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ABSTRACT Aiming at the problems of traditional grasping methods for mobile manipulators, such as
single application scenarios, low accuracy, and complex grasping tasks, this paper proposes an object
recognition grasping approach using Proximal Policy Optimization (PPO) with You Only Look Once v5
(YOLOv5), which combines a vision recognition algorithm with a deep reinforcement learning algorithm to
achieve object recognition grasping. First, YOLOv5 is adopted to identify the object and obtain the location
information. Second, the PPO algorithm is used for object grasping to obtain the grasping strategy. Third, the
PPO algorithm is compared with the Soft Actor-Critic (SAC) and Trust Region Policy Optimization (TRPO)
algorithms in batches 16 and 128, respectively. The average reward training results of the PPO, SAC, and
TRPO algorithms are obtained in our work. Experimental results show that the proposed method, in terms
of object recognition speed, outperforms the original YOLOv4 model. The YOLOv5 model achieves 96%
precision on our own built recognition dataset, which has higher detection precision and lower hardware
requirements than the YOLOv4 model. Our proposed method outperforms SAC and TRPO algorithms in
object grasping, and the average reward of the PPO algorithm is improved by 93.3% and 41% compared
to SAC and TRPO algorithms, respectively. Finally, through the comparison of ablation experiments, our
method has the highest accuracy and mean average precision (mAP)@0.5 value of 92.3%. We demonstrate
in actual physical experiments that the grasping success rate under our proposed approach reaches 100%,
providing a new research strategy for object grasping by the robot manipulator.

INDEX TERMS Deep reinforcement learning, manipulator, object grasping, proximal policy optimization,
YOLOv5.

I. INTRODUCTION
The global manufacturing industry has led to the widespread
use of mobile manipulators (MM) in industrial transport and
agricultural picking. To increase the range of the manipulator,
a mobile base is combined with the manipulator to form
a mobile manipulator. The mobile manipulator combines
the mobility of a mobile base with the flexible operation
capabilities of a manipulator [1]. This technology can be
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utilized in hazardous environments or for handling dangerous
objects, ultimately reducing the risk of harm to humans [2].
Additionally, themobile manipulator is capable of mimicking
human behavior when it comes to object grasping [3].
However, identifying objects with complex surfaces remains
a challenge in the field of classical image processing [4].

Due to the various sizes and shapes of objects, a sizable
number of datasets must be trained to overcome the hurdles
of grasping and recognition in complex object environments.
In recent years, mobile manipulators have been widely
utilized for grasping, but they still have problems such
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as a single working mode, sensitivity to the surroundings,
incorrect location, and poor recognition performance [5].
Before grabbing an object, the mobile manipulator must first
determine the object’s position and increase identification
accuracy. Therefore, the object recognition and object grasp-
ing technology of robot manipulators are worth studying.

Deep learning-based target recognition and reinforcement
learning-based grasping have emerged as two crucial mobile
manipulator technologies for mobile applications such as
industrial handling and agricultural picking. However, object
detection and gripping accuracy need to be further improved
in complex circumstances. Target recognition algorithms are
widely employed in a variety of fields, including trans-
portation, industry, and agriculture. The robust autonomous
learning capabilities of deep learning-based recognition algo-
rithms can helpmobile manipulators detect and identify items
more precisely in complex environments. Object recognition
is being researched for themobilemanipulator grasping job to
better localize and recognize items so that the robot can grab
them more precisely [6]. The continual interaction between
the agent and the environment allows the reinforcement
learning-based grasping algorithm to maximize reward, and
continuous training and learning are intended to increase the
object grasping accuracy.

At present, object recognition algorithms, including a
one-stage and a two-stage object detection algorithm, are pri-
marily based on deep learning. The one-stage object detection
algorithm mainly includes Single Shot MultiBox Detector
(SSD), You Only Look Once (YOLO), and YOLOv2∼v8.
The two-stage object detection algorithm mainly includes
Region-based Convolutional Neural Networks (R-CNN),
Fast R-CNN, and Faster R-CNN. Compared to the two-stage
object detection technique, the one-stage approach detects
objects more quickly. Additionally, YOLOv5, as one of
the classical algorithms in the one-stage object detection
algorithm, can simplify the network structure and optimize
the activation function. More significantly, the YOLOv5
network employs a straightforward Convolutional Neural
Network (CNN), in contrast to previous networks. YOLOv5
is faster than other networks and is better suited for real-time
target identification applications because of its smaller and
simpler model. A Mask-SSD model was proposed in [7]
to improve the detection performance of small targets. The
authors in [8] proposed an object recognition algorithm
with a sparse detection algorithm to modify YOLOv5,
which aims to build a smaller model with a lower cost to
improve the detection efficiency of small objects. In [9],
the authors proposed a novel object detection method
based on a wireframe feature, which used Fast R-CNN to
detect objects in which the mean average precision (mAP)
is 89.4%.

Next, let us consider the case of the robot manipulator
with grasping. In addition to the need to improve the object
recognition ability, the accurate grasping ability of the mobile
manipulator in complex environments also needs further
research. Currently, grasping algorithms are mainly based

on traditional methods and deep reinforcement learning
(DRL) algorithms. A novel robot rigid object pickup method
was proposed in [10] to grasp objects mixed with towels
without using a specific posture detection method, which is
not suitable for flexible hybrid scenes. In [11], the authors
proposed a dynamic evaluation method that extends the static
evaluation method for grasping rigid objects to deformed
objects, which is expected to provide a new research idea
for grasping deformable objects. A grasping system based
on deep reinforcement learning (DRL) with an improved
soft actor-critic algorithm was proposed in [12] to speed
up the learning process so that it can decouple object
detection from deep reinforcement learning (DRL) control.
The authors in [13] proposed a graph-based Q-learning
model to effectively explore invisible objects and improve
collaborative grasping performance, which can help robots
grasp completely occluded objects in a cluttered scene.

Traditional grasping techniques only have one application
situation and are incapable of producing acceptable results.
However, one of the crucial jobs for robots is grasping in
complex environments. As a result, using object grasping
based on reinforcement learning to determine the location
of target objects is effective. Further research is being done
on grasping and object recognition for mobile manipulators.
For instance, in the paper [14], they proposed a fast detection
and grasping method based on improved Faster R-CNN,
which can effectively complete detection and successfully
grasp the object on the shelf. In [15], the authors investigated
an intelligent mobile garbage collection robot based on
visual recognition technology such that the robot detects and
categorizes targets using theMobileNetv3-SSD deep learning
algorithm, which also controls the manipulator to perform
the garbage grasping task. A method based on YOLOv5 was
proposed in [16] to detect objects and a method based on
a deep deterministic policy gradient to grasp autonomous
objects, which can be applied to robot arms with multiple
degrees of freedom such that the simulation results are
superior to the traditional methods.

The research mentioned above demonstrates that effective
results can be obtained by combining a vision algorithm
based on deep learning with a grasping strategy based
on reinforcement learning. Less research is being done,
nevertheless, in the area of robot applications. Therefore,
this study suggests an object recognition grasping approach
using Proximal Policy Optimization (PPO) with YOLOv5 to
investigate the object recognition grasping of mobile robotic
arms in more detail. The main contributions of this paper can
be described as follows:

1) We propose an object recognition grasping approach
based on Proximal Policy Optimization (PPO) with
YOLOv5, which integrates the YOLOv5 algorithm
and PPO reinforcement learning algorithm to achieve
object recognition grasping, providing a new research
idea for object recognition grasping.

2) The final experimental results show that our proposed
method improves the average reward by 93.3% and
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FIGURE 1. The mobile robot experimental equipment of the actual physical manipulator is displayed via a mobile base model.
(a) Mobile base coordinate system (for kinematic analysis); (b) Mobile base (for providing power).

41% at batch 128 compared to the Soft Actor-Critic
(SAC) and Trust Region Policy Optimization (TRPO)
algorithms, respectively. By ablation experiment com-
parison, our method has the highest accuracy and
mean average precision (mAP)@0.5 values of 96%
and 92.3%, respectively. In the physical experiments,
we verified that the success rate of object grasping
under our proposed scheme is 100%.

The structure of this paper is as follows. Section II presents
the kinematics model of the mobile manipulator, namely the
inverse kinematic and forward kinematic analyses. Section III
introduces the main algorithms for object recognition and
grasping. Section IV depicts the experiments and results.
Section V provides the discussion and the limitations of the
methods. In Section VI, we summarize the thesis and look
forward to the next step.

II. KINEMATICS MODELING AND ANALYSIS
A. INVERSE KINEMATICS ANALYSIS
Two A-type and two B-type Mecanum wheels make up the
mobile base of the mobile manipulator. TheMecanumwheel,
which has flexible motion properties and is simple to use
to create omnidirectional motion, is frequently used [17].
The mobile base model is shown in Fig. 1, which is used
to present the mobile robot experimental equipment of the
actual physical manipulator. Fig. 1 (a) shows the coordinate
relationship of the mobile base, which is used as a reference
coordinate system for kinematic analysis. Fig. 1 (b) shows the
physical diagram of the mobile base, which is used to provide
power to the mobile manipulator. To gather environmental
data, the mobile base’s front light detection and ranging
(LIDAR) system is used. Mecanum wheels [18] can be
utilized when an omnidirectional mobile vehicle is required.
The vehicle can freely revolve about the center in addition to

moving along the anticipated course. The running speed of
the vehicle is set to 0.1 m/s.

The positive Y-axis direction represents the mobile manip-
ulator’s forward motion, and the positive X-axis direction
represents the mobile manipulator’s right motion. After
defining the Y-axis and X-axis positive directions as such, the
motion of the center point of the mobile base is decomposed
as follow: (

vx , vy,w
)

(1)

vx = v · sin θ (2)

vy = v · cos θ (3)

where vx represents the velocity of the central point along
the direction X-axis, vy represents the velocity of the central
point along the direction Y-axis, and w represents the angular
velocity rotating around the central point.

Wheels 1 and 3 and Wheels 2 and 4 move in the same
manner as Fig. 1 (a), respectively. The first wheel will
advance and then turn to the left. The forward motion speed
of the wheel is v1. The forward motion velocity and lateral
movement velocity are combined as k · v1.

vi + k · vi · cosαi = vy + ai · w, i = {1, 2, 3, 4} (4)

k · vi · sin θ = vx + bi · w, i = {1, 2, 3, 4} (5)

where i represents the wheel number and i= {1, 2, 3, 4}, k is
the scale factor. a and b are the dimensional lengths of the
mobile base. α represents the angle between forward velocity
and resultant velocity. The form of the variation in (4) and (5)
is shown in (6) and (7).

tanαi =
k · vi· sinαi

k · vi · cosαi
=

vx + bi · w
−vi + vy + ai · w

(6)

vi = vy + ai · w−
vx + bi · w

tanαi
(7)
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FIGURE 2. Path planning schematic of the mobile manipulator. (All
variables are marked with black symbols, where the thick black arc
represents the path.)

The lateral angle of the mobile base is 45◦, where ai ∈

{a, −a, −a, a}, bi ∈ {b, −b, −b, b}, αi ∈
{

π
4 , −π

4 , π
4 , −π

4

}
,

tanαi ∈ {1, −1, 1, −1}.
v1 = vy − vx + a · w+ b · w
v2 = vy + vx − a · w− b · w
v3 = vy − vx − a · w− b · w
v4 = vy + vx + a · w+ b · w

(8)

The motion velocity of the wheels is wi, so vi = wi ·R. The
relation between the rotation speed of the four wheels of the
mobile base and the motion state of the center point is shown
in (9). 

w1
w2
w3
w4

 =
1
R


−1
1

−1
1

1
1
1
1

(a+ b)
−(a+ b)
−(a+ b)
(a+ b)


vxvy
w

 (9)

whereR represents the radius of themobile base wheel.When
the mobile base dimensions a, b and the wheel radius R are
known, the rotation speed of each wheel can be calculated
through the motion state of the center point.

B. FORWARD KINEMATICS ANALYSIS
As shown in Fig. 2, We define the notation X = [x, y, θ]T

as the actual posture of the mobile manipulator, (x, y)
represents the actual position of the mobile manipulator, and
θ represents the actual angle of the mobile manipulator. u =

[v,w]T is the actual input of the system, v is the actual linear
velocity of themobilemanipulator, andw is the actual angular
velocity of the mobile manipulator. [xe, ye, θe] denotes the
error vector, (xe, ye) represents the deviation between the

FIGURE 3. The interaction structure of the vision algorithm and grasp
algorithm where the mobile manipulator interacts with the objects.

actual position and the reference position, and θe is the angle
deviation.

The kinematic model of the mobile manipulator can be
described as follows: ẋ

ẏ
θ̇

 =

 cos θ

sin θ

0

0
0
1

 [
v
w

]
(10)

 ẋr
ẏr
θ̇r

 =

 cos θr
sin θr
0

0
0
1

 [
vr
wr

]
(11)

where Xr = [xr , yr , θr ]T represents the reference posture
of the mobile manipulator, (xr , yr ) represents the reference
position of the mobile manipulator, and θr represents
the reference angle of the mobile manipulator. ur =

[vr ,wr ]T represents the reference input of the system, vr is
the reference linear velocity of the mobile manipulator,
and wr is the reference angular velocity of the mobile
manipulator.

The error model of the mobile manipulator is described as
follows:  xe

ye
θe

 =

 cos θ

− sin θ

0

sin θ

cos θ

0

0
0
1

 [Xr − X ] (12)

III. MAIN ALGORITHMS FOR OBJECT RECOGNITION
GRASPING
A. VISION ALGORITHM
Mobile manipulator control systems require highly accurate
object detection. The visual-based recognition camera is
frequently referred to as the manipulator’s eye when it
works in combination with manipulation [19]. The target’s
position must be ascertained and communicated to the mobile
manipulator before it can grasp it. Fig. 3 presents the
interaction structure of the vision algorithm and the grasping
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FIGURE 4. The interaction process of application programming interface
(API) for mobile manipulators.

algorithm, where the mobile manipulator interacts with the
objects. The environment is created, and the mobile base
is brought to the desired location. The YOLOv5 vision
algorithm is used in this study to identify colors and
objects.

TheDOFBOT arm and JetsonNano [20] kit fromNVIDIA,
which have a robust artificial intelligence (AI) function
and complete application programming interface (API) pro-
grammability, are used to construct the mobile manipulator
independently in this research. A comprehensive desktop
Linux environment with TensorFlow, PyTorch, Keras, Open
Source Computer Vision Library (OpenCV), and Robot
Operating System (ROS) is offered by the JetsonNano, which
runs Ubuntu 18.04.

The application programming interface (API) of the
DOFBOT manipulator cannot be utilized right away.
As depicted in Fig. 4, we employ Python for serial
communication. Through a USB interface, we link the
manipulator and Jetson board. The simulation experiment
is carried out in MATLAB, and the mobile manipulator
model is created in SolidWorks. A flexible building module
for interactive computing is offered by JupyterLab [21].
JupyterLab, which focuses on interactive and exploratory
computation, is interacted with using MATLAB. Although
JupyterLab has a lot of functionality found in a conventional
integrated development environment (IDE). The mobile
manipulator is remotely controlled by the master computer
using Jupyter debugging code while being simulated in
real-time by the computer.

B. DATA COLLECTION
The major components of YOLOv5 are YOLOv5x,
YOLOv5l, YOLOv5s, and YOLOv5m [22]. A lighter and
more efficient YOLOv5s weight model is used to train the
dataset. The YOLOv5, which stands for YOLOv5s, is used
in later investigations. The accuracy of object recognition is
increased by training a sizable dataset. The batch size is set
to 16, the iteration epochs of the dataset are set to 50, and the
image input size is 416 × 416 × 3.

FIGURE 5. By collecting thousands of block images to build our
recognition dataset, only a part of which is shown here. (Top: yellow
block dataset; Second row: blue block dataset; Third row: red block
dataset; Bottom: green block dataset.)

In this section, we create our YOLOv5 recognition dataset.
As seen in Fig. 5, this study created a recognition dataset
using the YOLOv5 vision algorithm. Thousands of images
of yellow, blue, red, and green were taken in the real world
to gather the images, and we have displayed a selection of
them here to depict the four various orientations. However,
overfitting may happen throughout the training and learning
processes because of an insufficient amount of training data.
In the future, we will expand datasets and introduce noise
to reduce overfitting and enhance training. The number of
crucial features to be extracted grows exponentially with the
amount of training data.

C. REINFORCEMENT LEARNING ALGORITHM
Following object and color recognition by the mobile manip-
ulator, we pick and position the object using reinforcement
learning techniques. The mobile manipulator delivers a
command to grip an object when the YOLOv5 vision
algorithm detects it. In this study, we achieve the gripping
strategy using the Proximal Policy Optimization (PPO)
reinforcement learning method.

Deep reinforcement learning (DRL) has advanced signifi-
cantly and attracted increasing attention from academia and
industry as a result of the merger of deep learning (DL)
and reinforcement learning (RL) [23]. A staged optimization
decision forms the basis of the machine learning (ML)
paradigm known as reinforcement learning (RL) [24]. A key
component of the reinforcement learning framework is an
agent that operates in a specific environment, allowing the
agents to interact with it. The goal of the learning process
is to maximize the reward, that is, to maximize the sum of
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rewards at all times.

Rt =

∞∑
k=0

γ krt+k+1 (13)

where Rt represents the reward function, γ represents the
discount rate and γ ∈ [0, 1]. r is the reward, depending on
the actions taken by the agent at the moment t + k + 1.

Soft Actor-Critic (SAC), Trust Region Policy Optimization
(TRPO), and Proximal Policy Optimization (PPO) are
examples of common model-free reinforcement learning
algorithms. The SAC algorithm can effectively tackle the
problem of each gradient step requiring a large number
of new samples [25]. A reinforcement learning technique
that is both online and non-policy is the Soft Actor-Critic
(SAC) algorithm [26]. Trust Region Policy Optimization
(TRPO) alternates between updating policy parameters by
resolving constraint optimization problems and sampling
data interactively through the environment [27]. By keeping
the revised policy within the trust region close to the
present policy, the TRPO algorithm prevents a significant
performance reduction as compared to the traditional policy
gradient method. However, TRPO computation is difficult
and necessitates numerous environmental interactions. The
computation can be made simpler and more affordable by
using the Proximal Policy Optimization (PPO) algorithm.
By substituting the penalty term with the KL divergence
and utilizing a clip-based truncation operation to decrease
the update magnitude of the policy, PPO streamlines the
TRPO method [28]. The actor-critic (AC) architecture used
to develop the PPO algorithm increases its convergence speed
compared to TRPO [29]. To grasp objects, this paper employs
the PPO algorithm.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENT ENVIRONMENT
Python and MATLAB 2022a are used in the simulation
experiment to create the simulation environment. Using
Robot Operating System (ROS) nodes and a remote applica-
tion programming interface (API) [30], a distributed control
structure is realized. Python and an API are used to run
the interactive simulation. Additionally, we built a server
for the experimental environment with an Intel(R) Core i7-
11800H CPU, 64 GB of RAM, and an NVIDIA GeForce
RTX 3090 GPU. The operating system is Ubuntu 18.04 with
OpenCV 4.1 and TensorFlow 1.4.

We set the algorithm’s maximum episode count at 50,
the maximum episode length at 50, and the average episode
length at 30 to finish the object-grasping job and increase the
grasping success rate. We set the discount factor at 0.99 and
the learning rates of the actor and critic at 0.001 and 0.001,
respectively.

B. OBJECT RECOGNITION RESULTS
The mobile manipulator used in this study has a
high-definition camera that can record both color and

FIGURE 6. Results display for color detection. (a) Yellow color; (b) Blue
color; (c) Red color; (d) Green color; (e) Four blocks colors. (Color
detection is marked with a green box and purple text, respectively.)

object images. The photos are tagged using LabelImg,
and the trained YOLOv5 neural network model is used
for training [31]. JupyterLab software analyzes the visual
data captured by the camera, identifying objects and
colors.

We must calibrate objects and adjust colors by adjusting
the Hue-Saturation-Value (HSV) threshold before we can
recognize color, an operation that is automatically updated in
real-time. To eliminate the distracting colors, the HSV [32]
color model’s high and low thresholds are modified. The
hexcone model, often known as the intuitive properties of
color, served as the basis for the creation of the color space
known as HSV. The results of color recognition are displayed
in Fig. 6. The colors of the yellow, blue, red, and green
blocks may be distinguished from four distinct angles. The
results demonstrate that the four color blocks can be precisely
identified by the vision algorithm.

The results of object recognition are shown in Fig. 7.
On each of the four faces of each color block, there are
four unique things. The objects on each face are recognized,
and Table 1 displays the particular confidence score [33].
In Table 1, group (a) objects have a high confidence score of
96%. Objects in group (b) with a minimum confidence score
of 95%. Theminimum confidence rating of 94% for group (c)
objects. The identification area is represented by the cross in
Fig. 7. When we position each object in turn, the recognition
area will soon be recognized by the camera that is attached to
the recognition program.

The confidence curve for the results of object recognition,
which corresponds to the label classification in Table 1,
is shown in Fig. 8. Toilet paper has remained constant at
0.96, as seen in Fig. 8 (a), while disposable chopsticks
gradually declined to reach the lowest confidence score at
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TABLE 1. The confidence scores of the four groups of object recognition results correspond to the objects in Fig. 7.

FIGURE 7. Results display for object detection. (a) Yellow block objects;
(b) Blue block objects; (c) Red block objects; (d) Green block objects.
(Object detection is marked with different color boxes and text,
respectively.)

epoch 30. The cigarette butts eventually attain a steady
condition after epoch 15, when their confidence is at its
lowest. In Fig. 8 (b), while the book swings significantly
and achieves the lowest confidence at epoch 40, the zip-top
can and newspaper tend to be steady. The schoolbag remains
stable until about epoch 16, at which point it begins to climb.
The performance of the pill is at its poorest, as can be seen
in Fig. 8 (c), reaching the lowest confidence at epoch 15 and
below the confidence of 0.6. The performance of the other
three things remained constant. According to Fig. 8 (d), fish
bones and apple cores had the highest steady confidence
levels. The confidence level for watermelon rind varies, falls
at epochs 15 and 25, and reaches its lowest level at epoch 30.
At epoch 40, the confidence of the eggshell is at its lowest
point.

The training loss of the YOLOv5 algorithm is shown
in Fig. 9. The loss comparison between the YOLOv5 and
YOLOv4 algorithms under the same circumstances is shown
in Fig. 9 (a). The YOLOv5 method has a smaller total
loss than the YOLOv4 algorithm. At epoch 1, the YOLOv5
algorithm has a maximum training loss of 0.9 and a minimum
loss of 0.014. At epoch 2 and epoch 43, respectively,
the YOLOv4 algorithm hits its greatest training loss of
1.7371 and its minimum loss of 0.11737. The YOLOv5

FIGURE 8. The confidence curves of object recognition results
corresponds to the label classification in Table 1. (a) The confidence of
the objects in group (a); (b) The confidence of the objects in group (b);
(c) The confidence of the objects in group (c); (d) The confidence of the
objects in group (d).

FIGURE 9. The training loss of the YOLOv5 algorithm. (a) Loss comparison
between the YOLOv5 and YOLOv4 algorithms; (b) Training loss for each
iteration of the YOLOv5 algorithm. (YOLOv5 and YOLOv4 algorithms are
marked with the blue line and Orange line, respectively.)

algorithm’s training loss and iteration count are related,
as shown in Fig. 9 (b). As the number of iterations in each
iteration increases, the training loss of the YOLOv5 algorithm
reduces. It reaches its least loss at iteration 900, which
corresponds to the smallest loss of the YOLOv5 algorithm
at epoch 50 in Fig. 9 (a).

Classification loss and bounding box regression loss make
up the loss function for tasks involving object recognition.
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TABLE 2. The comparison between the YOLOv5 and YOLOv4 algorithms where trained in our recognition dataset corresponds to the data in Fig. 9.

TABLE 3. Results of ablation experiments. (Different attention modules are added to YOLOv5 to detect the performance of the models, where P2
represents the additional feature detection head).

The intersection of union (IoU), which is generated by
computing the intersection ratio between the predicted
boundary box and the actual boundary box, is the boundary
box regression loss that is most frequently employed.
Precision [34], recall, average precision (AP), and mean
average precision (mAP) are some of the evaluation indices
for model accuracy.

P =
TP

TP + FP
(14)

R =
TP

TP + FN
(15)

AP =
6P

Num(objects)
(16)

mAP =
6AP

Num(class)
(17)

where P stands for precision and R for recall, true positive
(TP) is the proportion of correctly predicted positive samples,
false positive (FP) is the proportion of correctly predicted
negative samples, and false negative (FN) is the proportion
of incorrectly predicted negative samples. Mean average
precision (mAP) is for the mean values of all average
precision (AP), and AP stands for the area under the
precision-recall (PR) curve.

The accuracy of identifying each object in an image is
measured with precision. In our object recognition grasping
experiments, the YOLOv5 and YOLOv4 models were
used to train the recognition datasets, and the comparison
results obtained are shown in Table 2. Based on the block
dataset developed in this paper, the YOLOv5 algorithm’s
minimal loss is 0.014 when the batch size is 16 and the
epochs are 50. The training loss was reduced by 88.07%
using the YOLOv5 algorithm as compared to the YOLOv4
algorithm. The mobile manipulator based on the YOLOv5
algorithm has a recognition precision of 96%, whereas the
mobile manipulator based on the YOLOv4 method has a
recognition precision of 94%. The accuracy of YOLOv5 has
increased by 2.12% when compared to YOLOv4. YOLOv5
is merely 27 MB in size, compared to 244 MB for YOLOv4.

The YOLOv5 detection speed, which is substantially faster
than the YOLOv4 identification method, was 120 frames per
second (FPS) [35]. The outcomes demonstrate the ability of
the YOLOv5 vision algorithm to recognize and detect quickly
and effectively with a small size.

C. ABLATION EXPERIMENT
To assess the effectiveness and advancement of the proposed
algorithm in this paper, five groups of ablation experiments
were conducted under the same validation set to evaluate
the detection performance of different attention modules on
the algorithm. Under the same experimental conditions, the
precision (P), recall (R), mean average precision (mAP)@0.5,
and inference time of each model were used to evaluate
the impact of different modules on the object recognition
algorithm of YOLOv5.

First, we studied the ablation experiment in which different
lightweight feature extraction modules were added to the
YOLOv5 framework, as shown in Table 3. We add a
detection head with additional feature layers to the module,
denoted by the P2 notation. Widely used lightweight
attention modules are GhostConv, Simple Attention Module
(SimAM), Convolutional Block Attention Module (CBAM),
etc. The addition of the attention module can optimize
the parameters of the model, mainly because the intro-
duction of P2 changes the entire architecture of YOLOv5,
making it better than other local modules. Therefore,
robot recognition grasping requires more detection features
and reduces the computational complexity of training in
detection.

According to the data in Table 3, the results show that
after adding P2 to the YOLOv5 network, compared with
the initial YOLOv5 model, the precision improved by 5.8%,
the recall improved by 2.4 percentage points, the mean
average precision (mAP)@0.5 improved by 3 percentage
points, and the inference time was 10.5 ms. Specifically,
in the third group of experiments, after integrating the
attention module Simple Attention Module (SimAM) into
YOLOv5, the precision improved by 8.2%, and the recall
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TABLE 4. The performance results of different YOLOv5 detection models on our recognition dataset.

and mAP@0.5 significantly improved by 25.6% and 21.2%,
respectively. It can be seen that the introduction of lightweight
recognition modules has a great positive effect on the detec-
tion model. Specifically, in the fourth group of experiments,
after integrating the attention module Convolutional Block
Attention Module (CBAM) into YOLOv5, the precision
is increased by 3.3 percentage points, and the recall rate
and mean average precision (mAP)@0.5 are increased by
2.2 percentage points and 6 percentage points, respectively.
The final results demonstrate that the method presented in
this paper shows satisfactory performance, the precision of
our algorithm is improved by 2.7%, and the inference time
is shortened by 66.6% to 1.2 ms. Although the recall and
mean average precision (mAP)@0.5 are reduced, the model
recognition precision is greatly improved, indicating that our
method can improve the object recognition ability and meet
the requirements of real-time detection.

To further analyze the recognition performance of the
models proposed in this paper, the YOLOv5m, YOLOv5l,
YOLOv5x, and YOLOv5_ours models are used to detect
our recognition dataset. The performance results of different
YOLOv5 detection models are shown in Table 4. Precision,
recall, mean average precision (mAP)@0.5, model size,
floating point operations per second (FLOPs), and inference
time are used as evaluation metrics. The results show that
the precision, recall, and mAP@0.5 of our proposed method
are 96%, 89.2%, and 92.3%, respectively. As can be seen
from Table 4, the model of YOLOv5_ours in this paper
has the highest precision, recall, and mAP@0.5 values.
The precision values are 9.6%, 2.7%, and 1.3% higher
than YOLOv5m, YOLOv5l, and YOLOv5x, respectively.
The recall values are 2.7%, 0.6%, and 3.6% higher than
YOLOv5m, YOLOv5l, and YOLOv5x, respectively. Mean
average precision (mAP)@0.5 values are 1.3%, 0.2%, and
1.6% higher than YOLOv5m, YOLOv5l, and YOLOv5x,
respectively. It shows that the YOLOv5_ours model has the
best object detection effect among the four methods. The
size of the proposed YOLOv5_ours model is only 27 MB.
Compared with YOLOv5m, YOLOv5l, and YOLOv5x, the
model is reduced by 37.2%, 41.9%, and 68.8%, respectively,
achieving lightweight.

D. OBJECT GRASPING RESULTS
To train the grasping strategy, we use the Proximal Policy
Optimization (PPO) reinforcement learning algorithm in
the simulated environment. The trajectory results of object
grasping are shown in Fig. 10. Fig. 10 (a) shows the

preparation process for the mobile manipulator to start
grasping. In its initial position, the mobile manipulator is
prepared to snag the three color blocks on the plank. The
orange ball in the illustration is a fictitious obstruction.
To seize the block, the mobile robot arm must avoid the
obstruction and place it on the left goal board. The mobile
manipulator detects the object and transmits the block’s
coordinate information via communication with the Robot
Operating System (ROS) server. Inverse kinematics is used
to resolve the rotation angle of each joint. The mobile
manipulator is propelled to grip when the joint angle has
been determined. The mobile manipulator recognizes the
object and sends out the information about the coordinates of
the acquired square through Robot Operating System (ROS)
server communication, and then solves the angle that each
joint should rotate by inverse kinematics to obtain the joint
angle and drive the mobile manipulator to grasp it. Fig. 10 (b)
shows the mobile manipulator grasping the yellow block.
After training to avoid obstacles and moving to the goal
location, the mobile manipulator elevates the arm, releases
the gripper to move to the yellow block position, clamps
the yellow block, and then releases the gripper to reset.
Fig. 10 (c) shows the mobile manipulator grasping the red
block. Fig. 10 (d) shows the mobile manipulator grasping the
green block. Fig. 10 (e) shows the end of the grasping task of
the mobile manipulator, from which the three blocks can be
seen placed at the target position. Fig. 10 (f) shows the reset
of the gripper after the mobile manipulator has performed the
grasping task. Among them, the gripper trajectory is shown
in Fig. 11. When the mobile manipulator is reset, the gripper
moves from the positive direction of the Y-axis to the negative
position and from the negative direction of the X-axis to the
positive position.

To further demonstrate the dependability of the Proximal
Policy Optimization (PPO) grasping method, we contrasted
the PPO algorithm with the Soft Actor-Critic (SAC)
algorithm and the Trust Region Policy Optimization (TRPO)
algorithm, as shown in Table 5. First, we train the algorithm
under the same conditions with a batch size of 16. The
data in Table 5 shows that the Proximal Policy Optimization
(PPO) algorithm performs the best at batch 16. The PPO
algorithm has the highest average reward and the lowest
average step. The average reward of the Trust Region
Policy Optimization (TRPO) algorithm is comparable to the
PPO algorithm, and it has the second-highest performance.
Although the Soft Actor-Critic (SAC) algorithm performs
worse than the PPO and TRPO algorithms, it has the least
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FIGURE 10. The trajectory results of object grasping via the PPO algorithm. (a) Start grasping; (b) Grasping the yellow block;
(c) Grasping the red block; (d) Grasping the green block; (e) Finish grasping; (f) Reset manipulator’s gripper. (Trajectories are
marked with red line.)

TABLE 5. Compared the PPO algorithm with SAC and TRPO algorithms. (The average reward, average step and train time of the three algorithms are
analyzed in batches 16 and 128, respectively).

FIGURE 11. The position trajectory of the manipulator’s gripper
corresponds to the trajectory in Fig. 10 (f). (Position trajectory is marked
with a pink line.)

average reward and the greatest average step. Compared
with the Soft Actor-Critic (SAC) and Trust Region Policy

Optimization (TRPO) algorithms, the average reward of the
Proximal Policy Optimization (PPO) algorithm is improved
by 91.4% and 0.95%, respectively. The PPO algorithm has
the shortest training time compared with the SAC and TRPO
algorithms, the training time is reduced by 8.08% and 2.15%,
respectively.

Second, we train the algorithm’s performance under
identical conditions with a batch size of 128 to demon-
strate the performance comparison. The Proximal Policy
Optimization (PPO) algorithm performs the best at batch
128 as well. The PPO algorithm has the highest average
reward and the smallest average step. The Trust Region
Policy Optimization (TRPO) algorithm comes in second
place in terms of performance, and it offers much higher
average rewards than the PPO algorithm. Compared with
the Soft Actor-Critic (SAC) and Trust Region Policy
Optimization (TRPO) algorithms, the average reward of the
Proximal Policy Optimization (PPO) algorithm is improved
by 93.3% and 41%, respectively. The PPO algorithm has
the shortest training time, which is reduced by 9.83% and
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FIGURE 12. The average reward comparison of the PPO, SAC, and TRPO
algorithms. (a) Average reward curve at batch 16; (b) Average reward
curve at batch 128. (PPO, SAC, and TRPO algorithms are marked with red,
green, and blue lines, respectively.)

FIGURE 13. The experimental platform for object recognition and
grasping. (a) Experimental platform setup; (b) The Physical model of the
DOFBOT mobile manipulator. (The hardware devices of the mobile
manipulator are marked with red arrows, respectively.)

3.50% compared with the SAC and TRPO algorithms,
respectively.

Last but not least, Fig. 12 displays the average reward
comparison of the PPO, SAC, and TRPO algorithms. The
reward curve for batch 16 is displayed in Fig. 12 (a). The SAC
algorithm has the lowest average reward, whereas the TRPO
algorithm’s average reward is comparable to that of the
PPO algorithm. The reward curve for batch 128 is shown in
Fig. 12 (b). The PPO algorithm provides the highest average
reward and the best performance.

E. EXPERIMENTAL PLATFORM
A self-built Mecanum wheel vehicle serves as the mobile
basis for the experiment’s DOFBOT arm. Fig. 13 shows the
experiment platform for object gripping. In Fig. 13 (a), the left
side is amaster computer, which is used to debug the real-time
simulation of the manipulator. A personal computer (PC) on
the right side is used to interact with the manipulator and
debug the JupyterLab code. The manipulator is supported
and powered by the mobile base. The gripper, steering
engine, and camera on the manipulator are used to recognize
and identify objects. The gripper is also used to pick up
objects.

The Robot Operating System (ROS) operating system and
Ubuntu 18.04 are installed on the DOFBOT arm. Based
on Python, it can accomplish 472 Giga Floating Point
Operations Per Second (GFLOPs) of computation [39]. The
manipulator measures 272 × 135 × 473 mm in size. The
gripper’s positioning accuracy is just ±0.5 mm, and it

TABLE 6. The grasping success rate of our approach. (The manipulator
repeatedly identifies and grabs the object ten times, and places it at the
target position, which means success).

can grasp objects weighing up to 500 g within a 30 cm
radius.

We further detect the success rate of object grasping. The
recognition area is filled with four color blocks, each of
which faces the manipulator. The manipulator repeatedly
spots the objects, grasps them ten times, and positions
them in the target location. Table 6 presents the grasping
success rate, and the four color blocks are all the same size.
Green blocks have a 90% grasping success rate, while the
grasping success rates for yellow, blue, and red blocks can
reach 100%.

The gripping experiment scenes are shown in the real world
in Fig. 14. Fig. 14 (a) shows the mobile manipulator starting
the experiment, the mobile base of the manipulator starting to
move, bypassing the obstacle to reach the end position, and
the target objects are four color squares. Fig. 14 (b) shows the
mobile manipulator reaching the grasping platform, lifting
the arm, and the jaws being released. Fig. 14 (c) shows
the mobile manipulator training to grasp the yellow block.
Fig. 14 (d) shows the mobile manipulator training to grasp
the blue block. Fig. 14 (e) and Fig. 14 (f) show the mobile
manipulator training to grasp the red and green blocks,
respectively.

V. DISCUSSION
This study aims to solve the problems of single application
scenarios and the low accuracy of traditional grasping
techniques. In this study, we demonstrate that our method
has higher object recognition accuracy and mean aver-
age precision (mAP)@0.5 value, and also has a higher
object grasping success rate. To illustrate the effect of
object recognition and grasping, we combine the YOLOv5
algorithm with the Proximal Policy Optimization (PPO)
reinforcement learning algorithm to provide an effective
approach. Collectively, our data demonstrate that our
method has the highest precision and mAP@0.5 values of
96% and 92.3%, respectively, by comparison of ablation
experiments. Our method improves the average reward by
93.3% and 41% compared to the Soft Actor-Critic (SAC)
and Trust Region Policy Optimization (TRPO) algorithms,
respectively.

In this study, compared with the literature [9], we added
the object grasping task to the target detection, while the
precision and mean average precision (mAP)@0.5 values
of our final results are higher than theirs. In this study,
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FIGURE 14. The grasping experiment scene in the real world. (a) Move
the manipulator to the target point; (b) Mobile manipulator reaches the
gripping platform; (c) Grasping the yellow block; (d) Grasping the blue
block; (e) Grasping the red block; (f) Grasping the green block. (Four
experimental color blocks are placed on the gripping platform.)

compared with the literature [16], they combined the
YOLOv5 method with the deep deterministic policy gradient
(DDPG) reinforcement learning method to grasp the target,
while we combined theYOLOv5 algorithmwith the Proximal
PolicyOptimization (PPO) reinforcement learning algorithm,
but we studied object recognition grasping, and the appli-
cation range is wider than theirs. The performance results
are more satisfactory. To make our method more effective,
we recognize four groups of objects listed in Table 1, and
the performance results are shown in Table 7. The proposed
method shows effective performance in object recognition
and grasping. The recognition precision and mean average
precision (mAP)@0.5 values of our method are 96% and
92.3%, respectively. The precision and mAP@0.5 values of
group (a) objects are 93.1% and 88.9%, respectively. The pre-
cision and mAP@0.5 values of group (b) objects are 90.2%
and 90.1%, respectively. The recall and mAP@0.5 values of
group (c) objects are 92.9% and 96.8%, respectively. The
recall and mAP@0.5 values of group (d) objects are 87.4%
and 93.5%, respectively. The computational complexity of
our model is lower than that of traditional object grasping

TABLE 7. The performance results for recognizing different objects. (The
object categories correspond to the data in Table 1, and the evaluation
indexes are precision, recall and mAP@0.5.)

methods, and the precision is higher, enabling workers to
accurately locate targets and accurately detect and grasp
objects in industrial handling and agricultural picking fields.
This study demonstrates an innovative combination of deep
learning and reinforcement learning techniques to bridge the
research gap in real-life applications of robots, especially in
the context of the task of identifying and grasping objects
by mobile manipulators. However, our study still has some
limitations, such as blurred images due to the low pixel count
of the camera of the physical manipulator. Therefore, the
quality of the images needs to be improved, and a richer
dataset is needed to enhance our detection performance.

VI. CONCLUSION
This paper proposes an object recognition grasping method
using proximal policy optimization with YOLOv5, which
combines vision recognition algorithms and deep rein-
forcement learning algorithms to achieve object recog-
nition grasping. YOLOv5 is used for object recognition
and obtains object location information, achieving higher
accuracy and faster detection speed. The proximal policy
optimization algorithm is used for object grasping to obtain
the grasping strategy. The experimental results show that
the proposed method has faster object recognition speed
and higher detection accuracy. The maximum confidence
of object recognition is 96%, and the minimum loss of
the YOLOv5 algorithm is 0.014 under batch 16 and epoch
50. The YOLOv5 algorithm reduces the training loss by
88.07% compared to theYOLOv4 algorithm. The recognition
precision of mobile manipulators based on YOLOv5 is
96%, while the recognition precision of YOLOv4 is 94%.
Compared with YOLOv4, the precision of YOLOv5 is
improved by 2.12%. By comparison of ablation experiments,
our method has the highest precision and mean average
precision (mAP)@0.5 value of 92.3%. Our proposed method
outperforms the Soft Actor-Critic (SAC) and Trust Region
Policy Optimization (TRPO) algorithms in object grasping.
Compared with the SAC and TRPO algorithms, the average
reward of the Proximal Policy Optimization (PPO) algorithm
improves by 91.4% and 0.95% at batch 16, and by 93.3% and
41% at batch 128, respectively. In real physical experiments,
we verify that the grasping success rate under our proposed
approach reaches 100%.

To further verify the practical effectiveness of the proposed
method in this paper, future research will replace the
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PPO algorithm with other different reinforcement learning
algorithms to improve grasping capability. The strategy
network will also be trained using other techniques.
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