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ABSTRACT Shadows are frequently encountered natural phenomena that significantly hinder the perfor-
mance of computer vision perception systems in practical settings, e.g., autonomous driving. A solution to
this would be to eliminate shadow regions from the images before the processing of the perception system.
Yet, training such a solution requires pairs of aligned shadowed and non-shadowed images which are difficult
to obtain. We introduce a novel weakly supervised shadow removal framework UnShadowNet trained using
contrastive learning. It is composed of a DeShadower network responsible for the removal of the extracted
shadow under the guidance of an Illumination network which is trained adversarially by the illumination
critic and a Refinement network to further remove artefacts. We show that UnShadowNet can be easily
extended to a fully-supervised set-up to exploit the ground-truth when available.UnShadowNet outperforms
existing state-of-the-art approaches on three publicly available shadow datasets (ISTD, adjusted ISTD, SRD)
in both the weakly and fully supervised setups.

INDEX TERMS Shadow removal, weakly-supervised learning, contrastive learning.

I. INTRODUCTION
Shadows are a common phenomenon that exists in most
natural scenes. It occurs due to inadequate illumination that
makes part of the image darker than the other region of
the same image. It causes a significant negative impact on
the performance of various computer vision tasks such as
object detection, semantic segmentation, and object track-
ing. Image editing [1] using shadow matting is one of the
common ways to remove shadows. Shadow detection and
correction can improve the efficiency of the machine learn-
ing model for a broad spectrum of vision-based problems
such as image restoration [2], satellite image analysis [3],
information recovery in urban high-resolution panchromatic

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

satellite images [4], face recognition [5], and object detec-
tion [6]. In this work, we focus on natural images captured in
a terrestrial setting, such as may be obtained by commercial
devices and, particularly, automotive cameras.

Shadows are prevalent in almost all images in automotive
scenes. The complex interaction of shadow segments with the
objects of interest such as pedestrians, roads, lanes, vehicles,
and riders makes the scene understanding challenging. Addi-
tionally, it does not have any distinct geometrical shape or
size similar to soiling [7], [8]. Thus, they commonly lead to
poor performance in road segmentation [9], [10], pedestrian
pose estimation [11], [12], [13], segmentation [14], [15] and
trajectory prediction [16].Moving shadows can be incorrectly
detected as a dynamic object in background subtraction [17],
motion segmentation [18], depth estimation [19], [20] and
SLAM algorithms [21], [22]. The difficulty of shadows is
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FIGURE 1. The proposed shadow removal framework. The shadow image
and its shadow mask are subjected to pixel-wise product operation

⊗
to

obtain the shadow extracted which is fed as input to the DeShadower
(D) and Illumination network (I) simultaneously. D learns contrastively
from I and the resultant shadow-removed region is embedded via

⊕
in

the input image before feeding it to the Refinement network which
produces the final Shadow-free image. The end-to-end network is trained
in a weakly supervised manner.

further exacerbated in strong sun glare scenes where the
dynamic range is very high across shadow and glare
regions [23]. These issues lead to an incomplete or partial
understanding of 360◦ surrounding region of the vehicle
and bring major safety concerns for the passengers and
Vulnerable Road Users (VRU) while performing automated
driving [24]. Alternate sensor technologies like thermal cam-
era [25], [26] are resistant to shadow issues and can be used
to augment cameras.

In recent times, convolutional neural networks (CNNs)
based approaches have significantly surpassed classical
computer vision-based shadow removal techniques [27],
[28], [29], [30], [31], [32]. The majority of the recent
deep learning-based shadow removal approaches are
fully-supervised in nature. However, such an end-to-end
training setup requires paired data, namely shadow images
and their shadow-free versions of the same images. These
paired data are used to train CNNs [33], [34], [35]. Practically,
the paired data is difficult to obtain particularly when the
vehicle is moving fast. Some of the challenges include highly
controlled lighting sources, object interactions, occlusions,
and static scenes. Data acquisition through such a controlled
setting suffers from diversity and often reports color incon-
sistencies [31] between shadow and shadow-free reference
of the same image. Additionally, it is very difficult to capture
any High Dynamic Range (HDR) natural scene without any
presence of shadow for a shadow-free reference sample.

Some of the recent studies [36], [37], [38], [39], [40],
[41], [42], [43] address the above-mentioned challenges and
solve the shadow removal problem using unpaired data. They
studied the physical properties of shadows such as illumina-
tion, color, and texture extensively. Motivated by these recent
works, we propose an end-to-end trained weakly-supervised
architecture for shadow removal as illustrated in Figure 1.
In brief, we pass the shadow region of an input image to
the DeShadower network that is aided by the Illumination
network to contrastively learn to ‘‘remove’’ shadow from the
region by exploiting the illumination properties. It is followed
by the Refinement network that helps to remove any artifacts
and maintain the overall spatial consistency with the input
image and finally generates a shadow-free image.

Summary of Contributions and Distinctively Novel Fea-
tures of This Work:

1) We develop a novel weakly-supervised training scheme
namely UnShadowNet using contrastive learning to
build a shadow remover in unconstrained settings
where the network can be trained even without any
shadow-free samples.

2) We propose a contrastive loss-guided DeShadower net-
work to remove the shadow effects and a refinement
network for efficient blending of the artifacts from
shadow removed area.

3) We achieved state-of-the-art results on three public
datasets namely ISTD, adjusted ISTD, and SRD in both
constrained and unconstrained setups.

4) We perform extensive ablation studies with different
proposed network components, diverse augmentation
techniques, shadow inpainting, and tuning of several
hyper-parameters.

II. RELATED WORK
Removing shadows from images has received a significant
thrust due to the availability of large-scale datasets. In this
section, first, we briefly discuss the classical computer vision
methods reported in the literature. Then we discuss the more
recent deep learning-based approaches. Finally, we summa-
rize the details of contrastive learning and its applications
since it is a key component in our framework.

A. CLASSICAL APPROACHES
1) ILLUMINATION-BASED SHADOW REMOVAL
Initial work [2], [27], [44], [45] on removing shadows were
primarily motivated by the illumination and color prop-
erties of shadow region. In one of the earliest research,
Barrow et al. [46] proposed an image-based algorithm that
decomposes the image into a few predefined intrinsic parts
based on shape, texture, illumination, and shading. Later
Guo et al. [28] reported the simplified version of the same
intrinsic parts by establishing a relation between the shadow
pixels and the shadow-free region using a linear system.
Likewise, Shor et al. [47] designed a model based on the
illumination properties of shadows that makes a hard asso-
ciation between shadow and shadow-free pixels. In another
study, Finlayson et al. [48] proposed a model that generates
illumination invariant image for shadow detection followed
by removal. The main idea of this work is that the pixels
with similar chromaticity tend to have similar albedo. Further,
histogram equalization-based models performed quite well
for shadow removal, where the color of the shadow-free
area was transferred to the shadowed area as reported by
Vicente et al. [49], [50].

2) SHADOW MATTING
Porter and Duff [51] introduced a matting-based technique
that became effective while handling shadows that are less
distinct and fuzzy around the edges. The matting method
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was only helpful to some extent, as computing shadow matte
from a single image is difficult. To overcome this problem,
Chuang et al, [1] applied matting for shadow editing and then
transferred the shadow regions to the different scenes. Later
shadowmatte was computed from a sequence of video frames
captured using a static camera. Shadowmatte was adopted by
Guo et al. [28] and Zhang et al. [30] in their framework for
shadow removal.

B. DEEP LEARNING-BASED APPROACHES
1) SHADOW REMOVAL USING PAIRED DATA
Deep neural networks have been able to learn the properties
of a shadow region efficiently when the network is trained in
a fully supervised manner. Such setup requires paired data
which means the shadow and shadow-free versions of the
same image are fed as input to the network. Qu et al. [33]
proposed an end-to-end learning framework called Deshad-
ownet for removing shadows where they extract multi-scale
contextual information from different layers. This informa-
tion containing density and color offset of the shadows finally
helped to predict the shadow matte. The method ST-CGAN,
a two-stage approach proposed by Wang et al. [31], presents
an end-to-end network that jointly learns to detect and remove
shadows. This framework was designed based on conditional
GAN [52]. In SP+M-Net [32], physics-based priors were
used as inductive bias. The networks were trained to obtain
the shadow parameters and matte information to remove
shadows. However, these parameters and matte details were
pre-computed using the paired samples, and the same were
regressed in the network. Further, Hu et al. [35] designed a
shadow detection and removal technique by analyzing the
contextual information in image space in a direction-aware
manner. These features were then aggregated and fed into
an RNN model. In ARGAN [34], an attentive recurrent
generative adversarial network was reported. The generator
contained multiple steps where shadow regions were pro-
gressively detected. A negative residual-based encoder was
employed to recover the shadow-free area and then a discrim-
inator was set up to classify the final output as real or fake.
In another recent framework, RIS-GAN [53] used adversarial
learning shadow removal was performed using three dis-
tinct discriminators negative residual images. Subsequently,
shadow-removed images and the inverse illumination maps
were jointly validated.

2) SHADOW REMOVAL USING UNPAIRED DATA
Mask-ShadowGAN [36] is the first deep learning-based
method that learns to remove shadows from unpaired train-
ing samples. Their approach was conceptualized on Cycle-
GAN [54] where a mapping was learned from a source
(shadow area) to a target (shadow-free area) domain. Le and
Samaras [37] presented a learning strategy that crops the
shadow area from an input image to learn the physical prop-
erties of shadow in an unpaired setting. CANet [38] handles
the shadow removal problem in two stages. First, contex-
tual information was extracted from the non-shadow area

and then transferred the same to the shadow region in the
feature space. Finally, an encoder-decoder setup was used to
fine-tune the final results. LG-ShadowNet [39] explored the
lightness and color properties of shadow images and put them
through multiplicative connections in a deep neural network
using unpaired data. Cun et al. [40] handled the issues of
color inconsistency and artifacts at the boundaries of the
shadow-removed area using a Dual Hierarchically Aggre-
gation Network (DHAN) and a Shadow Matting Generative
Adversarial Network (SMGAN). Weakly-supervised method
G2R-ShadowNet [41] designed three sub-networks dedicated
to shadow generation, shadow removal, and image refine-
ment. Fu et al. [42] modeled the shadow removal problem
from a different perspective, which is auto-exposure fusion.
They proposed shadow-aware FusionNet and boundary-
aware RefineNet to obtain the final shadow-removed image.
Further in [43] a weakly-supervised approach was proposed
that can be trained even without any shadow-free samples.

3) MISCELLANEOUS
In video sequences, cast shadows are often misinterpreted as
moving objects. It was highlighted in [55] and considered
as insignificant shadows. These cast shadows were removed
in [56] by conditional random field. Liu et al. [57] investi-
gated the cast shadows in detail by proposing aGaussianMix-
ture Model at the pixel level in HSV color space followed by
a pre-classifier and finally using Markov Random Fields for
shadow removal. Patch-based illumination-invariant features
such as binary patterns of local color constancy (BPLCC)
and light-based gradient matching (LGM) were introduced
in [58]. These features were used to create two dictionaries
each for objects and shadows respectively. Each patch was
assigned to an independent class in each iteration based on the
distance from the reference dictionary. A feature fusion-based
approachwas followed in [59] where Spatio-Temporal Kernel
Density Estimation (ST-KDE) based model was proposed for
background modeling and Local Binary Pattern (LBP) fea-
tures of this model were fused with the Gabor features proba-
bilistically. Apart from shadow removal, shadow detection is
also a well-studied area, some of the recent works include [6],
[60], [61]. Inoue et al. [62] highlighted the problem of prepar-
ing a large-scale shadow dataset. They proposed a pipeline
to synthetically generate shadow/shadow-free/matte image
triplets.

C. CONTRASTIVE LEARNING
Learning the underlying representations by contrasting the
positive and the negative pairs have been studied earlier in
the community [63], [64]. This line of thought has inspired
several works that attempt to learn visual representations
without human supervision. While one family of works uses
the concept of a memory bank to store the class represen-
tations [65], [66], [67], another set of works develops on
the idea of maximization of mutual information [68], [69],
[70]. Recently, Park et al. [71] presented an approach for
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unsupervised image-to-image translation by maximizing the
mutual information between the two domains using con-
trastive learning. In our work, we adopt the problem of
shadow removal to solve it without using shadow-free ground
truth samples with the help of contrastive learning.

III. PROPOSED METHOD
In this work, we define the problem of shadow removal as
the translation of images from the shadow domain S ⊂

RH×W×C to shadow-free domain F ⊂ RH×W×C by uti-
lizing only the shadow image and its mask and alleviating
the use of its shadow-free counterpart. The proposed archi-
tecture UnShadowNet is illustrated in Figure 2. We briefly
summarize the high-level characteristics here and discuss
each part in more detail in the following subsections. In this
section, we present the overall architecture of our proposed
end-to-end shadow removal network, namely UnShadowNet.
The architecture can be divided into three parts: DeShad-
owerNetwork (D), IlluminationNetwork (I) and Refinement
Network (R). These three networks are jointly trained in a
weakly-supervised manner. Let us consider a shadow image
S ∈ S and its corresponding shadow mask SM . We obtain the
shadow region Ss by cropping the masked area from SM in the
shadow image S. The DeShadower Network learns to remove
the shadow from the region using a contrastive learning setup.
It is aided by the IlluminationNetworkwhich generates bright
samples forD to learn from. The Refinement Network finally
combines the shadow-free region Sf with the real image and
refines it to form the shadow-free image Ŝ.

A. DeShadower NETWORK (D)
The DeShadower Network is designed as an encoder-
decoder-based architecture that generates a shadow-removed
region (Sr ) from the shadow region (Ss). The shadow-removed
regions generated by this network Sr should associate more
with the bright samples and dissociate itself from the shadow
samples. We employ a contrastive learning approach to help
the DeShadower network achieve this and learn to generate
shadow-free regions. In a contrastive learning framework, a
‘‘query’’maximizes the mutual information with a ‘‘positive’’
sample in contrast to other samples that are referred to
as ‘‘negatives’’. In this work, we use a ‘‘noise contrastive
estimation’’ framework [68] to maximize the mutual infor-
mation between Sf and the bright sample B. We treat the
bright samples generated by the Illumination Network as the
‘‘positive’’ and the shadow regions as the ‘‘negatives’’ in this
contrastive learning setup. Thus, the objective function for
maximizing (and minimizing) the mutual information can be
formulated with the InfoNCELoss [68], a criterion derived
from both statistics [68], [72] and metric learning [63], [64],
[73]. Its formulation bears similarities with the cross-entropy
loss:

ℓ(x, x+, x−)=−log

[
exp(x · x+/τ )

exp(x · x+/τ )+
∑N

i=1 exp(x · x−

i /τ )

]
(1)

where x, x+, x− are the query, positive and negatives respec-
tively. τ is the temperature parameter that controls the sharp-
ness of the similarity distribution.We set it to the default value
from prior work [65], [66]: τ=0.07.

The feature stack in the encoder of the DeShadower
Network, represented as Denc, already contains latent infor-
mation about the input shadow region Ss. From Denc,
L layers are selected, and following practices from prior
works [70], we pass these features through a projection head,
anMLP (Ml) with two hidden layers. Subsequently, we obtain
features:

sl = Ml(Dl
enc(Ss)); l ∈ {1, 2, . . . ,L} (2)

where Dl
enc is the l-th chosen layer in Dl

enc. Similarly the
output or the ‘unshadowed’ region Sf and the bright region B
are encoded respectively as:

fl = Ml(Dl
enc(Sf )); bl = Ml(Dl

enc(B)) (3)

We adjust the InfoNCE loss [68] into a layer-wise NCE loss:

LNCE (fl, bl, sl) = ESf ∼F ,Ss∼S,B∼B ℓ(fl, bl, sl) (4)

The generator should not change the contents of an image
when there is no need to. In other words, given a shadow-free
sample as input, it is expected to generate the same out-
put without any change. To enforce such a regularization,
we employ an identity loss [54], [74]. It is formulated using
an L1 loss as:

Liden = ESf ∼F ||D(Sf ), Sf ||1 (5)

Additionally, as described further in the following sections,
the Illumination Critic IC is trained on real non-shadow
samples and augmented bright samples. Therefore, we can
additionally use the cues provided by the Illumination Critic
to distil its knowledge of illumination to the DeShadower
Network. This is achieved by computing the loss:

Lcritic = [1 − IC(D(Ss))]2 (6)

B. ILLUMINATION NETWORK (I)
Shadow regions have a lower level of illumination compared
to their surroundings. The exact illumination level can vary
according to scene lighting conditions as illustrated in Fig. 3.
To show that a real shadow image and an image with a region
where brightness is reduced are similar even semantically,
we designed a small experimental setup. We fine-tune a
ResNet [75] with samples containing real shadows and no
shadows for a Shadow/Non-shadow classification task and
then test the images where we reduce the brightness in the
shadow region. In the majority of the cases, the network
classifies it to be a ‘Shadow’ image.

Using this heuristic, the Illumination Network (I) is
designed as a Generative Adversarial Network [76] to serve
as a complementary augmentation setup to generate synthetic
images where the illumination level is increased in a shadow
region. The shadow region Ss is passed through the generator
IG to produce brighter samples B of the shadow region.
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FIGURE 2. UnShadowNet is the proposed end-to-end weakly-supervised shadow removal architecture. It has three main sub-networks: DeShadower
Network (D), Illumination Network (I) and Refinement Network (R). The pixelwise product operation

⊗
between shadow image (S) and its shadow

mask (SM ) extracts the shadow region (Ss), which is then fed to D and I simultaneously. The generator of the adversarially trained Illumination
network generates an illuminated version (B) of Ss which is subjected to validation by a discriminator, called Illumination Critic (Ic ) trained on
augmented shadow-free regions (Baug). DeShadower is trained to produce shadow-removed region (Sr ) of Ss. To create a more realistic illumination
region Sr , a contrastive approach is employed between B and Sr . Finally, shadow-removed image (Ŝr ) is obtained by applying embedding
operation

⊕
to become input to the Refinement network. R is trained to efficiently blend the areas between shadow-removed and non-shadow

regions so that it is robust to noise, blur, etc. Here contrastive learning approach was followed where positive samples (Ŝaug) were generated as per
the method in [70].

FIGURE 3. Illustration of different illumination control levels of shadow
region.

The illumination critic (IC) learns to classify these samples
generated by IG as ‘fake’. The motivation of this discrimina-
tor is detailed in the following section. The generator IG and
the discriminator IC thus learns from the adversarial loss as:

Ladv = ESs∼S
[
(1 − IC(IG(Ss)))2

]
+ ESs∼S

[
IC(IG(Ss))2

]
+ EB′∼B

[
(1 − ID(B′))2

]
(7)

We observe that the more optimal samples the Illumination
Network generates, the better it aidsD to create more realistic
shadow-removed samples. Therefore, to improve I to create
well-illuminated samples we employ the illumination loss as
an L1 loss between the IG generated bright sample B and the
shadow-removed sample Sf as:

Lillum =
1
N

N∑
i=0

||Sf − B||1 (8)

The adversarial loss with the help of the discriminator and
the illumination loss together play a role in generating well-
illuminated samples, which in turn helps D to create better
shadow-removed samples. In this regard, both D and I com-
plement each other for the task. The Illumination Network
supervises D to generate shadow-removed regions and like-
wise, D encourages I to create well-illuminated samples by
learning from it. The choice of using I is experimentally
justified in the ablation study section, as it helps to generate
better results rather than relying solely on a pre-determined
illumination level increase.

C. ILLUMINATION CRITIC (IC)
The role of the Illumination Critic (IC) is two-fold.
Firstly, in the Illumination Network which generates
well-illuminated variations of the shadow region Ss, the
IC is designed as a discriminator to the IG . The knowledge
IC learns from representations of shadow-free regions allows
it to encourage IG to create well-illuminated variations of
the shadow region Ss which is later used as positive pair to
contrastively train D.

Additionally, the DeShadower Network utilizes the
knowledge of the IC to create realistic shadow-removed
regions from the Ss. Having learned the representations of
shadow-free regions and augmented samples with varying
illumination, IC can influence D to ‘‘remove’ shadows from
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shadow regions using the Lcritic in Eqn. 6. This two-fold
characteristic of IC facilitates the complementary nature ofD
and I where they mutually improve each other.

To train IC , we crop randomly masked non-shadow areas
from S as well as other samples in the dataset similar to [41].
Additionally, IC is trained by augmented samples where
each shadow region Ss is converted to 3 different samples
by varying the illumination levels. The illumination levels
are increased by a factor µ − 5, µ, µ + 5 where µ is fixed
empirically as presented in Table 3. It is trained using the
same adversarial loss as the Illumination Network.

D. REFINEMENT NETWORK (R)
After obtaining the shadow-removed region Sr , it is embed-
ded with the original shadow image S. The embedding oper-
ation can be defined as:

Ŝr = S−S ∗ SM + Sr ∗ SM (9)

Following the embedding operation, there remain additional
artefacts around the inpainted area due to improper blend-
ing. The Refinement Network R is designed to get rid of
such artefacts by making use of the global context in the
image. The absence of explicit ground truths in this set-
ting motivated us to design a contrastive setup to train R.
To generate the positive samples, we follow [70] to augment
the generated shadow-removed image (Ŝr ) by using random
cropping of non-shadow regions. It is followed by additional
transformations like resizing the cropped region back to the
original size, random cutout, Gaussian blur, and Gaussian
noise, represented as Ŝaug. The objective is to maximize the
information between the query image and the positive image
pairs and reduce the same with the negative ones. In this
phase, we reuse the existing encoder ofR represented asRenc
as a feature extractor. We extract the layer-wise features of
the query Fl , positive F

+

l and negative F−

l images and pass
them through an MLP with two-hidden layers, similar to D.
Thus, we obtain the feature representations of Fl , F

+

l and F−

l
respectively as follows:

Fl = M̂l(Rl
enc(Ŝ));F

+

l = M̂l(Rl
enc(Ŝaug));

F−

l = M̂l(Rl
enc(S)) (10)

Therefore the objective function for the contrastive learn-
ing setup can be represented as:

LNCE (Fl,F+

l ,F−

l ) = EŜ∼F ,S∼S ℓ(Fl,F
+

l ,F−

l ) (11)

Additionally, we find that following [77] and [78], using
a ‘‘layer-selective’’ perceptual loss along with the contrastive
loss helps to preserve the integrity of the overall spatial details
present in the input and output images. It is computed based
on the features extracted by relu_5_1 and relu_5_3 of
a VGG-16 [79] feature extractor as:

Lref =
1
2

2∑
i=0

||VGGi(Ŝ) − VGGi(S)||22 (12)

E. SUPERVISED SETUP
Paired data is difficult to obtain for large-scale real-world
datasets, however, it can be collected for a controlled smaller
dataset. Here we demonstrate that UnShadowNet can be
easily extended to exploit when paired shadow-free ground-
truths (G) are available. Since the optimal level of illumina-
tion in the regions are available from G itself, we remove I
in the fully-supervised setup and use different augmented
versions of the G directly. Additionally, we make use of
different losses that help to generate more realistic shadow-
free images. To avoid loss of details in terms of content [80],
we employ the pixel-wise L1-norm:

Lp =
1
N

N∑
i=0

||Ŝi − Gi|| (13)

Color plays an important role in preserving the realism
of the generated image and maintaining consistency with
the real image. To this end, we follow a recent study in the
literature [81] to formulate the color loss as:

Lc =
1
N

N∑
i=0

P∑
j=0

̸ (Ŝi,Gi) (14)

where ̸ (, ) computes an angle between two colors regarding
the RGB color as a 3D vector [81], and P represents the
number of pixel-pairs.

In addition, style plays an important role in an image that
corresponds to the texture information [82]. We follow [83]
to define a Gram matrix as the inner product between the
vectorised feature maps i and j in layer l:

γ li,j =

∑
k

V l
i,k · V l

j,k (15)

The Gram matrix is the style for the feature set extracted
by the l-th layer of VGG-16 net for an input image. Subse-
quently, the style loss can be defined as:

Ls =
1
Nl

Nl∑
i=0

||Ŝi − γi||
2 (16)

where Si and γi are the gram matrices for the generated
shadow-free image and ground truth image respectively
using VGG-16.

Therefore, the complete supervised loss can be formulated
as a weighted sum (Lsup) of the pixel (Lp), color (Lc) and
style (Ls) losses:

Lsup = λ1 · Lp + λ2 · Lc + λ3 · Ls (17)

where λ1, λ2 and λ3 are the weights corresponding to the
pixel, color, and style losses respectively and are set empiri-
cally to 1.0, 1.0 and 1.0 × 104 following [81], [83] and [84]
respectively in our experiments.
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TABLE 1. Ablation study of the various components of UnShadowNet in both weakly-supervised and fully-supervised setup on ISTD [31] dataset using
RMSE, PSNR and SSIM metrics.

TABLE 2. Ablation study of UnShadowNet using different training strategies on adjusted ISTD dataset.

IV. EXPERIMENTATION DETAILS
A. DATASET AND EVALUATION METRICS
1) DATASETS
In this work, we train and evaluate our proposed method on
three publicly available datasets discussed below.

2) ISTD
ISTD [31] contains image triplets: a shadow image, a shadow
mask, and a shadow-free image captured at different lighting
conditions that make the dataset significantly diverse. A total
of 1, 870 image triplets were generated from 135 scenes for
the training set, whereas the testing set contains 540 triplets
obtained from 45 scenes.

3) ISTD+

The samples of ISTD [31] dataset were found to have color
inconsistency issues between the shadow and shadow-free
images as mentioned in the original work [31]. The reason
was that shadow and shadow-free image pairs were col-
lected at different times of the day which led to the effect
of different lighting appearance in the images. This color
irregularity issue was fixed by Le et al. [32] and an adjusted
ISTD (ISTD+) dataset was published.

4) SRD
There are total 408 pairs of shadow and shadow-free images
in SRD [33] dataset without the shadow-mask. For the
training and evaluation of our both constrained and uncon-
strained setup, we use the shadow masks publicly provided
by Cun et al. [40].

5) EVALUATION METRICS
For all the experiments conducted in this work, we use Root
Mean-Square Error (RMSE), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity (SSIM) respectively as
metrics to evaluate and compare the proposed approach with
other state-of-the-art methods. Following the prior-art [28],
[31], [32], [33], [36], [37], [39], we compute the RMSE on the
recovered shadow-free area, non-shadow area and the entire
image in LAB color space. In addition to RMSE, we also
compute PSNR and SSIM scores in RGB color space. RMSE
is interpreted as better when it is lower, while PSNR and
SSIM are better when they are higher.

B. IMPLEMENTATION DETAILS
The configuration of the generator is adopted from the
DenseUNet architecture [84]. Unlike the conventional UNet
architecture [85], it uses skip connections to facilitate better
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FIGURE 4. Qualitative results of progressive addition of various components in UnShadowNet. DeShadower network (D-Net) alone is capable
to remove shadow but it fails to match up the illumination level of the shadow-removed area with the shadow-free region. The DeShadower
network accurately handles the illumination level when it is trained contrastively with the Illumination network (D+I Net). There remain some
visible artifacts due to improper blending that is taken care of by the Refinement network.

information sharing among the symmetric layers. For the dis-
criminator, we employ the architecture of the PatchGAN [52]
discriminator that penalizes generated image structure at the
scale of patches instead of at the image level. We develop
and train all our models using the PyTorch framework.
The proposals are trained using Momentum Optimizer with
1×10−4 as the base learning rate for the first 75 epochs, then
we apply linear decay for the rest of the epochs. We train the
whole model for a total of 200 epochs. Momentum was set
to 0.9. All the models were trained on a system comprising
one NVIDIA GeForce GTX 2080Ti GPU and the batch size
was set to 1 for all experiments. In the testing phase, shadow-
removed outputs are re-sized to 256×256 to compare with the
ground truth images, as followed in [37] and [43]. We used
the shadow detector by Ding et al. [34] to extract the shadow
masks during the testing phase.

C. ABLATION STUDY
We considered the adjusted ISTD [31] dataset to perform our
ablation studies due to its large volume and common usage
in most of the recent shadow removal literature. We design
an extensive range of experiments on this dataset in both
weakly-supervised and fully-supervised settings to evaluate
the efficacy of the proposed several network components
of UnShadowNet and find out the best configuration of our
model.

1) NETWORK COMPONENTS:
DeShadower network (D) is the basic unit that acts as the
overall shadow remover in the proposal. In the weakly-
supervised setup, first, we experiment with onlyD for shadow
removal (D-Net).We then add the Illumination network (I) to
include diverse illumination levels on the non-shadow regions
in the image. We couple I with D in contrastive learning
setup (D+I-Net). After shadow removal, the shadow-free
region needs refinement for efficient blending with the non-
shadow area. Hence we add a Refinement network (R)

with D where L1 loss guides to preserve the structural
details (D+R-Net). Next, we consider illumination-guided
contrastive learned refinement (D+R-Net) network where we
add I and that becomes D+I+R-Net. Further improvement is
achieved when we add contrastive loss inRwhich completes
the UnShadowNet framework. In the fully-supervised setup,
as described earlier, I is not used. As a result, we present the
study of D-Net, D+R-Net, and UnShadowNet respectively.

Table 1 summarizes the ablation study of various proposed
network components. Improvement in accuracy is observed
due to the addition of I in contrastive learning setup.R adds
further significant benefit when L1 loss is replaced with con-
trastive loss. The improvements of the proposed components
are consistent in both self-supervised and fully-supervised
learning as reported in the same table. All further exper-
iments are performed based on the configuration marked
as UnShadowNet.

2) CURRICULUM LEARNING
Curriculum Learning [86] is a type of learning strategy that
allows one to feed easy examples to the neural network first
and then gradually increase the complexity of the data. This
helps to achieve stable convergence of the global optimum.
As per Table 2, it is observed that the curriculum learning
technique provides considerable improvement when applied
along with shadow inpainting and data augmentation.

3) SHADOW INPAINTING
Appearance of shadows is a natural phenomenon and yet it
is not an easy task to define the strong properties of shadow.
This is because it does not have distinguishable shape, size,
texture, etc. Hence it becomes important to augment the
available shadow samples extensively so that they can be
effectively learned by the network.

In this work, we estimate the mean intensity values of the
existing shadow region of an image (IP). Then we randomly
select a shadow mask (SM ) from the existing set of shadow
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FIGURE 5. Augmented samples with inpainted shadow regions.

TABLE 3. Ablation study on illuminance factor (µ) of the proposed
UnShadowNet in both weakly-supervised and fully-supervised setup
on ISTD [31] dataset using RMSE, PSNR, and SSIM metrics.

samples. The mask (SM ) is inpainted on the shadow-free
region of the image (IP). The pixels that belong to the SM
in IP will have brightness adjusted as the earlier computed
mean. We do not apply the same mean every time, in order to
generate diverse shadow regions, the estimated mean value
is adjusted by ±5%. The main motivations of this inpainting
are two-fold: 1) It is difficult to learn complex shadows when
it interacts with diverse light sources and other objects in the
scene. The inpainted shadows are standalone and will provide
an easier reference sample to another shadow segment in IP.
2) It also increases the robustness of the network towards
shadow removal by inpainting shadows with more diverse
variations. Figure 5 shows the proposed shadow inpainting
with random shadow masks and different shadow intensities.
Table 2 indicates the significant benefits of inpainting com-
plementing the standard data augmentation.

4) DATA AUGMENTATION
Data augmentation is an essential constituent to regularize
any deep neural network-based model. We make use of some
of the standard augmentation techniques such as image flip-
ping with a probability of 0.3, random scaling of images in
the range 0.8 to 1.2, adding Gaussian noise, blur effect, and
enhancing contrast.

Table 2 sums up the role of curriculum learning, shadow
inpainting, and data augmentation individually and the var-
ious combinations. This ablation study is performed on

both weakly-supervised and fully-supervised setups indicat-
ing that both these training strategies are beneficial to learn
shadow removal tasks.

5) ILLUMINANCE FACTOR (µ)
The DeShadower Network maximizes the information with
‘‘bright’’ synthetic augmentations generated by the Illumina-
tion Network. The effectiveness of the Illumination Network
is verified from the results in Fig. 4. To train the Illumination
Network, we sample shadow regions from the dataset and
vary their brightness by µ−5, µ, µ+5. The different values
experimented for the Illuminance factor (µ) are presented in
Table 3.Wefind that setting the value ofµ at 50 gives themost
optimal results in shadow removal performance. For the fully-
supervised setup, since the ground-truth images are available,
the optimal level of brightness is obtained from those samples
itself, consequently, µ = 0 gives the best performance.

D. QUANTITATIVE STUDY
We evaluate our proposals and compare quantitatively with
the state-of-the-art shadow removal techniques on ISTD [31],
Adjusted ISTD [32], and SRD [33] benchmark datasets.

1) ISTD
Table 4 compares the proposed method with the state-of-
the-art shadow removal approaches using RMSE, PSNR,
and SSIM metrics for shadow, shadow-free, and all regions.
We achieve state-of-the-art results and the improvement
with respect to all metrics for shadow area in both training
setups, namely weakly-supervised (UnshadowNet) and fully-
supervised (UnshadowNet Sup.), are quite significant. There
are a few other fully-supervised shadow removal methods
evaluated on ISTD [31] dataset, which we compared with our
proposed fully-supervised setup. In this setup as well, as per
Table 5, our proposed method outperforms other state-of-the-
art approaches.

2) ISTD+

Table 6 shows the performance of our proposed shadow
remover on the adjusted ISTD [32] dataset using RMSE
metric. The comparison of our method in a fully-supervised
setup with other techniques trained in the same fashion
demonstrates the robustness of our framework as it shows
incremental improvement over the most recent state-of-the-
art methods. In addition, we have performed experiments
using a weakly-supervised setup where the metrics are com-
parable and only slightly behind the fully-supervised model.

3) SRD
We report and compare our shadow removal results in
both the constrained and unconstrained setups with exist-
ing fully-supervised methods on SRD [33] using RMSE
metric. Table 7 indicates that our proposal trained in a
fully-supervised fashion obtains the lowest RMSE in all
regions and outperforms the most recent state-of-the-art
methods [42], [53].
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TABLE 4. Quantitative comparison of two variants of UnShadowNet with other state-of-the-art shadow removal methods using RMSE, PSNR and SSIM
metrics. Methods marked with ‘*’ were evaluated on the adjusted ISTD [31] dataset. Scores of the other methods are computed on the ISTD dataset and
obtained from their respective publications.

FIGURE 6. Qualitative comparison of our proposed method with other state-of-the-art shadow removal methods that use
shadow mask and shadow image as input, on four challenging samples from ISTD [31] dataset.

E. QUALITATIVE STUDY
Figure 6 shows qualitative results of the proposed model
trained in weakly-supervised format on a total of three chal-
lenging samples from the ISTD [31] dataset. We also visu-
ally compare with two existing and most recently published
weakly-supervised shadow removal methods by Le et al. [37]
and G2R-ShadowNet [41] respectively. It is clearly observed
that UnShadowNet is accurate while removing shadows in
complex backgrounds. In addition to the unconstrained setup,
Figure 7 shows the results of our UnshadowNet Sup. model
on ISTD [31] dataset. It is to be noted that the visual results
are not shown on the adjusted ISTD [32] dataset because the
test samples are the same as in the ISTD dataset, the only
difference is in the color of the ground truth. In addition,
we consider SRD [33] dataset and this is the first work where
visual results are presented on the samples from the same

dataset. Figure 8 and 9 demonstrate the results of UnShad-
owNet in weakly-supervised and fully-supervised setup.

F. RUNTIME ANALYSIS
We compare the runtime performance of our model with
recent other contemporary architectures. For this purpose,
the available code bases were used to estimate the run-time.
During inference, LG-ShadowNet [39] takes 0.874 seconds,
G2R-ShadowNet [41] takes 0.805 seconds and UnShad-
owNet takes 0.822 seconds.

G. EVALUATION OF GENERALIZATION IN AN
UNCONSTRAINED AUTOMOTIVE DATASET
Automotive object detection and segmentation datasets do
not provide shadow labels; thus, it is impossible to quan-
titatively evaluate these datasets extensively. We sampled a
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FIGURE 7. Qualitative results on the ISTD [31] dataset using
fully-supervised UnShadowNet setup.

FIGURE 8. Qualitative results on the SRD [33] dataset using
weakly-supervised UnShadowNet setup.

FIGURE 9. Qualitative results on the SRD [33] dataset using
fully-supervised UnShadowNet setup.

few shadow scenes from the challenging IDD dataset [94]
which contains varied lighting condition scenes on Indian
roads. It was impossible to train our model as shadow masks
were unavailable. Thus we used this dataset to evaluate
the robustness and generalization of our pre-trained model
on novel scenes. The qualitative results are illustrated in
Figure 10. Although the performance of the proposed shadow
removal framework is either comparable to the state-of-the-
art or superior, it is still not robust to be used in real-world
autonomous driving systems. We feel that more extensive
datasets have to be built for shadows to performmore detailed

TABLE 5. Comparative study of fully and weakly-supervised
UnShadowNet with other fully supervised state-of-the-art shadow
removal methods on ISTD [31] dataset using RMSE metric.
The (*) marked method was trained using unpaired data.

TABLE 6. Comparative study of fully and weakly supervised
UnShadowNet with other state-of-the-art shadow removal
methods on adjusted ISTD [32] dataset using RMSE metric.
The (*) marked method was trained using unpaired data.

TABLE 7. Comparative study of fully and weakly-supervised
UnShadowNet with other fully-supervised state-of-the-art
shadow removal methods on SRD [33] dataset using RMSE
metric. No other prior art was found to remove shadows in
a weakly supervised fashion on the same dataset.

studies and we hope this work encourages the creation of
these datasets or annotations of shadows in existing datasets.

V. LIMITATIONS AND FUTURE DIRECTIONS
As presented in our experiments, UnShadowNet outper-
forms the existing state-of-the-art in several standard shadow
removal datasets. However, there are certain areas that can
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FIGURE 10. Qualitative results (bottom) on a few input samples (top)
from IDD dataset [94]. UnShadowNet trained on ISTD [31] dataset
enables to remove shadow reasonably in automotive scenes.

be improved. Our model relies upon an external shadow
detector [34] which may not always accurately predict the
shadow regions. This may cause resultant areas where the
shadow is not removed. In future work, we intend to build
a single-stage architecture to incorporate both shadow detec-
tion and removal. Since shadows are physical phenomena,
another interesting direction would be to exploit the inherent
physical properties of illumination that result in shadows.

Moreover, in our research, we observed that the focus is
mainly on datasets that have images of a narrow field-of-
view and lacks complex situations that may arise in real-life
automotive scenes. For future works, we think it will be
important to develop a suitable dataset that comprises such
challenging scenarios as in real-world automotive settings.

The proposed method is not optimized for run-time and we
still obtained a reasonable inference time of 0.822 seconds.
With optimization techniques like pruning and multi-task
learning, real-time performance can potentially be achieved.

VI. CONCLUSION
In this work, we have developed a novel end-to-end
framework consisting of a deep learning architecture for
image shadow removal in unconstrained settings. The pro-
posed model can be trained with full or weak supervision.
We achieve state-of-the-art results in all the major shadow
removal datasets. Although weak supervision has slightly
lesser performance, it eliminates the need for shadowless
ground truth which is difficult to obtain. To enable the weakly
supervised training, we have introduced a novel illumination
network which is composed of a generative model used to
brighten the shadow region and a discriminator trained using
shadow-free patches of the image. It acts as a guide (called
illumination critic) for producing illuminated samples by the
generator. DeShadower, another component of the proposed
framework is trained in a contrastive way with the help of
illuminated samples which are generated by the preceding
part of the network. Finally, we propose a refinement net-
work that is trained in a contrastive way and is used for
fine-tuning the shadow-removed image obtained as an output
of the DeShadower. We perform ablation studies to show that
the three components of our proposed framework, namely
the illuminator, Deshadower, and refinement network work

effectively together. To evaluate the generalization capacity
of the proposed approach, we tested a few novel samples of
shadow-affected images from a generic automotive dataset
and obtained promising results of shadow removal. Shadow
removal continues to be a challenging problem in dynamic
automotive scenes and we hope this work encourages further
dataset creation and research in this area.
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