal is then treated
as a baseline, which is subsequently subtracted from the raw
ECG to yield the baseline corrected ECG. A 12th-order FIR
low-pass filter with a cutoff frequency of 35 Hz was then
used to remove power lines and high-frequency noise from
the baseline corrected ECG.

In this paper, a window of -300 ms to 400 ms around
the R-peak is chosen as a heartbeat, where the location
of the R-peak is provided by the annotation files of the
MIT-BIH arrhythmia database. The sampling frequency of
the MIT-BIH database is 360 HZ, so a heartbeat contains
252 sampling points. Additionally, each heartbeat is normal-
ized to zero mean and unit variance by subtracting the mean
and dividing by the standard deviation.

2) HEARTBEAT DYNAMICS EXTRACTION
The ECG signal is a comprehensive representation of the
cardiac electrical conduction system at the surface of the body
and is a quasi-periodic time-varying signal, which enables its
accurate identification using DetL theory. To describe the var-
ious changes in the ECG, the most commonly used features
are the morphological features of the ECG. Morphological
features essentially reflect the depolarization and repolariza-
tion processes of cardiomyocytes, such as changes in the QRS
waves that reflect changes in the cardiomyocyte depolariza-
tion and conduction of signals to the rest of the heart and
changes in the ST segments that reveal abnormalities in the
cardiomyocyte repolarization process. Heartbeat dynamics is
the accurate modeling of various morphological changes in
the ECG. In this way, it is interpretable. It essentially models
the pattern of electrical activity associated with myocardial
electrical excitation, characterizing the rate and amplitude
of myocardial electrical excitation. In contrast to traditional
morphological features, heartbeat dynamics provides a more
comprehensive and detailed description of cardiac electrical
activity and is more sensitive to various small morphological
changes in the heartbeat.

To extract the dynamics of the heartbeat, we formulate the
complex, high-dimensional, continuous nonlinear dynamical
system of the cardiac electrical conduction system in the
following form:

Ė(t) = F(E(t); p) (6)

whereE(t) = [e1(t), · · · , en(t)]T is the ECG signal measured
at the body surface, F(E(t)) = [f1(E(t)), · · · , fn(E(t))]T is
the system dynamics, which uniquely determines the mor-
phology of the ECG signal, and n is the number of leads, p is
the parameter vector. For a heartbeat of a single-lead ECG
signal (i.e., n = 1), the dynamical system that generated it
can be expressed as follows:

ėH (t) = f (eH (t); pe) (7)

where eH (t) is a heartbeat of the single-lead ECG signal,
f (eH (t); pe) is the unknown system dynamics, and pe is a
unknown parameter vector.

To extract the dynamics of heartbeat eH (t), we first con-
struct the following estimation system:

˙̂eH (t) = −c(êH (t) − eH (t)) + ŴS(eH (t)) (8)

where êH (t) is the estimation of heartbeat eH (t), ŴS(eH (t)) is
the RBF network for approximating the unknown dynamics
f (eH (t); pe) and c = 5.
The weight estimate Ŵ is updated using the following law:

˙̂W = −0S(eH (t))ẽH (t) − σ0Ŵ , (9)

where 0 = 20, ẽH (t) = êH (t) − eH (t) and σ = 0.01.
According to the DetL theory, the heartbeat dynamics

f (eH (t)) of a single-lead ECG can be accurately modeled and
expressed in the following form:

f (eH (t)) = W̄S(eH (t)) + ϵ (10)

where W̄ is the constant weight of RBF network and ϵ is the
modeling error that can be arbitrarily small.

According to equation (7), it can be observed that the
waveform of eH (t) is completely determined by the heartbeat
dynamics, denoted as f (eH (t)). In contrast, the various fea-
tures extracted by existing methods, including linear features,
nonlinear features and features extracted by DNN, are all
derived from the heartbeat signal eH (t). As a result, heartbeat
dynamics provide a more fundamental description than the
various features extracted by existing methods.

The extracted heartbeat dynamics has the same dimension
as the heartbeat signal, which is also a 1×252 feature vector.
Figure 1 shows the heartbeat dynamics of the five classes
extracted using DetL theory. It visually demonstrates that
the dynamics of different classes of heartbeats are highly
discriminative.

3) PRINCIPAL COMPONENT ANALYSIS
As mentioned above, the extracted heartbeat dynamics is a
1 × 252 feature vector. PCA is used to reduce the dimen-
sionality of heartbeat dynamics to reduce the computational
resource consumption. It is a mathematical algorithm that
reduces the dimensionality of the data while retaining most
of the variation in the dataset. It accomplishes this reduction
by identifying directions, called principal components, along
which the variation in the data is maximal [54]. The computa-
tion of principal components involves calculating the covari-
ance matrix of the data, decomposing it into eigenvalues,
sorting the eigenvectors in decreasing order of eigenvalues,
and finally projecting the data into a new basis defined by
principal components by performing an inner product of the
original signal and the sorted eigenvectors.

4) CLASSIFIERS
(1) K-Nearest Neighbor: TheKNNalgorithm is one of the

simplest methods of all machine learning algorithms
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FIGURE 1. The heartbeat dynamics of five classes heartbeat.

that can be used for classification and regression prob-
lems. It classifies a sample by estimating the majority
vote of its neighbors. Since it is a non-parametric
algorithm, which makes it very easy to implement,
it remains one of the most popular algorithms for pat-
tern classification.
A formal notation for KNN in classification prob-
lems is as follows. Let Xtr and Xte be the training

and test sets, respectively. Each sample xi is a vector
(x1i , x

2
i , . . . , x

D
i ), where x ji (j = 1, 2, · · · ,D) is the

value of the j-th feature of the i-th sample. The class
of each sample in Xtr is known, while the class of each
sample in Xte is unknown. For a sample xt in Xte, the
KNN algorithm calculates the distance between this
sample and all samples of Xtr , and selects the k closest
samples in Xtr to be sorted by distance from the largest
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to the smallest. The class of xt is then determined by
voting on the class labels of its k nearest neighbors.

(2) Support vector machine: SVM is a generalized linear
classifier that performs binary classification in a super-
vised manner. The main objective of SVM is to deter-
mine an optimal hyperplane to separate two classes of
samples. The optimal hyperplane refers to the decision
boundary that achieves the minimum misclassification
error during the training phase. The determination of
the decision boundary is transformed into a convex
quadratic optimization solution problem. To maximize
the separation, the SVM uses the part of the training
samples closest to the optimal decision boundary as
the support vector. For nonlinear classification prob-
lems, Cortes and Vapnik [55] introduced soft marginal
and kernel trick methods to address the limitations of
linear SVMs. In soft-margin SVM, slack variables are
added to handle nonlinearly separable data. In kernel
SVM, kernel functions are used to map samples from
a low-dimensional input space to a high-dimensional
space such that samples are linearly separable in the
new feature space.

(3) Random forest: RF is an ensemble learning method
developed by Breiman [56] for solving classifica-
tion and regression problems. Ensemble learning is a
machine learning scheme that improves accuracy by
integrating multiple models to solve the same problem.
In other words, the integration of multiple classifiers
reduces the classification error, especially in the case
of single-classifier instabilities. Based on the classifi-
cation results of multiple classifiers, a voting scheme
is designed to assign a label to the samples to be clas-
sified. The commonly used voting method is majority
voting due to its simplicity and effectiveness. It assigns
a label to each unlabeled sample with the highest num-
ber of votes.
Boosting and bagging are two widely used types of
ensemble learning methods. Boosting is the process
of constructing a sequence of models, each of which
attempts to correct the errors of the previous model in
that sequence. Bagging is the best-known representa-
tive of parallel integration learning methods [57] and
aims to improve the stability and accuracy of inte-
grated models while reducing variance. RF was the
first successful Breiman’s bagging sampling method
that combined bagging, random decision forests, and
feature random selection. It has been widely adopted
and applied as a standard classifier to a variety of
prediction and classification tasks, such as those in
bioinformatics [58], computer vision [59].

III. EXPERIMENTAL
In this section, we conduct experiments based on the
MIT-BIH arrythmia database. All ECG recordings from the
MIT-BIH arrhythmia database were considered. It is impor-
tant to note that although the database contains 15 classes of

heartbeats, there is a severe imbalance in the distribution of
instances across these classes. In particular, five classes of
heartbeats have more than 7000 samples each, with the nor-
mal beat class having more than 70000 samples. In contrast,
some classes of heartbeats contain only a few dozen or even
a few samples, posing a challenge in capturing discriminative
features for accurate classification of these minority heartbeat
classes. Therefore, following the approach of most existing
arrhythmia classification studies, this study focuses on the
five classes with the highest number of samples for clas-
sification experiments. The classes and their numbers are
as follows: normal beat: 75020; left bundle branch block
(LBBB) beat: 8072; right bundle branch block (RBBB) beat:
7255; premature ventricular contraction (PVC): 7124; paced
beat (PB): 7130. To more adequately demonstrate the dis-
criminative power of heartbeat dynamics, we conduct exper-
iments on the original dataset, the balanced datasets after
undersampling and oversampling, respectively.

The following four performance metrics: precision, recall,
accuracy and F1-score are selected to evaluate the proposed
method, and the corresponding formulas are given as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

F1 − score =
2 × Precision × Recall
Recall + Precision

where TP represents the true positive counts, TN represents
the true negative counts, FP represents the false positive
counts and FN represents the false negative counts.

A. EXPERIMENTS ON ORIGINAL HEARTBEAT DATASET
In this subsection, we conduct experiments on the original
heartbeat dataset, which is an imbalanced dataset, to esti-
mate the classification performance using heartbeat dynamics
as the exclusive classification feature. Since the heartbeat
dynamics is a 1 × 252 vector, we use PCA to reduce the
dimensionality of the heartbeat dynamics to improve the
real-time performance of the algorithm. As the first 15 prin-
cipal components already contain about 92% information of
the heartbeat dynamics, the heartbeat dynamics is reduced as
a 1 × 15 feature vector, which can not affect the classifica-
tion performance and can also avoid the overfitting problem
during training. In the text below, the classification feature
used in all experiments is the 1 × 15 feature vector after
dimensionality reduction of the heartbeat dynamics and are
not described anymore.

In the following experiments, we choose three classical
and simple classifiers, KNN, SVM and RF, to validate
the effectiveness of heartbeat dynamics for heartbeat clas-
sification. The three classifiers are direct calls from the
machine learning library scikit-learn, and all arguments are
default without tuning and optimization. To give the reader a
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more intuitive understanding of these parameters, we present
the default values of some main parameters for the three
classifiers. KNN: n_neighbours=5, weights=‘uniform’,
algorithm=‘auto’, leaf_size=30, p=2, metric=‘minkowski’.
SVM: C=1.0, kernel=‘rbf’, degree=3, gamma=‘auto’,
shrinking=True, probability=False, class_weight=None.
RF: n_estimators=100, criterion=‘gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_
fraction_leaf=0.0, max_features=‘sqrt’, bootstrap=True,
class_weight=None. The parameters of the three classi-
fiers are kept the same in all experiments. Therefore, the
description of these parameters is omitted in the following
sections.

To investigate the impact of the test set size on classi-
fication performance, we set the test set size to 0.2, 0.5,
and 0.8. Table 1 presents the classification results accord-
ingly. Table 1 shows that KNN is the best classifier among
the three, achieving 99.41%, 99.35% and 99.07% accuracy on
lead 1 for the three experiments with different test set sizes.
The classification metrics of each classifier decrease slightly
as the test set size grows (i.e. training set size decreases). For
example, the F1-score using KNN is 0.9895 and 0.9837 at
test set sizes of 0.2 and 0.8, respectively, a difference of
only 0.58 percentage points. This clearly shows that heart-
beat dynamics has a good ability to discriminate between
heartbeats and achieves convincing classification results even
with a training set to test set ratio of 2:8. Moreover, the
classification performance on lead 1 performs better than that
on lead 2. The main reason is that the second channel of
the 48 ECG recordings was measured from multiple differ-
ent leads (lead V1: 40 recordings; lead V2: 4 recordings;
lead V4: 1 recording; lead V5: 2 recordings; modified lead II:
1 recording).

To show the classification details for each heartbeat class,
we give the classification confusion matrix (Figure 2) and the
classification report (Table 2) using KNN as the classifier at
the test set size of 0.2. It can be seen that the classification
performance for PVC is relatively poor. On lead 1, 50 PVCs
are misclassified as normal heartbeats, with a recall of only
95.90%, about 3.5 percentage points lower than the recall for
the other heartbeat classes. The main reason for this is that the
patterns among the PVC heartbeats can significantly differ
from each other [60], [61] makes the classification of PVC
more challenging. The poor classification performance of
PVC heartbeats affects the overall classification performance
of this experiment.

Another 5-fold cross-validation experiment was conducted
on the original heartbeat dataset with KNN as the classifier
to avoid classification bias due to the choice of training
heartbeats, and the results are shown in Figure 3. Figure 3
shows that the variation of all classification metrics across the
fold experiments is small, indicating that the KNN classifier
using heartbeat dynamics has good generalization ability. The
mean values of accuracy, precision, recall and F1-score for
the 5-fold cross-validation experiment on lead 1 (lead 2)

FIGURE 2. Confusion matrix for KNN classification on the original
heartbeat dataset: Test set size of 0.2.

are 99.41%, 99.10%, 98.84% and 0.9897 (99.11%, 98.61%,
98.23%, and 0.9841), respectively.

B. EXPERIMENTS ON BALANCED HEARTBEAT DATASET
The heartbeat dataset suffers from a class imbalance problem.
It is a common problem in various fields (e.g., text classifi-
cation, bioinformatics, medical diagnosis), which commonly
affects the performance of both learning and classification
algorithms [62]. Resampling is the most common approach to
address class imbalance, either by oversampling the majority
class or undersampling the minority class. To investigate the
impact of class imbalance on heartbeat classification per-
formance when using heartbeat dynamics as the exclusive
classification feature, the edited nearest neighbours (ENN)
method [63] and synthetic minority oversampling technique
(SMOTE) [64] are performed on the extracted heartbeat
dynamics to balance the distribution of heartbeat classes.
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TABLE 1. Classifier performance on the original heartbeat dataset, with macro-averages for metrics (excluding accuracy) across all heartbeat classes.

TABLE 2. KNN classification report on the original heartbeat dataset: Test set size of 0.2, where ‘‘support’’ represents the total number of samples in the
test set for the respective class.

TABLE 3. Distribution of different classes of heartbeats in the training set, undersampled training set and test set.

1) UNDERSAMPLING
ENN is an undersampling method that removes data that
are different from most of the nearest neighbors (i.e., noisy
data). In this subsection, we will use the ENN method on the
extracted heartbeat dynamics of the training set to balance the
distribution of the heartbeat classes. As in the experiments on
the original heartbeat dataset, we set the size of the test set to
0.2, 0.5, and 0.8. Table 3 displays the distribution of different
classes of heartbeats in the training set, undersampled training
set, and test set.

Table 4 shows the classification performance of KNN,
SVM, and RF classifiers with heartbeat dynamics as input

features on the balanced heartbeat dataset after using the ENN
method. Comparing Tables 1 and 4, we find that: (1) for the
KNN classifier, the classification metrics for all experiments
are lower than those on the original heartbeat data; (2) for
the RF classifier, all classification metrics also decrease for
all experiments except for the slight improvement in classifi-
cation recall, accuracy, and F1-score on lead 2 with a test set
size of 0.5; (3) for the SVMclassifier, there is an improvement
in recall for some experiments, but the overall classification
performance also decreases. Moreover, the classification per-
formance of KNN on the undersampled heartbeat dataset is
still the best among the three classifiers.
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TABLE 4. Classifier performance on the undersampled heartbeat dataset, with macro-averages for metrics (excluding accuracy) across all heartbeat
classes.

TABLE 5. KNN classification report on the undersampled heartbeat dataset: Test set size of 0.2, where ‘‘support’’ represents the total number of samples
in the test set for the respective class.

FIGURE 3. Classification results of a 5-fold cross-validation experiment:
KNN on the original heartbeat dataset.

To understand the details of the change in classification
performance, Table 5 and Figure 4 show the classification

report and classification confusion matrix using KNN as the
classifier on the undersampled heartbeat dataset with a test
set size of 0.2. Comparing Tables 2 and 5, we can see a
slight decrease in most of the classification metrics across
all classes of heartbeat, making the overall classification
performance on the undersampled heartbeat dataset lower
than that on the original heartbeat dataset. Among them, the
classification metrics for PVCs are somewhat special, with a
slight increase in classification precision for PVCs on lead 1
and lead 2, but a larger decrease in recall compared to the
increase in precision, resulting in a decrease in F1-score as
well. We believe that this is mainly because heartbeat dynam-
ics are more sensitive to noise, causing some heartbeats of
one class to fall in clusters of other classes in the dynamics
space. Undersampling the heartbeat dynamics of the training
set may discard the training samples that are closest to some
samples in the test set.

To avoid classification bias due to the choice of training
heartbeats, we construct a 5-fold cross-validation experiment
on the undersampled heartbeat dataset. The classification per-
formance metrics under different folds are shown in Figure 5.
It can be found that there are minor differences in the per-
formance metrics for different folds. The mean values of
accuracy, precision, recall and F1-score for the 5-fold cross-
validation experiment on lead 1 (lead 2) are 99.35%, 98.92%,
98.85% and 0.9888 (99.04%, 98.29%, 98.29%, and 0.9829),
respectively.

2) OVERSAMPLING
In this subsection, we attempt to address the class imbal-
ance problem using an oversampling approach. SMOTE is
employed to balance the heartbeat classes. SMOTE is an
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TABLE 6. Distribution of different classes of heartbeats in the training set, oversampled training set and test set.

TABLE 7. Classifier performance on the oversampled heartbeat dataset, with macro-averages for metrics (excluding accuracy) across all heartbeat classes.

oversampling strategy that combines existing and created
synthetic samples. However, some noisy data can be gen-
erated when oversampling with the SMOTE method. Thus,
the oversampled data needs to be cleaned. Here we choose
the ENN method to remove the noisy data generated during
oversampling. As in the experiments on the original and
undersampled heartbeat datasets, we set the size of the test
set to 0.2, 0.5, and 0.8. Table 6 displays the distribution of
different classes of heartbeats in the training set, oversampled
training set, and test set.

Table 7 presents the classification results for KNN, SVM
and RF with different test set sizes on the oversampled
heartbeat dataset. Comparing Tables 1 and 7, it can be seen
that recall increases for all experiments on the oversampled
heartbeat dataset, but precision decreases more, resulting
in a decrease in both accuracy and F1-score. In addition,
it can be found in comparing Tables 4 and 7 that the overall
classification performance on the oversampled heartbeat
dataset is lower than that on the undersampled heart-
beat dataset. Furthermore, the overall classification per-
formance on the oversampled heartbeat dataset is lower
than that on the undersampled and original heartbeat
datasets.

Specially, to understand the details of the classification
performance change, we show the classification confusion
matrix (Figure 6) and the classification report (Table 8) with
KNN as the classifier at the test set size of 0.2. Comparing
Tables 2 and 8, we can see that on the oversampled heartbeat
dataset, the classification precision increases but the recall
decreases for normal heartbeats, while the opposite is true
for the remaining four minority classes of heartbeats, where
the classification recall increases but the precision decreases.
In particular, for PVCs, there is a large improvement in
classification recall, but also a large decrease in classification
accuracy. Taking the classification performance on lead 1
as an example, the classification precision for PVC on the
original and oversampled heartbeat dataset is 97.94% and
95.20%, respectively, and the classification recall is 95.90%
and 97.98%, respectively. We believe that this is because
the negative impact of the noisy data generated during the
oversampling process outweighs the positive impact of the
balanced treatment (using oversampling method) on the clas-
sification performance.

To avoid classification bias due to the choice of train-
ing heartbeats, we conduct a 5-fold cross-validation experi-
ment to further evaluate the classification performance using
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TABLE 8. KNN classification report on the oversampled heartbeat dataset: Test set size of 0.2, where ‘‘support’’ represents the total number of samples in
the test set for the respective class.

FIGURE 4. Confusion matrix for KNN classification on the undersampled
heartbeat dataset: Test set size of 0.2.

heartbeat dynamics as input features on an oversampled
heartbeat dataset. Figure 7 demonstrates the classification
results of the 5-fold cross-validation experiment. It can be
seen that all metrics have the same trend of variation across
different fold experiments. The mean values of accuracy,
precision, recall and F1-score for the 5-fold cross-validation
experiment on lead 1 (lead 2) are 99.22%, 98.12%, 99.29%
and 0.9870 (98.76%, 97.16%, 98.71%, 0.9791), respectively.

FIGURE 5. Classification results of a 5-fold cross-validation experiment:
KNN on the undersampled heartbeat dataset.

A comprehensive analysis of all experiments reveals that:
(1) For KNN classifier: Undersampling makes all classi-
fication metrics lower. Oversampling increases recall and
decreases accuracy, precision, and F1-score. The overall clas-
sification performance is highest on the original heartbeat
dataset and lowest on the oversampled heartbeat dataset;
(2) For RF classifier: Undersampling reduces all classifica-
tion metrics. Oversampling reduces classification precision,
but improves recall considerably, resulting in higher accu-
racy and F1-score. The overall classification performance is
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FIGURE 6. Confusion matrix for KNN classification on the oversampled
heartbeat dataset: Test set size of 0.2.

highest on the oversampled heartbeat dataset and lowest on
the undersampled heartbeat dataset; (3) For the SVM clas-
sifier: Undersampling improves recall, but precision, accu-
racy and F1-score all decrease. Oversampling considerably
reduces the precision and also highly improves the recall,
with a slight decrease in accuracy and F1-score. The overall
classification performance is highest on the original heartbeat
dataset and lowest on the oversampled heartbeat dataset;
(4) Using heartbeat dynamics as the classification feature,
KNN has the best classification performance among these
three classifiers. Figure 8 depicts classification metrics for
KNN, SVM, and RF with test set size 0.2 to visualize clas-
sification performance based on heartbeat dynamics on the
original, undersampled, and oversampled heartbeat datasets.

IV. DISCUSSION
Experimental results show that using heartbeat dynamics as
the exclusive classification feature achieves outstanding per-
formance for heartbeat classification. Although the original
heartbeat dataset suffers from data class imbalance issue,

FIGURE 7. Classification results of a 5-fold cross-validation experiment:
KNN on the oversampled heartbeat dataset.

a simple classifier KNN also achieves promising classifica-
tion performance with average accuracy, precision, recall and
F1-score of 99.41%, 99.10%, 98.84% and 0.9899. To investi-
gate the impact of class imbalance on classification perfor-
mance using heartbeat dynamics as classification features,
two methods, ENN and SMOTE, were selected to balance
the original heartbeat dataset.

While, experimental results show that the balanced treat-
ment of heartbeat dataset does not improve the performance
of heartbeat classification. This may be due to the fact that
some important data is lost during undersampling, leading to
underfitting. In the oversampling process, a large number of
minority class heartbeats are synthesized, which also contains
some noisy data, resulting inmisclassification of heartbeats at
the classification boundary. In other words, the effect of noisy
data on classification performance outweighs the effect of
class imbalance. From another perspective, heartbeat dynam-
ics is highly discriminative and algorithms employing it as
a classification feature are insensitive to the class imbalance
problem.

We directly compare the proposed method with several
state-of-the-art heartbeat classification methods to demon-
strate its advantage. Table 9 summarizes the experimental
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FIGURE 8. Comparison of classification performance on the original, undersampled and oversampled heartbeat datasets: Test set
size of 0.2.

results of several state-of-the-art methods for heartbeat classi-
fication using the MIT-BIH arrhythmia database. Compared
with other studies, the proposed method has the same level of
accuracy as the references [65] and [66]. The precision and
recall of the classification is only lower than that of the ref-
erence [65]. While our method’s classification performance
lags behind that reported in the literature [67], it is important

to note that our method utilizes only single-lead ECG signals,
which require comparatively less computational effort and
render it better suited for deployment on wearable devices.
In addition, the proposed method does not perform any
tuning operation on the parameters of the classifier. It con-
firms that heartbeat dynamics is a salient feature for heart-
beat classification, and heartbeat classification algorithms
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TABLE 9. Performance comparison of the proposed method with state-of-the-art studies.

based on heartbeat dynamics will have better generalization
capabilities.

Compared with existing related studies, this study has the
following advantages or features: (1) heartbeat dynamics is a
new method to describe ECG more comprehensively and is
used as an exclusive classification feature; (2) it overcomes
the difficulties of static feature combination and optimization
in traditional machine learning approaches; (3) it is inter-
pretable compared with DL-extracted features; (4) heartbeat
dynamics has good discriminating for different classes of
heartbeats, making it easy to deploy into wearable devices
with simple classifiers; and (5) it is insensitive to the case of
class imbalance.

However, since ECG is susceptible to various noise con-
tamination, even with various denoising methods, it is not
guaranteed to obtain a completely clean heartbeat signal.
While the heartbeat dynamics accurately reflect the dynam-
ical changes in the ECG, it is more sensitive to various
anomalies in the depolarization and repolarization processes
of the cardiocytes. Thus, it is also more sensitive to noise,
which can affect the classification performance of heartbeats.
In the next research, obtaining purer ECG signals and weak-
ening the effect of noise on heartbeat dynamics are important
directions for our efforts.

V. CONCLUSION
In this paper, we propose a different heartbeat classification
feature called heartbeat dynamics. It provides a comprehen-
sive characterization of the heartbeat in a new way that is
more sensitive to weak changes in the heartbeat. We eval-
uate the ability of heartbeat dynamics to classify heartbeats
using three classical, simple, and traditional classifiers, KNN,
SVM, and RF. We achieved 99.41% accuracy, 99.10% preci-
sion, 98.84% recall, and 0.9897 F1-score with KNN as clas-
sifier on the original heartbeat dataset. Experimental results
on both original and balanced datasets show that the heart-
beat dynamics has a strong ability to discriminate between
different classes of heartbeats and is insensitive to whether
the data is balanced or not. We anticipate that the heartbeat
dynamics feature will enhance the generalization capacity

of the arrhythmia detection algorithm when integrated with
other static features.

As mentioned in the introduction section, the classifica-
tion performance of DL models has fundamentally reached
its limit and it is necessary to investigate feature extraction
from a different perspective. Heartbeat dynamics provides
an adequate characterization of heartbeats from a different
perspective. In the next study, we intend to combine the
heartbeat dynamics with the DL method and fuse it with the
features extracted from the heartbeat by the DL model. This
is expected to further improve the performance of arrhythmia
classification.
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