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ABSTRACT Percutaneous nephrolithotomy (PCNL) is the current standard of care for patients with a total
renal stone burden> 20mm.Gaining access to the kidney is a crucial step, as the position of the percutaneous
tract can affect the ability to manipulate a nephroscope during the procedure. However, gaining percutaneous
access using fluoroscopic guidance has a challenging learning curve, with only a minority of urologists can
successfully establish the access. In addition to difficult access, the PCNL carries a risk of bleeding and the
need for blood transfusion. Robotic assistance may be a key towards accurate and reliable access. Beyond
assisting with renal access, a robotic platform can record data of importance related to the user’s activities via
sensor-equipped instruments. The analysis of these activities is crucial for understanding what constitutes
a successful and safe procedure. In this paper, we harness the powers of machine learning to automatically
analyze physicians’ activities during robotic-assisted renal access using the Monarch®Platform, Urology.
A machine learning framework based on a combination of a 1-dimensional U-net and random forests was
developed to find consistent patterns in the sensor data characteristic of needle insertions. This framework
retrospectively analyzed data previously obtained from 248 percutaneous renal access procedures. These
procedures were performed on 18 human cadaveric models by 17 practicing urologists and one urologist
proxy. The framework automatically recognized 94% of all first needle insertions in each procedure and
labeled them with an accuracy of 0.81 in terms of the Dice coefficient. The recognition accuracy for
secondary insertions was 66%. The automatically detected needle insertions were used to calculate clinical
metrics such as tract length, anterior-posterior and cranial-caudal angles of the insertion site, as well as user
skills such as trajectory deviation and targeting accuracy.

INDEX TERMS Percutaneous nephrolithotomy, machine learning, robotic surgery, human performance
analysis.

I. INTRODUCTION
The urinary stone disease is among the most common acute
urinary pathologies and is estimated to affect 10%-15% of
US adults [1]. If the disease is discovered at its early stage,
small stones could be treated conservatively using a com-
bination of medical expulsive therapy, alpha-blockers, and
pain control. The treatment of larger or symptomatic stones
is usually performed with Shock Wave Lithotripsy (SWL),
Flexible Ureteroscopy (FU), and PCNL. PCNL is one of
the treatments of choice for the removal of stones through
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small incisions on the patient’s skin. The number of PCNLs
has been growing by 6% per year, with the fastest growth
rates in the US Midwest [2]. The PCNL growth is, however,
accompanied by increased complication rates after up to 19%
of treatments [2]. Infectious complications and bleeding are
the most common intra- and post-operative complications.
The predictive factors for such post-treatment complications
include large stone size, lengthy PCNL procedure, and high
body-mass index (BMI) [3], [4].

Gaining percutaneous access is a delicate task and may be
challenging, even for experts. The kidney papillae, the opti-
mal targets for needle insertion, are only a few millimeters in
diameter. The presence of arteries and veins surrounding the
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renal pelvis and major calyces in the renal hilum makes any
puncture outside the collecting system a potential cause of
severe bleeding [5]. Since its introduction in 1976, PCNL in
the prone position has been the gold standard for the treatment
of large stones [6]. The prone positioning was favored due to
the posterior location of the kidneys, the short percutaneous
tract to the calyces located at the avascular line of Brodel,
and a large puncture area [7]. These advantages are, however,
accompanied by the need to reposition the patient after the
ureteral catheter placement and complicated anesthesiologic
management. As an alternative to prone, supine position-
ing can overcome the abovementioned challenges with the
tradeoff of longer percutaneous tract lengths and potentially
increased kidney mobility [8]. Supine patient positioning
has been rapidly gaining popularity among physicians, with
20% of procedures done in supine positioning worldwide [9].
There is, therefore, a clinical need for safe and reliable renal
access.

There is currently no means to plan a needle insertion
with guaranteed success. Physicians primarily rely on flu-
oroscopy and ultrasound (US) to intra-operatively visualize
the anatomy and the percutaneous needle during insertion.
Fluoroscopy is the most widely used imaging modality due
to the high resolution of the resulting images and low dose
exposure [10]. However, both modalities are limited to two-
dimensional space, forcing the operator to rely on their pro-
fessional experience for understanding the true anatomy from
the 2D fluoroscopic or US view. To overcome this limitation,
physicians who utilize fluoroscopic imaging will often obtain
multiple fluoroscopy images or videos at different C-arm
angles, which enables confirmation of the alignment of the
target calyx and needle insertion trajectory [11]. Although
needle alignment at the insertion start is paramount, it does
not guarantee overall success, as the needle trajectory needs
to be actively corrected to compensate for anatomical motion.

Medical robots are likely to be the solution for improv-
ing the accuracy of PCNL procedures. For example, robots
could simultaneously record the data from the fluoro-
scope, track the location of the needle and other instru-
ments, perform automated insertions, etc. There have been
several attempts to integrate robots into PCNL proce-
dures [12], [13], [14], [15], [16], [17], [18], [19], [20]. Early
studies used kidney phantoms as the targets for needle inser-
tion as phantoms allow precise measurement of the insertion
accuracy [13], [14], [16], [18]. At the same time, phantoms
are a poor substitute for the human abdominal anatomy.
Cadavers and live pigs were utilized as more realistic mod-
els [12], [13], [15], [16], [17], [20]. The insertion accuracy
was then measured qualitatively as the ratio of successful
access to porcine kidneys in one or three needle inser-
tion attempts [15] and quantitatively using three-dimensional
computed tomography images acquired at the end of the
insertion and fiducial markers placed inside porcine sub-
jects [12], [16], [20]. Two main directions for integrating
robots into PCNL procedures, namely remotely controlled
and fully automated needle insertions, have been investi-

gated. In both scenarios, the user first identifies the starting
point on the subject surface and positions the needle at that
point. The needle could then be inserted using the remote
controller [12], [13], [16]. Such an approach increases the
stability of the insertion tract in contrast to manual insertion
and removes the user from the insertion site to protecte
them from radiation exposure during intra-operative imaging.
Alternatively, a robot could automatically insert the needle
after the user sets the starting point and insertion direction
are set by the user. The main challenge of such an approach
is to ensure that the insertion trajectory stays in agreement
with the anatomy, so the researchers develop algorithms
for breathing motion compensation via image-based target
tracking [14], [15], [17], [18], [20]. Due to significant tech-
nical and financial requirements to build robots and conduct
robotic experiments, the field of robotic percutaneous proce-
dures remains underinvestigated. The existing studies utilize
one phantom or 1-2 pigs. To the best of our knowledge, no use
of human cadavers or human patients has been reported.
Finally, the studies focus on the assessment of the robotic
assistance, whereas data from the robots could be used for
other purposes like the assessment of users’ skills or treatment
outcome prediction.

This study proposes an automated solution for analyzing
procedure metrics and quantifying expert performance while
establishing renal access in robotic PCNL using a novel sur-
gical robot – Monarch®Platform, Urology (MONARCH).
A deep learning-based framework was developed to automat-
ically recognize needle insertion attempts during renal access
using the sensor data recorded by the MONARCH. Quanti-
tative features that characterize the user’s performance, such
as the quality of needle alignment and targeting error, were
extracted from automatically recognized insertions and com-
pared to the manually labeled needle insertions.

II. METHODOLOGY
A. DATA COLLECTION
Data were obtained from prior recordings of a consecu-
tive series of percutaneous access attempts on a human
cadaver model using the MONARCH robotic system. The
MONARCH system includes a flexible ureteroscope steered
by the user with a video-game-style controller and amanually
inserted percutaneous needle. Both the ureteroscope and the
needle are equipped with electromagnetic (EM) sensors that
report the tip position and orientation of the instruments.
The ureteroscope is equipped with an integrated camera that
allows the user to navigate inside the renal collecting system
under direct vision.

During the simulated procedures, the cadaver was posi-
tioned in a modified supine position on the operating table.
Saline irrigation was used to distend the kidney for visualiza-
tion of the anatomy. The amount of fluid used mimicked the
ranges used in standard ureteroscopies. The ureteroscope was
inserted into the subject’s urethra through the bladder, and up
the ureter into the kidney collecting system and then docked
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on the robotic arms of the MONARCH system. Once the user
drove the ureteroscope inside the renal pelvis, they selected a
desired calyx for the needle insertion and tagged the papilla
using the controller. The user then retracted the ureteroscope
so that the papilla of the target calyx was positioned in the
center of the ureteroscope camera view (Fig. 1). This location
was also tagged using the controller, indicating to the system
that the target had been selected.

The user then selected an insertion site on the skin and
manually inserted the needle. Selection of the insertion site is
purely based on the user’s clinical understanding of the opti-
mal trajectory for the needle insertion and their consideration
of anatomical structures adjacent to the kidney (such as lung,
liver, spleen and colon). The robotic system does not impose
any restrictions on the insertion site.

Once the insertion site is selected, the MONARCH system
provides visual guidance to the user on how to best align
the needle with the target using the guided percutaneous
access interface (GPAI). The GPAI provides real-time nee-
dle insertion guidance by aligning the needle such that the
targeting dot is inside the targeting reticle (seen in Fig. 1).
The needle insertion step starts when the aligned needle
punctures the subject’s skin. The needle insertion step ends
when the depth indicator (Fig. 1) turns green, signaling that
the needle has reached the target, or turns red, signaling that
the insertion should be stopped as the target is missed, and
further penetration may result in surrounding tissue damage
(Fig. 2). Summarizing, the MONARCH system provided
hardware that recorded the relative locations and orientations
of the ureteroscope and needle sensors, and visual interface
that helps to align the sensors during the insertion. The user
performed the needle movements and ureteroscope driving.

Within our analysis, we defined any pauses during needle
insertion to still count towards one insertion attempt. Needle
retractions before the depth indicator turns green or red do
not constitute a new attempt but are considered needle adjust-
ments. Additionally, a new needle insertion attempt does not
require the user to completely extract the needle from the
cadaveric abdominal tissue. Figure 3 shows a timeframe for
an example percutaneous renal access procedure.

B. NEEDLE INSERTION FEATURES
TheMONARCH robotic system records in real-time the loca-
tion and orientation of the ureteroscope and the needle and the
controller commands. At each time point, the ureteroscope is
characterized by a vector of positional coordinates xscope, and
quaternion qscope defined with respect to the electromagnetic
field generator (FG). Similarly, the needle at each timepoint
is characterized by a vector of positional coordinates xneedle
and quaternion qneedle.

Using positions and orientations of the ureteroscope and
needle, a number of features were computed for every times-
tamp of a percutaneous access procedure. First, we computed
the relative positions and orientation of the needle against the
ureteroscope in 3D. We also computed the linear velocities
of the needle and the ureteroscope by fitting local regression

models with Newton’s equation of motion as the model func-
tion [21]. The linear velocity, for example, can be indicative
of ureteroscope retraction and needle insertion.

Several features are computed to capture and quantify the
needle alignment. The target alignment error ftarget estimates
if the needle is oriented towards the target, i.e., the 0◦ angle
indicates the perfect alignment. This angle significantly fluc-
tuates at the time of the initial needle alignment. The relative
angle between the ureteroscope and the needle is another
feature.

Finally, we recorded the depth indicator values of the
GPAI and the distance from the needle to the FG. The
described-above features characterize the state of the system
at every timestamp.

The subject’s position on the surgery bed is predefined
according to the modified supine PCNL protocol. The
MONARCH cart also has a predefined location against the
bed. Therefore, the coordinates and orientation of the sensors
can be computed with respect to the robotic system and,
consequently, the subject. The first angle of interest is the
cranial-caudal that measures how a sensor is oriented against
the axis passing from the subject’s legs to head (Fig. 5a).
The second angle is anterior-posterior that measures how a
sensor is oriented up or down (Fig. 5b). Similarly, we can
represent the ureteroscope orientation with respect to the bed
to estimate whether a calyx is anterior or posterior facing as
shown in Fig.5d.

C. U-NET FOR NEEDLE INSERTION DETECTION
A percutaneous renal access procedure starts with the target
selection step and ends with either a new target selection or
the user manual terminating the procedure with the GPAI.
A procedure’s features define a 2D array A of size N × M,
where N corresponds to the number of timestamps, and M
is the number of features per timestamp. The information
decoded in these features can be characteristic of specific
user activities, including site selection for needle insertion,
needle insertion, needle retraction, and secondary insertion.
In this study, we are interested in two types of activities:
the needle insertion activity, which encompasses both first
and secondary insertions, and the no-insertion activity, which
covers all the remaining activities. Each timestamp is labeled
to belong to insertion/no-insertion resulting in a 1D array L
of labels of size N.

The aim is to automatically label percutaneous renal access
procedures by learning from a training collection of arrays
A = {A} and corresponding labels L = {L}. We imple-
mented a one-dimensional U-Net neural network for auto-
mated labeling of A [22]. The encoder part of the U-Net
consisted of eight blocks with the feature map sizes of
[16, 32, 64, 64, 128, 128, 256, 256], where each block was a
sequence of group norm [23], convolution, and ReLU lay-
ers. The decoder part of the U-Net has the inverted feature
map sizes [256, 128, 128, 64, 64, 32, 16] and the same block
composition. All convolution layers have [3 × 1] kernels.
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FIGURE 1. The guided percutaneous access interface (GPAI) of the Monarch Platform
Urology (Auris Health Inc., CA). The interface consists of the ureteroscope camera view (1),
target and targeting dot (2) that encodes the alignment between the needle for
percutaneous insertion and the target inside the kidney, and depth indicator (3) that turns
green when the target is reached or red when the target is missed.

FIGURE 2. A schematic illustration of a percutaneous needle access
procedure equipment. The flexible ureteroscope equipped with a camera
is used to mark the target calyx for the needle insertion. Both
ureteroscope and needle are equipped with sensors, which are tracked by
the field generator located near the procedure site.

The network loss function is a linear combination of binary
cross-entropy andDice losses weighted with 0.1 and 0.9 coef-
ficients, respectively. The training used an Adam optimizer
with an initial learning rate of 0.001 and L2 regularization
on the convolution kernels with λ = 0.01. The network
was trained for 100 epochs. The input to the network first
passes through average pooling with the kernel [5×1], while
the output is upscaled to return to the original input size.
This initial downscaling is needed to compensate for feature
fluctuations and facilitate the U-Net convergence. The output
of the U-Net is a probability vector of length T indicating how
likely each timepoint belongs to an insertion.

D. RANDOM FORESTS FOR PERCUTANEOUS ATTEMPT
CLASSIFICATION
The U-Net labels each time point to represent insertion or
no-insertion. Such labeling output is insufficient to achieve
the overarching aim of estimating the clinical properties of

the insertions and computing the number of needle insertion
attempts per procedure. In other words, we need to identify
the time points of the skin puncture and end of a needle
insertion attempt from the results of U-Net predictions.

Figure 6 illustrates an example where simply thresholding
the classification probabilities assigned by U-Net is insuf-
ficient. In this example, the user performs an incomplete
insertion, then extracts the needle from the subject’s body
and starts a new insertion attempt. This attempt is then com-
pleted. To compute characteristics of the insertion, such as
tract length (Fig. 5c), insertion angles, and trajectory devi-
ation, incomplete insertion attempts need to be filtered out
(Fig. 6). To classify the result of the U-Net and filter out
such scenarios, we first generate candidate insertion regions
by thresholding U-Net probabilities and extracting connected
regions. Each extracted region will be referred to as a can-
didate region to be classified as a percutaneous attempt.
In Figure 5c, we have three candidate regions where needle
insertion activity is taking place.

For each candidate region, we calculate six features. One
feature is the duration of the candidate region. Two features
are the average target and positional targeting accuracy of the
targeting dot on the GPAI, which we expect to be very stable
in the middle of an insertion attempt. The distance traveled
by the needle and the minimal distance to the target were also
included in the feature list. Finally, a binary feature checks if
the needle, on average, moves closer to or further away from
the target to capture the directionality of the movement.

The regions are classified using an implementation of
a random forest classifier [24] from sklearn with standard
parameters and the maximum tree depth of 9 splits before a
forced leaf. We also augmented the random forest classifica-
tion with several explicit rules, namely a) the insertion cannot
be shorter than r = 5 seconds, b) two regions labeled by the
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FIGURE 3. A schematic illustration of a percutaneous needle access procedure period. The procedure starts from
the target selection phase, where the user drives the flexible ureteroscope of the Monarch Platform to select the
target, and then retracts the ureteroscope offering a clear view to the selected target location. The next phase is
site selection, where the user places the needle to the subject’s skin and finds a suitable puncture location while
aligning the needle with the target. The next phase is the first needle insertion attempt that goes from the moment
when the needle penetrates the skin to the moment the needle reaches or misses the target. Secondary insertions
could be executed after the first one if target is missed. Each insertion is followed by a post-insertion phase where
the user may perform additional clinical steps such as checking for backflow or inserting a guidewire to the renal
collecting system.

FIGURE 4. An example of manually and automatically detected need
insertions and the corresponding insertions lengths dref and dauto and
angle between them α.

U-Net as insertion that are closer than p = 2 seconds from
each other are merged into one region, c) the minimal needle
track cannot be shorter than m = 10 mm, d) the regions are
artificially extended to ensure the needle came closer than
k = 5 mm to the target. These rules are descriptive for both
first and secondary insertions. The combination of the U-Net-
based timepoint labeling and random forest region classifi-
cation resulted in the fully automated calculation of needle
insertion characteristics from the MONARCH-assisted per-
cutaneous access.

III. EXPERIMENTS AND RESULTS
A. DATABASE
The database consisted of recordings from 248 consec-
utive percutaneous renal access procedures performed on
18 cadavers. The cadavers were both male and female sub-
jects with a body mass index ranging from 19.8 to 39.2. The
procedures were conducted by 17 urologists and one urologist
proxy. The average experience level of the participants was
3.2, computed on a scale from 1 to 5. A scale of 1 corresponds
to a novice user who has not gained percutaneous access in

their practice, and five corresponds to expert urologists who
performed hundreds of percutaneous renal access procedures.
Only three participants had experience with supine patient
positioning, while the majority have been only performing
percutaneous access in prone positioning.

Important to note is that within this dataset, not every
procedure included a needle insertion attempt nor ended after
successful insertion. If a user selected the same or a new
target without inserting the needle, the time frame from the
previous target selection to the new target selection still con-
stitutes a procedure and was analyzed for potential insertion
attempts. The database contains 42 procedures without inser-
tions. At the same time, the user could finish the procedure
by abandoning the instruments and the controller without
explicitly sending a signal of a procedure end.

The recordings came from more procedures on the right
kidneys (57%) than on the left kidneys (43%). For 171 pro-
cedures, the experts explicitly determined the target calyx as
upper (36%), mid (31%), and lower (33%) pole calyx.

B. RESULTS
The procedures were analyzed using a needle insertion emu-
lator that displays the 3D location and orientation of the
instruments. The engineers inspected the procedure logs to
manually label the individual needle insertions by marking
their start and end time points. The accuracy of automated
labeling for the first insertion in each procedure was 0.81,
measured in terms of the Dice coefficient compared against
the manual labeling. The framework captured 94% of all first
insertions, for which the Dice coefficient was 0.86. The first
insertions were used to compute the procedure metrics, which
can be subdivided into the site selection metrics and needle
insertion metrics. The site selection metrics are determined
at moment insertion location is determined, and the insertion
starts and includes a) tract length (Fig 5b) relative needle
to ureteroscope angle, c) anatomical insertion angle, and d)
target orientation (Fig 5). The procedure insertion metrics
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FIGURE 5. Illustrations of geometrical features used in the study with the reference to the patient’s anatomy. The pink and blue objects correspond to
the axial and coronal patient’s cross-section, respectively. Red object is a schematic kidney illustration. (a) Caudocranial angle illustration. (b) The
anterior-lateral-posterior angle illustration. (c) Tract length for insertion from the patient’s skin to the target inside the kidney. (d) The target
anterior-lateral-posterior angle illustration.

FIGURE 6. This example illustrates a common scenario when the user starts (1) inserting the needle but before
reaching the target reconsiders and entirely extracts the needle from the subject’s body. Then, the user starts (2) a
new insertion and completes it following the indication from the guided percutaneous access interface (GUAI) of
the Monarch Platform. The initial aborted insertion attempt can be mis-labeled by the U-Net as a needle insertion.
The U-Net results are corrected by random-forest-based classification that among other conditions check whether
a region labeled by the U-Net as an insertion actually reach the target plane.

include a) minimal distance to the target, b) insertion dura-
tion, c) mean positional and angular need deviation during
insertion, d) mean and maximal ureteroscope displacement
during insertion, i.e., a proxy for anatomical motion. The
complete list of metrics and the metric comparison for man-
ually and automatically labeled insertion performed in terms
of average (± standard deviation), median and 25th and 75th

quantiles of the differences are given in Table 1. Outliers
in Table 1 are computed using three standard deviations
from the average values for each feature. After removing
outliers, the average, standard deviation, and quantile values
are recomputed to avoid significant skew of the standard
deviation values.

We do not compute procedure metrics from secondary
insertions but only record their presence. Indeed, the site

selection metrics cannot be estimated from the secondary
insertions, while some other metrics, such as secondary inser-
tion duration and angular deviations of the sensors, are not
clinically descriptive. A secondary insertion is considered
correctly recognized if there is a≥50% overlap betweenman-
ual and automated labels. In total, 70 secondary needle inser-
tions were distributed among 42 procedures. The recognition
accuracy for the secondary insertions was 66%, i.e., 46 of
70 insertions. The recognition accuracy for the procedures
that have secondary insertions without necessarily correctly
capturing each insertion was 79%, i.e., 33 of 42 procedures.

IV. DISCUSSION
This paper proposes a novel way of integrating machine
learning into percutaneous renal access assessment. In recent
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TABLE 1. The results of the proposed framework for the automated labeling of needle insertions during percutaneous renal access procedures. The
results present the error estimation of quantitative metrics derived from manually and automatically labeled needle insertions. The features are
calculated only for the first insertion without considering potential insertion re-attempts. The errors outside the 1.5 interquartile range are considered
outliers. The outliers are removed from the reference value range.

years, machine learning has dramatically expanded its appli-
cability and was eventually utilized in the prediction of out-
comes of staghorn calculi [25]. The researchers were focused
on predicting both acute outcomes such as the stone-free
status [25], [26], [27], [28], laboratory measurement [26],
fever [29], need for transfusion [26], [27] or stenting [27], and
late outcomes such as second PCNLs [26] or urosepsis [29].
The studies collected several hundred demographics, clini-
cal and laboratory parameters for each patient who under-
went PCNL, applied dimensionality reduction algorithms to
select the most information-rich features, and then trained
logistic regression [25], k-nearest neighbors [27], random
forests [25], support vector machines [25], [27], [28] and neu-
ral networks [26] on the resulting features to predict PCNL
outcomes. Such models exhibit not only predictive powers
but also pinpoint the parameters that are most contributive
to the success/failure of PCNL. The authors of such stud-
ies concluded that the number of needle insertions needed,
BMI, stone size, access calyx pole, kidney comorbidities,
procedure duration, and supracostal insertions exhibit the
strongest correlation with PCNL outcomes. Except for the
stone size and kidney comorbidities, the remaining features
are directly associated with or could be estimated during the
needle insertion.

The number of needle insertions is predictive of stone-free
status for patients with stag horn calculi [25], post-treatment
urosepsis [29], [30], and severe hemorrhages [30]. In our
study, 79% of all procedures requiring secondary insertions
and 66% of individual secondary needle insertion attempts
were automatically recognized by the presented framework.
Several issues cause the misdetection of secondary insertions.
First, some secondary insertions have internal idle states
when the user does not move the needle. For such inser-

tions, the frameworkmight capture the insertion but mislabels
some of its idle states and therefore does not achieve the
required 50%-level overlap with the manual label. Some urol-
ogists employ the staccato motion during renal access [31],
where the needle is not inserted in one continuous motion
but through many small advances and relaxations. During
such a motion, the needle could rapidly surpass the target,
be retracted, and then continue its movement toward the
target. The insertion, therefore, could be erroneously sub-
divided into two insertion attempts by the labeling scheme.
In general, needle insertions rarely consist of monotonous
movement toward the target and include small retractions due
to tissue resistance, adjustments, and pauses, which makes
the recognition of secondary insertions ambiguous even for a
human observer. For example, how significant does a needle
retraction need to be to constitute an insertion in contrast to
needle adjustment? There is no ultimate answer to this ques-
tion, but empirically, we observed that secondary insertions
have an insertion depth of >15mm. To put this threshold into
perspective, the mean tract length for the first insertions is
104 mm.

Another key observation is that the U-Net accurately cap-
tures most of the needle insertion activity. However, the ref-
erence labels only include insertion activity from the start of
skin puncture to the end of needle insertion, while incomplete
attempts are not analyzed. The incomplete insertion attempts
do not serve the end goal of segmenting data from the start of
a skin puncture to the insertion end and computing procedure
metrics. The incomplete insertion attempts negatively affect
the Dice score but do not necessarily compromise the overall
framework performance (Fig. 6).

A meta-analysis of the efficacy and safety of percutaneous
nephrolithotomy against patients’ BMI factor discovered that
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the procedure is significantly longer for morbidly obese
and obese patients in comparison to patients with normal
BMI and overweight patients [32]. Machine learning anal-
ysis found BMI to predict stone-free status for patients with
stag horn calculi [25] and the need for stenting to manage
post-treatment urine leakage [26]. For the subjects with high
BMI, the needle needs to travel a longer distance, which cor-
relates with the tract length feature computed in our analysis.
The median tract length error was 9.22 mm, which approxi-
mately corresponds to a 9% error of the mean tract length of
99.4 mm. The error is, however, skewed due to several large
outliers. The median error of 9.22 mm is 1.5 times smaller
than the mean error. The errors occur due to the challenges
with precise estimation of the skin puncture time. The skin
is thick and may be difficult to penetrate, which will require
a number of pushes. After penetration, the needle could drift
away from the target due to initial misalignment, so the user
will decide to pull the needle and realign. In contrast to the
tract length, the insertion angles remain stable during the
significant part of the insertion, and they are estimated with
an error of 1.64◦ and have very few outliers. The tract length
and insertion angles estimate the distance to the kidney from
a specific anatomical region on the skin and can approximate
the subject’s constitution.

Procedure duration is predictive for post-treatment urosep-
sis and [29], [30] and severe hemorrhages [30]. For outcome
prediction, the PCNLs are classified into long, which take
more than 90 minutes [30] or 120 minutes [29], and short.
The short PCNLs result in more favorable outcomes. The
procedure duration is an umbrella characteristic that offers a
rough separation between easy and challenging PCNL cases.
It must be acknowledged that percutaneous renal access is
only a small part of the PCNL, and procedure duration may
be associated with the presence of multiple stones, the need
for multiple insertions, or other stone removal challenges.
Although the proposed framework only targets the access part
of the PCNL, the presented methodological and robotic con-
cepts can be extended for recording and automatic extraction
of other components that contribute to challenging PCNLs.

The quality of an individual needle insertion attempt has
remained non-trivial to analyze without robotic tools and sen-
sors [33]. The precision of needle insertion is encoded in the
positional and angular deviation during insertion. These met-
rics are automatically captured with low errors of 0.49 mm
and 1.38◦ (Table 1). The main source of errors in inser-
tion metric calculation comes from detection outliers, i.e.,
a relatively few cases when insertions were significantly mis-
labeled. The main reason for outliers comes from incomplete
insertions, when the user starts the insertions, gets dissat-
isfied, partially retracts the needle, and then continues the
insertion. If a complete insertion happens immediately after
an incomplete insertion, the algorithm can erroneously stitch
these two insertions into one, significantly compromising
metric calculation. The future steps will be to improve the
recognition and rejection of incomplete insertion attempts.
This research opens an avenue toward automated quantitative

analysis of percutaneous needle insertions that is critical for
evaluating and adopting robotic assistance in percutaneous
nephrolithotomy. Moreover, automatic insertion recognition
is a prerequisite for understanding which insertion features
are essential for successful renal access.

V. CONCLUSION
This work presents the first attempt at using robotic assis-
tance to record instruments during PCNL and applying deep
learning to the automatic labeling of needle insertion activi-
ties. The work provides methodology and apparatus for the
automated calculation of clinical metrics and characteris-
tic features of user performance during percutaneous renal
access.
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